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Abstract—A new mathematical model is considered related to competitive location problems where
two competing parties, the Leader and the Follower, successively open their facilities and try to win
customers. In the model, we consider a situation of several alternative demand scenarios which differ
by the composition of customers and their preferences. We assume that the costs of opening a facility
depend on its capacity; therefore, the Leader, making decisions on the placement of facilities, must
determine their capacities taking into account all possible demand scenarios and the response of
the Follower. For the bilevel model suggested, a problem of finding an optimistic optimal solution is
formulated. We show that this problem can be represented as a problem of maximizing a pseudo-
Boolean function with the number of variables equal to the number of possible locations of the
Leader’s facilities. We propose a novel system of estimating the subsets that allows us to supplement
the estimating problems, used to calculate the upper bounds for the constructed pseudo-Boolean
function, with additional constraints which improve the upper bounds.
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INTRODUCTION

We consider a mathematical model from the family of models of competitive facility location, which
generalizes the classical problem of facility location built on the basis of the idea of the Stackelberg
game [12] and written as a bilevel mathematical programming problem [7]. Some surveys of the research
aimed at studying these models are presented in [4, 9, 11]. It is assumed that there are two competing
parties successively opening their facilities with the aim of capture consumers and making maximum
profit. A party, called the Leader, opens its facilities first, and then the other party, called the Follower,
opens its facilities, knowing the decision made by the Leader. Capturing a consumer by one of the
parties depends on the preferences of this consumer, represented as a linear order on the set of possible
locations of facilities. The consumer is captured by the party that opened the facility most preferable
for this consumer. In addition, the party that has captured the consumer can use for serving him/her
only those opened facilities that are more preferable for this consumer than any facility opened by the
other party. The task of the Leader under conditions of such a competition is to determine a set of the
facilities opened by it, which allows the Leader to get the maximum profit under the optimal behavior of
the Follower also seeking to maximize the profit.

In the model under study, we consider a situation where several alternative demand scenarios are
possible; i.e., alternative sets of consumers with the corresponding preferences, of which only one will
be realized. The scenario becomes known after the Leader places its facilities and before the Follower’s
making a decision on the placement of facilities. Thus, the Follower, when deciding to open its facilities,
knows not only the location of the Leader’s facilities, but also the composition of consumers and their
preferences. In this situation, the task of the Leader is to determine the set of facilities which gives the
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greatest profit in the case of realization of the worst-case scenario of demand and the optimal location of
the Follower’s facilities.

In the situation of alternative demand scenarios, in the case when a more powerful facility requires
more expenses for its opening, the question arises about a choice of capacities of the facilities being
opened [10]. In the model under study, it is assumed that the costs of opening facilities are fixed costs
plus the costs proportional to the planned volume of production. Note that the problem of choosing the
capacity of new facilities can be formulated both for the Leader and the Follower. However, it is essential
only for the Leader who does not know which consumers will be served by the facility being opened. In
the case of the Follower, the variable costs for opening a facility can be accounted for when determining
the amount of income received by the facility from serving each consumer.

An important feature of the proposed model, as well as of the earlier considered models of competitive
facility location [1, 2, 5], is the need to clarify the concept of optimal solution. This is due to the possible
nonuniqueness of the optimal solution of the Follower, which creates uncertainty when calculating the
Leader’s objective function. For the model under consideration, a problem is formulated of finding an
optimistic optimal solution [7]. The proposed approach to the construction of algorithms for the exact
and approximate solutions of this problem is based on the method used in [2, 5] for solving other problems
of competitive facility location. The main idea of this method is to represent the problem under study in
the form of a problem of maximizing a certain pseudo-Boolean function with the number of variables
equal to the number of possible locations for the Leader’s facilities. If such a representation is obtained
then a possibility arises to construct the effective approximate algorithms based on local search methods
and various metaheuristics [3, 6, 8, 13]. Another important component of this method is the calculation
of the upper bounds for the values of the constructed pseudo-Boolean function on the subsets of (0, 1)-
vectors given by partial (0, 1)-vectors. A successful solution of this problem allows us to construct the
exact algorithms based on the schemes of implicit enumeration.

