ЛЕКЦИЯ № 8

Линейное программирование (ЛП)

- 1. Симплекс-метод
- 2. Теория двойственности

$$x(t), t \geq 0$$
:

$$x_{\sigma(i)}(t) = \overline{x}_{\sigma(i)} - z_{is}t,$$
 $x_s(t) = t,$ $x_j(t) = 0, j \in S' \setminus s$ (4)

Лемма 3 (о неограниченности). Если для номера s оценка замещения $z_{0s} < 0$ и для всех индексов i коэффициенты замещения z_{is} неположительны, то в задаче (1)–(3) не существует оптимального решения.

Лемма 4 (о существовании лучшей вершины). Если оценка замещения $z_{0s} < 0$ и существуют базисные переменные с коэффициентами замещения $z_{is} > 0$, то элементарное преобразование приведёт либо в вершину с меньшим значением целевой функции, либо вершина останется прежней, но изменится её базис.

Пусть

$$\overline{t} = rac{\overline{x}_{\sigma(r)}}{z_{rs}} = rac{z_{r0}}{z_{rs}} = \min_{z_{is}>0,\; i\geq 1} rac{z_{i0}}{z_{is}}.$$

Предположим, что $\overline{t}>0$. Тогда

$$orall i orall t \leq \overline{t}: \; x_{\sigma(i)}(t) = \overline{x}_{\sigma(i)} - z_{is}t \geq 0,$$

но
$$x_{\sigma(r)}(\overline{t})=0\Longrightarrow$$

Семейство векторов $x(t), 0 \leq t \leq \overline{t}$ — ограниченное ребро множества Q.

Вектор $x(\overline{t})$ – б.д.р.:

$$(z_{1s},\ldots,z_{ms})^ op=B^{-1}A_s \Longleftrightarrow \ A_s=B(z_{1s},\ldots,z_{ms})^ op \Longleftrightarrow \ A_s=\sum_{i=1}^m z_{is}A_{\sigma(i)}$$
 (отсюда и условия) $z_{rs}>0$

следует, что матрица $oldsymbol{B'}_{-6-}$ со столбцами

$$[A_{\sigma(1)}, \dots, A_{\sigma(r-1)}, A_s, A_{\sigma(r+1)}, \dots, A_{\sigma(m)}]$$
 невырождена.

Следовательно $oldsymbol{B'}$ – базис б.д.р. $x(oldsymbol{\overline{t}})$. Т.к.

$$orall t, 0 < t \leq \overline{t}, w(x(t)) = -z_{00} + z_{0s}t < -z_{00},$$

то $m{x}(m{t})$ – искомое б.д.р. с меньшим значением целевой функции.

Пусть $\overline{t}=0$. В силу выбора $r:x_{\sigma(r)}(\overline{t})=x_{\sigma(r)}(0)=\overline{x}_{\sigma(i)}=z_{r0}=0$. Т.к. $z_{rs}>0$, то матрица $B^{'}$ со столбцами

$$[A_{\sigma(1)},\ldots,A_{\sigma(r-1)},A_s,A_{\sigma(r+1)},\ldots,A_{\sigma(m)}]$$

снова невырождена. Следовательно $oldsymbol{B'}$ – другой базис вершины $oldsymbol{\overline{x}}$.

Симплекс-таблица (с.-т.)

 $lpha_i' = (z_{i0}', z_{i1}', \dots, z_{in}') \, (i = \overline{0,m})$ строки новой симплекс- таблицы:

$$\begin{cases} \alpha_{i}' = \alpha_{i} - \frac{z_{is}}{z_{rs}} \alpha_{r}, & i \neq r, \\ \alpha_{r}' = \frac{1}{z_{rs}} \alpha_{r}. \end{cases}$$
 (5)

 $m{r}$ -я строка, $m{s}$ -й столбец и элемент $m{z_{rs}}$ называются ведущими.

Замечание. Преобразования (5) сохраняют прямо допустимость с.-т.

