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We study a mathematical model generalizing the well-known facility location problem. In this model

we consider two competing sides successively placing their facilities and aiming to ‘‘capture’’

consumers, in order to make maximal profit. We state the problem as a bilevel integer programming

problem, regarding optimal noncooperative solutions as optimal solutions. We propose a branch-and-

bound algorithm for finding the optimal noncooperative solution. While constructing the algorithm, we

represent our problem as the problem of maximizing a pseudo-Boolean function. An important

ingredient of the algorithm is a method for calculating an upper bound for the values of the pseudo-

Boolean function on subsets of solutions. We present the results of a simulation demonstrating the

computational capabilities of the proposed algorithm.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

We consider a competitive facility location problem general-
izing the well-known facility location problem [1,2]. In the simple
facility location problem we consider a set of consumes (clients)
with a given demand for a single commodity and a set of sites
where facilities can be located. We consider the given fixed costs
of opening facilities and assume there is a known profits that are
made by satisfying the demand of each consumer from each
facility. The simple facility location problem is to open a subset of
facilities in order to maximize total profit under the condition
that all demand has to be satisfied. In contrast to the simply
facility location problem, the model under study includes two
competing sides, which successively open their facilities aiming
to ‘‘capture’’ consumers and maximize profit.

We may regard decision-making by the competing sides as a
Stackelberg game [3] and, following the terminology of this game,
call the sides a Leader and a Follower. The Leader’s problem in
this game consists in choosing a set of open facilities which yields
maximal profit in the conditions that the Follower, knowing the
Leader’s facility locations and considering the preferences of
consumers, will open some facilities. The Follower’s problem
consist in opening facilities to captures some consumers aiming
to maximize his own profit.

The resulting mathematical model amounts to a bilevel integer
programming problem [4] including an upper-level problem
ll rights reserved.
(the Leader’s problem) and a lower-level problem (the Follower’s
problem). Both problems are location problems with order [5].
Orderings are necessary for specifying the preferences of con-
sumers and determining the rules for capturing consumers by the
Leader or the Follower.

The available publications devoted to competitive location
problems pay little attention to this model. An exception is [6],
studying a model in which the upper- and lower-level problems
are similar to the classical facility location problem. A model close
to ours is the ðr9pÞ-centroid problem of [7]. In that model two
competing sides (a Leader and a Follower) also successively open
their facilities. The Leader has to place p facilities knowing that
the Follower will react by placing r facilities. Each consumers is
served by the side which places the nearest facility. Leader and
Follower aim to obtain the maximum total demand of the
consumers. An important feature of this model is that the
objective functions of the Leader and the Follower differ only
by a sign.

Among the proposed approaches to solving this problem, we
should note [8–10]. In [8] the ðr9pÞ-centroid problem is represented
as a (0, 1)-programming problem with exponentially large num-
bers of variables and constraints. The optimal solution to a relaxed
problem, which includes only ‘‘significant’’ variables and con-
straints, yields an upper bound for the values of the objective
function of the original problem and makes it possible to construct
an feasible solution. The procedure of successive growth of the set
of significant variables and constraints proposed in [9] makes it
possible to successively improve the upper bound and the resulting
approximate solution to the original problem. An algorithm was
proposed in [10], based on the possibility of representation of the
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problem of ðr9pÞ-centroid in the form of a minimax (0, 1)-
programming problem and its reduction to a ‘‘standard’’ (0, 1)-
programming problem. Note that the problem in this paper cannot
be represented as a minimax (0, 1)-programming problem, and so
it requires some new approaches to constructing algorithms for
solutions.

In this paper we propose a branch-and-bound algorithm [2,11]
for the competitive facility location problem, which enables us to
find optimal solutions to the problem. We regard as optimal the so-
called optimal noncooperative solutions. This is related to the fact
that, owing to the possible nonuniqueness of the optimal solution
to the lower-level problem, the concept of optimality for the
competitive facility location problem has to be refined.

A function from the set of (0, 1)-vectors to the reals is called a
pseudo-Boolean function [12]. While constructing the algorithm, we
represent the problem under study as the problem of maximizing a
pseudo-Boolean function in as many variables as there are possible
facility locations of the Leader. The considered function is defined
implicitly; to calculate its values, we have to find optimal solutions to
two integer linear programming problems.

An important ingredient of the algorithm is a method we propose
for calculating an upper bound for the values of the pseudo-Boolean
function under consideration on subsets of solutions. The idea of the
method for calculating an upper bound of the objective function in a
competitive facility location problem was first presented in [13]. In
this paper, some upper bound is constructed in the linear case of the
problem in which the profit from the consumer service is the same
for all facilities. The results of the numerical experiment demonstrat-
ing the accuracy of the proposed upper bound are given in [14]. In
this paper we construct an algorithm for calculating an upper bound
in the problem under consideration in a general form. Simulta-
neously with the calculation of an upper bound we determine an
feasible solution of the subset under consideration which yields a
lower bound for the optimal value of the objective function. To
calculate the initial record solution, the algorithm we propose uses
the local search procedure of [14] with a neighborhood of a
particular form.

This paper consists of six sections. In Section 2 we state the
competitive facility location problem as a bilevel integer pro-
gramming problem and define optimal noncooperative solutions.
Moreover, we show that we can represent the problem of seeking
optimal noncooperative solution as a problem of maximizing
some pseudo-Boolean function. Section 3 describes the general
scheme of the branch-and-bound algorithm for the problem of
maximizing a pseudo-Boolean function. As applies to the set of (0,
1)-vectors, we specify the method for determining subsets of
solutions and the branching function. To determine subsets of
solutions, we use the so-called partial (0, 1)-vectors with some
entries fixed. In Section 4 we consider a method for calculating an
upper bound for the values of the pseudo-Boolean function under
consideration on the subsets of (0, 1)-vectors determined by
partial solutions, while in Section 5 we present a local search
algorithm for calculating a locally optimal solution used on the
first step of the branch-and-bound algorithm as the initial record
solution. Section 6 is devoted to a discussion of the results of
simulation with the proposed branch-and-bound algorithm.
As a test we use sample problems of competitive location on a
network from the library [15].
2. The competitive facility location problem

2.1. The model

The competitive facility location problem, as we already noted,
is a mathematical model arising in studying a more general
situation than the case of the classical location problem. Here
we also have a set of potential facilities (facility locations) and a
set of consumers. However, in contrast to the classical facility
location problem, there are two competing sides, which succes-
sively place (open) facilities aiming to capture consumers and
achieve their goals, different in general. Moreover, we assume
that, as in the case of location problem with order, each consumer
has their own preferences, which enable us to rank the open
facilities and determine which of the sides captures the consu-
mer. A side captures a consumer if its facility is more preferable
for this consumer than every facility opened by the other side.

We may regard decision-making by the competing sides in this
facility location scenario as a Stackelberg game. Following the
terminology of this game, we refer to the competing sides
respectively as the Leader and the Follower; moreover, we
represent decision-making solutions as consisting of the follow-
ing two stages.

At the first stage the Leader decides to place his facilities,
aiming to maximize his profit. Furthermore, he knows the
objective function of the Follower, as well as the preferences of
each consumer.