In this article, we further develop the method for constructing estimating problems to calculate the
upper bounds in the problems of competitive location of facilities. The method consists in forming some
additional constraints in the Leader problem, not changing the optimal value of its objective function.
The technique for constructing such constraints is developed in [1, 2] and is based on the use of so-called
estimating subsets. In this article we construct a new system of estimating subsets, which allows us to
supplement the estimating problems with new constraints improving the accuracy of the obtained upper
bounds.

The article consists of four sections: In Section 1 we construct a mathematical model of competitive
facility location and choice of their capacities under multiple demand scenarios. In Section 2 we
formulate a problem of choosing an optimistic optimal solution of this model and carry out its reduction
to the problem of maximization of a pseudo-Boolean function. Section 3 is devoted to the construction of
systems of estimating subsets on the basis of which we formulate the estimating problems for calculating
the upper bounds of the pseudo-Boolean function on the subsets formed by partial (0, 1)-vectors.

1. MATHEMATICAL MODEL

Let us introduce the notation.
For the sets:

I = {1, . . . ,m} is the set of facilities (possible locations of facilities),
S = {1, . . . , l} is the set of possible demand scenarios,
Js is the set of consumers in the case of realization of the scenario s ∈ S.

We assume that Js1 ∩ Js2 = ∅ for every s1, s2 ∈ S, s1 �= s2. The set of all possible consumers is
denoted by J =

⋃
s∈S Js; we assume that J = {1, . . . , n}.

For the parameters:
fi are fixed costs for the Leader’s opening the facility i ∈ I,
ci are unit costs for installing capacities in the facility i ∈ I opened by the Leader,
gi are fixed costs for the Follower’s opening the facility i ∈ I,
pij is the income received by the Leader’s facility i ∈ I from the consumer j ∈ J ,
qij is the income received by the Follower’s facility i ∈ I from the consumer j ∈ J ,
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aij is the volume of production of the facility i ∈ I opened by the Leader, necessary for serving the
customer j ∈ J .

For the variables:
xi is a variable equal to one if the Leader opens the facility i ∈ I, and zero, otherwise;
xij is a variable equal to the share of the demand of the consumer j ∈ J satisfied by the Leader’s facility
i ∈ I,
vi is the production volume (capacity) of the Leader’s facility i ∈ I,
zs
i is a variable equal to one if the Follower opens the facility i ∈ I, and zero, otherwise,

zij is a variable equal to one if the Follower’s facility i ∈ I is assigned for servicing the consumer j ∈ J ,
and zero, otherwise.

We assume that the preferences of the consumer j ∈ J are given by a linear order �j on I. For
i1, i2 ∈ I the relation i1 �j i2 means that either i1 = i2 or for the consumer j ∈ J the facility i1 is
more preferable as compared to i2. In the case when i1 �= i2 and i1 �j i2, we use the notation i1 �j i2.
Given j ∈ J , we denote by Nj(i) the set of elements {k ∈ I | k �j i} that are more preferable in terms
of the order �j as compared with the element i ∈ I. We denote by αj(I ′) and ωj(I ′) the maximum and
minimum elements of a nonempty subset I ′ ⊆ I with respect to the order �j , respectively. Given nonzero
(0, 1)-vector x = (xi), i ∈ I, we assume that αj(x) = αj({i ∈ I | xi = 1}).

Using the above notation, we write the model of competitive facility location and choice of the
capacities under multiple demand scenarios as the model of bilevel programming:

max
(xi),(xij),(vi)

(
−

∑

i∈I

(fixi + civi) + min
s∈S

∑

j∈Js

∑

i∈I

pijxij

)
, (1)

z̃s
i +

∑

k | i�jk

xkj � 1, i ∈ I, s ∈ S, j ∈ Js, (2)

xi � xij, i ∈ I, j ∈ J, (3)
∑

j∈Js

aijxij ≤ vi, i ∈ I, s ∈ S, (4)

xi ∈ {0, 1}, xij ∈ [0, 1], vi ≥ 0, i ∈ I, j ∈ J, (5)
(
z̃s
i

)
, (z̃ij) is the optimal solution of the problem: (6)

max
(zs

i ),(zij)

∑

s∈S

(
−

∑

i∈I

giz
s
i +

∑

j∈Js

∑

i∈I

qijzij

)
, (7)

xi +
∑

k | i�jk

zkj � 1, i ∈ I, j ∈ J, (8)

xi + zs
i ≤ 1, i ∈ I, s ∈ S, (9)

zs
i � zij, i ∈ I, s ∈ S, j ∈ Js, (10)

zs
i , zij ∈ {0, 1}, i ∈ I, s ∈ S, j ∈ Js. (11)

