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Abstract

We study the complexity of finding local minima for the p-median problem. The relationship between Swap local
optima, 0–1 local saddle points, and classical Karush–Kuhn–Tucker conditions is presented. It is shown that the local
search problems with some neighborhoods are tight PLS-complete. Moreover, the standard local descent algorithm takes
exponential number of iterations in the worst case regardless of the tie-breaking and pivoting rules used. To illustrate this
property, we present a family of instances where some local minima may be hard to find. Computational results with dif-
ferent pivoting rules for random and Euclidean test instances are discussed. These empirical results show that the standard
local descent algorithm is polynomial in average for some pivoting rules.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the p-median problem we are given a set I ¼ f1; . . . ; ng of potential locations for p facilities, a set
J ¼ f1; . . . ;mg of customers, and a matrix ðgijÞ, i 2 I , j 2 J of transportation costs for servicing the customers
by the facilities. The goal is to find a subset S � I , jSj ¼ p; that minimizes the objective function
F ðSÞ ¼

P
j2J mini2Sgij: It is a well-known combinatorial problem, which is NP-hard in a strong sense. More-

over, assuming P 6¼ NP, no polynomial time algorithm can guarantee a relative error at most 2qðn;mÞ for any
fixed polynomial q and all instances of the p-median problem (Nemhauser and Wolsey, 1988). In other words,
this problem does not belong to the class APX, and finding good approximation is as hard as determining an
optimal solution. In what follows, iterative local search methods seem the most promising for the problem.
A recent survey on the state of the art in this area can be found in Mladenović et al. (2007).

We say that a neighborhood is polynomially searchable if exists a polynomial time algorithm with the
following properties. Given an instance and a solution, the algorithm determines whether solution is a local
optimum, and if it is not, the algorithm outputs a neighbor with strictly better value of objective function. The
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complexity class, called PLS (polynomial time local search), contains the problems whose neighborhood can
be searched in polynomial time (Johnson et al., 1988). Many important local search problems are complete for
the class PLS under an appropriately defined reduction. If a local optimum for such a complete problem can
be found in polynomial time by whatever means, then for all problems in the class PLS a local optimum can be
found in polynomial time. ‘‘This is generally not believed to be true, as it would require a general approach for

finding local optima at least as clever as the ellipsoid algorithm, since linear programming with the simplex neigh-

borhood is in PLS’’ (Vredeveld and Lenstra, 2003). On the other hand, if a PLS problem is NP-hard, then
NP ¼ co-NP (Johnson et al., 1988). So, it is very unlikely that the class PLS contains an NP-hard problem.
Therefore, the local search problems may be not so difficult.

Many local search heuristics, for example, Variable Neighborhood Search, GRASP, Memetic algorithms,
use standard local descent procedures and focus on the local optima only. In this paper, we study the com-
plexity of finding a local minimum for polynomially searchable neighborhoods for the p-median problem.
We show the relations between Karush–Kuhn–Tucker conditions, Swap-optimal solutions and Swap-saddle
points. Moreover, we present a sufficient condition when the p-median problem with polynomially searchable
neighborhood is PLS-complete. Several polynomial neighborhoods are introduced, and it is shown that in the
worst case the standard local descent algorithm takes exponential number of steps with each neighborhood
regardless of the tie–breaking and pivoting rules used. We consider several pivoting rules and present compu-
tational results for random and Euclidean test instances. We note that the number of steps grows as a linear
function for the pivoting rules best improvement and first improvement and grows as a superlinear function for
the worst improvement rule if p ¼ ½an�; 0 6 a 6 n. A theoretical explanation of this phenomenon is discussed.

The paper is organized as follows. In Section 2, we define some neighborhoods. In Section 3, we discuss a
one to one correspondence between Swap-optimal solutions and 0–1 local saddle points for Lagrange func-
tion. In Section 4, the PLS-completeness of the p-median problem with several neighborhoods is established.
In Section 5, we present a family of instances where standard local descent algorithm takes exponential num-
ber of steps to reach a Swap local minimum. We define approximate local optima in Section 6 and show the
complexity of corresponding local search problems. Pivoting rules are described in Section 7. The running time
of the local descent algorithm is studied experimentally in Section 8. Conclusions and further research direc-
tions are discussed in Sections 9.

2. Neighborhoods

The Swap neighborhood is one of the effective and efficient neighborhoods for the p-median problem (Res-
ender and Werneck, 2003). It contains all subsets S0 � I ; jS0j ¼ p, with the Hamming distance from S 0 to S is
equal 2. Similarly, the k-Swap neighborhood is the set of all feasible solutions with Hamming distance from S 0

to S at most k. Finding the best element in this neighborhood is time consuming for large k. So, this neigh-
borhood is interesting for theoretical study only.

The Kernighan–Lin neighborhood (KL) is a subset of the k-Swap neighborhood. It consists of k elements,
k ¼ minfp; n� pg, and can be described by the following steps (Kernighan and Lin, 1970).

Step 1. Choose two elements iins 2 I n S and irem 2 S such that F ðS [ fiinsg n firemgÞ is minimal even if it is
greater than F(S).

Step 2. Perform swap of irem and iins.
Step 3. Repeat Steps 1 and 2 k times such that the elements cannot be chosen to be inserted in S or removed

from S if they have been used at one of the previous iterations of Steps 1 and 2.

The sequence fðisins; i
s
remÞgs6k defines k neighbors Ss for solution S. We say that S is a local minimum with

respect to KL-neighborhood if F ðSÞ 6 F ðSsÞ for all s 6 k. The neighborhood KL1ðSÞ is defined to be a subset
of KL(S) which contains the first element only, Ss; s ¼ 1. By definition, KL1ðSÞ � SwapðSÞ.

The Fiduccia–Mattheyses neighborhood (FM) is defined as the KL-neighborhood with a different rule for
the choice of elements iins and irem at the Step 1 (Fiduccia and Mattheyses, 1982). This step consists of two
stages. At first, we select irem 2 S such that F ðS n firemgÞ is minimal. At the second stage, we find iins 2 I n S
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such that F ðS [ fiinsg n firemgÞ is minimal. It defines the sequence Ss; s 6 k; of neighbors for the solution S. The
neighborhood FM1(S) contains only the first element from this sequence.

