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1. INTRODUCTION 
Facility location constitutes a broad stratum of 
mathematical models, methods, and applications in 
operations research. This area is interesting for theoretical 
studies, experimental research and real-word applications. 
Examples include storage facilities, warehouses, police 
and fire stations, base stations for wireless services, and 
others.  
 
In many applications decision are made in hierarchical 
order. The individual decision makers have no direct 
control on the decisions of the others. The decision 
makers at higher level of the hierarchy have the power to 
strongly influence the preferences and strategies of the 
decision makers at lower levels. In this paper we consider 
facility location models with a two-level hierarchy. An 
early model for a hierarchical decision process was 
proposed by von Stackelberg. In recent years hierarchical 
decision processes received an increasing interest in the 
mathematical programming and operations research. 
More details and examples can be found in [1].  
 
Sure, we can not cover all aspects of this topic here. In 
Section 2, the basic single level uncapacitated facility 
location problem (UFLP) is presented. It is well-known 
model which closely related with the classical p-median 
problem. In Section 3, we introduce a bilevel facility 
location problem with user preferences and show some 
single level reformulations. In Section 4 the problem 
UFLP with partial external finance is discussed. An 
elegant reduction of the problem to a series of the UFLP 
is considered. In Section 5 we deal with the competitive 
facility location problem where two noncooperative 
decision makers, the leader and the follower, compete to 
attract clients from a given market. This Stackelberg 
game is more difficult than any problem in the class NP. 
We discuss complexity of the problem, heuristics and 
exact methods. Computational results for test instances 
from the benchmark library Discrete Location Problems 
(http://www.math.nsc.ru/AP/benchmarks/) are presented. 
 

2. THE BASIC MODELS  
 
In the most part of facility location models we assume 
that there is only one decision maker who selects the sites 
for facilities. For a given set of users J = {1, …, n} he 
knows the production–transportation costs cij ≥ 0 for 
servicing user j from facility if it will be opened in site i. 
The finite set of potential sites I = {1, …, m} is given and 
the fixed cost fi ≥ 0 of opening facility for each site is 
known. The goal is to find a subset S ⊆ I of opening 
facility in such a way that all users will be serviced with 
minimal total cost, i.e. to minimize the objective function 
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The first item in the objective function specifies the fixed 
cost for opening facilities. The second item is the 
production–transportation cost for servicing all users.  
 
The problem is commonly referred to as the uncapacitated 
facility location problem or, as mentioned in early 
researches, the simple plant location problem. It is NP-
hard in the strong sense and hard to approximate. There is 
no constant-factor approximation for it unless P = NP. So, 
the problem does not belong to the class APX. For the 
metric case, when the matrix (cij) satisfies the triangle 
inequality, the problem is strongly NP-hard again and 
Max SNP-hard. The best approximation algorithm with 
guarantee performance ratio 1.52 is suggested and a 1.463 
factor approximation algorithm would imply P = NP. For 
special case of the metric UFLP when facilities and users 
are points in the d-dimensional Euclidean space and the 
production–transportation costs are geometrical distances 
between the points, an approximation scheme is 
suggested, i.e. an ε-factor approximation algorithm for 
any ε > 1 with running time polynomial in n and m and 
exponential in d and ε [2]. 
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Suppose now that the fixed costs are the same for all 
facilities and we open exactly p facilities. So, the first 
item in the objective function of the UFLP is a constant 
and we need to minimize the objective function 
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s.t.      S ⊂ I, | S | = p. 

This problem is known as discrete p-median problem.     
It is NP–hard in the strong sense and a 2q(n,m) factor 
approximation algorithm for any polynomial q would 
imply P = NP. In other words, the problem does not 
belong to the class APX and good approximate solution is 
hard to find, as well as the optimal one.  

3. FACILITY LOCATION WITH USER 
PREFERENCES  
Up to now we have assumed that there was one decision 
maker only who tried to minimize the total cost of 
opening facilities and servicing the users. However, users 
may be free to choose the facility. They may have own 
preferences, for example, the travel time to a facility. 
They don't have to minimize the production and 
transportation costs of the firm. Hence, we should include 
the user preferences into the mathematical model [3]. 
 
