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INTRODUCTION

Location problems form a wide class of mathematical operations research models, which is interesting
both practically and from the point of view of the combinatorial optimization theory. This problem dates
back to Fermat (1601–1665) and Torichelli (1608–1647) (see [1]). As a branch of operations research in its
own right, it formed in the 1970–1980s. Presently, there are several monographs on this topic (see [2–6]).
Each year, the European workgroup EWGLA (http://www.vub.ac.be/EWGLA/) and the American work-
group SOLA (http://www.ent.ohiou.edu/~thale/sola/sola.html) hold conferences devoted to this topic.

In Soviet Union, the pioneers in the development of this branch of science were V. Cherenin,
V. Khachaturov, V. Trubin, and S. Lebedev; in the Siberian Branch of the Academy of Sciences, V. Beresnev,
E. Gimadi, and V. Dement’ev were the first to work on such problems. The interest in this kind of problems
is mainly due to various applications that arise not only in choosing the facility locations; similar models
appear, for example, in problems concerning unification and standardization when the composition of hard-
ware for performing a certain set of tasks is chosen (see [7]). In this case, the objective function is the total
cost of the creation and operation of the hardware system or the total performance of the system.

In this paper, we consider two new classes of competitive facility location problems in which several per-
sons (players) simultaneously or one after another make decisions concerning opening facilities for serving
clients. If the players make decisions one after another, we have a Stackelberg game, and the corresponding
mathematical model can be represented as a discrete two-level programming model. If the decisions are
made simultaneously, we have a several person game that want to maximize their own profit. It is assumed
that they do not form coalitions, act independently of each other, and pursuit only selfish goals. For the first
model in the case of two players, a method for constructing a family of upper and lower bounds on the opti-
mal value of the objective function is proposed, and the relationship with pseudo-Boolean functions is estab-
lished. For the second class of game models, the concept of the Nash equilibrium is introduced, and its rela-
tionship with local optima is established.

The paper is organized as follows. In Section 1, we consider the classical location models in which there
is a single decision maker (DM). The relationship of these problems with pseudo-Boolean functions is dis-
cussed. It is shown how such functions can be used to transform the initial data so as to minimize the dimen-
sion of the problem. In Section 2, we consider the location problem with clients' preferences. In distinction
from the preceding problem, here we have two levels at which decisions are made. First, a company opens
its facilities. Then, the clients choose their suppliers. It is known that this problem can be reduced to an inte-
ger linear program (ILP) and can be equivalently formulated in terms of pseudo-Boolean functions. As in
Section 1, it is shown how the dimension of the problem can be decreased. In Section 3, a two-level facility
location model is formulated in which two DMs sequentially make decisions concerning opening their facil-
ities. A mathematical statement of this problem in terms of pseudo-Boolean functions is given, and a method
for constructing a family of upper and lower bounds is proposed. In Section 4, we consider a game model
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—Two classes of competitive facility location models are considered, in which several persons
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for several DMs that simultaneously open their facilities for serving clients. The concept of equilibrium
solutions is defined, and it is proved that the problem of finding such solutions is tightly PLS complete.

1. SIMPLE LOCATION PROBLEM

In the majority of facility location models, it is assumed that there is a single DM. One may suppose that
this is the manager of the company that wants to find an optimal location for its facilities. For the given set
of clients 
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}, the DM knows the cost 
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 of producing and delivering the goods from the
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th location to the 
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to be finite. For each 
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 of opening the facility at this site is given. The problem is to find
the set 

 

S
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I

 

 that makes it possible to serve all the clients at the minimal total cost; that is, we want to find

The first term in the objective function is the cost of opening the facilities. The second term represents the
production and delivery costs. This problem is known in the literature as the simple plant location problem.
It is NP-hard in the strong sense even in the case when the matrix (

 

c

 

ij

 

) satisfies the triangle inequality (see
[8]).

There is a close relationship between this problem and the minimization of pseudo-Boolean functions.
This fact was first mentioned in the studies by Hammer and Rudeanu. Later, in the works by Beresnev, a
novel method for the reduction of the simple location problem to the problem of minimizing pseudo-Bool-
ean functions with positive coefficients at nonlinear terms was proposed. Moreover, the equivalence of these
problems was established.
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Lemma 1, we represent the objective function of the location problem as the pseudo-Boolean function
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Consider the following example:

The corresponding pseudo-Boolean function is b(z) = 10(1 – z1) + 10(1 – z2) + 10(1 – z3) + (5z1 + 5z1z2) +
(3z2 + 17z1z2) + (7z2 + 3z2z3) = 15 + 5(1 – z1) + 0(1 – z2) + 10(1 – z3) + 22z1z2 + 3z2z3. Given this function,
we can reconstruct the location problem:

The new problem involves fewer clients: |J ' | < |J |. Moreover,  = 0. Therefore, the second facility may be
assumed to be open in the optimal solution. In other words, the dimension of the new problem is less than
that of the original one, and these problems are equivalent.

Therefore, given a simple location problem, we can construct a pseudo-Boolean function with positive
coefficients at the nonlinear terms. Different location problems can correspond to the same function. There-
fore, before solving the problem, one should first find an equivalent problem of a lower dimension. Such a
problem can be found in polynomial time.