We say that neighborhood N1 is stronger than neighborhood N2 ðN 2 � N 1Þ if every N1-optimum is N2-opti-
mum. It is easy to verify that

FM1 � Swap � KL1 � KL;

KL1 � Swap � k-Swap;

FM1 � FM:

For any constant k > 0; all neighborhoods are polynomial. The neighborhoods Swap and KL1 are equivalent
with respect to the relation � and neighborhood FM1 is the most weak.

3. Local saddle points

In this section we show that there is a strong connection between Swap-optima and the local saddle points
for the Lagrange function. Let us rewrite the p-median problem as the minimization problem for a pseudo-
Boolean function on (n � p)-layer of the hypercube. For a given vector gi; i 2 I with ranking

gi1 6 gi2 6 � � � 6 gim ;

let us introduce a vector Dgi; i ¼ 0; . . . ;m� 1 in the following way:

Dg0 ¼ gi1 ; Dgl ¼ gilþ1
� gil ; 1 6 l < m:

For an arbitrary vector yi 2 f0; 1g; i 2 I ; y 6¼ ð1; . . . ; 1Þ; the following statement holds (Beresnev et al., 1978,
Lemma 1.1):

min
ijyi¼0

gi ¼
Xm�1

l¼0

Dglyi1 � � � yil :

Similar, we introduce the ranking ij
i ; . . . ; ij

m which is generated by the column j of the matrix ðgijÞ, i 2 I , j 2 J :

gij
1
6 gij

2
6 � � � 6 gijm

; j 2 J :

Now one can get a pseudo-Boolean function for the p-median problem:

P ðyÞ ¼
X
j2J

Xm�1

l¼0

Dgljyij
1
� � � yij

l
:

An optimal solution y�i ; i 2 I for the minimization problem for this pseudo-Boolean function on the (n � p)-
layer of the hypercube gives us an optimal solution S* for the p-median problem. More exactly, y�i ¼ 0 if and
only if i 2 S� (Beresnev et al., 1978, Theorem 3.2). Note that P(y) has positive terms only. So, we can rewrite
the p-median problem as the minimization problem for a pseudo-Boolean function on (n � p)-layer of the
hypercube:

Minimize P ðyÞ ¼
X
j2J 0

aj

Y
i2Ij

yi

s:t:
X
i2I

yi ¼ n� p; yi 2 f0; 1g; i 2 I ;

where aj P 0; Ij � I ; j 2 J 0 ¼ f1; . . . ; n� mg: There is a one-to-one correspondence between feasible solu-
tions of the p-median problem and feasible solutions of this problem. In fact, i 2 S iff yi ¼ 0 for all i 2 I . More-
over, F ðSÞ ¼ PðyÞ. So, we can reconstruct y from S and get y(S) and, vice versa, get S(y) by y. Therefore, S is
Swap-optimum iff y(S) is Swap-optimum.
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Let us replace the Boolean constraints yi 2 f0; 1g by 0 6 yi 6 1. The Lagrange function with multipliers
k; li P 0; ri P 0; i 2 I is as follows:

Lðy; k; l; rÞ ¼ P ðyÞ þ k n� p �
X
i2I

yi

 !
þ
X
i2I

riðyi � 1Þ �
X
i2I

liyi:

Let P 0iðyÞ denote the first derivative of P(y) with respect to the variable yi. The correspondent Karush–Kuhn–
Tucker conditions (KKT) are

oL
oyi

ðy; k; l; rÞ ¼ P 0iðyÞ � kþ ri � li ¼ 0; i ¼ 1; . . . ; n;X
i2I

yi ¼ n� p; 0 6 yi 6 1; i 2 I ;

riðyi � 1Þ ¼ 0; liyi ¼ 0; i 2 I :

The vector ðy�; k�; l�; r�Þ is called the saddle point with respect to Swap neighborhood or Swap-saddle point if

Lðy�; k; l; rÞ 6 Lðy�; k�; l�; r�Þ 6 Lðy; k�; l�; r�Þ ð1Þ
for all k; l P 0; r P 0 and all Boolean vectors y 2 Swapðy�Þ:

Theorem 1. For any feasible solution S* of the p-median problem the following properties are equivalent:

(i) There are the multipliers k�; l�i P 0; r�i P 0; i 2 I such that the vector ðyðS�Þ; k�; l�; r�Þ is the Swap-saddle

point of the function L.

(ii) S* is Swap-optimum.

(iii) y(S*) satisfies the KKT conditions.

Proof

1. Let us check ðiÞ ) ðiiÞ. Let ðyðS�Þ; k�; l�; r�Þ be a Swap-saddle point. Put y� ¼ yðS�Þ. Using the left part of
(1) we get

Lðy�; k�; l�; r�Þ ¼ sup
k;lP0;rP0

Lðy�; k; l;rÞ ¼ P ðy�Þ: ð2Þ

Trivially, the left part of (2) holds. Now we show the right part of (2). If y�i � 1 < 0 or y�i > 0, then the cor-
responding Lagrange multiplier r�i or l�i vanishes, otherwise the left part of (2) is not satisfied. Therefore, the
complementary slackness conditions,

k�
X
i2I

y�i � nþ p

 !
¼ 0; r�i ðy�i � 1Þ ¼ 0; l�i y�i ¼ 0; i 2 I ;

hold, and we obtain (2). So, we have

P ðy�Þ 6 Lðy; k�; l�; r�Þ for all y 2 Swapðy�Þ:
Since each y 2 Swapðy�Þ is a feasible solution of the problem, we have