At the second stage the Follower, knowing the Leader’s facility
locations, opens his facilities aiming to maximize his profit.
Furthermore, he knows the preferences of each consumer.

The Leader’s problem in this game consists in determining the
set of open facilities which maximizes his objective function
provided that the Follower captures some consumers.

In order to write the Leader’s problem formally, we introduce
some notation and state necessary assumptions. In particular, we
formalize the consumer capturing rule by the competing sides, as
well as the rules according to which for each consumer captured
by the Leader or the Follower a facility is assigned to serve that
consumer.

As in the classical facility location problem, denote by
I¼ f1, . . . ,mg the set of facilities (possible facility locations) and
by J¼ f1, . . . ,ng the set of consumers.

Assume that facility iA I can be opened by both the Leader and
the Follower. Therefore, for every iA I we assume given two
quantities fi and gi equal to the fixed cost to open facility i

respectively by the Leader and the Follower. If for some reason
the Leader or the Follower cannot open facility i then we put
f i ¼1 or gi ¼1.

For all iA I and jA J denote by pij the profit made at facility i by
serving consumer j.

Assume that the choice among the open facilities for serving
consumer jA J is made accounting for the preferences of consumer
j. Assume that the preferences of consumer jA J are given as a
linear order relation gj on I. For i, kA I the relation igjk means
that out of two open facilities i and k consumer jA J prefers facility
i. The relation ikjk means that either igjk or i¼k.

Take I0 � I. For every jA J denote by ijðI0Þ the best facility from
set I0, i.e. the element i0A I0 with i0kji for every iA I0. If
I0 ¼ fiA I9wi ¼ 1g, where w¼ ðwiÞ is a (0, 1)-vector, we also write
ij(w) instead of ijðI0Þ.

We use the following rule to determine the side capturing
consumer jA J. Suppose that the unit components of a (0, 1)-
vector x¼ ðxiÞ for iA I indicate the facilities opened by the Leader,
while the unit components of a (0, 1)-vector z¼ ðziÞ for iA I

indicate the facilities opened by the Follower. Consumer jA J is
captured by the Leader whenever ijðxÞgjijðzÞ and by the Follower
whenever ijðzÞgjijðxÞ.

If consumer jA J is captured by the Follower for instance then
to choose the facility to serve this consumer the Follower can use
the following two rules. According to the first rule, which we call
the strict choice rule, it will be facility ij(z), while according to the
second rule, which we call the free choice rule, it can be some
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facility i opened by the Follower satisfying igjijðxÞ. Below, while
constructing mathematical models, we assume that the Leader
uses the strict choice rule, while the Follower, the free choice rule.

Assume that the goals of the Leader and the Follower are to
make maximal profit. The Leader’s profit is combined from the
profit at all facilities opened by the Leader. In turn, the profit at
each open facility equals the total revenue received from the
consumers served there minus the fixed cost to open this facility.
Similarly, the Follower’s profit is combined from the profit at all
facilities he opened, while the profit at each open facility is equal
to the total revenue received from consumers minus the
fixed cost.

Introduce the following variables similar to the variables of the
classical facility location problem:

the value of xi is 1 if the Leader opens facility iA I and zero
otherwise;
the value of xij is 1 if facility iA I opened by the Leader is
assigned to serve consumer jA J and zero otherwise;
the value of zi is 1 if the Follower opens facility iA I and zero
otherwise;
the value of zij is 1 if facility iA I opened by the Follower is
assigned to serve consumer jA J and zero otherwise.

Using these variables, we can formulate the Leader’s problem
in the Stackelberg game under consideration, which we call the
competitive facility location problem, as the following bilevel
integer programming problem:

max
ðxiÞ,ðxijÞ

�
X
iA I

f ixiþ
X
jA J

X
iA I

pijxij
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ðziÞ,ðzijÞ
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ziZzij, iA I, jA J; ð8Þ

zi, zijAf0,1g, iA I, jA J: ð9Þ

As every bilevel mathematical programming problem, (1)–(9)
includes the upper-level problem (1)–(4) and the lower-level
problem (6)–(9). In the problem (1)–(9) we call the upper-level
problem as Leader’s problem and denote it by L, we call the
lower-level problem as Follower’s problem and denote by F.

The objective function (1) of problem L expresses, as we
already noted, the profit made by the Leader accounting for the
loss of some consumers captured by the Follower. Eqs. (2)–(4) are
constraints of a location problem with order. Inequalities (2)
implement the strict choice rule of a facility opened by the Leader
for serving consumers. These constraints show that if xi¼1 for
some iA I then xkj ¼ 0 for every kA I such that igjk. The same
inequalities guarantee that only one facility opened by the Leader
can be chosen to serve each consumer. The objective function (6)
of problem F expresses the profit made by the Follower. Inequal-
ities (7) implement conditions for capturing consumers by the
Follower given the facilities opened by the Leader. These con-
straints show that if xi¼1 for some iA I then zkj ¼ 0 for every kA I

such that i¼k or igjk. In particular, these constraints show that if
a facility is opened by the Leader then the Follower cannot use it
for serving consumers. The remaining constraints of problem F
are constraints of the classical facility location problem.

For the problem (1)–(9) as a whole we use the notation ðL,FÞ.
We assume that the objective function (1) of problem F is also the
objective function of problem ðL,FÞ.

The initial data for problem ðL,FÞ are the matrices P¼ ðpijÞ, iA I,
jA J; F ¼ ðf iÞ, iA I; G¼ ðgiÞ, iA I, and R¼ ðrijÞ, iA I, jA J. The matrix R

defines the orders gj for jA J on I. The entries in column j of R are
distinct, and for all i,kA I the inequality rijorkj holds if and only if
igjk. We assume that the entries of P, F, and G are nonnegative,
while those of R take values from 1 to m.

2.2. Feasible and optimal solutions

Henceforth we denote an feasible solution ððxiÞ,ðxijÞÞ to problem
L by X and an feasible solution ððziÞ,ðzijÞÞ to problem F by Z. Refer to
a pair ðX, ~ZÞ, where X is an feasible solution to problem L and ~Z is
an optimal solution to problem F, as an feasible solution to
problem ðL,FÞ.

Consider an feasible solution ðX, ~Z Þ to problem ðL,FÞ with
X ¼ ððxiÞ,ðxijÞÞ and ~Z ¼ ðð~ziÞ,ð~zijÞÞ. Without loss of generality, assume
that if X is a nonzero solution to problem L then

P
iA Ixij ¼ 1 for

every jA J. As for the optimal solution ~Z to problem F, assume that
for every jA J if ijð~zÞgjijðxÞ, that is, if consumer j is captured by the
Follower, then

P
iA I
~zij ¼ 1. In the case that all pij for iA I are

positive, this condition holds automatically since ~Z is an optimal
solution. However, if some pij with iA I vanishes then the
indicated condition must be violated. However, in this case if
we set the value of the corresponding variable ~zij with iA I to
1 then we obtain an optimal solution with the required property.

Assume also that if X is the zero solution then the optimal
solutions ~Z to problem F are nonzero. Therefore, henceforth we
assume that the feasible solutions ðX, ~Z Þ to problem ðL,FÞ are
nonzero.