Theorem 2. For a given pseudo-Boolean function with positive coefficients at the nonlinear terms, an
equivalent simple location problem with the minimal number of clients can be found in a time that polyno-
mially depends on n and m. 

Proof. Consider an arbitrary pseudo-Boolean function b(z) with positive coefficients at the nonlinear
terms

The family of subsets {Il}l ∈ L of the set I with the order relation Il ' < Il '' ⇔ Il ' ⊂ Il '' forms a partially ordered
set. Any sequence of subsets  < … <  is called a chain. An arbitrary partitioning of the family {Il}l ∈ L

into nonoverlapping chains induces a matrix of transportation costs (cij) for a simple location problem.
Every element of such a partitioning corresponds to a client. The requirement to find a matrix with the min-
imum number of clients is equivalent to finding a partitioning of a partially ordered set into the minimum
number of nonoverlapping chains. This is a well-known problem the complexity of which polynomially
depends on n and m; its solution is based on the constructive proof of Dilworth’s theorem (see [9]). This
completes the proof of Theorem 2.

The minimization of b(z) is equivalent to the simple location problem, but it also has some new proper-
ties. Consider the minimization of this function for continuous variables zi ∈ [0, 1] (i ∈ I). For the simple
location problem, such a transition is due to the integrality gap, which can occur arbitrarily close to unity
(see [10]). For the function b(z), the integrality gap vanishes! It is easy to verify that there is an integer opti-
mal solution among the optimal solutions of the minimization problem for the function b(z) with continuous
variables.

2. LOCATION PROBLEM WITH CLIENTS’ PREFERENCES

So far we assumed that there is only one DM who wants to minimize the total production and delivery
costs. However, clients often have the possibility to choose suppliers based on their own preferences (see
[11]). The minimization of the company’s production and delivery costs is not the goal of the clients.

Let the matrix (gij) specify the clients' preferences on the set I. If  < , then the client j prefers the
facility i1. To simplify the model, we assume that all the entries in each column of the matrix (gij) are differ-
ent. Otherwise, we would have to consider optimistic and pessimistic strategies and introduce additional
definitions of the optimal solution of the problem. Thus, the goal of the DM is to choose a subset S ⊆ I that
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makes it possible to serve all the clients at minimum cost; however, the DM must now take into account the
clients' preferences. Let us define the variables of the problem.

The mathematical model can be represented by a discrete two-level programming problem (see [11]) that is
stated as follows. Find

subject to xi ∈ {0, 1}, i ∈ I, where (xi) is the optimal solution of the auxiliary problem (below, it is called
the client problem)

subject to

As before, the DM’s objective function involves the total cost of opening facilities and serving the clients.
The difference is that now the feasible solutions must satisfy the integrality requirement for the variables xi

(i ∈ I) (which corresponds to the condition S ⊆ I) and conform to the auxiliary optimization problem. The
first constraint in the latter problem requires assigning a supplier to each client. The second constraint allows
choosing suppliers only among the open facilities. The vector xi is assumed to be given.

There are several techniques for reducing this two-level problem to an integer linear program (see [11,
12]). Note that, for each j ∈ J, only the ordering of the elements gij is important but not their values. Let us
arrange the elements in the jth column in ascending order  < … <  and set Sij = {l ∈ I|glj < gij} (i ∈ I). The

optimal solution (xi) of the client problem has the following property:  = 1 ⇒ xl = 0 for l ∈ Sij. Using
this relation, the original two-level problem can be written in the form (see [11, 12]): find

subject to

 i ∈ I,

The first inequality guarantees that xij is optimal in the client problem. If the matrices (cij) and (gij) are iden-
tical, we obtain the simple location problem.

The first inequality can be written in the equivalent form (i ∈ I, j ∈ J)
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or

or

It can be shown that the last inequality gives better linear relaxation than the three others (see [11]).
It is known (see [12]) that the location problem with clients' preferences can be reduced to the minimi-

zation problem for a pseudo-Boolean function. Let the permutation , …,  specify an ordering of the
elements of the jth column of the matrix (gij). For j ∈ J, we set

and define the pseudo-Boolean function

The location problem with clients' preferences is equivalent to the minimization problem for B(z), where z ≠
(1, …, 1). The optimal solutions z* and x* of these problems are related by the equation  = 1 –  (i ∈ I), and
the values of the objective functions on these solutions are identical.

Note that the coefficients ∇cij can have an arbitrary sign. In other words, for any pseudo-Boolean func-
tion, there exists an equivalent location problem with clients' preferences and conversely. Moreover, by anal-
ogy with Theorem 2, for any location problem with clients' preferences, the initial data can be restructured
so as to minimize the number of clients in a time that polynomially depends on n and m.

Theorem 3. For an arbitrary pseudo-Boolean function, an equivalent location problem with clients’
preferences with the minimal number of clients can be found in a time that polynomially depends on n and m.

