ЛЕКЦИЯ № 7

Лектор: Плясунов Александр Владимирович http://www.math.nsc.ru/LBRT/k5/mo.html

Линейное программирование (ЛП)

- 1. Базисные допустимые решения
- 2. Симплекс-таблица
- 3. Симплекс-метод

Линейное программирование (ЛП)

Задача линейного программирования (ЛП) в канонической форме:

$$w(x) = (c, x) \longrightarrow \min$$
 (1)

$$Ax = b, (2)$$

$$x \ge 0,\tag{3}$$

где $c=(c_j), x=(x_j)\in R^n$, $A=(a_{ij})-(m imes n)$ матрица, $b=(b_i)\in R^m$, $m\leq n$, rang(A)=m.

$$Ax=b\equiv (a_i,x)=b_i, i=\overline{1,m},$$

$$Ax = b \equiv \sum_{j=1}^n A_j x_j = b$$

ЛП: понятие базисного допустимого решения (б.д.р.).

Определение 1. Базис — любой набор $A_{\sigma(1)}, \dots, A_{\sigma(m)}$ из m линейно независимых столбцов матрицы системы ограничений A.

Матрица $B = [A_{\sigma(1)}, \ldots, A_{\sigma(m)}]$ называется базисной.

Обозначения:

$$S = \{\sigma(1), \ldots, \sigma(m)\}, S^{'} = \{1, \ldots, n\} \setminus S, A = [B, N],$$

где $N=[A_j]_{j\in S^{'}}$, $x=(x_B,x_N)$, $x_B=(x_{\sigma(1)},\ldots,x_{\sigma(m)})$ —

базисные, а $x_N = (x_j)_{j \in S'}$ — небазисные переменные.

$$E x_B + B^{-1} N x_N = B^{-1} b (2')$$

Определение 2. Решение $(x_B, x_N) = (B^{-1}b, 0)$ системы уравнений (2) назовем базисным (соответствующим базису B).

 $\Pi\Pi$: понятие б.д.р.

Лемма 1. Вектор x — базисное решение системы (2) тогда и только тогда, когда множество столбцов с индексами из множества $S(x)=\{j|x_j\neq 0\}$ — линейно независимо.

Определение 3. Базисным допустимым решением (б.д.р.) называется любой элемент множества Q, являющийся базисным решением системы уравнений (2).

3амечание 1. Решение соответствующее базису B- б.д.р. $\Longleftrightarrow B^{-1}b>0$.

Определение грани

Пусть $S' \cup S = \{1, \dots, n\}$. Множество решений системы уравнений

$$Ax = b, x_{j} = 0, j \in S', x_{j} \geq 0, j \in S,$$

называется гранью множества допустимых решений (1)-(3).

Размерность

Величина $n-m-|S^{'}|$ — размерность данной грани (здесь $m+|S^{'}|$ — ранг системы уравнений).

Так как \overline{x} – б.д.р., то |S'|=n-m, следовательн \overline{x} – грань размерности 0.

Если |S'| = n - m - 1, то получим грань размерности 1, т.е. ребро: ограниченное или неограниченное.

Теорема 1 (Критерий разрешимости). Задача линейного программирования (1)-(3) разрешима тогда и только тогда, когда множество допустимых решений не пусто и целевая функция ограничена на нем.

Доказательство. Необходимость очевидна. Для доказательства достаточности покажем, что

$$orall \ x^0 \in Q$$
 \exists б.д.р. $\overline{x}: w(\overline{x}) \leq w(x^0)$.

Пусть

$$\overline{x} \in Q^0 = \{x \in Q | w(x) \leq w(x^0)\}
eq \emptyset$$

и имеет минимальное число ненулевых компонент $(supp(\overline{x}))$.

Докажем, что \overline{x} — б.д.р. Допустим противное. \Longrightarrow

множество

$$\{A_j|\overline{x}_j>0\}$$
 линейно зависимо \implies

$$\exists\; y
eq 0: Ay = 0$$
 и если $\overline{x}_j = 0,$ то $y_j = 0.$

Пусть $w(y) \leq 0$ (если необходимо, то возьмем -y). Положим $x(t) = \overline{x} + ty$.

$$\forall t \in R : Ax(t) = b.$$

1). Пусть
$$orall j: y_j \geq 0 \Rightarrow orall t \geq 0 \ x(t) \geq 0 \Rightarrow orall t \geq 0 \ x(t) \in Q$$

т.к.
$$w(x(t)) = w(\overline{x}) + tw(y) \geq const($$
по условию $)$

а
$$w(y) \leq 0$$
 и $t \geq 0$ — произвольно,

то:
$$w(y)=0$$
 и, следовательно, $w(x(t))=w(\overline{x}) \; orall t$.

Т.к. из условия $y_j>0\Rightarrow \overline{x}_j>0$, то

 \forall малого по абсолютной величине $t < 0: \ x(t) \in Q$.