F ðS�Þ ¼ P ðy�Þ 6 P ðyÞ þ k�
X
i2I

yi � nþ p

 !
þ
X
i2I

r�i ðyi � 1Þ �
X
i2I

l�i yi 6 P ðyÞ ¼ F ðSðyÞÞ;

where SðyÞ 2 SwapðS�Þ. Therefore, S* is Swap-optimum.
2. We now show ðiiÞ ) ðiiiÞ. Let us consider a Swap-optimum S*. Boolean vector y� ¼ yðS�Þ satisfiesP

i2I y
�
i ¼ n� p and is a Swap-optimum of P(y). We need to find multipliers k�; l�i P 0; r�i P 0; i 2 I ; such

that the vector ðy�; k�; l�; r�Þ satisfies the KKT conditions. Let P 00i0i1
ðyÞ be the second derivative of P(y) with

respect to yi0 and yi1 . Put
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Di0
�i1
ðyÞ ¼ P 0i0ðyÞyi0 � P 00i0i1

ðyÞyi0 yi1 ;

Di1
�i0
ðyÞ ¼ P 0i1ðyÞyi1 � P 00i0i1

ðyÞyi0 yi1 ;

D�i0�i1ðyÞ ¼ PðyÞ � P 00i0i1
ðyÞyi0 yi1 � Di0

�i1
ðyÞ � Di1

�i0
ðyÞ:

Hence,

P ðyÞ ¼ P 00i0i1
ðyÞyi0 yi1 þ Di0

�i1
ðyÞ þ Di1

�i0
ðyÞ þ D�i0�i1ðyÞ: ð3Þ

Suppose y 2 Swapðy�Þ, y�i0 ¼ 0, y�i1 ¼ 1, yi0
¼ 1, yi1

¼ 0; and yi ¼ y�i for all i 6¼ i0; i1. Combining this with (3), we
get

Pðy�Þ ¼ Di1
�i0
ðy�Þ þ D�i0�i1ðy�Þ ¼ P 0i1ðy

�Þ þ D�i0�i1ðy�Þ;
PðyÞ ¼ Di0

�i1
ðyÞ þ D�i0�i1ðyÞ ¼ P 0i0ðy

�Þ þ D�i0�i1ðy�Þ:

So,

P ðy�Þ � P ðyÞ ¼ P 0i1ðy
�Þ � P 0i0ðy

�Þ: ð4Þ

Since y* is Swap-optimum, we have

P 0i1ðy
�Þ � P 0i0ðy

�Þ 6 0: ð5Þ

Consider indices i�0, i�1 such that

P 0i�
0
ðy�Þ ¼ min

i:y�i ¼0
P 0iðy�Þ; P 0i�

1
ðy�Þ ¼ max

i:y�i ¼1
P 0iðy�Þ:

Substituting i�0, i�1 in (5), we get P 0i�
1
ðy�Þ 6 P 0i�

0
ðy�Þ. Put k� 2 ½P 0i�

1
ðy�Þ; P 0i�

0
ðy�Þ� and

l�i ¼
P 0iðy�Þ � k� P 0 if y�i ¼ 0;

0 otherwise;

�
r�i ¼

k� � P 0iðy�ÞP 0 if y�i ¼ 1;

0 otherwise:

�
We have l� P 0; r� P 0 so that the complementary slackness conditions

k�
X
i2I

y�i � nþ p

 !
¼ 0; r�i ðy�i � 1Þ ¼ 0; l�i y�i ¼ 0; i 2 I

are satisfied. Also,

oL
oyi

ðy�; k�; l�; r�Þ ¼ P 0iðy�Þ � k� þ r�i � l�i ¼ 0; i ¼ 1; . . . ; n:

This proves ðiiÞ ) ðiiiÞ.
3. Finally, we show ðiiiÞ ) ðiÞ. Since the complementary slackness conditions hold, it follows that

Lðy�; k�; l�; r�Þ ¼ P ðy�Þ:

For y 2 Swapðy�Þ, y�i0 ¼ 0, y�i1 ¼ 1, yi0 ¼ 1, yi1 ¼ 0; and yi ¼ y�i for all i 6¼ i0; i1, we have

Lðy; k�; l�; r�Þ ¼ P ðyÞ þ k�
X
i2I

yi � nþ p

 !
þ
X
i2I

r�i ðyi � 1Þ �
X
i2I

l�i yi ¼ P ðyÞ � r�i1 � l�i0 :

Since P 0iðyÞ � kþ ri � li ¼ 0; i ¼ 1; . . . ; n; and the complementary slackness conditions hold, we have
r�i1 ¼ k� � P 0i1ðy

�Þ, l�i0 ¼ P 0i0ðy
�Þ � k�. It follows that:

Lðy; k�; l�; r�Þ ¼ P ðyÞ þ P 0i1ðy
�Þ � P 0i0ðy

�Þ:
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Combining this with (4), we get

Lðy�; k�; l�; r�Þ ¼ P ðy�Þ ¼ P ðyÞ þ P 0i1ðy
�Þ � P 0i0ðy

�Þ ¼ Lðy; k�;l�; r�Þ:

So, we have got the right part of (1). Note that

Lðy�; k; l; rÞ ¼ P ðy�Þ þ k
X
i2I

y�i � nþ p

 !
þ
X
i2I

riðy�i � 1Þ �
X
i2I

liy
�
i ¼ Pðy�Þ �

X
i:y�i ¼0

ri �
X

i:y�i ¼1

li 6 P ðy�Þ

¼ Lðy�; k�; l�; r�Þ;

which completes the proof. h

4. Local search problems

Let us recall the formal definition of optimization problem (Ausiello et al., 1999). An optimization problem

OP is defined by the quadruple < I; Sol; F , goal >, where

(1) I is the set of instances of OP;
(2) Sol is a function that associates to any input instance x 2 I the set of feasible solutions of SolðxÞ;
(3) F is the objective function that, for every pair (s,x), where s 2 SolðxÞ, assigns an integer F(s,x);
(4) goal 2 fmin;maxg specifies whether OP is a maximization or a minimization problem. The problem is:

given an instance x, to find an optimal solution s 2 SolðxÞ.