3. ANTAGONISTIC LOCATIONS

Consider the case when two companies sequentially make decisions concerning the location of their
facilities. The first company (called leader) enters the market by opening the set of facilities S0 ⊂ I. Knowing
this decision, the rival firm opens the facilities S1 ⊂ I (S0 ∩ S1 = ∅). Every client chooses a most suitable
facility from the set S0 ∪ S1. Suppose that the service of the client j brings the profit rj > 0, the leader opens
p0 facilities, and the follower opens p1 facilities. Then, depending on the location of these facilities, the mar-
ket (the set of clients) is divided between the two companies. Each company wants to maximize its own mar-
ket share. Thus, we have a two-person antagonistic game. The players are not equal. The leader is the first
to make a decision. It can open its facilities at any place. Then, the follower makes a decision knowing the
decision of the leader. We have a Stackelberg game in which the market share (the total profit) of the first
player is to be maximized. Define the variables of the game.
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the follower:
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the clients:

For the given vector xi ∈ {0, 1} (i ∈ I), define the set

This set specifies the sites for the facilities that enable the follower seize the client j. Using the variables
defined above, the corresponding two-level program is written as follows: find

subject to

where (x), (x) is the optimal solution of the follower problem

subject to

The total profit of the leader is used as the objective function. The set of feasible solutions is described using
the follower problem. The vector xi (i ∈ I) and the sets Ij(x) (j ∈ J) in the follower problem are assumed to
be known. No efficient methods for solving this problem are presently known. The first steps in this direc-
tion were made in [13], where an exact implicit enumeration method was proposed. In [14], a particular case
in which the follower opens a single facility is examined.

In the follower problem, we assumed that it does not open its facilities at the locations where there is a
facility of the leader—this is the condition S0 ∩ S1 = . This constraint may be removed. If the constraint
yi + xi ≤ 1 (i ∈ I) is removed from the follower problem, its optimal solution does not change. It is unfavor-
able for the follower to open its facilities at the sites where there is a leader’s facility. However, this situation
can change if we set Ij(x) = {i ∈ I |gij ≤ minl ∈ I(glj |xl = 1)} for j ∈ J. In this case, the leader looses a client if
the follower opens an equally profitable facility as the leader. Here, we have the model with inquisitive cli-
ents that are attracted by a new facility other conditions being equal. A survey of various strategies of the
client behavior in competitive location models can be found in [15].

Let us show how the two-level programming problem stated above relates to pseudo-Boolean functions.
Note that  =  – ). Then, the problem can be written as follows: find

u j

1,
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⎨
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=
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subject to

where (xi) is the optimal solution of the follower problem

subject to

Eliminating the constant from the follower’s objective function, we obtain a two-level program for the
pseudo-Boolean function (1 – yi).

Let us show how the integer linear programming techniques can be used to obtain a family of upper
bounds on the optimal value of the leader’s objective function and, respectively, a family of lower bounds
on the optimal value of the follower’s objective function. The main idea underlying the construction of such
bounds is as follows. We add an additional constraint to the follower problem. As a result, the optimal value
in the follower problem cannot increase, and the optimal value in the leader problem cannot decrease. If the
additional constraint allows us to reduce the original two-level program to an integer linear program, we
obtain the desired bound. The problem is to find a constraint that possesses the desired properties.

Assume that the follower is guided by the following rule when choosing the sites for its facilities. It
orders the possible sites of facilities using a certain criterion. The ordering is performed before solving the
problem and is brought to the leader’s notice. As soon as the leader announces its decision, the follower
opens its facilities at the sites that were not occupied by the leader using the order established earlier. This
strategy does not guarantee the optimal solution for the follower, and, therefore, yields a lower bound on its
optimum. This bound depends on the ordering. Using various orderings, we obtain different lower bounds.
Therefore, we obtain a family of m! lower bounds for the follower or upper bounds on the leader’s optimal
value.

Now, we demonstrate how the problem subject to the constraint specified above can be reduced to an
integer linear program. Without loss of generality, we assume that the possible facility locations are already
ordered according to the follower’s criterion. The first facility i = 1 is the most preferable for the follower
and the last facility i = m is the less preferable. Then, for the chosen xi (i ∈ I), the follower’s behavior is
unambiguously determined by the following system of constraints:

The last inequality forbids the follower to open a facility at the location k if no facilities were opened by the
leader or by the follower at the sites with smaller indexes. Define the additional variables

Given xi and yi, the variables zjk are uniquely determined using the following system of constraints:

xi
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The first equality requires that each client be served by a leader’s or follower’s facility. The second constraint
allows the clients to be served only by open facilities. The last inequality establishes a priority in choosing
the facilities for serving the clients. Namely, the client is served by the most preferable facility among the
leader’s and the follower’s facilities. Moreover, this constraint is stronger than the first constraint in the pre-
ceding system because zjk +  is not greater than unity.

For the given zjk, xi and yi, the variables uj are uniquely determined by the following system of constraints:

The first inequality requires that the client j be served by the leader if zjk = 1 and yk = 0. If zjk = 1 and yk = 1,
the second inequality requires that this client be served by the follower.