Let the matrix (gij) define the user preferences on the set I. 
If jiji gg

21
< , then the user j prefers the facility i1. We 

assume for simplicity that all elements are different in 
each column of the matrix. Otherwise, we have to 
consider cooperative and noncooperative strategies for the 
decision maker and users. So, the decision maker wishes 
to choose a subset S ⊆ I of opening facilities in such a 
way that all users will be serviced with minimal total cost 
taking into account the user preferences. Let xi=1 if 
facility i is opened and xi=0 otherwise; xij= 1 is user j is 
serviced from facility i and xij= 0 otherwise. For this case, 
the mathematical model can be presented as the 0–1 
bilevel linear programming problem:  minimize 
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s.t.    xi∈{0,1}, i∈I, 

where )( iij xx∗  is the optimal solution of the user problem: 
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The objective function of the decision maker is, as before, 
the total cost for opening facilities and servicing all users. 
But now, the feasible domain is described by constraints 
and the auxiliary optimization problem. The values of 
variables xi, i∈I are given for the auxiliary problem. It is a 
new type of optimization problems which can be NP–hard 
even for continuous variables [1]. 

The uncapacitated facility location problem with user 
preferences (UFLPUP) can be reduced to a single level 
problem [3, 4]. Observe that only the ranking of the gij for 
each j is of importance and not their numerical values. Let 
Sij = { l∈I | glj < gij }, i∈I, j∈J. For an optimal solution 

)( iij xx∗ of the user problem we have 
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We can therefore rewrite the UFLPUP as follows: 
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Indeed, in every optimal solution of the problem all 
constraints of UFLP will be satisfied and the first 
constraint will ensure that xij is an optimal solution for the 
user problem. The number of variables of the problem is 
the same as in the UFLP. However, while the UFLP 
already has the large number of constraints n + nm, the 
UFLPUP has O(m2n) additional ones. This prohibits a 
direct resolution except for small instances. To avoid too 
numerous additional constraints we can rewrite them in 
the equivalent form: 
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It is easy to see that the last inequality produces better 
linear programming relaxation than three previous ones 
[3, 4].  
The special case of the UFLPUP when fi = 0 for all i∈I is 
interesting too. For the UFLP this case is trivial, optimal 
solution can be computed in linear time. But for the 
UFLPUP this case is NP–hard and the integrality gap can 
be arbitrary close to 1. If cij = gij we get the UFLP. If cij = 
– gij we can solve the problem in polynomial time [3]. 
Other reformulations, valid inequalities, branch and cut 
methods and computational results can be found in [5-6]. 

4. FACILITY LOCATION WITH PARTIAL 
EXTERNAL FINANCE 
Let us consider the UFLP for the case when we have to 
send a part of product to investor (UFLPI). The investor 
receives the product by reduced prices and tries to 
maximize own profit. In fact, we face with a bilevel 
mixed integer problem. The upper level is an 
uncapacitated facility location problem with an additional 
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restriction for product distribution. The lower level is a 
knapsack problem with continuous variables. To present 
the mathematical formulation, let us introduce the total 
investment W and the following parameters for facility i:  
 
di > 0 is the product cost of facility,  
pij ≥ 0 is the demand of user j if it is serviced by facility,  
αi ≥ 0 is the product weight for investor,  
βi ≥ 0 is the reduced price for investor.  
 
Additional decision variables:  
vi ≥ 0 is amount  of product of facility, 
wi ≥ 0 is amount  of product for investor. 

 
Using the previous and new notations we can write the 
problem as follows [7]: 
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where ∗
iw  is the optimal solution of the investor problem: 

∑
∈Ii

iiwαmax   (6) 

s.t.    Ww
Ii

ii ≤∑
∈
β , (7) 

vi ≥ wi ≥ 0,   i∈I. (8) 

The objective function (1) is the total cost for opening 
facilities and servicing users taking into account the 
additional product for investor. Constraint (2) requires 
servicing all users. Constraint (3) allows servicing users 
from open facilities only. Constraint (4) guarantees that 
first of all the product is sent to investor and the 
remaining part is used by users. Objective function (6) 
expresses the goal of investor which wishes to maximize 
a weighted sum of product obtained. Constraints (7), (8) 
limit the product by the amount of investment and the 
total product of each facility. 
 
Problem UFLPI is NP-hard in the strong sense. If W = 0 
the problem can be reduced to UFLP. It is known [9] that 
UFPLI can be solved by a reduction to series of the 
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For given optimization problem (·) we denote V(·) an 
optimal value of the objective function. It is easy to see 
that V(UFLPI) = )(min kIk

PV
∈

. In [8,9] exact and 

approximate methods for the problem UFLPI are 
developed based on the results for UFLP. 