Пусть $ar{t} < 0$ наибольшее по абсолютной величине t удовлетворяющее условию:

$$\forall j(y_j>0\Rightarrow \overline{x}_j+\overline{t}y_j\geq 0).$$

Тогда

$$ar{t} = -\min_{y_j>0} rac{\overline{x}_j}{y_j}.$$

Итак $x(\overline{t}) \in Q$ и $w(x(\overline{t})) = w(\overline{x}) \leq w(x^0) \Rightarrow x(\overline{t}) \in Q^0$.

Получили противоречие. Т.к. $supp(x(\overline{t})) \leq supp(\overline{x}) - 1$.

2). Пусть $\exists j: y_j < 0$. Тогда

$$orall$$
 достаточно малых $t \geq 0: \; x(t) \in Q.$

Пусть $ar{t}$ наибольшее t удовлетворяющее условию:

$$\forall j (y_j < 0 \Rightarrow \overline{x}_j + \overline{t}y_j \geq 0).$$

Тогда

$$\overline{t} = \min_{y_j < 0} rac{\overline{x}_j}{-y_j}.$$

Итак $x(\overline{t}) \in Q$ и т.к. $\overline{t} > 0, w(y) \leq 0$, то

$$w(x(\overline{t})) = w(\overline{x}) + w(y)\overline{t} \leq w(x^0).$$

Следовательно $x(ar{t}) \in Q^0$. $ightarrow \leftarrow$ т.к. $supp(x(ar{t})) \leq supp(\overline{x}) - 1$.

Т.к. по условию $Q \neq \varnothing$, то множество базисных допустимых решений задачи не пусто. Т.к. оно конечно, то

$$\exists \; x^* - ext{б.д.р.:} \; w(x^*) \leq w(x) \; orall \; ext{б.д.р.} \; x.$$

Из ранее доказанного следует, что x^* — оптимальное решение. lacktriangle

Следствие 1. Если множество допустимых решений задачи ЛП не пусто, то существуют базисные допустимые решения.

Следует из доказательства теоремы 2 (взять $w(x) \equiv 0$).

Следствие 2. Если задача ЛП разрешима, то существует оптимальное базисное решение.

Пусть \overline{x} — б.д.р., $B=(A_{\sigma(1)},\ldots,A_{\sigma(m)})$ — базисная матрица. Тогда

$$Ex_B + B^{-1}Nx_N = B^{-1}b,$$
 (2')

следовательно

$$Ex_B = B^{-1}b - B^{-1}Nx_N$$
, и $w = c_B B^{-1}b + (c_N - c_B B^{-1}N)x_N$, $(1')$ $x_B = (x_{\sigma(1)}, \dots, x_{\sigma(m)})$ — базисные, $x_N = (x_j)_{j \in S'}$ — небазисные переменные

$$-w + \sum_{j \in S'} z_{0j} x_j = z_{00}, \qquad (1^{''})$$

$$x_{\sigma(i)} + \sum_{j \in S'} z_{ij} x_j = z_{i0}, \ i = \overline{1, m}, \quad (2^{''})$$

где

$$egin{aligned} z_{00} &= -c_B B^{-1} b = -w(\overline{x}), \ z_{0j} &= c_j - c_B B^{-1} A_j, \ j &= 1, \dots, n, \ (z_{10}, \dots, z_{m0})^ op &= B^{-1} b, \ (z_{1j}, \dots, z_{mj})^ op &= B^{-1} A_j, \ j &= 1, \dots, n. \end{aligned}$$

		x_1	• • •	$x_{m{j}}$	• • •	x_n
-w	z_{00}	z_{01}	• • •	z_{0j}	• • •	z_{0n}
$x_{\sigma(1)}$	z_{10}	z_{11}	• • •	z_{1j}	• • •	z_{1n}
	• • •	• • •	• • •	• • •	• • •	• • •
$x_{oldsymbol{\sigma}(i)}$	z_{i0}	z_{i1}	• • •	$oldsymbol{z_{ij}}$	• • •	z_{in}
•	• • •	• • •	• • •	• • •	• • •	• • •
$x_{\sigma(m)}$	$ z_{m0} $	z_{m1}	• • •	z_{mj}	• • •	$ z_{mn} $

Определение 4. Симплекс—таблица называется прямо допустимой, если $z_{i0} \geq 0, \ i=1,\ldots,m.$

Базис \boldsymbol{B} , которому эта таблица соответствует, также называется прямо допустимым.

 ${
m Oпределение}\ 5.$ Симплекс-таблица называется двойственно допустимой, если $z_{0j}\ \geq\ 0,\ j=1,\dots,n.$

Базис \boldsymbol{B} , которому эта таблица соответствует, называется двойственно допустимым.

Лемма 2 (признак оптимальности). Если симплекс—таблица прямо и двойственно допусто текущее базисное допустимое решение \overline{x} является оптимальным решением задачи (1)–(3).

Пусть $x \in Q$. Так как $z_{0j} \geq 0$ и $x_j \geq 0$, $j \in S'$, то из $(1^{''})$ следует, что

$$w(x) = -z_{00} + \sum_{j \in S'} z_{0j} x_j \geq -z_{00} = w(\overline{x})$$