Therefore, after xi (i ∈ I) are chosen, yi (i ∈ I), zjk (j ∈ J, k ∈ I), and uj (j ∈ J) are determined uniquely.
The optimal values of all the variables are determined by the following problem: find

subject to

 k, i ∈ I

 j ∈ J

 j ∈ J, k ∈ I

 j ∈ J, k ∈ I

 j ∈ J, k ∈ I

Let ( , , , ) be the optimal solution of this problem. It yields an upper bound on the leader’s opti-
mum. A complete or partial linear relaxation of this problem also yields an upper bound. To obtain a lower
bound, it is sufficient to solve the follower problem for the given . Other approaches to finding lower
bounds and a comparison of those approaches can be found in [16, 17]. Thus, we obtain an approximate
solution of the original two-level program with an a posteriori estimate of accuracy.

4. A GAME MODEL OF FACILITY LOCATION

Consider the situation when p companies simultaneously open their facilities for serving clients. The
goal of each company (player) is to maximize its own profit. We assume that the players make decisions
independently of each other, do not form coalitions, and pursue only their selfish goals. For the simplicity
of the presentation, we assume that every player opens no more than one facility although the reasoning
below can be extended for the case of an arbitrary number of facilities.
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Let rj be the maximum price the client j agrees to pay for the product. If the players wanted to cooperate
to get the maximum profit, their optimal strategy could be found by solving the problem

subject to

xi , xij ∈ {0, 1}, i ∈ I, j ∈ J.

If the first inequality turns into an equality for all j ∈ J, then each client pays the maximum admissible price,
and the entire profit goes to the players.

Consider the situation when the players act independently of each other. Each of them can open a facility
at any location belonging to the set I. The expenses of the kth player for producing and delivering the prod-

ucts are given by the matrix  (j ∈ J). Without loss of generality, we may assume that  ≤ rj for j ∈ J.

Otherwise, we set  = rj, and the player gets no profit for servicing this client.

Suppose that the players opened the facilities i1, …, ip. What is the price qj of their products for the
client j? Denote by cj the minimal total cost of production and delivery for servicing this client by the open
facilities:

The price qj cannot be less than cj because it is unprofitable to supply the goods at such a low price. Assume
that all the players offered the price qj = rj. Then, it is of no importance for the client which vendor supplies
the products. Since every player wants to be a supplier, they start reducing their prices. Let i( j ) =

argmin{ , …, } and  be the second minimal element among , …, . The price reduction will

stop at  when the player i( j) becomes the only one for which the service of the client j is still profitable.
It is little sense in reducing the price further. On the other hand, it is unreasonable to raise the price because

a competitor can appear for which the service of this client is also profitable. Therefore, we have qj =  for

j ∈ J. If cj =  for a certain j ∈ J, then qj = cj, and none of the players gains profit by servicing this client.

When the players had the common interests, they maintained the price qj at the level rj and grabbed the

entire profit. Now, qj = , and the profit rj – cj is divided between the supplier i( j), which gains qj – cj, and
the client, which saves rj – qj. Denote by Γk the set of clients served by the kth player for the given choice
i1, …, ip. Then, the profit of the kth player is

the total savings of the clients is

and the total profit of the players and savings of the clients is

The solution (i1, …, ip) is called a Nash equilibrium or an equilibrium solution if none of the players can
increase its own profit when the other players do not change their choices. A solution is said to be optimal
if µ(i1, …, ip) has the maximum possible value. Indeed, this solution is the best one for the community

max r j cij–( )xij
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because it gives the maximum effect from the facility location and product manufacturing. Below, we show
that any optimal solution is an equilibrium one but not every equilibrium solution is optimal. In [18], the
concept of the price of anarchy is introduced. This is the ratio of the optimal solution to the worst solution
among the Nash equilibriums. It is known (see [19]) that the price of anarchy in this game does not exceed
two. However, the problem of the complexity of finding equilibrium solutions remains open. It is not clear
whether at least one equilibrium solution can be found in a time that polynomially depends on the length of
the initial data.

Consider the optimization problem

subject to

where the variables  and  have the following meaning:

The objective function of this problem is interpreted as the production and delivery costs of the players. The
first constraint requires all the clients to be served. The second constraint allows the clients to be served only
by open facilities. The last constraint allows each player to open only one facility.

Note that, in this problem, several players may open their facilities at the same place. For that reason,
this statement is close to the p-median problem (see [20]) but not identical to it. We call it the p-median game

or PMG. Let ( , ) be a feasible solution of this problem and, for the given , the quantities  deter-

mine the optimal assignment of the clients to the open facilities. In other words, we assume that  are

determined by the variables , and the solution can be specified using only these variables. Then, the prob-
lem can be written as follows: find

subject to

 ∈ {0, 1}, k = 1, 2, …, p, i ∈ I.

Let ( ) be a feasible solution of the problem. By the neighborhood Swap(x), we mean the set of the feasible

solutions that can be obtained from ( ) by choosing a certain k and replacing the facility of this player by

min cij
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any other facility. A local minimum for this neighborhood is defined as a solution for which the value of the
objective function does not exceed the value of the objective function on any neighboring solution.

Lemma 2 (see [21, 22]). There is a one-to-one correspondence between the local minima of the PMG
and the equilibrium solutions.

