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Abstract—In the mathematical model under study, the two competing sides consecutively place
their facilities aiming to capture consumers and maximize profits. The model amounts to a bilevel
integer programming problem. We take the optimal noncooperative solutions as optimal to this
problem. To find approximate and optimal solutions, we propose a branch-and-bound algorithm.
Simulations show that the algorithm can be applied to solve the individual problems of low and
medium dimension.
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INTRODUCTION

We consider some consecutive competitive facility location problem generalizing the well-known
facility location problem [3, 16]. In this model, two competing sides consecutively place their facilities
aiming to capture consumers and maximize profits. We can regard decision-making by the competing
sides as a Stackelberg game [18]. Following the terminology of this game, we call the sides the
leader and the follower. The mathematical problems resulting from the formalization of this game
amount to bilevel (0, 1)-programming problems [8–10, 13, 14]. They include an upper level problem
(the leader’s problem) and a lower level problem (the follower’s problem). These are similar to the facility
location problem with orders [6, 7, 12], but their form depends on the assumptions of the model. These
assumptions are concerned first of all with the accepted rule for capturing consumers by one of the sides,
as well as the rules used by the leader and follower when choosing an open facility to serve a certain
consumer.

In competitive facility location problems we assume that each consumer has personal preferences that
enable us to rank the open facilities. The side opening the most preferable facility captures the concrete
consumer. The choice of a supplier to serve a consumer captured by one side is prescribed in the model
under consideration: it is the most preferable facility opened by the chosen side. The competitive facility
location problem is studied in [1, 11] in the case of free choice by the follower of a facility to serve the
consumer. That model assumes that the follower makes a decision on the choice of a facility to serve
each captured consumer.

In this article, for the model of consecutive competitive facility location under consideration, we
propose a branch-and-bound algorithm [3, 17] to search for approximate and optimal solutions. An im-
portant element of the algorithm is the proposed method for calculating an upper bound on the optimal
values of certain pseudo-Boolean functions. The idea of the method as applies to a particular case of
the problem is presented in [2]. For the problem of searching for an optimal noncooperative solution,
an algorithm is constructed in [5] to calculate the upper bound on the entire set of solutions on assuming
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that the profits are monotone. Similar estimates are constructed in [1] for the general case of consecutive
competitive facility location problem, in which the follower uses the rule of free choice of a facility to
serve each captured consumer. For the last problem in the case of searching for optimal noncooperative
solution, an upper bound is constructed in [11] for the values of the corresponding pseudo-Boolean
functions on subsets specified by partial (0, 1)-vectors. In this article, for the problem of searching for
optimal noncooperative solution we propose an algorithm to calculate an upper bound on the subset of
solutions specified by a partial (0, 1)-vector on assuming that the profits are monotone. Furthermore,
we find new properties of optimal solutions, which enables us to improve the resulting upper bounds
substantially.

This article consists of five sections. In Section 2, we state the consecutive competitive facility
location problem as a bilevel (0, 1)-programming problem. We introduce the concept of optimal
noncooperative solutions and show that the problem of searching for a solution of this type can be
reduced to maximizing certain pseudo-Boolean functions. In Section 3, we sketch a branch-and-bound
algorithm for the problem of maximizing pseudo-Boolean functions. We consider a method for specifying
subsets of (0, 1)-vectors with the use of partial (0, 1)-vectors. In Section 4, we propose a method for
calculating an upper bound for the pseudo-Boolean functions under consideration. In Section 5, we
present a branch-and-bound algorithm for searching for optimal and approximate (with an a priori
estimate of accuracy) noncooperative solutions of the consecutive competitive facility location problem.
We discuss the results of simulations on the test instances in the Discrete location problems library1).

1. THE CONSECUTIVE COMPETITIVE FACILITY LOCATION PROBLEM

We can regard the consecutive competitive facility location problem as the leader’s problem in the
Stackelberg game with the leader and the follower consecutively placing their facilities. The leader’s
problem consists in determining the set of facilities to be placed to maximize the profit under the
condition that the follower will capture some consumers while also tending to maximize profit.

As in the classical facility location problem, to formalize the problem denote the set of facilities
(possible facility locations) by I = {1, . . . ,m}, and the set of consumers, by J = {1, . . . , n}. Assume
that both the leader and the follower can open facility i ∈ I. Therefore, for each i ∈ I, we know the
quantities fi and gi equal to the fixed costs of the leader and the follower to open facility i. If, for some
reason, the leader or the follower cannot open this facility then we put fi = +∞ or gi = +∞.

Assume that an opened facility to serve consumer j ∈ J is chosen by the preferences of consumer j
as indicated by a linear order �j on the set I. For i, k ∈ I, the relation i �j k means that of two opened
facilities i and k consumer j ∈ J prefers facility i. The relation i �j k means that either i �j k or i = k.
For all i ∈ I and j ∈ J , denote by pij the profit received by serving consumer j at facility i opened by the
leader or the follower. Assume that, for each j ∈ J , the profits pij for i ∈ I are monotone in �j ; that is,
pij ≥ pkj for all i, k ∈ I with i �j k.