5.  COMPETITIVE LOCATION WITH 
FORESIGHT 
Let us assume that two firms want to open facilities. The 
first firm, we call it the leader, opens its own set of 
facilities X ⊂ I, | X | = p. Later, the second firm, we call it 
the follower, observes the set X and opens its own set of 
facilities Y ⊂ I, Y ∩ X =∅, | Y| = r. Each user selects one 
facility from the union X ∪ Y according to its own 
preferences. We will assume that any firm will get the 
profit wj > 0 if it services the user j. Each firm tries to 
maximize the own profit. The firms do not have the same 
rights. The leader makes a decision first. The follower 
makes a decision analyzing the set X. It is a Stakelberg 
game for two players, where we need to maximize the 
total profit of the leader [10]. Let us formulate this game 
as a linear 0–1 bilevel programming problem. Introduce 
decision variables: 
  
xi =1 if facility i is opened by the leader, xi =0 otherwise; 
yi =1 if facility i is opened by the follower, yi =0 
otherwise; 
zj =1 if user j is serviced by the leader, zj =0 if user j is 
serviced by the follower.  
 
For a given solution x, we can define the set of facilities 
which allow capturing user j by the follower:  
 

Ij(x) = {i∈I | gij < minl∈I (glj | xl = 1)},  j∈J. 
 
Note that we consider conservative users. If a user has the 
same distances to the closest leader and the closest 
follower facilities, he prefers the leader facility. So, the 
follower never opens a facility at a site where the leader 
has a facility [10]. Now the model can be written as a 
linear 0–1 bilevel programming problem [11]: 
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xi  + yi ≤ 1,   i∈I, (15) 

yi, zj ∈ {0,1},   i∈I,  j∈J. (16) 

The objective function (9) defines the total profit of the 
leader. Equation (10) guarantees that the leader opens 
exactly p facilities. The objective function (12) defines 
the total profit of the follower.  Equation (13) requires 
opening exactly r facilities for the follower. Constraint 
(14) guarantees that user j is serviced by the leader if the 
follower has no facilities in the set Ij(x). Constraint (15) 
allows opening a facility by at most one decision maker. 
As we have mentioned, the constraint (15) is redundant. 
Nevertheless, we use it to reduce the feasible domain of 
the follower problem. 
 
It is known that the problem is P

2Σ -hard [12]. So, we deal 
with the more difficult problem than any NP-complete 
problem. Polynomially solvable cases and complexity 
results can be found in [13]. In order to get an upper 
bound for this maximization problem, it can be rewritten 
as a single level mixed integer linear program with 
exponential number of constraints and variables. If we 
extract a subfamily of constraints and variables, we get 
the desired upper bound. In [11] a nonclassical column 
generation method is applied to find optimal solution for 
the bilevel problem. Computational experiments for the 
test instances from the benchmark library Discrete 
Location Problems indicate that the exact method allows 
to find the global optimum for p = r = 5,   n = m = 100. 
 
For higher dimension we may apply heuristics or 
metaheuristics. The simplest heuristic for the leader is to 
ignore the follower. The leader opens own facilities to 
minimize the total distance between users and his 
facilities. He wishes to service all users and solves the 
classical p-median problem. This strategy is not so bad 
despite ignoring the follower. Computational experiments 
show that this lower bound can be improved by a few 
percents only. 
 
The second strategy is more sophisticated. The leader 
anticipates that the follower will react to his decision. So, 
the (p+r) facilities will be opened. According to the 
second heuristic, the leader solves the (p+r)-median 
problem and opens p most profitable facilities. 
Unfortunately, this strategy is weak. 
 
The third strategy is alternate. It was suggested for 
continuous locations. This heuristic is iterative. For a 
given solution of one decision maker, we find the optimal 
solution for another one. In discrete case this strategy 
produces a cycle. The best solution in the cycle is the 
result of the approach. If we use the previous strategies to 
create a starting solution, we can improve the profit of the 
leader. Surely, it is a more time consuming procedure. 
 
One of the most powerful approaches is a hybrid memetic 
algorithm where a tabu search is used to improve the 
elements of the population [11]. To evaluate neighboring 
solutions for the leader, the linear programming relaxation 
of the follower problem is solved by CPLEX software. To 
reduce the running time at each step of the tabu search, 

the idea of randomized neighborhoods is used. Other 
heuristics can be found in [14, 15]. 
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