Definition 1. A local search problem P is the pair ðOP;NÞ, where OP is the optimization problem and N is the
neighborhood, i.e., N is a function that assigns a set Nðs; xÞ 	 SolðxÞ of neighboring solutions for every pair
(x, s). The set Nðs; xÞ is called the neighborhood of the feasible solution s. The local search problem is: given an
instance x, compute a locally optimal solution s*, i.e., a solution that has no better neighbor.

We will assume that for each instance x its solutions s 2 SolðxÞ have length bounded by a polynomial in the
length of x.

In Definition 1, we allow the use of any algorithm whatsoever, not necessarily a local search algorithm. It is
important to make a distinction between the complexity of the local search problem itself on the one hand and
the complexity of the local search heuristic on the other hand (Johnson et al., 1988). In other words, we make a
distinction between the complexity of finding local optima by any means and the complexity of finding local
optima by the standard local search algorithm. Therefore, if the local search heuristic takes an exponential
number of iteration, it does not preclude from finding local optima by other methods in polynomial time.

A nontrivial example of the local search problem is the linear programming problem. It can be viewed as a
local search problem. The solutions are the vertices of a polytope and the neighborhood is given by edges of
the polytope. The standard local search algorithm is the classical simplex method. It takes an exponential
number of iteration in the worst case for the most pivoting rules. However, optimal solution can be found
in polynomial time by other methods (Papadimitriou and Steiglitz, 1982).

Definition 2 (Yannakakis, 1997). A local search problem P is in the class PLS if there are three polynomial-
time algorithms A, B, C with following properties:

(1) Given a string x, algorithm A determines whether x is an instance (x 2 I), and in this case it produces
some solution s0 2 SolðxÞ;

(2) Given an instance x 2 I and a string s, algorithm B determines whether s 2 SolðxÞ and if so, B computes
the cost F ðs; xÞ of the solution s;

(3) Given an instance x 2 I and a solution s, algorithm C determines whether s is a local optimum, and if it
is not, C outputs a neighbor s0 2 Nðs; xÞ with better cost.

E. Alekseeva et al. / European Journal of Operational Research 191 (2008) 736–752 741
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This definition leads directly to a local descent algorithm, which starts from the initial solution s0 generated
by algorithm A, and then applies repeatedly algorithm C until it reaches a local optimum. The precise algo-
rithm is determined by the pivoting rule chosen. For a current solution that is not a local optimum, the piv-
oting rule selects neighboring solution with better value of the objective function. Let us introduce the new
complexity class PPLS as class P in the theory of NP-completeness.

Definition 3. A local search problem P ¼ ðOP;NÞ belongs to the class P PLS if it is in PLS and there exists a
polynomial time algorithm that for any instance x 2 I returns an N-optimal solution s 2 SolðxÞ.

The class PPLS is the natural efficiently solvable part of the class PLS. The relationship between the classes
PPLS and PLS is fundamental for the theory of local search problems. Obviously, the global optimum is the
local one for an arbitrary neighborhood. Hence, if P PLS 6¼ PLS then P 6¼ NP.

Definition 4 (Yannakakis, 1997). Let P1 and P2 be two local search problems. A PLS-reduction from P1 to
P2 consists of two polynomial time computable functions h and g such that:

(1) h maps instances x of P1 to instances h(x) of P2.
(2) g maps pairs (solution of hðxÞ; x) to solutions of x.
(3) For all instances x of P1, if s a local optimum for instance h(x) of P2, then gðs; xÞ is a local optimum for x.

PLS-reductions have standard properties. If P1 PLS-reduces to P2 and P2 PLS-reduces to P3 then P1 PLS-
reduces to P3. Moreover, P1 2 P PLS if P2 2 P PLS.

Lemma 1. Let P1 ¼ ðOP ;N1Þ, P2 ¼ ðOP ;N2Þ be two PLS problems and N1 � N2. Then P1 PLS-reduces to P2.

Proof. The proof is straightforward if we define the functions h and g as identical. h

We say that a problem P in PLS is PLS-complete if every problem in PLS can be PLS-reduced to it. The
following local search problems are PLS-complete (Yannakakis, 1997): The graph partitioning under the
neighborhoods KL, Swap, FM, FM1; Max-Cut problem under the Flip neighborhood and others.

Definition 5. Let P be a local search problem and x be an instance of P. The transition graph TGPðxÞ of the
instance x is a directed graph with one node for each feasible solution of x and with an arc ðs! tÞ whenever
t 2 Nðs; xÞ and F(t, x) is strictly better than F(s, x) (i.e., greater if p is a maximization problem, and smaller if p
is a minimization problem). The height of a node v is the length of the shortest path in TGPðxÞ from v to a sink
(a vertex with no outgoing arcs). The height of TGPðxÞ is the largest height of a node.

The height of a node v is a lower bound on the number of iterations needed by the standard local descent
algorithm even if it uses the best possible pivoting rule.

Definition 6. Let P1 and P2 be two local search problems, and let ðh; gÞ be a PLS-reduction from P1 to P2.
We say that the reduction is tight if for any instance x of P1 the height of TGP2

ðhðxÞÞ is at least as large as the
height of TGP1

ðxÞ.

It is clear that tight reductions compose. Tight reductions allow us to transfer lower bounds on the running
time of the standard local search algorithm from one problem to another. Thus, if the standard algorithm of
P1 takes exponential time in the worst case, then so does the standard algorithm for P2. Schäffer and Yan-
nakakis (1991) prove the following sufficient condition for a PLS-reduction to be tight.

Lemma 2. Suppose P1 and P2 are problems in PLS and let ðh; gÞ be a PLS–reduction from P1 to P2. This

reduction is tight if for any instance x of P1 there exists a subset R of feasible solutions for the image instance

h(x) such that the following properties hold:

(1) R contains all local optima of h(x).
(2) For every solution p of x we can construct in polynomial time a solution q 2 R of h(x) such that gðq; xÞ ¼ p.
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Author's personal copy

(3) Suppose that the transition graph of h(x), TGP2
ðhðxÞÞ contains a directed path from q 2 R to q0 2 R such

that all internal path nodes are outside R, and let p ¼ gðq; xÞ and p0 ¼ gðq0; xÞ be the corresponding solutions

of x. Then either p ¼ p0 or TGP1
ðxÞ contains an arc from p to p0.