Take I0 ⊂ I. Given j ∈ J , let ij(I0) denote the element i0 ∈ I0 with i0 �j i for all i ∈ I0. If I0={i∈I |
wi = 1}, where w = (wi) for i ∈ I is a (0, 1)-vector, then we also write ij(w) instead of ij(I0). Given
i ∈ I, denote Ji(w) = {j ∈ J | i �j ij(w)}. Given two (0, 1)-vectors x = (xi) and z = (zi), let x ∨ z
denote the (0, 1)-vector w = (wi) with wi = max(xi, zi) for i ∈ I.

To determine the side capturing the consumer j ∈ J , we accept the rule: Suppose that the 1s of the
(0, 1)-vector x = (xi) for i ∈ I mean the facilities opened by the leader and the 1s of the (0, 1)-vector
z = (zi) for i ∈ I mean the facilities opened by the follower. Then consumer j ∈ J will be captured by
the leader whenever ij(x) �j ij(z), and by the follower, whenever ij(z) �j ij(x). To choose the facility
to serve the captured consumer j ∈ J , assume that the leader and the follower use the strict choice rule:
this will be facility ij(x) when the leader captures the consumer and ij(z) when the follower does. This
rule models the situation in which each consumer independently chooses a facility.

Introduce the following variables similar to those of the classical facility location problem:
• xi equals 1 if the leader opens facility i ∈ I, and zero otherwise;
• xij equals 1 if facility i ∈ I opened by the leader turns out the most preferable for consumer j ∈ J
among all facilities opened by the leader, and zero otherwise;

1)http://www.math.nsc.ru/AP/benchmarks/
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• zi equals 1 if the follower opens facility i ∈ I, and zero otherwise;
• zij equals 1 if facility i ∈ I opened by the follower turns out the most preferable for consumer j ∈ J
among all facilities opened by both the leader and the follower, and zero otherwise.

Using these variables, we formulate the consecutive competitive facility location problem as the
bilevel integer programming problem:

max
(xi),(xij)

(
−

∑
i∈I

fixi +
∑
j∈J

(∑
i∈I

pijxij

)(
1 −

∑
i∈I

z̃ij

))
, (1)

xi +
∑

k∈I|i�jk

xkj � 1, i ∈ I, j ∈ J, (2)

xi � xij, i ∈ I, j ∈ J, (3)

xi, xij ∈ {0, 1}, i ∈ I, j ∈ J, (4)(
(z̃i), (z̃ij)

)
is an optimal solution to (5)–(8):

max
(zi),(zij)

(
−

∑
i∈I

gizi +
∑
j∈J

∑
i∈I

pijzij

)
, (5)

xi + zi +
∑

k∈I|i�jk

zkj � 1, i ∈ I, j ∈ J, (6)

zi � zij , i ∈ I, j ∈ J, (7)

zi, zij ∈ {0, 1}, i ∈ I, j ∈ J. (8)

As a bilevel mathematical programming problem, (1)–(8) includes the upper level problem (1)–(4) and
the lower level problem (5)–(8). Denote the upper level problem by L and the lower level problem by F.
The objective function (1) of L expresses the profit made by the leader taking into account the cost of
facilities opening and losing part of consumers which are captured by the follower. Conditions (2)–(4)
are the constraints of location problem with orders. The inequalities (2) realize the rule of strict choice
of a facility opened by the leader to serve each consumer. The same inequalities guarantee that only
one facility opened by the leader can be chosen to serve a certain consumer. The objective function (5)
of problem F expresses the profit made by the follower. The inequalities (6) realize the conditions of
the follower capturing consumers for the specified facilities opened by the leader. In particular, these
conditions show that if a facility is opened by the leader then it cannot be opened by the follower. The
remaining conditions of problem F are the constraints of the classical facility location problem. Denote
problem (1)–(8) as a whole by (L,F), and regard the objective function (1) of problem L as the objective
function of problem (L,F).

Let X denote an admissible solution ((xi), (xij)) to problem L, and let Z be an admissible solution
((zi), (zij)) to F. Refer to a pair (X, Z̃), where X is an admissible solution to L and Z̃ is an optimal
solution to F, as an admissible solution to problem (L,F).

Take an admissible solution (X, Z̃) to problem (L,F) with X = ((xi), (xij)) and Z̃ = ((z̃i), (z̃ij)).
Assume that if X is the zero solution then the optimal solution Z̃ to problem F is nonzero. Thus,
we assume henceforth that the admissible solutions (X, Z̃) to problem (L,F) are nonzero. Denote
by L(X, Z̃) the value of the objective function of problem (L,F) on an admissible solution (X, Z̃) and
by F (Z) the value of the objective function of problem F on an admissible solution Z.

Since, for some admissible solution X to problem L, an optimal solution Z̃ to F need not be unique,
let us state the rule the follower uses to make a decision: Assume that, among the optimal solutions,
the follower chooses the least profitable for the leader. Refer to an admissible solution (X,Z) to problem
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(L,F) as an admissible noncooperative solution to (L,F) whenever L(X,Z) ≤ L(X, Z̃) for every
admissible solution (X, Z̃) to (L,F), and refer to an admissible noncooperative solution (X∗, Z

∗) as
an optimal noncooperative solution if L(X∗, Z

∗) ≥ L(X,Z) for every admissible noncooperative
solution (X,Z).