The objective function (1) expresses the amount of profit of the Leader if the worst (in relation to the
decision made by the Leader) demand scenario is realized. The constraints (2) guarantee that the Leader
serves the consumer only by the facilities which are more preferable for this consumer than any facility of
the Follower. Moreover, from these constraints it follows that the share of the satisfied demand of each
consumer cannot exceed one. The constraints (3) guarantee that the consumers are served only by the
opened facilities. From the constraints (4) it follows that each facility satisfies the needs of consumers in
the volume not exceeding the selected capacity of this facility.

The objective function (7) is the sum of the profits received by the Follower for all scenarios of demand.
Note that maximizing this quantity is equivalent to maximizing the profit of the Follower separately for
each scenario. The constraints (9) mean that the Follower cannot open a facility already opened by the
Leader. The constraints (8) and (10) have the same meaning as the constraints (2) and (3).

In this bilevel model we denote the upper level problem (1)–(6) by L, and the lower level problem
(7)–(11), by F . The entire model (1)–(11) will be denoted by (L,F).
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2. AN OPTIMISTIC FEASIBLE SOLUTION

Let X = ((xi), (xij), (vi)) be a feasible solution of Problem L for given vectors z̃s =
(
z̃s
i

)
, i ∈ I,

s ∈ S, and let Z̃ =
((

z̃s
i

)
, (z̃ij)

)
be the optimal solution of Problem F for a given vector x = (xi), i ∈ I.

Then the pair (X, Z̃) will be called a feasible solution of the bilevel problem (L,F). In what follows,
we will consider the feasible solutions (X, Z̃) with the optimal values of the variables (xij), i.e., providing
maximum of the objective function of Problem L for the fixed vectors x = (xi) and z̃s =

(
z̃s
i

)
, s ∈ S.

Let us denote by F (Z) the value of the objective function (7) of Problem F on the feasible solution Z,
and by L(X, Z̃), the value of the objective function (1) of Problem (L,F) on the feasible solution
(X, Z̃). A feasible solution (X, Z̃), where X = ((xi), (xij), (vi)), will be called an optimistic feasible

solution of Problem (L,F), provided L(X, Z̃) ≥ L(X ′, Z̃ ′) for each feasible solution (X ′, Z̃ ′), where
X ′ = ((xi), (x′

ij), (v
′
i)). A feasible solution (X∗, Z̃∗) will be called an optimistic optimal solution or

just an optimal solution of Problem (L,F) if L(X∗, Z̃∗) ≥ L(X, Z̃) for every feasible solution (X, Z̃).

Consider the problem of finding an optimistic optimal solution for the model (L,F). This problem
can be written as follows:

max
(xi),(xij),(vi)

max
(z̃s

i ),(z̃ij)

(
−

∑

i∈I

(fixi + civi) + min
s

∑

i∈I

∑

j∈Js

pijxij

)

under the conditions (2)–(11). We will use the same notation (L,F) for this problem as for the model
(1)–(11).

For Problem (L,F) under study, let us consider the question of constructing an optimistic feasible
solution in the case of a given (0, 1)-vector x = (xi), i ∈ I. Such a solution can be obtained by the
following two steps:

At the first step, Problem F is solved for a given vector x, and the optimal value F ∗ of the objective
function is calculated. At the second step, we solve the auxiliary problem

max
(xij),(vi)

max
(zs

i ),(zij)

(
−

∑

i∈I

civi + min
s∈S

∑

i∈I

∑

j∈Js

pijxij

)
(12)

under the conditions

zs
i +

∑

k | i�jk

xkj ≤ 1, i ∈ I, s ∈ S, j ∈ Js, (13)

∑

s∈S

(
−

∑

i∈I

giz
s
i +

∑

i∈I

∑

j∈Js

qijzij

)
≥ F ∗ (14)

and the constraints (3)–(5) and (8)–(11).

It is easy to see that the optimal solution of this problem gives an optimistic feasible solution for
(L,F). We will refer to this solution as a solution generated by the vector x. It is also clear that the
optimal solution of (L,F) is an optimistic feasible solution generated by some (0, 1)-vector.