Proof. Let (i1, …, ip) be a solution. We associate with it the solution ( ) defined as follows:  = 1 if

i = ik and  = 0, otherwise. We show that this solution is a local minimum if and only if (i1, …, ip) is an
equilibrium solution. To verify this fact, it is sufficient to show that, when the kth player relocates its facility,
the change in the player’s profit is equal to the change of the objective function in the PMG when the solu-

tion ( ) is replaced by the corresponding neighboring solution.

Suppose that the player k moved its facility ik to the site l and the new set of its clients  does not overlap

with the set Γk. For j ∈ , the profit of this player gained by servicing this client is cj –  ≥ 0. This is
identical to the change of the jth term of the objective function of the PMG when a solution is changed for
an adjacent one:

For j ∈ Γk, the profit of the player was qj – cj ≥ 0; now, it looses this profit. This is exactly equal to the increase
of the jth term of the objective function of the PMG. Therefore, the relocation of its facility by the kth player

results in the change of its own profit from  – cj) to  – ), and this is exactly equal to

the change in the objective function of the PMG. This completes the proof of Lemma 2.
Therefore, we see that finding equilibrium solutions is closely related with the problem of finding local

minima. We consider this problem in more detail. First, recall the main definitions (see [23, 24]).
Definition 1. An optimization problem (OP) is defined by the following set of objects: 〈�, Sol, F, goal〉,

where � is the set of inputs, Sol is the function that assigns a set of feasible solutions Sol(x) to each input x
∈ �, F is the function that determines the weight F(s, x) of the feasible solution s for the input x, goal ∈
{min, max} indicates whether the problem is a maximization or a minimization one.

In the optimization problem, we want to find an optimal solution for the given input x. 
Below, we consider only minimization problems.
Definition 2. A local search problem is defined by the pair Π = (OP, N), where OP is an optimization

problem and N is a neighborhood function that assigns a set N(x, s) ⊆ Sol(x) of neighboring solutions to
every feasible solution s for the input x. The local search problem is to find a local minimum for the given
input x. 

Definition 3. The local search problem Π belongs to the class PLS if there are three polynomial-time
algorithms A, B, and C, and a polynomial q such that the following conditions are satisfied.

1. The algorithm A determines if an arbitrary given string x is an input of the problem. If x ∈ �, then the
algorithm finds a feasible solution of the OP.

2. For any input x ∈ � of the problem and any string s, the algorithm B determines if s is a feasible solu-
tion. If s ∈ Sol(x), then this algorithm finds the value of the objective function F(s, x) in polynomial time.

3. For any input x ∈ � and any solution s ∈ Sol(x), the algorithm C determines if s is a local minimum.
If it is not, the algorithm finds a neighboring solution s' ∈ N(x, s) with a lower value of the objective function.

4. For any input x ∈ �, the length of any feasible solution s ∈ Sol(x) is polynomially bounded by the
length of the problem’s input; that is, |s | ≤ q(|x |). 

It is easy to verify that the local search problem for a PMG with the neighborhood Swap belongs to the
class PLS.

Definition 4. Let Π1 and Π2 be two local search problems. The problem Π1 is PLS-reducible to the prob-
lem Π2 if there exist two polynomial-time computable functions h and g such that

1. given an arbitrary input x of Π1, the function h produces an input h(x) of Π2;
2. given an arbitrary solution s for the input h(x), the function g produces a solution g(s, x) for the input x;
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3. if x ∈ Π1 and s is a local minimum for the input h(x) ∈ Π2, then g(s, x) is a local minimum for the input x. 

The problem Π in the class PLS is said to be PLS-complete if any problem in this class can be reduced
to it. Examples of PLS-complete problems can be found in [24]. In this paper, we show that the local min-
imization for the PMG with the neighborhood Swap is a PLS-complete problem; i.e., it is the most difficult
problem in this class. Moreover, we obtain an exponential lower bound on the number of steps in the worst
case for the local improvement algorithms. This bound is independent of the pivoting rule; i.e., it is inde-
pendent of the method used to find the best neighboring solution in the neighborhood; however, it does not
exclude the possibility to find a local optimum (Nash equilibrium) in polynomial time using other algo-
rithms.

Definition 5. The transition graph TGΠ(x) for the input x of the problem Π is defined as the directed
graph with one vertex for each feasible solution of the problem. Two nodes are connected by an arc (s, s') if
s' is a neighboring solution for s and F(s, x) > F(s', x). The height of the vertex s is the length of the shortest
path in the graph TGΠ(x) from the vertex to the sink, that is, to the local minimum. The height of TGΠ(x) is
the maximum height of its vertices. 

The height of a vertex is essentially a lower bound on the number of steps of the local improvement algo-
rithm independent of the pivoting rule. Therefore, an algorithm requires an exponential number of steps if
and only if there are the initial data of the problem for which the height of the transition graph is an expo-
nential function of the length of the initial data.