Observe that, given an admissible solution X to problem L, we can construct the corresponding
admissible noncooperative solution (X,Z) by a two-stage algorithm. At Stage 1, for a fixed solution X,
we solve problem F and calculate the optimal value F ∗ of its objective function. At Stage 2, for the fixed
solution X, we solve the auxiliary problem

max
(zi),(zij)

∑
j∈J

∑
i∈I

pij(x)jzij , (9)

xi + zi +
∑

k∈I|i�jk

zkj � 1, i ∈ I, j ∈ J, (10)

zi � zij , i ∈ I, j ∈ J, (11)

zi, zij ∈ {0, 1}, i ∈ I, j ∈ J, (12)

−
∑
i∈I

gizi +
∑
j∈J

∑
i∈I

pijzij � F ∗. (13)

An optimal solution Z = ((zi, zij)) to this problem yields a required admissible noncooperative solu-
tion (X,Z) to problem (L,F). Furthermore, the quantity L(X,Z) will be the same for every optimal
solution Z to the auxiliary problem (9)–(13). Observe also that the admissible solution X = ((xi), (xij))
to problem L is itself uniquely determined by the (0, 1)-vector x = (xi). Thus, every (0, 1)-vector x

uniquely determines some value L(X,Z) of the objective function at the corresponding admissible
noncooperative solution (X,Z). This implies that we can express the problem of searching for an optimal
noncooperative solution to the consecutive competitive facility location problem (L,F) as the problem
of maximizing some pseudo-Boolean function f(x) of x ∈ Bm. This function is defined implicitly;
to calculate its values, we have to find F ∗, which is the optimal value of the objective function of the
lower level problem F, and then find an optimal solution to the auxiliary problem (9)–(13).

2. THE BRANCH-AND-BOUND METHOD

Let us consider the general scheme of the branch-and-bound method with depth-first search for the
problem of maximizing a pseudo-Boolean function f(x) of x ∈ Bm. Denote an optimal solution to this
problem by x∗. Owing to [3], assume that the following functions are specified on the subsets s ⊆ Bm.
Refer to a function b(s) defining a proper subset of s as the branching function. Refer to a function
H(s) with H(s) ≥ f(x) for all x ∈ s as an upper bound. Assume that H(s) = f(x) whenever s = {x}.
Consider also a function x(s) determining a solution in s.

The algorithm realizing the branch-and-bound method with depth-first search consists of finitely
many similar steps. On each step we consider: the set D ⊂ Bm called the set of candidate solutions;
a subset d ⊂ D called the set of testing solutions; and the best solution x0 ∈ Bm known on this step,
called the record solution. At the first step, D = Bm and d = Bm, while x0 is an arbitrary element
of Bm. Suppose that before the next step we have the set D of candidate solutions and the set d ⊂ D of
testing solutions, as well as a record solution x0. The step starts with the evaluation of H(d) and x(d).
If f(x(d)) > f(x0) then we put x0 = x(d). The step consists in checking whether d contains a solution
better than the current record. To this end, we check the inequality (1− ε)H(d) ≤ f(x0), where ε ∈ [0, 1)
is a parameter determining the accuracy of the solution x0 found by the algorithm. If the inequality
holds then we discard d by putting D = D\d. If D = ∅ then the algorithm stops; otherwise, we put
d = b(D) and start the next step. However, if the inequality is violated then we put d = b(d) and start
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the next step. The algorithm stops after finitely many steps, and the resulting solution x0 satisfies
(1 − ε)f(x∗) ≤ f(x0).

It is convenient to define subsets of Bm using the so-called partial solutions. Put I = {1, . . . ,m}.
Refer to a vector y ∈ {0, 1, ∗}m as a partial (0, 1)-vector or a partial solution. A partial solution
splits the variables of a pseudo-Boolean function into the variables with a specified value 0 or 1 and
free variables. Given a partial (0, 1)-vector y = (yi) for i ∈ I, define the sets

I0(y) = {i ∈ I | yi = 0}, I1(y) = {i ∈ I | yi = 1}, I∗(y) = {i ∈ I | yi = ∗}.
Refer to x ∈ Bm as an extension of a partial solution y whenever

I0(y) ⊆ I0(x), I1(y) ⊆ I1(x).

Denote the set of all extensions of a partial solution y by P (y). Call a partial solution y ordered
whenever a vector of order {i1, . . . , iq} = I0(y)∪ I1(y) is specified for y, indicating the order in which the
components of y were assigned the values of 0 or 1. To an ordered partial solution y = (yi) and a vector of
order (i1, . . . , iq), we can associate, apart from the set P (y), another set Q(y) with P (y) ⊂ Q(y). In order
to define Q(y) for every k with 1 ≤ k ≤ q and yik = 1, construct a partial solution y(k) = (yi(k)) for i ∈ I
such that

I0(y(k)) = (I0(y) ∩ {i1, . . . , ik−1}) ∪ {ik},

I1(y(k)) = I1(y) ∩ {i1, . . . , ik−1}.
The union of the sets P (y(k)) for the constructed partial solutions y(k) and the set P (y) constitutes
Q(y). Ordered partial solutions are useful since the branching function can be defined so that, on each
step of the branch-and-bound algorithm, the sets D and d are determined by an ordered partial solution y
and coincide respectively with Q(y) and P (y) [3].