It follows that (L,F) can be represented as a maximization problem for some pseudo-Boolean
function f(x) of the variables xi, i ∈ I. The value of this function on the vector x = (xi) is equal to the
value of the objective function (12) of the problem (L,F) on the optimistic feasible solution generated by
the vector x. To calculate the value of the pseudo-Boolean function f(x), we need to solve Problem F
and the auxiliary problem (12)–(14), (3)–(5), and (8)–(11).
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3. UPPER BOUND

To construct exact algorithms for maximizing the pseudo-Boolean function f(x) based on the
methods of implicit enumeration, we need an efficient way of calculating the upper bound of the values
of f(x) on the subsets formed by (0, 1)-vectors. For various schemes of implicit enumeration, it is
convenient to use as such subsets the subsets defined by partial (0, 1)-vectors.

A vector y = (yi), i ∈ I, whose entries take the values 0, 1, and ∗, will be called a partial (0, 1)-vector
or partial solution. For the partial solution y, we put

I0(y) = {i ∈ I | yi = 0}, I1(y) = {i ∈ I | yi = 1}.

The vector x = (xi), i ∈ I, is an extension of the partial solution y if xi = yi for all i ∈ I0(y) ∪ I1(y).
We denote the set of all extensions of the partial solution y by P (y).

Consider the problem of computing the upper bound for maxx∈P (y) f(x) for an arbitrary partial
solution y that is not a (0, 1)-vector.

The problem L with additional constraints xi = yi, i ∈ I0(y) ∪ I1(y), will be denoted by L(y).
An upper bound for the values of the objective function of Problem (L(y),F) will be the sought-for
upper bound for the values of the pseudo-Boolean function f(x) for x ∈ P (y).

To calculate an upper bound of the objective function of Problem (L(y),F), we construct an
estimating mixed-integer programming problem (MIP) that is obtained from Problem L(y) by adding
some constraints, which hold for optimistic feasible solutions, and excluding from it the restrictions
containing the values of the variables of Problem F . The technique for constructing these constraints is
based on the estimating subsets Ij(y), j ∈ J [1, 2].

Let us construct the estimating subsets as applied to Problem (L(y),F) under study.

Given j0 ∈ Js, s ∈ S, we formulate the rules that allow us to determine whether i0 ∈ I belongs to
Ij0(y).

First of all, we determine which facilities i ∈ I of the Follower will not be open under realization of the
scenario s ∈ S if the Leader’s facilities from I ′ ⊆ I are open. To this end, we consider Js(I ′) = {j ∈ Js |
i �j αj(I ′)}. Then the Follower’s facility i ∈ I will not be open if it belongs to

Ms(I ′) =
{

i ∈ I | gi >
∑

j∈Js(I′)

qij

}
.

Let Nj0(i0) = {i ∈ I | i �j0 i0}. We assume that i0 �∈ Ij0(y) if i0 ∈ I0(y) or αj0(I
1(y)) �j0 i0. We

put i0 ∈ Ij0(y) if Nj0(i0) = ∅. Let none of these relations be satisfied and M = Ms(I1(y) ∪ i0) ∩ I0(y).
Consider the set

J(i0) = {j ∈ Js | if i �j αj(I1(y) ∪ {i0}) then i ∈ Nj0(i0) ∪ M},

and also for each k ∈ Nj0(i0) consider

J(k, i0) =
{
j ∈ J(i0) | k �j αj(I1(y) ∪ {i0})

}
, Qk =

∑

j∈J(k,i0)

qkj.

We say i0 �∈ Ij0(y) if there is a profitable facility k ∈ Nj0(i0), i.e. such that Qk > gk. If there does not
exist k ∈ Nj0(i0) with the indicated property then i0 ∈ Ij0(y).

Lemma 1. Let (X, Z̃), where X = ((xi), (xij), (vi)) and Z̃ =
((

z̃s
i

)
, (z̃ij)

)
, be an optimistic fea-

sible solution of Problem (L(y),F) generated by x ∈ P (y). Then if αj(x) �∈ Ij(y) for some j ∈ Js,
s ∈ S, then zs

i = 1 for some i ∈ Nj(αj(x)).
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Proof. Suppose the contrary: Let i = αj(x) �∈ Ij(y) for some j ∈ Js and, in addition, z̃s
k = 0 for each

k ∈ Nj(i). Note that Nj(i) �= ∅ since i �∈ Ij(i). Let

M = Ms(I1(y) ∪ {i}) ∩ I0(y).