Denote by LðX, ~Z Þ the value of the objective function of problem
ðL,FÞ on an feasible solution ðX, ~ZÞ and by F(Z), the value of the
objective function of problem F on an feasible solution Z.

Observe that problem ðL,FÞ is well-posed if all feasible solu-
tions ðX, ~Z1Þ and ðX, ~Z2Þ satisfy LðX, ~Z1Þ ¼ LðX, ~Z2Þ. This condition
holds, in particular, when problem F has a unique optimal
solution for every X. However, if this condition is violated then
problem ðL,FÞ is not well-posed since for some X it is unclear
which optimal solution ~Z to problem F we should use for
calculating the values of the objective function of problem ðL,FÞ.

In order to remove this indeterminacy, we have to accept
additional rules which the Follower applies to choose his solution.
Consider the following rule for the Follower to choose his
solution, which we call the noncooperative behavior rule.

Assume that in noncooperative behavior the Follower chooses
among the solutions optimizing his objective function the solu-
tion which is the worst from the viewpoint of the Leader and
yields the least value of the Leader’s objective function. Refer to
an feasible solution ðX,ZÞ of problem ðL,FÞ as an feasible noncoo-

perative solution to problem ðL,FÞ if LðX,ZÞrLðX, ~ZÞ for every
feasible solution ðX, ~ZÞ to problem ðL,FÞ. Refer to an feasible
noncooperative solution ðXn,Z

n
Þ to problem ðL,FÞ as an optimal

noncooperative solution to problem ðL,FÞ if LðXn,Z
n
ÞZLðX,ZÞ for

every feasible noncooperative solution ðX,ZÞ.
Observe that every feasible noncooperative solution ðX,Z Þ to

problem ðL,FÞ is determined by the feasible solution X. For every
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feasible solution X the value of the objective function LðX,ZÞ on
the corresponding feasible noncooperative solution ðX,ZÞ is
uniquely determined.

Indeed, consider an feasible solution X ¼ ððxiÞ,ðxijÞÞ to problem
L. The corresponding feasible noncooperative solution ðX,Z Þ to
problem ðL,FÞ is determined by the algorithm consisting of two
stages.

At stage 1 for a fixed solution X we solve problem F and calculate
the optimal value Fn of its objective function.

At stage 2 for a fixed solution X we solve the auxiliary problem

min
ðziÞ,ðzijÞ
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X
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pijxij
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X
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The optimal solution Z ¼ ððziÞ,ðzijÞÞ to this problem yields the
required feasible noncooperative solution ðX,Z Þ to problem ðL,FÞ.
Furthermore, observe that LðX,ZÞ is the same for every optimal
solution Z to the auxiliary problem (10)–(14).

Henceforth we focus our attention on the model ðL,FÞ and the
problem of seeking optimal noncooperative solutions.

We saw above that every feasible solution X to problem L
uniquely determines the value of the objective function of
problem ðL,FÞ.

Observe also that the feasible solution X ¼ ððxiÞ,ðxijÞÞ to problem
L is itself uniquely determined by a (0, 1)-vector x¼ ðxiÞ. There-
fore, every (0, 1)-vector x uniquely determines some value LðX,Z Þ
of the objective function of the problem on the corresponding
feasible noncooperative solution ðX,ZÞ.

Thus, we can represent the problem of seeking the optimal
noncooperative solution to the competitive facility location pro-
blem ðL,FÞ as the problem of maximizing some pseudo-Boolean
function f(x), xABm. This function is defined implicitly and in
order to calculate its values we have to find the optimal solution
to the lower-level problem (6)–(9) and then the optimal solution
to the auxiliary problem (10)–(14). Therefore, while constructing
below algorithms for the competitive facility location problem,
we consider the problem of maximizing a pseudo-Boolean func-
tion f(x) defined on the set of (0, 1)-vectors x¼ ðxiÞ for iA I and
construct algorithms for this problem.

2.3. The list of notation

Finally, we present a list of notations for convenience of
further reading.

I¼ f1, . . . ,mg the set of facilities
J¼ f1, . . . ,ng the set of consumers
fi the fixed cost to open facility i by the Leader
gi the fixed cost to open facility i by the Follower
pij the profit of facility i by serving consumer j

igjk the relation means that out of two open facilities i and k

consumer j prefers facility i

ijðI0Þ the best facility for consumer j from the set of facility I0

ij(w) the best facility for consumer j from the set of facility
I0 ¼ fiA I9wi ¼ 1g, where w¼ ðwiÞ is (0, 1)-vector

xi the (0, 1)-variables, xi¼1 if the Leader opens facility i

and xi¼0 otherwise
xij the (0, 1)-variables, xij ¼ 1 if facility i opened by the
Leader is assigned to serve consumer j and xij ¼ 0
otherwise

zi the (0, 1)-variables, zi¼1 if the Follower opens facility i

and zi¼0 otherwise
zij the (0, 1)-variables, zij ¼ 1 if facility i opened by the

Follower is assigned to serve consumer j and zij ¼ 0
otherwise

L the Leader’s problem
F the Follower’s problem
ðL,FÞ stated the Competitive Facility Location Problem
X ¼ ððxiÞ,ðxijÞÞ feasible solution to problem L
Z ¼ ððziÞ,ðzijÞÞ feasible solution to problem F
~Z ¼ ðð~ziÞ,ð~zijÞÞ optimal solution to problem F
ðX, ~ZÞ feasible solution to problem ðL,FÞ
LðX, ~ZÞ the value of the objective function of problem ðL,FÞ
ðX,ZÞ feasible noncooperative solution to problem ðL,FÞ
3. Branch-and-bound method

3.1. The general scheme of the branch-and-bound algorithm

Consider the general scheme of the branch-and-bound method
with depth-first search for the problem of maximizing a pseudo-
Boolean function f(x); thus, as applies to a problem of the form

max
x

f ðxÞ;

xABm:

Denote the optimal solution to this problem by xn.
Assume that we are given the following functions defined on

the subsets s� Bm. Refer to a function b(s) which determines an
improper subset of the set s as a branching function. Refer to a
function H(s) satisfying HðsÞZ f ðxÞ for every xAs as an upper

bound. Assume that HðsÞ ¼ f ðxÞ whenever s¼ fxg. Consider also a
function x(s) which determines some solution in s.

An algorithm implementing the branch-and-bound method
with depth-first search consists of finitely many similar steps. On
each step we consider a set D� Bm called the set of candidate

solutions, a subset d�D called the set of examined solutions, as
well as a solution x0ABm which is the best one available up to this
step, called the record solution.

On the first step we have D¼ Bm and d¼ Bm, while x0 is an
arbitrary element of Bm.

Suppose that before the next step we have a set D of candidate
solutions, a set d�D of examined solutions, and a record solution
x0. The step starts with calculating H(d) and x(d). If f ðxðdÞÞ4 f ðx0Þ

then we put x0 ¼ xðdÞ. The step consists in trying to find out
whether d contains a solution better than the record solution. To
this end, we test the validity of

HðdÞr f ðx0Þ:

If the inequality holds then d is discarded and we put D¼D\d. If
D¼ | then the algorithm stops; otherwise, we put d¼ bðDÞ and
start the next step. However, if the inequality is violated then we
put d¼ bðdÞ and start the next step.