3. THE BOUNDING AND BRANCHING FUNCTIONS
FOR THE CONSECUTIVE COMPETITIVE FACILITY LOCATION PROBLEM

Consider a method for calculating the upper bound H(y) for the pseudo-Boolean function f(x) on
the subset P (y) of extensions of a partial solution y. To this end, given a fixed partial solution y = (yi),
consider problem (1)–(4) with the additional restriction

xi = yi, i ∈ I0(y) ∪ I1(y). (14)

Denote problem (1)–(4), (14) by L(y) and problem (1)–(4), (14), (5)–(8) by (L(y),F). Problem
(L(y),F) corresponds to the problem of maximizing the pseudo-Boolean function f(x) on P (y), while
the upper bound on the value of the objective function of (L(y),F) on an optimal noncooperative solution
is the value H(y) of the required upper bound on P (y). Recall that, for every j ∈ J , we assume that the
profit pij for i ∈ I is monotone with respect to the order �j ; that is, pij ≥ pkj for every i, k ∈ I with
i �j k.

Let us point out some properties of feasible and optimal solutions to problem (L(y),F). To simplify
exposition, consider the set I ∪ {0} and assume that p0j = 0 for each j ∈ J and i �j 0 for i ∈ I.
Take a partial solution y = (yi). Given j ∈ J , put ij(y) = ij(I1(y)) whenever I1(y) �= ∅, and ij(y) = 0
otherwise. Given some i ∈ I, denote the set {j ∈ J | i � ij(y)} by Ji(y). Consider the sets

R(y) =
{

i ∈ I0(y) ∪ I∗(y) |
∑

j∈Ji(y)

pij < gi

}
,

S(y) =
{

i ∈ I∗(y) |
∑

j∈Ji(y)

(pij − pij(y)j) ≤ fi

and for each j ∈ Ji(y) if i �j k �j ij(y) then k ∈ R(y)
}

.
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The following elucidates the meaning of R(y) and S(y):

Lemma 1. Given a partial solution y, every feasible solution (X, Z̃) to problem (L(y),F)
with X = ((xi), (xij) and Z̃ = ((z̃i), (z̃ij)) satisfies R(y) ∩ I1(z̃) = ∅ with z̃ = (z̃i). There exists
an optimal noncooperative solution (X,Z) with X = ((xi), (xij)) and Z = ((zi), (zij)) to problem
(L(y),F) such that

S(y) ∩ I1(x) = ∅, x = (xi).

Proof. To verify the first relation, suppose that z̃i = 1 for some i ∈ R(y). Since Ji(x ∨ z̃) ⊂ Ji(y), we
have ∑

j∈Ji(x∨z̃)

pij ≤
∑

j∈Ji(y)

pij < gi,

which contradicts the fact that Z̃ is an optimal solution to problem F.

To verify the second claim, assume that, in the optimal noncooperative solution (X, Z̃) under
consideration, xi0 = 1 for some i0 ∈ S(y). Take the solution X ′ = ((x′

i), (x
′
ij)) to problem L(y) in which

the vector x′ = (x′
i) differs from x = (xi) only in x′

i0
= 0. Denote problem F for fixed solutions X and X ′

by F(X) and F(X ′) respectively. To verify that the sets of optimal solutions to F(X) and F(X ′) coincide,
rearrange the constrains (6) of problem F(X) as

zi +
∑

k∈I|i�jk

zkj � 1, i ∈ I, j ∈ J, (15)

∑
k|ij(x)�jk

zkj = 0, j ∈ J. (16)

By above, every optimal solution Z̃ = ((z̃i), (z̃ij)) to problem F(X) satisfies z̃i = 0 for i ∈ R(y); there-
fore, we can also add the equalities

zi = 0, i ∈ R(y)

to its constrains. Problem F(X ′) differs from F(X) only in constrains (16), which we replace by∑
k|ij(x′)�k

zkj = 0, j ∈ J. (17)

Verify that the sets of optimal solutions to problems F(X) and F(X ′) coincide. Indeed, if Z is
a feasible solution to problem F(X) then (17) holds since ij(x) �j ij(x′) for every j ∈ J . Conversely,
take a feasible solution Z to problem F(X ′), and suppose that ij(x) �j ij(x′) for some j ∈ J . Since

i0 = ij(x) �j ij(x′) �j ij(y), i0 ∈ S(y);

therefore, k ∈ R(y) for every k with i0 �j k �j ij(x′). Hence, zk = 0 and (16) hold. Thus, the sets of
optimal solutions to problems F(X) and F(X ′) coincide; moreover, if Z̃ is an optimal solution then
(X, Z̃) and (X ′, Z̃) is a feasible solution to problem (L(y),F). By the monotonicity of profit, these
solutions satisfy

L(X, Z̃) − L(X ′, Z̃) = −fi0 +
∑

j∈Ji0
(x)

(pi0j − pij(x′)j) ≤ −fi0 +
∑

j∈Ji0
(y)

(pi0j − pij(y)j) ≤ 0.