Definition 6. Suppose that the problem Π1 is PLS reducible to the problem Π2 and h and g are the cor-
responding functions. The reducibility is said to be tight if, for any input x of Π1, there exists a subset R of
feasible solutions for the input y = h(x) of Π2 such that the following conditions are satisfied:

1. R contains all the local minima for the input y.
2. There exists a polynomial-time algorithm that, for each solution p for the input x, finds a solution q ∈ R for

the input y such that g(q, x) = p.

3. Let the transition graph (y) contain a directed path from the vertex q ∈ R to the vertex q' ∈ R
such that it does not contain intermediate vertices from R, and let p = g(q, x) and p' = g(q', x) be the corre-
sponding solutions for the input x. Then, p = p' or the transition graph (x) contains the arc leading from
p to p'. 

The problem Π from the class PLS is said to be tightly complete if all the problems in this class are
tightly reducible to it. It is known (see [25]) that the following problem on coloring the graph vertices in two
colors is tightly complete. Let an undirected graph G = (V, E) with the weights we, e ∈ E on its edges be
given. Any coloring of the graph vertices in two colors is a feasible solution of this problem; this is a function
c : V  {0, 1}. The total weight of the edges of the same color is the objective function. The neighborhood
Flip consists of all the colorings that differ from the given coloring in the color of exactly one vertex. The
problem is to find a coloring that provides a local minimum in the neighborhood Flip.

Theorem 4. The Flip-minimal coloring problem tightly reduces to the local search problem (PMG,
Swap).

Proof. Given the graph, we construct the initial data of the PMG problem. Set I = {1, 2, …, 2 |V |}, J =
{1, 2, …, |V | + 2 |E |}, p = |V |, and W =  + 1. To every player, we assign the same matrix cij as
follows.

To each vertex v ∈ V, we assign two rows iv and  and a column jv . To each edge e = ( j1, j2) ∈ E, we
assign two columns j1(e) and j2(e) ∈ J. For jv = 1, 2, …, |V |, we set

For e = ( j1, j2) ∈ E and we ≥ 0, we set

TGΠ2

TGΠ1

wee E∈∑

iv'

ci jv

0 if i = iv( ) i = iv'( ),∨
W , otherwise.⎩
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If we < 0, we set

The structure of the matrix (cij) is as follows:

The proposed structure defines a polynomially computable function h in Definition 4. The function g is

defined as follows. Let ( ) be a feasible solution of the PMG problem. Set

Let us verify that cx(v) is a local minimum with respect to the neighborhood Flip if and only if ( ) is a

local minimum for Swap. Note that any local minimum ( ) possesses the following property: for any v ∈ V,

there exists a unique number k such that  +  = 1. First, we show that there are no vertices v ∈ V such

that  +  = 1 and k1 ≠ k2. Indeed, assume that, for a certain v ∈ V, there are such indexes. Since p = |V|,

there exists a vertex v0 ∈ V such that  = 0 for all t = 1, 2, …, p. Construct a new solution  that differs

from the preceding solution only in the components (k1, ) and (k1, iv). Set  = 1 and  = 0. This solution

is a neighbor of the original one, and it has a smaller value of the objective function. Indeed, since  =
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 = 0, the term with the index  in the objective function of the PMG equals W. Setting  = 1, we

obtain a decrease of the objective function by W. The change of  = 1 by  = 0 cannot lead to the increase

of the objective function because  = 1. The cases  =  = 1 and  =  = 1 are analyzed similarly.

Therefore, if ( ) is a local minimum for the neighborhood Swap, there is a unique index k(v) for each

vertex v ∈ V such that  +  = 1. We show that cx(v) is a local minimum for the neighborhood Flip.
Assume that the edge e ∈ E is incident to some vertices of the same color. Consider two cases.

1. Let we ≥ 0. For the edge e = ( j1(e), j2(e)), find the rows i1 and i2 in the matrix ( ) corresponding to

the vertices j1(e) and j2(e). Let k1 = k( j1(e)) and k2 = k( j2(e)). If  =  = 1, then  =  = 0, and the
term for j = j1(e) in the objective function vanishes; the term for j = j2(e) is we; that is, the weight we is taken

into account both in the coloring problem and in the PMG. If  =  = 0, then  =  = 1, and the term
for j = j1(e) in the objective function is we; the term for j = j2(e) vanishes. Therefore, we arrive at the same
conclusion.

2. Let we < 0. If  =  = 1, then both terms in the objective function are we/2, which sums to we. If

 =  = 1, we again have we/2 + we/2 = we.

Now, consider an edge connecting two differently colored vertices. Let  = 1 and  = 0. If we ≥ 0,
then the terms for j = j1(e) and j = j2(e) vanish, and the weight of this edge is not included in the objective
function. If we < 0, then the term for j = j1(e) is we/2 and the term for j = j2(e) is –we/2, which sums to zero.

Therefore, the values of the objective functions on the solutions ( ) and cx(v) are identical.

Assume that the solution cx(v) is not a local minimum. Then, there exists a vertex v ∈ V such that the

change of its color results in the decrease of the objective function. In this case, the solution ( ) is a not
local minimum for the neighborhood Swap because the change of the color of the vertex v corresponds to
the change of variables

with the same change in the objective function. Therefore, cx(v) is a local minimum, and the reduction
described above satisfies Definition 4.