Since on each step of the algorithm the examined subset is
either discarded or replaced with an improper subset and since
every examined singleton subset is discarded then the algorithm
stops after a finite number of steps. The solution x0 produced
satisfies

f ðxnÞr f ðx0Þ:

Indeed, if x0 ¼ xn then the inequality holds. Suppose that x0axn.
Then on some step of the algorithm the solution xn was discarded
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together with a set d. However, then the following inequalities
hold, which prove the claim:

f ðxnÞrHðdÞr f ðx0Þ:

In order to make this computational branch-and-bound
scheme into a concrete algorithm for maximizing a pseudo-
Boolean function, we have to fill the details of all ingredients of
this scheme:
the method for specifying subsets D and d;
the branching function b(s);
the method for calculating the upper bound H(s);
the method for constructing the solution x(s).
3.2. Specifying subsets of the set of (0, 1)-vectors

In the case of the set Bm it is convenient to define subsets of
solutions using the so-called partial solutions. Put I¼ f1, . . . ,mg.
Refer to a vector y¼ ðyiÞ for iA I whose components take values 0,
1, and n as a partial (0, 1)-vector or a partial solution. A partial
solution divides the variables of the problem of maximizing a
pseudo-Boolean function into variables with a specified value 0 or
1 and free variables. Given a partial (0, 1)-vector y¼ ðyiÞ for iA I,
put

I0
ðyÞ ¼ fiA I9yi ¼ 0g, I1

ðyÞ ¼ fiA I9yi ¼ 1g:

Refer to a vector xABm as an extension of a partial solution y

whenever I0
ðyÞ � I0

ðxÞ and I1
ðyÞ � I1

ðxÞ. Denote by P(y) the set of all
extensions of a partial solution y.

Call a partial solution y ordered whenever an ordering vector
ði1, . . . ,iqÞ with fi1, . . . ,iqg ¼ I0

ðyÞ [ I1
ðyÞ is given for it, which

indicates the order in which the components of the partial
solution were assigned the values 0 or 1.

Verify that we can define the branching function so that on
each step of the branch-and-bound algorithm the set D of
candidate solutions and the set d of examined solutions are
determined by some ordered partial solution.

Given an ordered partial solution y with ordering vector
ði1, . . . ,iqÞ for 1rqrm, associate to it, apart from the set P(y),
another set Q(y) with PðyÞ � Q ðyÞ. In order to define Q(y), for every
k with 1rkrq such that yik

¼ 1 construct a partial solution
yðkÞ ¼ ðyiðkÞÞ for iA I satisfying

I0
ðyðkÞÞ ¼ ðI0

ðyÞ \ fi1, . . . ,ik�1gÞ [ fikg,

I1
ðyðkÞÞ ¼ I1

ðyÞ \ fi1, . . . ,ik�1g:

The union of the sets PðyðkÞÞ for the constructed partial solutions
y(k) and the set P(y) constitutes Q(y).

Suppose that on some step of the branch-and-bound algorithm
we have an ordered partial solution y with ordering vector
ði1, . . . ,iqÞ, 1rqrm, and suppose that D coincides with Q(y),
while d coincides with P(y). Assume that on the first step we
have a partial solution y satisfying I0

ðyÞ ¼ | and I1
ðyÞ ¼ |, and then

PðyÞ ¼Q ðyÞ ¼ Bm. Define the branching function so that on the
next step of the algorithm the sets D and d are determined by
some ordered partial solution.

Suppose that we apply the branching function to d. In this case
qom; therefore, we choose an element ikþ1=2I0

ðyÞ [ I1
ðyÞ and

consider a partial solution y0 ¼ ðy0iÞ which differs from the initial
partial solution y only in y0iqþ 1

¼ 1. The function i(y) for choosing
iqþ1 has to be specified. It is not difficult to see that on the next
step of the algorithm the set D and the subset d are determined by
the ordered partial solution y0 with ordering vector ði1, . . . ,iq,iqþ1Þ.
Suppose now that d is discarded on this step of the algorithm and
we apply the branching function to D\d. Denote by k0 the largest
index k, 1rkrq, with yik

¼ 1. If this index fails to exist then
D\da| and the algorithm stops. Otherwise, consider the partial
solution y0 ¼ ðy0iÞ, which differs from the initial partial solution y in
that y0ik0

¼ 0 and y0ik ¼ n for k¼ k0þ1, . . . ,q. Then on the next step
of the algorithm the set D and the subset d are determined by the
ordered partial solution y0 with ordering vector ði1, . . . ,ik0

Þ.
4. An upper bound for the values of the objective function of
the competitive facility location problem on subsets of
solutions

Consider a method for calculating an upper bound H(y) for the
pseudo-Boolean function f(x) under study on the set P(y) of
extensions of a partial solution y¼ ðyiÞ. The value f(x) on a solution
xAPðyÞ equals the value of the objective function of problem ðL,FÞ
on the corresponding feasible noncooperative solution ðX,ZÞ with
the additional property xi¼yi for iA I0

ðyÞ [ I1
ðyÞ. The maximal

value of the pseudo-Boolean function f(x) provided that xAPðyÞ

equals the value of the objective function on the optimal non-
cooperative solution to the following problem:

max
ðxiÞ,ðxijÞ

�
X
iA I

f ixiþ
X
jA J

X
iA I

pijxij

 !
1�
X
iA I

~zij

 !8<
:

9=
;; ð15Þ

xiþ
X

k:igjk

xkjr1, iA I, jA J; ð16Þ

xiZxij, iA I, jA J; ð17Þ

xi,xijAf0,1g, iA I, jA J; ð18Þ

xi ¼ yi, iA I0
ðyÞ [ I1

ðyÞ; ð19Þ

ð~ziÞ,ð~zijÞ is the optimal solution to the problem ð6Þ2ð9Þ: ð20Þ

Denote the problem (15)–(20) by LðyÞ and the problem (15)–(20),
(6)–(9) by ðLðyÞ,FÞ. An upper bound for the values of the objective
function of problem ðLðyÞ,FÞ on the feasible noncooperative solu-
tions ðX,Z Þ is the required upper bound for the values of the
pseudo-Boolean function f(x) on the set P(y).

The method we propose for calculating an upper bound H(y)
rests on the construction of a system of subsets fIjg, with Ij � I for
jA J, using which we formulate a sufficient condition for the
capture of consumers by the Follower.

Given a partial solution y¼ ðyiÞ, for a fixed element j0A J we
state conditions enabling us to find out for every iA I whether
iA Ij0 or i=2Ij0

.
If yi¼0 then i=2Ij0 . Suppose that yia0. Consider the set

NðiÞ ¼ fkA I9kgj0 ig. If NðiÞ ¼ | then iA Ij0 . Suppose that NðiÞa|. If
NðiÞ \ I1

ðyÞa| then i=2Ij0 .
Suppose that NðiÞa| and NðiÞ \ I1

ðyÞ ¼ |. Consider the set

JðiÞ ¼ fjA J9if kgjijðI
1
ðyÞ [ figÞ then kANðiÞg:

Observe that JðiÞa| since j0A JðiÞ.
For every kANðiÞ consider the set

Jðk,iÞ ¼ fjA JðiÞ9kgjijðI
1
ðyÞ [ figÞg:

Assume that iA Ij whenever

gk4
X

jA Jðk,iÞ

pkj

for each kANðiÞ, and that i=2Ij if we find kANðiÞ for which the
inequality is violated.