Consequently, given a feasible noncooperative solution (X,Z), there is a feasible noncooperative
solution (X ′, Z) with

S(y) ∩ I1(x′) = ∅, L(X,Z) ≤ L(X ′, Z).

This completes the proof of Lemma 1.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 8 No. 2 2014



THE BRANCH-AND-BOUND ALGORITHM 183

Henceforth, as we consider optimal noncooperative solutions, we assume that they enjoy the
properties established in Lemma 1. The method we propose for calculating H(y) rests on a construction
of a system of subsets {Ij(y)}with Ij(y) ⊂ I for j ∈ J . Using it, we manage to state sufficient conditions
for the capture of consumers by the follower.

Take a partial solution y = (yi) and fix j0 ∈ J . Let us state the conditions enabling us for every
i0 ∈ I to determine whether i0 ∈ Ij0(y) or i0 �∈ Ij0(y). If yi0 = 0 then i0 �∈ Ij0(y). Assume that yi0 �= 0.
Consider the set N(i0) = {i ∈ I | i �j0 i0}. If N(i0) = ∅ then i0 ∈ Ij0(y). Assume that N(i0) �= ∅.
If N(i0) ∩ I1(y) �= ∅ then i0 �∈ Ij0(y). Assume that N(i0) �= ∅ and N(i0) ∩ I1(y) = ∅. Take the partial
solution y′ = (y′i) with y′i = yi for i �= i0 and y′i0 = 1. Consider the sets R(y′), S(y′), and

J(y, i0) =
{
j ∈ J | if i � ij(y′) then i ∈ N(i0) ∪ R(y′)

}
.

Observe that J(i0) �= ∅ since j0 ∈ J(i0). Given k ∈ N(i0), consider the set

J(y, k, i0) =
{
j ∈ J(y, i0) | if i �j k then i ∈ N(i0) ∪ I0(y′) ∪ S(y′)

}
.

Assume that i0 ∈ Ij0(y) if, for each k ∈ N(i0), we have

gk >
∑

j∈J(y,k,i0)

pkj,

and i0 �∈ Ij(y) if there is k ∈ N(i0) for which the inequality fails. Refer to this system of subsets {Ij(y)}
for j ∈ J as the system of subsets defined by strict inequalities. The following lemma elucidates the
meaning of Ij0(y) for j0 ∈ J and establishes that if the leader plans to profit by serving consumer j0

at facility i0 �∈ Ij0(y) then consumer j0 will be captured by the follower.

Lemma 2. Given a partial solution y, take a system of subsets {Ij(y)} for j ∈ J defined
by strict inequalities and a feasible noncooperative solution (X,Z) to problem (L(y),F) with
X = ((xi), (xij)) and Z = ((zi), (zij)). Then every j0 ∈ J with pi0j0xi0j0 > 0 satisfies the equality∑

i∈I zij0 = 1 for some i0 �∈ Ij0(y).

Proof. Consider the (0, 1)-vectors x = (xi) and z = (zi). Suppose that pi0j0xi0j0 > 0 for some j0 ∈ J
and i0 �∈ Ij0(y), but the required equality fails. Consider the partial solution y′ = (y′i) with y′i = yi

for i �= i0 and y′i0 = 1, as well as the set N(i0) = {i ∈ I | i �j0 i0}. Since i0 �∈ Ij0(y), it follows that
N(i0) �= ∅. Note that xi = 0 and zi = 0 for i ∈ N(i0). Consider also the sets R(y′) and S(y′). Lemma 1
implies that zi = 0 for i ∈ R(y′), and we may assume that xi = 0 for i ∈ S(y′). Put

J(y, i0) = {j ∈ J | if i �j ij(y′) then i ∈ N(i0) ∪ R(y′)}

and note that ij(x) �j ij(z) for j ∈ J(y, i0). Since i0 �∈ Ij0(y), there is k ∈ N(i0) for which the set

J(y, k, i0) = {j ∈ J(i0) | if i �j k then i ∈ N(i0) ∪ I0(y′) ∪ S(y′)}
satisfies

gk �
∑

j∈J(y,k,i0)

pkj.

Observe that k �j ij(x) �j ij(z) for j ∈ J(y, k, i0). Consider the sets

JL(k) = {j ∈ J | k �j ij(x) �j ij(z)}, JF (k) = {j ∈ J | k �j ij(z) �j ij(x)},

and the solution Z = ((zi), (zij)) to problem F differing from Z in zk = 1, zkj = 1 for j ∈ JL(k) and
zkj = 1, zij(z)j = 0 for j ∈ JF (k). By the monotonicity of profit, J(y, k, i0) ⊂ JL(k) entails

F (Z) − F (Z) = −gk +
∑

j∈JL(k)

pkj +
∑

j∈JF (k)

(pkj − pij(z)j) ≥ −gk +
∑

j∈J(y,k,i0)

pkj ≥ 0.
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Consequently, Z is an optimal solution to problem F, while (X,Z) is a feasible solution to (L(y),F). The
feasible solutions (X,Z) and (X,Z) satisfy

L(X,Z) − L(X,Z) ≥
∑

j∈J(y,k,i0)

pij(x)j ≥ pi0j0 > 0.