Then xk = z̃s
k = 0 for k ∈ Nj(i)∪M . Since i �∈ Ij(y) and, in addition, i �∈ I0(y) and Nj(i) ∩ I1(y) = ∅;

therefore, by the construction of Ij(y), there exist k ∈ Nj(i) and the set J(k, i) such that Qk > gk.

Let us construct a new solution Z =
((

zs
i

)
, (zij)

)
of Problem F , that differs from Z̃ only by the fact

that zs
k = 1 and zkj = 1 for j ∈ J(k, i). It is a feasible solution of F . Moreover, for the values of the

objective function of Problem F on the solutions Z and Z̃, we have F (Z) − F (Z̃) = Qk − gk > 0. This
contradicts the feasibility of the solution (X, Z̃). Lemma 1 is proved.

Lemma 1 directly yields

Corollary 1. Let (X, Z̃) be an optimistic feasible solution of Problem (L(y),F) generated by
the vector x ∈ P (y). If αj(x) �∈ Ij(y) for some j ∈ J then

∑

i∈I

xij = 0.

To write the established property of optimistic feasible solutions in the form of linear constraints, we
introduce new nonnegative variables tij , i ∈ I, j ∈ J . The variable tij takes the value 1 if i = αj(x), and
the value 0 otherwise.

Corollary 2. Let (X, Z̃) be optimistic feasible solution of Problem (L(y),F) generated by the
vector x ∈ P (y). Then the following hold:

xi ≥ tij , i ∈ I, j ∈ J, (15)
∑

i∈I

tij = 1, j ∈ J, (16)

xi +
∑

k | i�jk

tkj ≤ 1, i ∈ I, j ∈ J, (17)

∑

k∈I

xkj ≤ 1 − tij +
∑

k∈Ij(y)

tkj, i ∈ I, j ∈ J, (18)

tij ≥ 0, i ∈ I, j ∈ J. (19)

Indeed, according to the constraints (15)–(17), (19), the variables tij take the value 1 if i = αj(x),
and 0 otherwise. If for some i ∈ I and j ∈ J we have tij = 0 then (18) is fulfilled. On the other hand,
if tij = 1 and i �∈ Ij(y) then, by Lemma 1, the left-hand side of the inequality equals zero and, hence, the
inequality holds.

Note that Lemma 1 also yields a more general relation:

Corollary 3. Let (X, Z̃) be an optimistic feasible solution of Problem (L(y),F) generated by
the vector x ∈ P (y). If αj(x) �∈ Ij(y) for some j ∈ Js, s ∈ S, then

∑

i | ωr(Nj(αj(x)))�ri

xir = 0, r ∈ Js.

Indeed, by Lemma 1, z̃s
k = 1 for some k ∈ Nj(αj(x)). Clearly, we have k �r ωr(Nj(αj(x))) for all

r ∈ Js. Then, by (2), xir = 0 for every i ∈ I such that ωr(Nj(αj(x))) �r i.
Using the introduced variables tij , i ∈ I and j ∈ J , these relations can be written as linear constraints

∑

k |ωr(Nj(i))�rk

xkr ≤ 1 − tij +
∑

k∈Ij(y)

tkj, i ∈ I, s ∈ S, j, r ∈ Js. (18′)
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If tij = 0 for some i ∈ I and j ∈ Js, s ∈ S, then (18′) is fulfilled for all r ∈ Js. Let tij = 1. In the case
when i ∈ Ij(y), the right-hand side equals 1 and the inequality is satisfied. Otherwise, the left-hand side
equals 0 by Corollary 3.

Let us construct a system of additional estimating subsets
{
Ihr
j (y)

}
for s ∈ S, j, r ∈ Js, j �= r, and

h ∈ Ir(y), allowing us to strength the constraints on the variables xij , i ∈ I and j ∈ J , for an optimistic
feasible solution (X, Z̃) generated by the vector x ∈ P (y), in the case when αj(x) ∈ Ij(y).