The constructed subsets Ij for jA J are such that for every jA J

the set Ij \ I1
ðyÞ is either empty or coincides with fijðyÞg.



V. Beresnev / Computers & Operations Research 40 (2013) 2062–2070 2067
We explain the meaning of the set Ij for jA J in the following
lemma, which establishes that if the Leader plans on making a
profit from consumer j using facility i=2Ij then consumer j is
captured by the Follower.

Lemma 1. Given a partial solution y and an feasible noncooperative

solution ðX,Z Þ to problem ðLðyÞ,FÞ, with X ¼ ððxiÞ,ðxijÞÞ and

Z ¼ ððziÞ,ðzijÞÞ, the equality
P

iA Izij0
¼ 1 holds for every j0A J such

that pi0j0
xi0j0

40 for some i0=2Ij0
.

Proof. Given (0, 1)-vectors x¼ ðxiÞ and z ¼ ðziÞ, consider the
elements ij ¼ ijðI

1
ðxÞ [ I1

ðzÞÞ. Suppose that pi0j0
xi0j0

40 for some
j0A J and i0=2Ij0

, but the required equality is violated. Consider the
set Nði0Þ ¼ fkA I9kgj0

i0g and observe that Nði0Þa|, while xi¼0 and
zi ¼ 0 for iANði0Þ. Consider also the set Jði0Þ and observe that
ij ¼ ijðI

1
ðyÞ [ fi0gÞ for every jA Jði0Þ. Since i0=2Ij0

, it follows that we
can find kANði0Þ for which there exists a set Jðk,i0Þ � Jði0Þ such that
gkr

P
jA Jðk,i0Þ

pkj. For this kANði0Þ consider the set

S¼ fj=2Jði0Þ9kgjij,xij ¼ 1g

and construct a solution Z ¼ ððziÞ,ðzijÞÞ to problem F which differs
from of the optimal solution Z in that zk¼1 and zkj ¼ 1 for
jA Jðk,i0Þ [ S. The difference of the values of the objective function
of problem F on Z and Z satisfies

FðZÞ�FðZÞ ¼�gkþ
X

jA Jðk,i0Þ

pkjþ
X
jA S

pkjZ0:

This implies that Z is an optimal solution to problem F, while ðX,ZÞ
is an feasible solution to problem ðLðyÞ,FÞ. The feasible noncoo-
perative solution ðX,ZÞ and the feasible solution ðX,ZÞ satisfy

LðX,ZÞ�LðX,ZÞ ¼
X

jA Jðk,i0Þ

X
iA I

pijxijþ
X
jAS

X
iA I

pijxijZpi0 j0
xi0 j0

40:

This contradicts the fact that ðX,ZÞ is an feasible noncooperative
solution. The proof of the lemma is complete. &

Lemma 2. Given a partial solution y and an feasible noncooperative

solution ðX,Z Þ to problem ðLðyÞ,FÞ, with X ¼ ððxiÞ,ðxijÞÞ and

Z ¼ ððziÞ,ðzijÞÞ, the equality

X
iA I

pijxij

 !
1�
X
iA I

zij

 !
¼

X
iA Ij

pijxij

0
@

1
A 1�

X
iA I

zij

 !

holds for every jA J.

Proof. If pijxij ¼ 0 for every iA I then the equality holds. Suppose
that pi0 jxi0j40 for some iA I. If i0A Ij then the equality holds as
well. However, if i0=2Ij then the equality holds, since Lemma 1
yields

P
iA Izij ¼ 1. The proof of the lemma is complete. &

For a fixed partial solution y¼ ðyiÞ consider the following
problem, which we call estimational:

max
ðxiÞ,ðxijÞ

�
X
iA I

f ixiþ
X
jA J

X
jA Ij

pijxij

8<
:

9=
;,

xiþ
X

i:igjk

xkjr1, iA I, jA J;

xiZxij, iA I, jA J;

xi,xijAf0,1g, iA I, jA J;

xi ¼ yi, iA I0
ðyÞ [ I1

ðyÞ:

Denote by B(X) the value of the objective function of this
problem on a solution X ¼ ððxiÞ,ðxijÞÞ, while by X0

¼ ððx0
i Þ,ðx

0
ijÞÞ, the

optimal solution to the problem.

Theorem 1. Given a partial solution y, for every feasible noncoopera-

tive solution ðX,Z Þ to problem ðLðyÞ,FÞ, the inequality LðX,ZÞrBðX0
Þ

holds.
Proof. For every feasible noncooperative solution ðX,ZÞ to pro-
blem ðLðyÞ,FÞ Lemma 2 yields

LðX,ZÞr�
X
iA I

f ixiþ
X
jA J

X
iA Ij

pijxij:

Since X is an feasible solution to the estimational problem, it
follows that LðX,Z ÞrBðxÞrBðX0

Þ. The proof of the theorem is
complete. &

Considering the above, for a partial solution y define the values
H(y) and x(y) as follows. If y=2Bm then consider the optimal
solution X0

¼ ððx0
i Þ,ðx

0
ijÞÞ to the estimational problem and put

HðyÞ ¼ BðX0
Þ and xðyÞ ¼ x0, where x0 ¼ ðx0

i Þ. If yABm then consider
the feasible noncooperative solution ðX,Z Þ to problem ðLðyÞ,FÞ
corresponding to the (0, 1)-vector y. Put HðyÞ ¼ LðX,Z Þ and xðyÞ ¼ y.

Let us state, as a corollary to Theorem 1, a sufficient condition
for the upper bound H(y) calculated on a partial solution y=2Bm to
be sharp and for ðX0,ZÞ to be the optimal noncooperative solution
to problem ðLðyÞ,FÞ.

To this end, observe that

HðyÞ�LðX0,Z Þ ¼ BðX0
Þ�LðX0,Z Þ ¼

X
jA J

X
iA Ij

pijxij

0
@

1
AX

iA I

zij:

This yields

Corollary 1. For every partial solution y=2Bm the feasible noncoo-

perative solution ðXn,Z Þ is the optimal noncooperative solution to

problem ðLðyÞ,FÞ provided that

X
iA Ij

pijx
0
ij

0
@

1
AX

iA I

zij ¼ 0

for every jA J.

This implies in particular that if Z is the zero solution then the
bound H(y) is sharp and ðX0,Z Þ is the optimal noncooperative
solution to problem ðLðyÞ,FÞ, while the (0, 1)-vector x0 is the best
solution in the set P(y).

Using this criterion for the sharpness of the upper bound, accept
the rule for choosing the potential element i(y) for the branching
function with the goal of the largest decrease on the next step of the
difference HðyÞ�f ðx0Þ between the upper and lower bounds for the
maximal values of f(x) on the corresponding subset of solutions.