Lemma 3. Let P1 ¼ ðOP ;N 1Þ, P2 ¼ ðOP ;N 2Þ be two PLS problems and N 1 � N 2. Assume that for any instance

x of OP the transition graph TGP2
ðxÞ is a subgraph of TGP1

ðxÞ. Then P1 is tight PLS-reducible to P2.

Proof. As for Lemma 1, the identical functions (h, g) define a PLS-reduction from P1 to P2. Now we show
that this reduction is tight. Let x be an instance of P1. Since N 1 � N 2 and the transition graph TGP2

ðxÞ is a
subgraph of TGP1

ðxÞ, it follows that the set of N2 local optima is coincide with the set of N1 local optima and
the height of each node in TGP2

ðxÞ is at least as large as the height of the node in TGP1
ðxÞ. Therefore, for any

instance x of P1 the height of TGP2
ðhðxÞÞ is at least as large as the height of TGP1

ðxÞ. h

5. The worst case complexity

Let us consider the graph partitioning problem.

Instance: Graph G ¼ ðV ;EÞ with 2n nodes and a weight function w : E! Z.
Solution: A partition of V into sets V 1; V 2 such that jV 1j ¼ jV 2j ¼ n.
Measure: The weight of the cut ðV 1; V 2Þ, i.e., the sum of the weights of the edges with one endpoint in V1 and

another endpoint in V2.
Goal: Max.

An FM1 neighborhood for this problem is defined as FM1 neighborhood for the p-median problem. We
claim that the p-median problem with the FM1 neighborhood is the most difficult local search problem in
the class PLS.

Theorem 2. The p-median problem with the FM1 neighborhood is tight PLS-complete.

Proof. Informally, for a given graph G ¼ ðV ;EÞ we create a matrix ðgijÞ which has two rows and one column
for each node of G. Moreover, the matrix ðgijÞ has additional column for each edge of G. As a result, we have a
one to one correspondence between feasible solutions of the graph partitioning problem and the p-median
problem for p ¼ jV j=2. We show that the weight of a cut ðV 1; V 2Þ plus the value of the objective function
for the p-median problem is a constant for pair of correspondent solutions. So, we get a tight reduction if
put R as the set of all feasible solutions of the p-median problem.

Let Ei be the set of edges which are incident with the node i 2 V . Put

W i ¼
X
e2Ei

we; W ¼
X
e2E

we; I ¼ f1; . . . ; jV jg;

J ¼ f1; . . . ; jEj þ jV jg; p ¼ jV j=2:

To each j ¼ 1; . . . ; jEj we assign the edge e 2 E and put

gij ¼
0; if e ¼ ði1; i2Þ; ði ¼ i1Þ _ ði ¼ i2Þ;
2we; otherwise:

(

To each j ¼ jEj þ 1; . . . ; jEj þ jV j we put

gij ¼
0; if i ¼ j� jEj;
W � W i; otherwise:

(
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For the cut ðV 1; V 2Þ we put S ¼ V 1. The proof of the theorem is based on the following equality:X
j2J

min
i2S

gij þ W ðV 1; V 2Þ ¼ nW :

By definition we haveXjEj
j¼1

min
i2S

gij ¼ 2
X
ðweje ¼ ði1; i2Þ; i1; i2 62 SÞ

and XjJ j
j¼1þjEj

min
i2S

gij ¼
X
i62S

ðW � W iÞ ¼ nW �
X
i62S

W i:

Note thatX
i 62S

W i ¼ W ðV 1; V 2Þ þ
XjEj
j¼1

min
i2S

gij;

as desired. h

Corollary 1. The local search problems for the p-median under the Swap, KL;KL1; FM neighborhoods are tight
PLS-complete.

This statement follows from the tight PLS-completeness of the Graph Partitioning problem with
Swap;KL; FM neighborhoods (Johnson et al., 1988; Yannakakis, 1997). Property Swap � KL1 and Lemma
3 give us the rest of the statement.

Let P 2 PLS. The standard local optimum problem for P is the following. We are given an instance of P and
an initial solution. The goal is to find a local optimum with respect to the neighborhood that would be pro-
duced by the standard local descent algorithm starting from the initial solution. It is known that there is a local
search problem in the class PLS where standard local optimum problem is PSPACE-complete (Yannakakis,
1997). Moreover, if there is a tight PLS–reduction from a local search problem P1 to a problem P2, then there
is a polynomial time reduction from the standard local optimum problem for P1 to the standard local opti-
mum problem for P2. Combining these facts, Theorem 2, and Corollary 1 we obtain the following statement.

Corollary 2. Standard local optimum problems for the p-median under Swap, KL;KL1; FM ; FM1 neighborhoods

are PSPACE–complete.

Combining Lemmas 1 and 2 and Theorem 2 we obtain the following.

Corollary 3. Suppose that the neighborhood N is stronger than the neighborhood FM1 and the local search

problem (p-median, N) belongs to the class PLS. Then (p-median, N) is PLS-complete.

Corollary 4. If P PLS 6¼ PLS and the local search problem (p-median, N) belongs to the class P PLS then FM1�N .

It is known that there is a local search problem in the class PLS such that the standard local descent algo-
rithm takes an exponential number of iterations (Yannakakis, 1997). Combining this fact with Theorem 2 and
Corollary 1, we obtain the same property for the p-median problem.

Corollary 5. The standard local descent algorithm takes an exponential number of iterations in the worst case for

the local search problems p-median under the Swap;KL;KL1; FM ; FM1 neighborhoods regardless of the tie-

breaking and pivoting rules used.