Given s ∈ S, j0, r ∈ Js, j0 �= r, and h ∈ Ir(y), we formulate the rules that allow us to determine for
each i ∈ I whether it belongs to the set Ihr

j0
(y).

Let i0 �∈ Ihr
j0

(y) if there holds at least one of the following four conditions:

i0 ∈ I0(y), i0 �r h, (I1(y) ∪ {h}) ∩ Nj0(i0) �= ∅, i0 �∈ Ij0(y).

Suppose that none of these relations is satisfied; and put

N = Nj0(i0) ∪ Nr(h), M = Ms(I1 ∪ {i0, h}) ∩ I0(y).

We will assume that i0 ∈ Ihr
j0

(y) if N = ∅. Let N �= ∅. Consider the set

J(i0, h) = {j ∈ Js | if i �j αj(I1(y) ∪ {i0, h}) then i ∈ N ∪ M}.
Given k ∈ N , we also consider

J(k, i0, h) = {j ∈ J(i0, h) | k �j αj(I1(y) ∪ {i0, h})}, Qk =
∑

j∈J(k,i0,h)

qkj.

Let i0 �∈ Ihr
j0

(y) if there is a profitable facility k ∈ N , i.e. such that Qk > gk. If there does not exist k ∈ N

with the indicated property then we put i0 ∈ Ihr
j0

(y).

The basic property of the set Ihr
j (y) is established in

Lemma 2. Let (X, Z̃), X = ((xi), (xij), (vi)), Z̃ =
((

z̃s
i

)
, (z̃ij)

)
be an optimistic feasible solution

of Problem (L(y),F) generated by x ∈ P (y). Then if h = αr(x) ∈ Ir(x) for some r ∈ Js, s ∈ S, and
αj(x) �∈ Ihr

j (y) for some j ∈ Js, j �= r, then z̃s
i = 1 for some i ∈ Nj(αj(x)) ∪ Nr(αr(x)).

Proof. Let j, r ∈ Js, s ∈ S, and let h = αr(x) ∈ Ir(y), i = αj(x) �∈ Ihr
j (y). Let us note, first of all,

that if i �∈ Ij(y) then, by Lemma 1, we have z̃s
k = 1 for some k ∈ Nj(i). Therefore, we will assume

that i ∈ Ij(y). Note also that since i �∈ Ihr
j (y); therefore, by the construction of this set, we have N =

Nj(i) ∪ Nr(h) �= ∅. Let us assume the contrary, and let z̃s
k = 0 for all k ∈ N . Then for the considered

optimistic feasible solution (X, Z̃) we have xk = z̃s
k = 0 for all k ∈ N ∪ M . Since i �∈ Ihr

j (y) and, in
addition,

i �∈ I0(y), h �r i, (I1(y) ∪ {h}) ∩ Nj(i) = ∅, i ∈ Ij(y);

by the construction of Ihr
j (y), there exist k ∈ N and a set J(k, i, h) ⊆ J(i, h) such that

Qk =
∑

j∈J(k,i,h)

qkj > gk.

Let us construct a new solution Z =
((

zs
i

)
, (zij)

)
of Problem F that differs from the solution Z̃ only

by the fact that zs
k = 1 and zkj = 1 for j ∈ J(k, i, h). It is a feasible solution of Problem F for which

F (Z) − F (Z̃) = Qk − gk > 0.

We arrive at a contradiction with the feasibility of (X, Z̃). Lemma 2 is proved.
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Corollary 4. Let (X, Z̃), X = ((xi), (xij), (vi)), be an optimistic feasible solution of Problem
(L(y),F), generated by x ∈ P (y). Then if h = αr(x) ∈ Ir(y) and αj(x) �∈ Ihr

j (y) for some j, r ∈ Js,
s ∈ S and j �= r, then

∑

i∈I

xij +
∑

i∈I

xir ≤ 1.