Let us verify that this reduction is tight. As the set R, we use all the feasible solutions ( ) possessing

the property  +  = 1 for any v ∈ V. We have already proved that this set contains all the local min-
ima of the PMG; therefore, Condition 1 in Definition 6 is satisfied. Let us verify Condition 2. Let c(v) be
an arbitrary coloring of the vertices in two colors. For the kth player, find a vertex v such that iv = k and set

For k ≠ iv, set  =  = 0. We obtain a one-to-one correspondence between the colorings and the elements
of the set R.

Let us check the last condition. Note that the transition graph of the PMG does not contain arcs of the
form (q1, q2), where q1 ∈ R and q2 ∉ R, because the value of the objective function for q2 is always greater
than that for q1. In other words, any path that begins and ends in R entirely belongs to R. A path without
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intermediate vertices in R can only be an arc of the form (q1, q2), where q1, q2 ∈ R. However, such an arc
has a corresponding arc in the transition graph of the coloring problem. This completes the proof of the the-
orem.

Consider the complexity of obtaining equilibrium solutions using the following iterative algorithm. Let

( ) be not an equilibrium solution; that is, there is a player (or several players) that can increase its own
profit by relocating its facility. One step of this algorithm consists in finding such a player and choosing a
new location for its facility that increases its own profit. The procedure of selecting a new location can be
arbitrary. Our aim is to estimate the number of steps of such an iterative algorithm in the worst case for any
selection procedure.

Corollary 1. In the worst case, the iterative algorithm requires an exponential number of steps for finding
an equilibrium solution with any procedure used to select a player and a better facility for it. 

The validity of this corollary follows from the tight PLS completeness of the local search problem (PMG,
Swap) and from the existence of an exponentially high problem in the class PLS (see [24]). The estimate
remains exponential when any rule for selecting a player and a better facility for it (deterministic, probabi-
listic, or any other arbitrarily complex rule) is used.

In the problem of finding equilibrium solutions, we want to find at least one (any) equilibrium solution.
However, if the players' decisions are already known and they are ready to change them only if the profit
increases, another, more practical problem arises: find an equilibrium solution that can be obtained by an
iterative local improvement algorithm from the given initial position. In other words, a starting vertex is
given in the transition graph. It is required to find a sink that is reachable from the starting vertex using a
directed path. It turns out that this problem is much more difficult than the preceding one.

Corollary 2. Finding an equilibrium solution for the given initial position of the players is a PSPACE-
complete problem. 

Proof. We prove that the problem under examination belongs to the class PSPACE. It follows from the
definition of the class PLS that the length of any solution is bounded by a polynomial the length of the input.
Since the iterative algorithm does not require that all the intermediate players' positions be stored and the
best neighboring solution can be found in a polynomial time, the required amount of memory is also
bounded by a polynomial depending on the length of the input data. Therefore, the problem belongs to the
class PSPACE.

It is known (see [24]) that the class PLS includes local search problems with a fixed starting point that
are PSPACE-complete. The problem of coloring graph vertices with the neighborhood Flip is one of them.
The tight reducibility established in Theorem 4 implies the polynomial reducibility of the corresponding
problems with fixed initial solutions (see [24]). Therefore, finding an equilibrium solution that is reachable
from the given initial position of the players is a PSPACE-complete problem. The theorem is proved.

Now, assume that each player may open several facilities. In this case, an equilibrium solution is defined
as a solution in which none of the players can increase its own profit by changing its decision for any other.
For this case, it is easy to write the corresponding optimization problem and determine an appropriate neigh-
borhood. The tight completeness of this problem with all the ensuing consequences was proved in [21].

CONCLUSIONS

In this paper, we considered two classes of competitive location models. The first class leads to discrete
two-level models for unequal players. Even the construction of a feasible solution in this problem requires
that the follower problem be exactly solved, which is known to be the NP-hard maximum coverage problem.
A novel method for constructing a family of upper and lower bounds on the optimum for the leader is pro-
posed. This family has an exponential cardinality. It enables one to obtain an approximate solution with an
a posteriori estimate of the accuracy for the original two-level problem. The analysis of the quality of such
bounds and of the complexity of their derivation requires computational experiments. We believe that this
direction of research is extremely important because the entire family cannot be examined and the search
for the best element can be as difficult as the original problem.

For the second class of models, the relationship between the equilibrium solutions and the local optima
is revealed, and the tight PLS completeness of the problem of finding such solutions is proved. As a conse-
quence, we conclude that the standard local improvement algorithm with an arbitrary pivoting rule requires
an exponential number of steps in the worst case. Finding an equilibrium solution for the given initial posi-
tion of the players turns out to be a PSPACE-complete problem. Nevertheless, question of the complexity
of finding equilibrium solutions and the local optima remains open. If one succeeds in proving that no poly-
nomial algorithms for finding equilibrium solutions exist, this will imply that P ≠ NP (see [20]).

xi
k



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 49     No. 6      2009

COMPETITIVE FACILITY LOCATION MODELS 1009

ACKNOWLEDGMENTS

This work was supported by the Analytical Department Targeted Program no. 2.1.1/3235.