Now we present a family of instances and initial solutions for the p-median problem for which the local
descent algorithm spends an exponential number of iterations to find an KL1-optimal solution. To this
end, we show a tight PLS-reduction of the Generalized Graph 2-Coloring problem (2-GGCP) with Flip neigh-
borhood to (p-median, KL1), and use the family of instances for (2-GGCP, Flip) with desired properties (Vre-
develd and Lenstra, 2003). The 2-GGCP problem is the following.
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Instance: A graph G ¼ ðV ;EÞ and a weight function w : E! Z.
Solution: A color assignment c : V ! f1; 2g.
Measure: The sum of weights of the edges that have endpoints with the same color (monochromatic edges).

Goal: Min.

Given a solution, a Flip neighbor is obtained by choosing a vertex and assigning a new color. A solution is
Flip-optimal if flipping any single vertex does not decrease the total weight of monochromatic edges. The (2-
GGCP) problem with Flip neighborhood is tight PLS-complete (Vredeveld and Lenstra, 2003).

Theorem 3. The local search problem (2-GGCP, Flip) is tightly PLS-reduced to the local search problem (p-

median, KL1).

Proof. We put I ¼ f1; . . . ; 2jV jg, J ¼ f1; . . . ; jV j þ 2jEjg, p ¼ jV j, W ¼
P

e2Ejwej þ 1: For each vertex v 2 V
we introduce two rows iv, i0v and a column jv of matrix gij. For each edge e ¼ ðj1; j2Þ 2 E; we introduce two
columns j1ðeÞ, j2ðeÞ 2 J . Put

gijv
¼

0 if ði ¼ ivÞ _ ði ¼ i0vÞ;
W otherwise;

�
i 2 I ; jv ¼ 1; . . . ; jV j:

For we P 0 we define

gij1ðeÞ ¼
0 if ði ¼ j1Þ _ ði ¼ j2Þ;
we if ði ¼ j01Þ _ ði ¼ j02Þ;
W otherwise;

8><>: i 2 I ; e 2 E;

gij2ðeÞ ¼
0 if ði ¼ j01Þ _ ði ¼ j02Þ;
we if ði ¼ j1Þ _ ði ¼ j2Þ;
W otherwise;

8><>: i 2 I ; e 2 E:

For we < 0 we define

gij1ðeÞ ¼
we=2 if ði ¼ j1Þ _ ði ¼ j02Þ;
�we=2 if ði ¼ j01Þ _ ði ¼ j2Þ;
W otherwise;

8><>: i 2 I ; e 2 E;

gij2ðeÞ ¼
we=2 if ði ¼ j01Þ _ ði ¼ j2Þ;
�we=2 if ði ¼ j1Þ _ ði ¼ j02Þ;
W otherwise;

8><>: i 2 I ; e 2 E:

Fig. 1 shows the structure of matrix gij.
This reduction is polynomial. It maps the instances of the 2-GGCP problem into the set of instances for the

p-median problem. Let S � I be a KL1-minimum . We claim that exactly one row iv or i0v belongs to S for each
v 2 V .

Assume that iv; i0v 62 S: By definition, jSj ¼ p ¼ jV j. Hence, there is a vertex v0 2 V such that iv0
; i0v0
2 S: Let

us consider a new solution eS ¼ ðS n fiv0
gÞ [ fi0vg. Obviously, F ðeSÞ < F ðSÞ and S is not KL1-minimum. The

case iv; i0v 2 S is similar.
For the solution S we define a coloring assignment for the graph vertices:

cSðvÞ ¼
1 if iv 2 S;

2 otherwise:

�
We wish to check that cSðvÞ is a Flip-minimum if and only if S is KL1-minimum. Moreover, the objective val-
ues for these solutions are the same.

For each edge e ¼ ðj1ðeÞ; j2ðeÞÞ there are two rows j1 and j2 which correspond to the vertices j1ðeÞ and j2ðeÞ.
We claim that
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min
i2S

gij1ðeÞ þmin
i2S

gij2ðeÞ ¼ we:

Suppose that an edge e 2 E is monochromatic. We consider two cases.
1. Case we P 0. Assume that j1; j2 2 S. So, j01; j

0
2 62 S and

min
i2S

gij1ðeÞ ¼ 0; min
i2S

gij2ðeÞ ¼ we:

Similarly, if j1; j2 62 S then j01; j
0
2 2 S and

min
i2S

gij1ðeÞ ¼ we; min
i2S

gij2ðeÞ ¼ 0:

2. Case we < 0. If j1; j2 2 S then j01; j
0
2 62 S and

min
i2S

gij1ðeÞ ¼ we=2; min
i2S

gij2ðeÞ ¼ we=2:

Similarly, if j1; j2 62 S then j01; j
0
2 2 S and

min
i2S

gij1ðeÞ ¼ we=2; min
i2S

gij2ðeÞ ¼ we=2:

Therefore, in both cases the equation holds and we is a part of the objective value F(S).
Let us consider an edge e 2 E that has end points with different colors. Now we have either j1; j

0
2 2 S or

j01; j2 2 S.

1. Case we P 0. If j1; j
0
2 2 S then j01; j2 62 S and

min
i2S

gij1ðeÞ ¼ 0; min
i2S

gij2ðeÞ ¼ 0:

Similarly, if j01; j2 2 S then j1; j
0
2 62 S and

min
i2S

gij1ðeÞ ¼ 0; min
i2S

gij2ðeÞ ¼ 0:

2. Case we < 0. If j01; j2 2 S then j1; j
0
2 62 S and

min
i2S

gij1ðeÞ ¼ �we=2; min
i2S

gij2ðeÞ ¼ we=2:

Fig. 1. The structure of matrix gij.
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Similarly, if j1; j
0
2 2 S then j01; j2 62 S and

min
i2S

gij1ðeÞ ¼ we=2; min
i2S

gij2ðeÞ ¼ �we=2:

Hence, the value we is not included into the objective value F ðSÞ. In other words, our reduction saves the val-
ues of the objective functions for local minima. We now verify that it is tight PLS-reduction.

Let us assume that S is a KL1-minimum but the corresponding color assignment cSðvÞ is not Flip-minimum.
For this case we can find a vertex v 2 V and change the color of v with decreasing the total weight of
monochromatic edges. But this transformation corresponds to swapping iv and iv0 for the solution S with the
same decreasing of the objective function. Hence, S is not KL1-minimum. A contradiction. So, we have a PLS-
reduction.