Using the previous variables tij , i ∈ I, j ∈ J , this statement is written as follows:
∑

i∈I

xij +
∑

i∈I

xir ≤ 2 − thr +
∑

i∈Ihr
j (y)

tij, j, r ∈ Js, s ∈ S, h ∈ Ir(y). (20)

Indeed, if thr = 1 and tij = 0 for every i ∈ Ihr
j then the conditions of Lemma 2 hold and at least one of

the sums
∑

i∈I xij or
∑

i∈I xir equals zero.
The estimating problem obtained from L(y) by including the additional restrictions (15)–(17), (18′),

(19), and (20) and excluding those connecting it with Problem F , can be written as follows:

max
(xi),(xij),(vi)

(
−

∑

i∈I

(fixi + civi) + min
s∈S

∑

j∈Js

∑

i∈I

pijxij

)
, (21)

xi � xij, i ∈ I, j ∈ J, (22)
∑

j∈Js

aijxij ≤ vi, i ∈ I, s ∈ S, (23)

xi ≥ tij, i ∈ I, j ∈ J, (24)
∑

i∈I

tij = 1, j ∈ J, (25)

xi +
∑

k | i�jk

tkj ≤ 1, i ∈ I, j ∈ J, (26)

∑

k |ωr(Nj(i))�rk

xkr ≤ 1 − tij +
∑

k∈Ij(y)

tkj, i ∈ I, s ∈ S, j, r ∈ Js, (27)

∑

i∈I

xij +
∑

i∈I

xir ≤ 2 − thr +
∑

i∈Ihr
j (y)

tij, j, r ∈ Js, s ∈ S, h ∈ Ir(y), (28)

xi = yi, i ∈ I0(y) ∪ I1(y), (29)

xi ∈ {0, 1}, tij, xij ∈ [0, 1], vi ≥ 0, i ∈ I, j ∈ J. (30)

Denote this problem by B(y), and by B(X,T ), the value of its objective function at the feasible
solution (X,T ), where T = (tij).

Theorem. Let (X∗, T ∗) be an optimal solution of Problem B(y). Then

max
x∈P (y)

f(x) ≤ B(X∗, T ∗).

Proof. Let x ∈ P (y) and let (X, Z̃) be an optimistic solution of Problem (L(y),F) generated by the
vector x. Given i ∈ I and j ∈ J , we put tij = 1 if i = αj(x), and tij = 0 otherwise. Note that (X,T ),
where T = (tij), is a feasible solution of Problem B(y). Indeed, the constraints (22), (23), and (29) are
satisfied since X is a feasible solution of Problem L(y); the constraints (24)–(26) hold because of the
choice of the values tij , i ∈ I and j ∈ J ; whereas the inequalities (27) and (28) are valid by Lemmas 1
and 2. Since the values of the objective functions of Problems (L(y),F) and B(y) on the solutions (X, Z̃)
and (X,T ) are equal, we have f(x) = L(X, Z̃) = B(X,T ) ≤ B(X∗, T ∗).

The Theorem is proved.
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Note that Problem B(y) is an integer linear programming problem; therefore, from what is proved,
we see that the calculation of the upper bound of the values of the pseudo-Boolean function f(x) on the
set P (y) is reduced to the solution of an estimating problem in the form of MIP.

CONCLUSION
In the paper, we study a new competitive facility location model constructed on the basis of the idea

of the Stackelberg game. The model considers a situation of several alternative demand scenarios which
differ both in the composition of consumers and in their preferences. The demand scenario becomes
known after the placement of the Leader’s facilities; therefore the Leader, when making a decision, is
guided by the criterion of maximum profit in the worst case. In the model under consideration, it is also
assumed that the costs of opening a facility depend on its capacity. Therefore, the Leader, deciding on
the location of facilities, should determine their capacity and take into account various possible demand
scenarios.

For the model under consideration, we formulate a problem of finding an optimistic optimal solution.
We demonstrate that, for a given (0, 1)-vector of locations of the Leader’s facilities, it can be represented
as a single-level problem. Thereby, the problem can be considered as a problem to maximize a pseudo-
Boolean function. This allows us to construct some algorithms for finding the approximate solutions by
use of various local enumeration schemes.

As applied to the problem under study, we modified the method for construction of the estimating
problems for calculating the upper bounds of the values of the constructed pseudo-Boolean function on
the subsets of solutions given by partial (0, 1)-vectors. A new system of estimating subsets is proposed
that allows us to supplement the estimating problems with new constraints, which increases both the
accuracy of the obtained upper bounds and, consequently, the efficiency of the implicit enumeration
algorithms by using these upper bounds.

The next step of our research includes the construction of algorithms for computing the exact and
approximate solutions of the problem of competitive location of facilities using the developed method for
constructing the upper bounds of the objective function values.
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