This contradicts the fact that (X,Z) is a feasible noncooperative solution.
The proof of Lemma 2 is complete.

Lemma 3. Given a partial solution y, take a system of subsets {Ij(y)} for j ∈ J defined
by strict inequalities and a feasible noncooperative solution (X,Z) to problem (L(y),F) with
X = ((xi), (xij)) and Z = ((zi), (zij)). Then every j ∈ J satisfies(∑

i∈I

pijxij

)(
1 −

∑
i∈I

zij

)
=

( ∑
i∈Ij(y)

pijxij

)(
1 −

∑
i∈I

zij

)
.

Proof. If pijxij = 0 for every i ∈ I then the equality holds. Suppose that pi0jxi0j > 0 for some i0 ∈ I. If
i0 ∈ Ij(y) then the equality holds. If i0 �∈ Ij(y) then the equality holds because∑

i∈I

zij = 1

by Lemma 1. The proof of Lemma 3 is over.

Given a fixed partial solution y = (yi), consider the following problem which we call the estimating
problem:

max
(xi), (xij)

(
−

∑
i∈I

fixi +
∑
j∈J

∑
i∈Ij(y)

pijxij

)
,

xi +
∑

k∈I|i�jk

xkj � 1, i ∈ I, j ∈ J,

xi � xij, i ∈ I, j ∈ J,

xi = yi, i ∈ I0(y) ∪ I1(y),

xi, xij ∈ {0, 1}, i ∈ I, j ∈ J.

Let B(y) denote the estimating problem with a system of subsets Ij(y) for j ∈ J defined by strict
inequalities; and B(X), the value of its objective function on a solution X = ((xi), (xij)).

Theorem. Given a partial solution y, take a system of subsets {Ij(y)} for j ∈ J defined by
strict inequalities and an optimal noncooperative solution (X,Z) to problem (L(y),F) with
X = ((xi), (xij)) and Z = ((zi), (zij)). Denote by X0 an optimal solution to problem B(y). Then

L(X,Z) ≤ B(X0).

Proof. By Lemma 3, the optimal values of the objective function of problem (L(y),F) satisfy

L(X,Z) = −
∑
i∈I

fixi +
∑
j∈J

(∑
i∈I

pijxij

)(
1 −

∑
i∈I

zij

)
≤ −

∑
i∈I

fixi +
∑
j∈J

∑
i∈Ij(y)

pijxij .

Since X is a feasible solution to problem B(y), we infer

L(X,Z) ≤ B(X) ≤ B(X0).

The proof of Theorem 1 is complete.
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Take an optimal solution X0 to problem B(y) and the corresponding feasible noncooperative solution
(X0, Z) to (L(y),F). As a corollary to Theorem 1, we can state a sufficient condition for B(X0) to be
a sharp bound and for (X0, Z) to be an optimal noncooperative solution to (L(y),F):

Corollary. A feasible noncooperative solution (X0, Z) with

X0 =
((

x0
i

)
,
(
x0

ij

))
, Z = ((zi), (zij))

is optimal for problem (L(y),F) whenever, for all j ∈ J ,( ∑
i∈Ij(y)

pijx
0
ij

)∑
i∈I

zij = 0.

This implies in particular that if Z is the zero solution then (X0, Z) is an optimal noncooperative
solution to problem (L(y),F). Using the test for the optimality of (X,Z), we can indicate a rule for
choosing i(y) ∈ I∗(y) which increases the set of 1s of the partial solution y in the best possible way. Put

z = (zi), J0 =
{

j ∈ J
∣∣∣
( ∑

i∈Ij(y)

pijx
0
ij

)∑
i∈I

zij �= 0
}

�= ∅.

For i ∈ I∗(y), put J0(i) = {j ∈ J0 ∩ Ji(z) | i ∈ Ij(y)} and denote by i(y) the element i ∈ I∗(y) with
the greatest value of

∑
j∈J0(i)

pij . Define the function calculating the upper bound H(y) as follows:

If y ∈ Bm then consider the feasible noncooperative solution (X,Z) to problem (L,F) corresponding to
the (0, 1)-vector y. Put

H(y) = L(X,Z), x(y) = y.

If y �∈ Bm then take the (0, 1)-vector x0 =
(
x0

i

)
from an optimal solution X0 to the estimating

problem B(y) and put H(y) = B(X0) and x(y) = x0.
Let us use the functions i(y) and x(y) defined in this section, as well as H(y), to construct

an algorithm for searching for a (1 − ε)-approximate solution to the consecutive competitive location
problem.