Let R be the set of feasible solutions in which either iv 2 S or i0v 2 S for all v 2 V . If iv 2 S then cSðvÞ ¼ 1,
otherwise cSðvÞ ¼ 2. It is a one to one correspondence between the elements of set R and color assignments.
This choice of R satisfies Conditions 1 and 2 of Lemma 2. Suppose that the transition graph of the local search
problem (p-median, KL1), contains a directed path from S 2 R to S0 2 R, such that all internal path nodes are
outside R. Let S00 is a internal path node. Thus we have F ðSÞ > F ðS00Þ > F ðS0Þ. Since S00 62 R, it follows that
F ðSÞ < F ðS00Þ. Hence, each directed path with endpoints in R belongs to R. But each arc ðS; S0Þ, where
S; S0 2 R, corresponds to an arc ðcS ; cS0 Þ in corresponding transition graph of 2-GGCP problem. So, we have
Condition 3 of Lemma 2 satisfied, and our reduction is tight. h

We now describe an example for the 2-GGCP where local descent algorithm spends an exponential number
of iterations to reach a Flip-optimum if it uses the best improvement pivoting rule. Graph G ¼ ðV ;EÞ for this
example consists of K modules and a chain of three vertices as shown in Figs. 2 and 3.

Each module consists of 11 vertices. Vertex 1 is called the input node of the module. Vertex 7 is called the
output node of the module. The input node of module i is adjacent to the output node of module iþ 1, for
i ¼ K � 1; . . . ; 1. The input node of module K is adjacent to the right most vertex of the chain. Each edge
has a weight. The large positive weight M makes sure that the two vertices incident to an edge have different
colors for every Flip-optimum. It is known (Vredeveld and Lenstra, 2003) that the local descent algorithm
with the best improvement pivoting rule flips the output node of the first module 2K times if it starts from
an initial solution where all vertices have the same color. We showed a tight PLS-reduction of this local search
problem to (p-median, KL1). Hence, we have a correspondent example for the (p-median, KL1) as well.

6. Approximate local search

For any e > 0 a solution Se is called an ðe;NÞ-local minimum if F ðSeÞ 6 ð1þ eÞF ðSÞ for all S 2 NðSeÞ. We
show that an ðe;NÞ-local minimum can be found for the p-median problem in polynomial time both in the
problem size and 1=e. In fact, we will show the existence of a fully polynomial time e-local optimization scheme
for the p-median problem with a polynomially searchable neighborhood.

Fig. 2. Module i : Ai ¼ 20i�1.

Fig. 3. Chain with large weights.
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Property 1. If a neighborhood N is polynomially searchable then an ðe;NÞ-local minimum for the p-median

problem can be found in polynomial time both in the problem size and 1=e.

In order to get the desired scheme we apply the approach of Orlin et al. (2004) for arbitrary 0–1 linear pro-
gramming problems. Let us modify the matrix ðgijÞ by scaling each element, g0ij ¼ dgij=heh by an appropriate
multiple h > 0 and use the standard local descent algorithm with an arbitrary starting solution S0. Assume
that we have got a local minimum Sh for this new objective function F 0ðSÞ ¼

P
j2J mini2Sg0ij and there exists

a constant D such that mh < D 6 F 0ðShÞ 6 F 0ðS0Þ: In this case we have

F ðShÞ 6 F 0ðShÞ 6 F 0ðSÞ 6 F ðSÞ þ mh for all S 2 NðShÞ:
Hence,

F ðShÞ 6 F ðSÞð1þ mh=F ðSÞÞ 6 F ðSÞð1þ mh=ðF ðSh � mhÞÞÞ 6 F ðSÞð1þ mh=ðD� mhÞÞ
and we get an ðe;NÞ-local minimum if h ¼ eD=ðmðeþ 1ÞÞ: But we cannot guarantee that the number of steps is
polynomial for this simple algorithm. It is pseudo-polynomial algorithm only. For each step of local descent,
the objective value decreases as least by h. So, the number of steps is OðF 0ðS0Þ=hÞ ¼ Oðme�1F 0ðS0Þ=DÞ.

To get rid of this problem, we modify our algorithm as follows. Put D ¼ F ðS0Þ=2; h ¼ eD=ðmðeþ 1ÞÞ; and
apply the local descent until F ðSÞ < D or S is a local minimum for the modified objective function. If we reach
a local minimum then algorithm stops and returns the current solution S as an ðe;NÞ-local minimum for the
original problem. Otherwise, put S0 ¼ S; D ¼ F ðS0Þ=2; h ¼ eD=ðmðeþ 1ÞÞ and repeat the local descent again.
We will change D at most Oðlog F ðS0ÞÞ times and spend at most Oðme�1Þ steps for any D. So, we have got a
fully polynomial time e-local optimization scheme for the p-median problem with a polynomially searchable
neighborhood.

Property 2. If FM1 � N and there is a polynomial time algorithm to find a feasible solution S0 for the p-median

problem such that F ðS0Þ 6 F ðSÞ þ 2qðn;mÞ for any fixed polynomial q(n,m) and all S 2 NðS0Þ; then one can find a
local optimum in polynomial time for all problems in the class PLS.

In other words, if P PLS 6¼ PLS then we cannot guarantee any amount of absolute deviation of the local opti-
mum in polynomial time. To confirm this claim, we consider a new instance g0ij ¼ gijð1þ 2qðn;mÞÞ and apply the
algorithm to it. Let SA be a solution returned by the algorithm. Without loss of generality, we may assume that
all elements of the matrix ðgijÞ are integers. Solution SA is feasible for the original problem, and
F ðSAÞ � F ðSÞ 6 2qðn;mÞ=ð1þ 2qðn;mÞÞ < 1 for all S 2 NðSAÞ. Hence, SA is an N-optimal solution.