REFERENCES

1. Z. Drezner, K. Klamroth, A. Schobel, and G. Wesolowsky, “The Weber Problem,” in Facility Location: Applica-
tions and Theory (Springer, Berlin, 2004), pp. 1–36.

2. V. L. Beresnev, Discrete Location Problems and Polynomials of Boolean Variables (Institut matematiki, SO RAN,
Novosibirsk, 2005) [in Russian].

3. Y. Chan, Location, Transport and Land-Use. Modelling Spatial-Temporal Information (Springer, Berlin, 2005).

4. V. R. Khachaturov, V. E. Veselovskii, A. V. Zlotov, et al., Combinatorial Methods and Algorithms for Solving
Large-Scale Discrete Optimization Problems (Nauka, Moscow, 2000) [in Russian].

5. H. A. Eiselt and C.-L. Sandblom, Decision Analysis, Location Models, and Scheduling Problems (Springer, Berlin,
2004).

6. Discrete Location Theory, Ed. By P. B. Mirchandani, and R. L. Francis (Wiley, Chichester, 1990).

7. V. Beresnev, E. Kh. Gimadi, and V. T. Dement’ev, Extremal Standardization Problems (Nauka, Novosibirsk, 1978)
[in Russian].

8. B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, 3rd ed. (Springer, Berlin, 2005).

9. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency (Springer, Berlin, 2003).

10. J. Krarup and P. M. Pruzan, “The Simple Plant Location Problem: Survey and Synthesis,” European J. Operat. Res.
12, 36–81 (1983).

11. E. V. Alekseeva and Yu. A. Kochetov, “Genetic Local Search for the p-Median Problem with Client’s Preferences,”
Diskretnyi Analiz Issl. Operatsii, Ser. 2, 14 (1), 3–31 (2007).

12. L. E. Gorbachevskaya, Polynomially Solvable and NP-Hard Standardization Problems, Candidate’s Dissertation
in Mathematics and Physics (IM SO RAN, Novosibirsk, 1998).

13. C. M. C. Rodriquez and J. A. M. Perez, “Multiple Voting Location Problems,” European J. Operat. Res. 191, 437–
453 (2008).

14. F. Plastria and L. Vanhaverbeke, “Discrete Models for Competitive Location with Foresight,” Comput. Operat.
Res. 35, 683–700 (2008).

15. T. Drezner and H. A. Eiselt, “Consumers in Competitive Location Models,” in Facility Location: Applications and
Theory (Springer, Berlin, 2004), pp. 151–178.

16. E. V. Alekseeva and N. A. Kochetova, “Upper and Lower Bounds for the Competitive p-Median Problem,” in Trudy
XIV Baikal’skoi mezhdunarodnoi shkoly-seminara “Metody optimizatsii i ikh prilozheniya, Severobaikal’sk,”
2008, Vol. 1, pp. 563–569 [in Russian].

17. E. V. Alekseeva and A. V. Orlov, “A Genetic Algorithm for the Competitive p-Median Problem,” in Trudy XIV
Baikal’skoi mezhdunarodnoi shkoly-seminara “Metody optimizatsii i ikh prilozheniya, Severobaikal’sk,” 2008,
Vol. 1, pp. 570–576 [in Russian].

18. E. Koutsoupias and C. Papadimitriou, “Worst-Case Equilibria,” in Proc. XVI Ann. Symposium on the Theory and
Aspects of Computer Science, Trier, Germany, 1999 pp. 404–413.

19. A. Vetta, “Nash Equilibria in Competitive Societies, with Applications to Facility Location, Traffic Routing, and
Auctions,” in Proc. XLIII Ann. IEEE Symposium on the Foundations of Computer Science, Vancouver, Canada,
2002 pp. 416–425.

20. Yu. A. Kochetov, M. G. Pashchenko, and A. V. Plyasunov, “On the Complexity of Local Search in the p-Median
Problem,” Diskretnyi Analiz Issl. Operatsii, Ser. 2, 12 (2), 44–71 (2005).

21. Yu. A. Kochetov, “Nash Equilibria in Game Location Models,” in Trudy XIV Baikal’skoi mezhdunarodnoi shkoly-
seminara “Metody optimizatsii i ikh prilozheniya, Severobaikal’sk, 2008, Vol. 1, pp. 119–127 [in Russian].

22. E. Tardos and T. Wexler, “Network Formation Games and the Potential Function Method” in Algorithmic Game
Theory (Univ. Press, Cambridge, 2007), pp. 487–516.

23. Yu. A. Kochetov, “Computational Bounds for Local Search in Combinatorial Optimization,” Zh. Vychisl. Mat.
Mat. Fiz. 48 (5), 747–764 (2008) [Comput. Math. Math. Phys. 747–763 48, (2008)].

24. M. Yannakakis, “Computational Complexity,” in Local Search in Combinatorial Optimization (Wiley, Chichester,
1997), pp. 19–55.

25. T. Vredeveld and J. K. Lenstra, “On Local Search for the Generalized Graph Coloring Problem,” Operat. Res. Letts
31 (4), 28–34 (2003). 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