Симплекс-метод

- 0) Построить симплекс—таблицу, соответствующую заданному базисному допустимому решению (таблица, естественно, будет прямо допустимой, т.е. $z_{i0} \geq 0, i = \overline{1,m}$).
- 1) Если симплекс—таблица двойственно допустима, т.е. $z_{0j} \geq 0, \ j = \overline{1,n}$, то КОНЕЦ (получено оптимальное решение)
- 2) Иначе, выбрать ведущий столбец $s:z_{os} < 0, \ s > 1$.

Симплекс-метод

3) Если $\{i \mid z_{is} > 0, \ i \geq 1\} \neq \emptyset$, то выбрать ведущую строку r по правилу:

$$rac{z_{r0}}{z_{rs}} = \min \{ \, rac{z_{i0}}{z_{is}} \, \mid \, z_{is} > 0, \; i \geq 1 \},$$

иначе КОНЕЦ (задача неразрешима из-за неограничен целевой функции).

4) Преобразовать симплекс—таблицу, положить $\sigma(r) := s$ и перейти на шаг 1.

Пусть $x=(x_1,\dots,x_n)$, $u=(u_1,\dots,u_m)$. Рассмотрим вспомогательную задачу:

$$\xi=u_1+\cdots+u_m \longrightarrow \min \ Ax+Eu=b\geq 0 \ (a_ix+u_i=b_i\geq 0,i=\overline{1,m}) \ x,u\geq 0 \ z^0=(0,b)\in R^{n+m}$$
 — б.д.р.

Вспомогательная задача разрешима и $\min \xi \geq 0$. Пусть $z^* = (x^*, u^*)$ — оптимальное решение

A.
$$\min \xi > 0 \Longleftrightarrow Q = \emptyset$$

В. $\min \xi = 0 \Longrightarrow u_i^* = 0$, $i = \overline{1,m}$, \Longrightarrow вектор x^* – доп. реш. задачи (1)-(3) $\Longrightarrow x^*$ – б.д.р. задачи (1)-(3).

$$\{A_j|j\in S\}\cup \{E_i|i\in I'\}$$
 — базис z^* , где $S\subseteq \{1,\ldots,n\}, I'\subseteq \{1,\ldots,m\}$ и $|S|+|I'|=m.$ Тогда $A_k=\sum_{j\in S}z_{jk}A_j+\sum_{i\in I'}\mu_{ik}E_i$

Возможны следующие случаи:

В1.
$$I^{\prime}=\emptyset\Longrightarrow |S|=m\Longrightarrow$$
 множество $\{A_{j}|j\in S\}$ – базис б.д.р. $x^{*}.$

Преобразовать оптимальную с.-т.:

1. Вычеркнуть столбцы для переменных:

$$u_1,\ldots,u_m$$

2. Пересчитать 0-строку: $z_{00} = -(c, x^*),$ $z_{0k} = 0, k \in S, z_{0k} = c_k - \sum_{j \in I} c_j z_{jk}, k
ot\in S.$

В2. $I' \neq \emptyset$ и $\exists r \in I'$, $\exists s \not\in S \; \mu_{rs} \neq 0$ \Longrightarrow Выполнить элементарное преобразование с.- т. с ведущим элементом $\mu_{rs} \neq 0$. Новая с.-т. соответствует базису

$$\{A_{j}|j\in S\cup\{s\}\}\cup\{E_{i}|i\in I^{'}\setminus\{r\}\}.$$

ВЗ. $I' \neq \emptyset$ и $\forall r \in I', \forall s = \overline{1,n} : \mu_{rs} = 0$. Ограничения $a_i x = b_i$ системы (2) с номерами $i \in I'$ являются избыточными.

Лексикографический с. - м.

Пусть $lpha',lpha''\in R^{n+1}$.

Вектор α' лексикографически больше вектора α'' $(\alpha' \succ \alpha'') \Leftrightarrow \alpha' - \alpha'' \succ 0$.

Симплекс-таблица hop manbha, если каждая ее строка $oldsymbol{lpha_i},\ i=1,\ldots,m$ лексикографически больше нуля.

Лексикографический с. - м.

- 0) Начать с нормальной симплекс-таблицы.
- 3) Если $\{i \mid z_{is} > 0, \ i \geq 1\} \neq \emptyset$, то выбрать ведущую строку r по правилу:

$$rac{1}{z_{rs}}lpha_r=lex\min\{rac{1}{z_{is}}lpha_i\,\mid\, z_{is}>0,\, i\geq 1\},$$

иначе КОНЕЦ (задача неразрешима).