Suppose that the set

J0 ¼ jA J
X
iA Ij

pijx
0
ij

0
@

1
AX

iA I

zija0

������
8<
:

9=
;

is not empty. For every i=2I0
ðyÞ [ I1

ðyÞ consider the set

J0ðiÞ ¼ fjA J09igjijðzÞg,

where z ¼ ðziÞ. Choose i=2I0
ðyÞ [ I1

ðyÞ with the largest value ofP
jA J0ðiÞ

pij as i(y).
5. Algorithm for calculating the initial record solution

On the first step of the branch-and-bound algorithm, when the
partial solution y has no fixed components, we can take as the initial
record solution the (0, 1)-vector xðyÞ ¼ x0 obtained as the solution to
the corresponding estimational problem. However, since the initial
record is important for speeding up the algorithm, consider an
algorithm for improving the solution x0 in order to obtain an initial
record solution with a better value of the objective function. As a
basis for this algorithm, considering the implicit definition of the
function f(x), we use the local search method, and in particular its
simplest version: the standard local search algorithm.
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The local search method is based on the concept of a neighbor-
hood. As applies to the problem of maximizing a pseudo-Boolean
function f(x), we refer as a neighborhood of a point xABm to a subset
NðxÞ � Bm and assume that N(x) is given for every xABm. A solution
x0 with f ðx0ÞZ f ðxÞ for every xANðx0Þ is called locally optimal.

The standard local search algorithm with a neighborhood N(x)
of xABm for the problem of maximizing a pseudo-Boolean
function f(x) consists of finitely many similar steps, on each of
which we consider a current solution x0. On the first step x0 ¼ x0.
The step consists in finding x0ANðx0Þ maximally improving the
current solution x0; thus, an element x0ANðx0Þ such that
f ðx0ÞZ f ðxÞ for every xANðx0Þ and f ðx0Þ4 f ðx0Þ. If we cannot find a
solution x0 then the algorithm stops and the current solution x0 is
the required locally optimal solution. Otherwise, we replace the
solution x0 with x0 and start the next step.

To implement this algorithm using a large neighborhood N(x) can
be quite difficult in view of the particular features of the
pseudo-Boolean function f(x) under consideration. Therefore, for a
(0, 1)-vector x¼ ðxiÞ define a neighborhood

N0ðxÞ � fyABm9dðx,yÞr2,9dð0,xÞ�dð0,yÞ9r1g,

where dðx,yÞ is the Hamming distance, which includes precisely m

potential variants of modifications to x. To this end, for every iA I

with xi¼1 define

DiðxÞ ¼�f iþ
X

j:i ¼ ijðxÞ

pij,

which we call the profitability relative to solution x of facility
i opened by the Leader.

The neighborhood N0ðxÞ will consist of (0, 1)-vectors xk ¼ ðxk
i Þ

for kA I. For fixed kA I we construct xk as follows.
If xk¼1 then put xk

i ¼ xi for iak and xk
k ¼ 0. After that, assume

that xk is constructed.
If xk¼0 then put xk

i ¼ xi for iak and xk
k ¼ 1. Then calculate

Dkðx
kÞ. Two cases are possible: Dkðx

kÞZ0 and Dkðx
kÞo0. In the

first case, when the profitability of facility k is nonnegative, for
every iA I1

ðxÞ calculate Diðx
kÞ. If Diðx

kÞZ0 for every iA I1
ðxÞ, and

so the opening of ‘‘new’’ facility k does not make some ‘‘old’’
facilities opened by the Leader unprofitable, then assume that xk

is constructed. However, if Diðx
kÞo0 for some iA I1

ðxÞ then find
i0A I1

ðxÞ with Di0 ðx
kÞrDiðx

kÞ for every iA I1
ðxÞ, put xk

i0
¼ 0, and

assume that xk is constructed.
If Dkðx

kÞo0, and so the profitability of the new facility is
negative, then among the old facilities we find one whose removal
maximally increases the profitability of the new facility k. To this
end, for every lA I1

ðxÞ construct the (0, 1)-vector xkl ¼ ðxkl
i Þ, where

xkl
i ¼ xk

i for ia l and xkl
l ¼ 0, and calculate Dkðx

klÞ. Then find l0A I1
ðxÞ

with Dkðx
kl0 ÞZDkðx

klÞ for every lA I1
ðxÞ. If Dkðx

kl0 ÞZ0 then put
xk

l0
¼ 0. After that, assume that xk is constructed.
It is not difficult to see that all (0, 1)-vectors xk for kA I are distinct,

and therefore, the neighborhood N0ðxÞ contains precisely m elements.
Thus, the proposed algorithm for constructing an approximate

solution to the problem of maximizing a pseudo-Boolean function f(x)
amounts to the standard local search algorithm with the neighbor-
hood N0ðxÞ. The algorithm starts with the solution x0 obtained by
calculating an upper bound and stops having constructed a locally
optimal solution x0.

6. Branch-and-bound algorithm and computational
experiments

6.1. The algorithm

Summarizing the above, we can represent the branch-and-bound
algorithm for the problem of maximizing the pseudo-Boolean func-
tion under study as follows.
The algorithm consists of a finite number of steps. In the first
step, we construct a locally optimal solution which is used as the
initial record solution.

On the subsequent steps of the algorithm we have a partial
solution y, an ordering vector ði1, . . . ,iqÞwith 1rqrm, and record
solution x0. Each step is the inspection of P(y) in order to
determine whether there is a better solution than the record.
1.
 (First step)

1.1. Set q¼ 0,y¼ Ø

1.2. Compute the upper bound H(y) and the solution x(y)
1.3. Apply to x(y) the local search procedure yielding a local

optimal solution x0, which is the initial record solution x0.
1.4. If HðyÞr f ðx0Þ then goto 3. Otherwise compute the index

i(y). Set q¼ 1,iq ¼ iðyÞ,yiq ¼ 1. Goto 2.1.
2. (The main step)

2.1. If q¼m then compute value f(y). If f ðyÞ4 f ðx0Þ then set
x0 ¼ y. Goto 2.3.

2.2. If qom then compute the upper bound H(y), the solution
x(y) and value f ðxðyÞÞ. If f ðxðyÞÞ4 f ðx0Þ then set x0 ¼ xðyÞ. If
HðyÞ4 f ðx0Þ then goto 2.4. If HðyÞr f ðx0Þ then goto 2.3.

2.3. If yik
¼ 0 for every k with 1rkrq then goto 3. Otherwise

determine the largest index k with 1rkrq for which
yik
¼ 1. Set q¼ k,yq ¼ 0. Goto 2.1.

2.4. Compute the index i(y). Set q¼ qþ1, iq ¼ iðyÞ, yiq ¼ 1.
Goto 2.1.
3.
 (Stop)

Once the algorithm stops, from the resulting (0, 1)-vector x0

we construct the corresponding optimal noncooperative solution
ðXn,Z

n
Þ to the competitive facility location problem and calculate

the values of the objective functions of the Leader and the
Follower on this solution.

6.2. Computational results

Let us present the results of computation experiments with
the proposed algorithm. The purpose of the experiment is the
evaluation of the computational capabilities of the algorithm and,
in particular, the estimation of the number of steps of the
algorithm on some examples. In addition, it is important to find
out how the initial record received by a standard local search
algorithm differs from the optimal solution. We ran calculations
on a PC Intel Core i3, 3.1 GHz and to solve the arising integer
programming problems used the Microsoft Solver Foundation
package.