4. THE BRANCH-AND-BOUND ALGORITHM.
RESULTS OF SIMULATIONS

We showed above how to express (L,F) as a problem of maximizing a certain pseudo-Boolean
function. The branch-and-bound algorithm for the problem of maximizing the pseudo-Boolean func-
tions f(x) under consideration includes an initial step and a finitely many main steps.

Initial Step. We have an ordered partial solution y=(yi) with yi = ∗ for 1 ≤ i ≤ m and q=0.
Calculate the upper bound H(y) and the solution x(y). Then apply to the vector x(y) the local search
procedure; it yields a locally optimal solution, which we take as the initial record solution x0. If

(1 − ε)H(y) ≤ f(x0)

then STOP, otherwise GOTO move down.

Main Step. We have an ordered partial solution y = (yi) and an order vector (i1, . . . , iq) with
1 ≤ q ≤ m. If q = m then calculate f(x(y)). If f(x(y)) > f(x0) then x0 := x(y) and GOTO move up.
If q < m then calculate H(y) and x(y). If (1− ε)H(y) ≤ f(x0) then GOTO move up, otherwise GOTO
move down.

Move up. Put r := 0 and calculate the greatest index r with 1 ≤ r ≤ q and yir = 1. If r = 0 then
STOP, otherwise yik := ∗ for r < k ≤ q, yir := 0, q := r, and GOTO Main Step.

Move down. Construct

I1(x(y))\I1(y) = {iq+1, . . . , iq+r}, r ≥ 0.
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If r = 0 then calculate the index i(y) and put iq+1 = i(y), yiq+1 = 1, and q := q + 1; otherwise, put
yiq+k

:= 1 for 1 ≤ k ≤ r and q := q + r. Construct the set

S(y) = {iq+1, . . . , iq+r}, r ≥ 0.

If r > 0 then yiq+k
:= 0 for 1 ≤ k ≤ r and q := q + r. GOTO the Main Step.

We studied the properties of the method by the randomly generated test instances of the competitive
facility location problem on a tree network taken from the class of examples TreeNE of the Discrete
location problems library of test instances. For these examples, the sets I and J coincide with the
set V of vertices of a random tree. The iterative procedure constructing the tree starts with the trivial tree
with a single vertex. At every iteration, a new dangling vertex is added to the tree already constructed
and joined to a random vertex of the tree with either a long edge with probability 0.1 or a short edge with
probability 0.9. The lengths of short edges are random numbers in the interval [1, 15], while those of long
edges lie in the interval [100, 150]. The fixed costs fi and gi of opening a facility at i ∈ V for the leader and
the follower are randomly chosen integer numbers in the intervals [30, 39] and [20, 29] respectively. The
consumers’ preferences are determined by the distance in the tree. For each consumer j ∈ V , we choose
randomly in the integer interval [5, 9] the value bj of budget. Put the profit pij by serving consumer j at
facility i equal to bj in the case that the distance from consumer j to facility i is at most 100.

For the values of m equal to 20, 30, 40, 50, and 60, we generated 20 tuples of input data of
competitive location problem. A parallel (multi-thread) implementation of the algorithm is written in the
C# programming language. We ran tests on a computer controlled by the operating system Windows
Server 2008 R2 with two six-core processors Intel Xeon X5675 at 3.07 GHz and 96 Gb of RAM. To
solve integer programming problems, we used the class library Microsoft Solver Foundation 3.1 based
on the Gurobi 4.5 solver. As the initial approximation we chose a solution obtained using the algorithm
of [4]. The running time of the branch-and-bound algorithm was less than one hour in each instance.

Tables 1 and 2 show the key indicators of the capability of the algorithm to search for a (1 − ε)-
approximate solution for various numbers of worker threads:

m is the number of points on the plane in the instances of this group;
P is the number of worker threads;
ε is the guaranteed relative error of the solution;
S is the number of solved instances in this group out of 20 possible;
pavg is the share, in percent, of discarded solutions averaged over all instances in this group;
tmin, tavg, and tmax are the minimal, average, and maximal times in seconds the algorithm took to

solve an instance in this group;
Nmin, Navg, and Nmax are the minimal, average, and maximal numbers of vertices of the branching

tree inspected by the algorithm when solving instances in this group;
GAPmin, GAPavg, and GAPmax are the minimal, average, and maximal values of H/Lrec for all

instances in this group, where H is the value of the upper bound over the entire set of feasible solutions
and Lrec is the record value of the objective function when the algorithm stops;

V Lavg is the average value, over all examples in this group, of the objective function of the leader on
the best noncooperative solution found;

V Favg is the average value, over all instances in this group, of the objective function of the follower
on the best noncooperative solution found;

|x|avg is the average number, over all instances of this group, of facilities opened by the leader in the
best noncooperative solution found;

|z|avg is the average number, over all instances in this group, of facilities opened by the follower in the
best noncooperative solution found.