Сохранение нормальности с.-т. на шаге 4:

1.
$$\alpha_r \succ 0$$
, $z_{rs} > 0 \Rightarrow \frac{1}{z_{rs}} \alpha_r \succ 0$
2. $z_{is} \leq 0 \Rightarrow \alpha_i - \frac{z_{is}}{z_{rs}} \alpha_i \succeq \alpha_i \succ 0$

2.
$$z_{is} \leq 0 \Rightarrow lpha_i - rac{z_{is}}{z_{rs}}lpha_i \succeq lpha_i \succ 0$$

3.
$$z_{is}>0\Rightarrow z_{is}[\frac{1}{z_{is}}\alpha_i-\frac{1}{z_{rs}}\alpha_r]\succ 0$$
.

Лекскографическое возрастанение 0-й строки:

$$z_{0s} < 0$$
, $z_{rs} > 0$ и $lpha_r \succ 0$, то $lpha_0 - rac{z_{0s}}{z_{rs}} lpha_r \succ lpha_0.$

Итак базисы не могут повторятся, следовательно, метод конечен.

ЛП: двойственная задача

$$x\in Q\Rightarrow (c,x)+(y,b-Ax)=(y,b)+(c-yA,x).$$
 Если $c\geq yA$, то для любого $x\in Q$: $(c,x)\geq (y,b)$ Поиск наилучшей нижней оценки

$$(b, y) \longrightarrow \max$$
 (6)

$$yA \le c. \tag{7}$$

Задача (6)-(7) называется задачей двойственной к прямой задаче (1)-(3).

Теорема 2. Задача двойственная к задаче (6)-(7) совпадает, с точностью до обозначений, с исходной задачей (1)-(3).

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} -(b,y) & \longrightarrow \min \end{aligned} \\ & yA + Ez = c, \\ & z > 0 \end{aligned}$$

ЛП: двойственная задача

После замены переменных $y=y^1-y^2$, где $y^1\geq 0, y^2\geq 0$ получим $-(b,y^1)+(b,y^2)+(0,z)\longrightarrow \min \ y^1A-y^2A+Ez=c,$

 $y^1 > 0, y^2 > 0, z > 0$

Двойственная задача:

$$egin{aligned} (c,u) &\longrightarrow \max \ u(A^T,-A^T,E)^T \leq (-b,b,0)^T \ &(c,-u) &\longrightarrow \min \ A(-u) \geq b, A(-u) \leq b, E(-u) \geq 0 \end{aligned}$$

Делаем замену x = -u и получаем исходную задачу (1)-(3).

ЛП: двойственная задача

Прямая задача Двойственная задача
$$w(x) = \sum_{j=1}^n c_j x_j o \min$$
 $z(y) = \sum_{i=1}^m b_i y_i o \max$ $a_i x \geq b_i$ $i \in I_1$ $y_i \geq 0$ $a_i x = b_i$ $i \in I_2$ $y_i - \text{своб.}$ $x_j \geq 0$ $j \in J_1$ $yA_j \leq c_j$ $yA_j = c_j$.

Упражнение.

Воспользоваться сводимостью общей задачи ЛП к задаче ЛП в канонической форме и применить готовый рецепт (доказательство т. 3).

Первая теорема двойственности

Теорема 3 (Первая теорема двойственности). Прямая и двойственная к ней задачи либо одновременно разрешимы, либо одновременно неразрешимы.

При этом в первом случае оптимальные значения целевых функций этих задач совпадают, а во втором случае по крайней мере одна из задач неразрешима в силу несовместности ее ограничений.

Вторая теорема двойственности

Теорема 4 (Вторая теорема двойственности или теорема о дополняющей нежесткости). Допустимые решения \overline{x} и \overline{y} соответственно прямой и двойственной задачи оптимальны тогда и только тогда, когда выполняются условия:

$$y_i(a_i x - b_i) = 0 \; (i \in I), \ (c_j - y A_j) x_j = 0 \; (j \in J).$$