We solved the problem of competitive location on a network.
In this problem the set of possible facility locations I and the set of
consumers J coincide with the set of vertices of a weighted
network. To each edge of this network we assign a weight called
the length of the edge, while the preferences of consumer jA J are
determined by the lengths of the shortest paths from the vertex j

to all other vertices. If the lengths of paths coincide then the
vertex with a smaller index is preferred. Moreover, for each vertex
iA I we are given three quantities bi, fi, and gi, equal respectively to
the revenue received by serving consumer i and the fixed cost for
the Leader and the Follower to open facility i.

We solved examples of class R2 taken from the benchmark
library [15]. Fig. 1 depicts the ‘‘circular’’ network, corresponding
to this class of problems, with two rings, 25 vertices, and with
edge lengths specified.

We considered two series of examples with 25 instances in
each series. The instances in the first series are of subclass R2d, in



Fig. 1. Circular network with two rings and 25 vertices.

Table 1
Optimal solutions for examples of subclass R2d.

Example code L0 F0 x0
z0 Ln Fn

R2d-01 1 62 (2, 5, 12, 19) (7, 10, 16) 12 58

R2d-02 24 31 (2, 5, 12, 16, 18, 24) (7) 24 31

R2d-03 6 75 (5, 12, 20) (8, 16, 19) 12 57

R2d-04 12 91 (2, 13, 20) (6, 8, 25) 18 52

R2d-05 25 61 (2, 5, 15, 19) (7, 11) 25 61

R2d-06 0 205 (2) 14 36

R2d-07 19 37 (2, 5, 8, 13, 16) (10, 21) 22 34

R2d-08 0 196 (7) 4 47

R2d-09 11 89 (7, 13, 16) ð3,20Þ 15 56

R2d-10 24 34 (2, 7, 16, 22, 25) ð3,6Þ 26 24

R2d-11 8 65 (6, 9, 12, 22) ð4,7,11Þ 22 65

R2d-12 15 63 (2, 12, 16, 21) ð5,7,10Þ 27 67

R2d-13 3 114 ð12,20Þ ð8,10,17Þ 10 32

R2d-14 13 33 ð2,13,16,19,24Þ ð7,25Þ 21 11

R2d-15 6 92 ð2,4,22Þ ð7,15,25Þ 23 49

R2d-16 10 25 ð2,5,10,12,20Þ ð8,18Þ 12 26

R2d-17 11 51 ð2,13,20,22,25Þ ð6Þ 15 64

R2d-18 11 97 ð16,19,22Þ ð4,9Þ 24 36

R2d-19 10 91 ð11,16,20Þ ð4,8,19Þ 18 97

R2d-20 15 88 ð2,12,20Þ ð6,8,10Þ 15 88

R2d-21 1 88 ð2,16,19Þ ð4,11,20Þ 12 64

R2d-22 2 51 ð2,5,7,12Þ ð10,16,20Þ 17 11

R2d-23 24 62 ð2,16,20Þ ð9,12,18Þ 32 50

R2d-24 10 36 ð2,5,10,13,22Þ ð9,18Þ 22 33

R2d-25 21 51 ð2,5,14,22Þ ð10,16,20Þ 25 65

Example code xn
zn N N0 t

R2d-01 ð5,9,12,22Þ ð2,7,16Þ 84,892 2 839

R2d-02 ð2,5,12,16,18,24Þ ð7Þ 71,473 1 697

R2d-03 ð2,5,12,24Þ ð16,20Þ 159,262 159,239 1420

R2d-04 ð2,5,13,16,22Þ ð20,25Þ 150,968 54,938 1373

R2d-05 ð2,5,15,19Þ ð11,20Þ 101,793 82,221 853

R2d-06 ð2,7,13,16,21Þ ð5,10Þ 129,437 30,855 1210

R2d-07 ð2,7,13,16,22Þ ð5,10Þ 102,347 29,595 960

R2d-08 ð2,5,13,20Þ ð8,18,25Þ 267,653 133,379 2473

R2d-09 ð2,13,16,19Þ ð7,25Þ 180,342 10,122 1557
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which the edge lengths are fixed, while in the second series, of
subclass R2r, in which the edge length is a random variable
uniformly distributed on ½0:1,1�. In both subclasses the weights bi,
fi, and gi are integer-valued random variables uniformly distrib-
uted on [6,12], [25, 30], and [15, 20] respectively.

For each example considered of subclasses R2d and R2r we
present in Tables 1 and 2 respectively:
R2d-10 ð2,7,16,18,22,25Þ ð3Þ 51,484 48,293 396

R2d-11 ð2,7,13,22Þ ð6,25Þ 284,594 248,070 2742

R2d-12 ð2,7,18,21Þ ð6,11Þ 127,648 84,537 1056

R2d-13 ð3,5,11,15,19,24Þ ð8Þ 155,202 33,740 1280
�

R2d-14 ð2,7,13,16,22,25Þ ð5Þ 150,847 91,468 1314

R2d-15 ð2,5,20,25Þ ð8,11,16Þ 118,749 23,820 1052
the value L0 of the objective function of problem ðL,FÞ on the
feasible noncooperative solution ðX0,Z

0
Þ obtained by the local

search algorithm as the initial record solution;

R2d-16 ð2,5,12,20,22Þ ð10,18Þ 196,573 63,871 1714
�

R2d-17 ð4,20,22,25Þ ð2,5Þ 161,766 70,610 1317

R2d-18 ð2,6,13,16,22Þ ð20,25Þ 165,496 104,432 1466
the value F0 of the objective function of problem F on the
optimal solution Z

0
;

R2d-19 ð2,7,21Þ ð6,11Þ 178,326 167,936 1672
�
 the indices of the unit components of the vector x0 ¼ ðx0
i Þ;
R2d-20 ð2,12,20Þ ð6,8,10Þ 162,027 1 1587
�
 the indices of the unit components of the vector z0
¼ ðz0

i Þ;

R2d-21 ð5,9,15,22Þ ð3,20Þ 321,187 111,143 2905
�

R2d-22 ð2,7,12,16,22,25Þ ð5Þ 184,187 92,477 1772

R2d-23 ð2,6,16,24Þ ð12,20Þ 115,376 104,170 1017

R2d-24 ð2,5,10,13,20Þ ð8,18Þ 93,815 93,055 740
the value Ln of the objective function of problem ðL,FÞ on the
optimal noncooperative solution ðXn,Z

n
Þ obtained by the

branch-and-bound algorithm;

R2d-25 ð2,7,14,22Þ ð5,10Þ 106,321 20,935 925
�
 the value Fn of the objective function of problem F on the

optimal solution Z
n
;

�
 the indices of the unit components of the vector xn ¼ ðxn

i Þ;

�
 the indices of the unit components of the vector zn

¼ ðzn

i Þ;

�
 the number of steps N of the branch-and-bound algorithm;

�
 the number of steps N0 of the algorithm until the last change of

the record solution;

�
 the time t taken by the branch-and-bound algorithm, in

seconds.