7. Pivoting rules

Let Swap�ðSÞ ¼ fS0 2 SwapðSÞjF ðS0Þ < F ðSÞg be the subset of neighbors for S with better values of the
objective function than S. The pivoting rule selects a neighbor for the current solution at each step of the local
descent. This choice may affect the complexity of the algorithm drastically. We consider six pivoting rules and
analyse their influence on the number of steps and relative error of the local optima obtained. Some of these
rules are well known and used in metaheuristics. The others are new and help us to understand the properties
of the corresponding transition graph better.

The Best improvement rule selects a solution in the set Swap�ðSÞ with the smallest value of the objective
function. If there are several best elements we pick up the lexicographical minimal one. It seems that this rule
is the most popular in the local search methods (Resender and Werneck, 2003).

The Worst improvement rule selects a solution in Swap�ðSÞ with the largest value of the objective function.
According to this rule we use the most flat direction for descent. So, we may guess that this rule produces more
steps and the final local minimum may be better than for the previous case.

The Random improvement rule picks a neighbor for S in the set Swap�ðSÞ at random with uniform distribu-
tion. It is one of the fastest pivoting rule, and can lead to different local optima from the same starting solution.

The First improvement rule is one of the famous pivoting rules. It prescribes to use an element from
Swap�ðSÞ which is found in SwapðSÞ first. We test the neighbors of S in the lexicographical order and termi-
nate when the first better neighbor is discovered.
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The Circular rule is closely related to the previous one. It differs from it in one point only. The First improve-

ment rule begins the search at every step from the same starting position, for example, from the lexicograph-
ically minimal position. The Circular rule begins from the position where the previous step terminates
(Papadimitriou and Steiglitz, 1982). The idea of this rule is based on the following observation. In many cases,
the unprofitable moves for the current solution will be unprofitable for the neighboring solutions. So, it is bet-
ter to continue exploring instead of starting from the initial position.

Finally, the rule of maximal Freedom selects a neighbor S0 in the set Swap�ðSÞ with the maximum cardinal-
ity of the set Swap�ðS0Þ. This rule is more time consuming but gives us a neighbor with the maximum number
of directions for further improvement. The number of elements in the set Swap�ðSÞ is called the freedom of
solution S.

8. Computational experiments

We test the local descent algorithm with described pivoting rules on random instances. For all instances, we
put n ¼ m. The values gij are taken from interval [0,1000] at random with the uniform distribution. We gen-
erate 30 instances and study two cases, p ¼ ½n=10� and p ¼ 15. The goal of our experiments is to investigate the
influence of the pivoting rules on the number of steps of the local descent algorithm and compare the relative
deviations of the local optima obtained.

Figs. 4 and 5 show the average number of steps from random starting solution to a Swap-optimum,
p ¼ ½n=10�. Every point at the curve is the average value for 100 trials. The pivoting rule Freedom is presented
at both figures. For all rules except Worst, the number of steps grows as a linear function of n. For the Worst

rule we see a superlinear function. The number of steps for local descent grows rapidly, and the difference
between the Worst and the Best rules becomes extremely high for n > 100. So, pivoting rules are important
from the viewpoint of running time. Fig. 6 confirms the conclusion for the relative error as well. The Best rule
has a large average deviation from the best solution found. The Freedom rule shows the smallest deviation. We

Fig. 4. The average number of steps without worst rule, p ¼ n=10.

Fig. 5. The average number of steps for worst and freedom rules, p ¼ n=10.
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believe this rule tends to find a local optimum with a large basin of attraction, and this is a reason why we get
high quality local optima.

Figs. 7 and 8 illustrate the average number of steps for the case p ¼ 15. All rules show linear functions for
the average number of steps. The Worst rule has the largest number of steps but its relative error is close to the
rules First, Circular, and Random. The Best rule leads to the local minima with large relative errors (see Fig. 9).
The same behavior of the local descent algorithm we have observed for Euclidean instances when the elements
gij are Euclidean distances for random points on the two dimensional plane.

It is known (Tovey, 1997) that the local descent algorithm is polynomial on average for random functions
on the 0–1 hypercube with polynomial neighborhoods. Similar results we can obtained for p-layer of the
hypercube and the Swap neighborhood. More precisely, let F ðSÞ be a random function and for each
S � I ; jSj ¼ p; the value F ðSÞ is selected independently with given probability distribution. If p is a constant

Fig. 8. The average number of steps for worst and freedom rules, p ¼ 15.

Fig. 7. The average number of steps without worst rule, p ¼ 15.

Fig. 6. The average relative error (%), p ¼ n=10.
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then the expected number of steps for the standard local descent algorithm with Swap neighborhood is less
than 1; 5epn regardless of the tie-breaking and pivoting rules used, where e is logarithmic constant. Our com-
putational results show the same behavior of the local descent algorithm for random matrices. If p ¼ ½an� for
given 0 < a < 1 then the expected number of steps for the standard local descent algorithm with Swap neigh-
borhood for random function F ðSÞ is less than 1; 5en2 regardless of the tie-breaking and pivoting rules used.
Our computational results for the p-median problem show the linear function for all pivoting rules except the
Worst. For this rule we have a nonlinear function. It is interesting to study theoretically the behavior of the
local descent algorithm for random matrices gij as well, not only for random functions F ðSÞ for the p-layer of
the hypercube.

9. Conclusions

For the p-median problem, we shown that the standard local descent algorithm takes an exponential num-
ber of steps in the worst case. We introduced several neighborhoods and proved that the corresponding local
search problems are tightly PLS-complete. We illustrated the relationship between the Swap local optima,
classical Karush–Kuhn–Tucker conditions, and 0–1 local saddle points.

In further research, it may be interesting to study the distribution of local optima in the feasible domain and
understand the complexity of local search problems for Euclidean matrices. The metric case is very important
for theoretical research. Some approximate algorithms with guaranteed performance ratio are based on the
local descent with Swap and k-Swap neighborhoods (Arya et al., 2004; Korte and Vygen, 2005). But the num-
ber of steps to reach local optimum could be exponential. Still it is not clear whether this metric case is poly-
nomially solvable or PLS-complete.
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