It is clear from Table 1 that the test instances of dimension 20 turn out simple: for all values of ε
under consideration, (1 − ε)-approximate noncooperative solutions were found in less than 10 seconds.
Furthermore, the algorithm running in a single thread tackles the problem faster, and, as ε grows, its
running time decreases as expected. In the case of 12 threads, the running time increases: additional
work goes into balancing the load of running threads, which turns out superfluous. Already in dimen-
sion 30, work in parallel threads is advantageous, and single-thread implementation begins to lose
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Table 1. Results of simulations

m P ε S pavg tmin tavg tmax Nmin Navg Nmax

20 1 0 20 100 0 2 6 1 230 1041

20 1 0.3 20 100 0 1 6 1 177 959

20 1 0.5 20 100 0 1 6 1 125 727

20 12 0 20 100 0 4 11 12 247 1208

20 12 0.3 20 100 1 5 14 12 202 1143

20 12 0.5 20 100 3 6 14 16 150 903

30 1 0 20 100 9 261 807 668 6462 15548

30 1 0.3 20 100 1 202 751 54 4864 14404

30 1 0.5 20 100 0 131 700 1 3247 12450

30 12 0 20 100 15 81 199 836 5854 16120

30 12 0.3 20 100 17 60 154 126 4438 14873

30 12 0.5 20 100 14 55 164 71 2943 13032

40 1 0 3 69 301 3291 3601 3954 55018 165895

40 1 0.3 8 82 2 2738 3601 98 43082 164913

40 1 0.5 14 86 0 1595 3601 1 26781 164742

40 12 0 13 98 125 2306 3602 3490 112770 270576

40 12 0.3 13 98 87 1748 3605 260 78577 266396

40 12 0.5 16 99 70 1210 3603 218 47733 268737

50 1 0 0 27 3600 3600 3607 16279 84001 273633

50 1 0.3 6 50 335 2761 3601 2098 61266 269407

50 1 0.5 11 66 1 1933 3601 1 39936 199281

50 12 0 2 79 1405 3429 3608 47392 320299 1114543

50 12 0.3 8 86 91 2402 3603 2181 216383 1104509

50 12 0.5 12 93 54 1655 3602 124 175120 1016613

60 1 0 0 5 3600 3600 3602 9433 69233 298759

60 1 0.3 1 14 415 3441 3602 1435 47094 118441

60 1 0.5 3 26 3 3065 3601 1 24551 52917

60 12 0 0 34 3600 3601 3603 119133 295625 527817

60 12 0.3 1 46 2145 3455 3603 95273 191101 461580

60 12 0.5 4 77 134 3052 3604 134 116379 355659
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Table 2. Numerical characteristics of instances

m GAPmin GAPavg GAPmax V Lavg V Favg |x|avg |z|avg

20 1.0 2.7 8.3 9.3 23.8 1.6 1.6

30 1.6 5.3 17.7 12.5 57.3 2.3 2.2

40 1.7 4.7 13.6 17.6 84.0 3.1 3.1

50 1.8 4.6 14.0 25.1 128.2 3.5 3.3

60 1.6 3.7 6.4 27.7 145.7 4.7 3.6

its efficiency. However, the speedup is not 12-fold: the running time is decreased roughly by a factor
of three, which again is a consequence of nonoptimal balance of loads. The time required to prove
the optimality of a solution for instances in this class could be from few seconds to several minutes
depending on the instance, but at most 15 minutes for P = 1 and 4 minutes for P = 12. We observe
a turning point at m = 40. The single-thread implementation of the algorithm proves the optimality of
the solution found only for three out of 20 proposed instances. However, the increase in the number of
worker threads, as well as the increase of ε, lead to substantial growth of efficiency. To convince ourselves,
pay attention to the value of pavg showing the share, averaged over the instances in this class, of the total
number of solutions inspected by the algorithm in the allocated time. The examples of low dimensions
m = 20 and m = 30 are completely solved, and for them pavg = 100%. For m = 40, ε = 0, and P = 1,
on average 69% of solutions end up inspected, while, for P = 12, so are 98% of solutions on average,
while the number of instances in which the optimality of the solution found is proved increases from 3
to 13 in comparison with the single-thread implementation. Instances of high dimension m = 50 admit
searching for 1

2-approximate solutions corresponding to ε = 0.5: more than half of these instances are
solved for both P = 1 and P = 12. It is worth noting that in the latter case the quantity pavg is 93%.
A relatively small increase in the allocated time would enable the algorithm to complete the inspection of
the set of feasible solutions. It is clear from the table that the generated instances of dimension m = 60
include simple cases. For P = 1 and ε = 0.3, one instance took about 7 minutes. However, the burst in
complexity prevents us from solving the majority of instances in this collection.

Table 2 shows some numerical characteristics concerning the instances generated and the nonco-
operative solutions found. The values of GAPmin and GAPmax for various m show that each group
includes the test instances in which the upper bound is a quite precise estimate for the optimal value of
the objective function: for all presented m, we have GAPmin < 2. However, for all m under consideration,
there are some instances for which the estimate for the upper bound turns out much too high. These
instances require more time to solve since unpromising subsets of feasible solutions are discarded on
later stages, when they are relatively small. On average the estimate for the upper bound exceeds F rec

in 2.7–5.3 times. As we can observe seeing the data on V Lavg and V Favg, as well as |x|avg and |z|avg,
on average the leader makes smaller profit than the follower even though opening the same number of
facilities.
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