It is clear from these tables that for the instances we con-
sidered the number of steps needed for the branch-and-bound
algorithm on average is below 100,000, which enables us to find
the optimal solution to the problem in about 15 min. Since the
complexity of a single step of the algorithm is comparable to the
complexity of calculating the value of the objective function of
the problem ðL,FÞ at an feasible noncooperative solution ðX, ~ZÞ for
a given solution X then the complexity of the branch-and-bound
algorithm for the above examples is essentially less than the
complexity of the exhaustive search procedure. In the resulting
optimal solutions the Leader opens three facilities on average,
while the Follower opens two facilities. At the same time, there
are examples with optimal solutions in which the Follower does
not open any facilities. This means in particular that an insignif-
icant change of the initial data of this problem can lead to a
significant change of the structure of the resulting optimal
solution.

Observe also that essentially in all examples the initial record
solution obtained by the local search algorithm differs substan-
tially from the optimal solution. Therefore, one direction for
improvement to this computational scheme is to refine the
algorithms for constructing the initial record solution, whose
calculation should not stop at the first locally optimal solution.



Table 2
Optimal solutions for examples of subclass R2r.

Example code L0 F0 x0
z0 Ln Fn

R2r-01 5 177 ð12Þ ð2Þ 13 64

R2r-02 3 110 ð9,16,22Þ ð3,7Þ 28 74

R2r-03 8 96 ð6,12,20Þ ð4,7,10Þ 14 48

R2r-04 3 69 ð4,10,16,23Þ ð2,6Þ 8 133

R2r-05 2 125 ð14,19,23Þ ð9,16Þ 18 122

R2r-06 14 120 ð11,15,24Þ ð1Þ 31 22

R2r-07 2 129 ð2,24Þ ð9,12Þ 3 105

R2r-08 22 51 ð8,12,16,20Þ ð2,17,24Þ 23 54

R2r-09 0 203 ð10Þ 12 121

R2r-10 11 138 ð10,24Þ ð1Þ 22 42

R2r-11 13 121 ð16,19,24Þ ð4Þ 18 74

R2r-12 0 221 ð4Þ 10 89

R2r-13 1 89 ð2,12,18,22Þ ð6,15,25Þ 28 47

R2r-14 14 94 ð8,16,20Þ ð1,19,22Þ 19 86

R2r-15 4 79 ð2,17,21,22Þ ð16,25Þ 7 101

R2r-16 0 214 ð8Þ 21 108

R2r-17 0 121 ð15,21Þ ð5,20Þ 20 31

R2r-18 30 26 ð4,6,12,20,24Þ ð5,8Þ 32 35

R2r-19 0 212 ð16Þ 30 9

R2r-20 21 76 ð12,16,19,22Þ ð1Þ 21 76

R2r-21 11 45 ð2,4,8,20Þ ð13,18,24Þ 19 60

R2r-22 2 104 ð16,21,25Þ ð4,7Þ 12 39

R2r-23 21 75 ð10,16,22Þ ð5,8Þ 23 79

R2r-24 0 200 ð4Þ 14 127

R2r-25 7 84 ð2,3,13,22Þ ð8Þ 16 66

Example code xn
zn N N0 t

R2r-01 ð10,12,16,21,24Þ ð6Þ 159,873 157,746 1031

R2r-02 ð8,10,16Þ ð7,13,23Þ 38,199 29,415 307

R2r-03 ð6,8,12,20,23Þ ð4,10Þ 9981 6226 88

R2r-04 ð10,23Þ ð1Þ 66,415 39,302 449

R2r-05 ð10,16,22Þ ð4Þ 20,5543 205,326 1095

R2r-06 ð1,6,12,15,18,21Þ ð9Þ 14,991 2450 122

R2r-07 ð4,16,20Þ ð6,12Þ 75,802 70,901 651

R2r-08 ð8,12,16,21Þ ð2,18,24Þ 47,847 12775 367

R2r-09 ð2,18Þ ð4,10Þ 45,362 42,230 343

R2r-10 ð8,15,18,20,24Þ ð3Þ 148,229 81,833 1275

R2r-11 ð4,18,20,24Þ ð1,15Þ 37,006 20,294 285

R2r-12 ð4,11,16,18Þ ð3,22Þ 99,781 89,652 1002

R2r-13 ð6,10,16,22,24Þ ð13,19Þ 8589 4587 85

R2r-14 ð8,16,19Þ ð1,6,22Þ 26,958 13923 255

R2r-15 ð2,20,22Þ ð16,25Þ 74,184 50,088 522

R2r-16 ð14,22,24Þ ð3Þ 25,118 24,851 166

R2r-17 ð6,9,10,16,21Þ ð13Þ 63,183 54,431 455

R2r-18 ð4,8,12,20,24Þ ð5Þ 9312 1102 59

R2r-19 ð4,10,13,17,20,22Þ ð6Þ 9754 46 95

R2r-20 ð12,16,19,22Þ ð1Þ 18,318 1 115

R2r-21 ð2,4,22Þ ð9,13,20Þ 36,109 23,380 315

R2r-22 ð4,10,18,21,24Þ ð9,14Þ 112,230 48263 726

R2r-23 ð6,10,22Þ ð8,16Þ 30,521 29036 195

R2r-24 ð14,20Þ ð1Þ 76,574 76,475 613

R2r-25 ð10,16,20,22Þ ð2,17Þ 105,874 104,483 716
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7. Conclusions

We study a new competitive facility location problem stated as
a discrete bilevel programming problem. We introduce the con-
cept of optimal solution for this problem and propose a branch-
and-bound algorithm for seeking the optimal solution.

We believe that the proposed mathematical model is an
important, in terms of applications, generalization of the classical
facility location problem. This model has a great potential for
application and can be used to explore a variety of practical
situations where the decision on the placement of objects is taken
not by a single party, and herewith the decision and the result of
each party depends on the decisions of the others. A possible
industry setting for the proposed model described in [16]. We
consider a situation of decision making by a company which
attempts to win a market share. We assume that the company
releases its products to the market under the competitive condi-
tions that another company is making similar products. Both
companies can vary the kinds of their products on the market as
well as the prices in accordance with consumer preferences. Each
company aims to maximize its profit.

In the competitive facility location problem, we assume that
the Leader knows the objective function of the Follower, and the
Follower makes decisions in accordance with his objective. How-
ever, in practical situations, the decision of the Follower can be
affected by other factors, and he can make a decision than was
unexpected by the Leader. As a result, the decision taken by the
Leader is not the best possible but not the worst. The introduction
of uncertainty in the problem, in particular, in the behavior of the
Follower, is an important way to develop the above model. But so
far, we are not aware of any specific proposals in this regard.

The competitive facility location problem is complex to calcu-
late, like other bilevel integer programming problems. The
exhaustive search is a universal procedure for solving these
problems. Our computational experiments with problems of low
dimension (25 variables of the pseudo-Boolean function) show
that the above branch-and-bound algorithm has significant
advantages over the exhaustive search procedure. As the algo-
rithm runs, the proposed upper bound enables us to discard a
large part of subsets considered. As a result, the branch-and-
bound algorithm enables us to find optimal solutions to these
examples within 15 min.
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