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Abstract This paper provides a new exact iterative method for the following problem. Two
decision makers, a leader and a follower, compete to attract customers from a given market.
The leader opens p facilities, anticipating that the follower will react to the decision by open-
ing r facilities. Each customer patronizes the closest opened facility. The goal is to find p
facilities for the leader tomaximize hismarket share. It is known that this problem is�P

2 -hard
and can be presented as an integer linear program with a large number of constraints. Based
on this representation, we design the new iterative exact method. A local search algorithm is
used at each iteration to find a feasible solution for a system of constraints. Computational
results and comparison with other exact methods show that the new method can be consid-
ered as one of the alternative approaches among the most advanced exact methods for the
problem.
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1 Introduction

In this paper we study one of the competitive facility location problems with two decision
makers called a leader and a follower. They make a decision according to their level in a
hierarchy. The leader is at the upper level and the follower is at the lower level. They compete
to service customers from a given market by opening facilities. At first, the leader decides
where to locate p facilities taking into account the follower’s reaction. Later on, the follower
opens r facilities. Each customer patronizes the nearest opened facility. In case of ties, the
leader’s facility is preferred. Each customer has a weight (purchasing power or demand). We
assume that the weights are essential, that is goods must be consumed, and each customer
visits one facility to get them. The weight of each customer is fixed and does not depend on
how far from, or close to a facility, the customer is. The leader and the follower obtain a profit
from serving the customer which coincides with the weight of the customer. Each decision
maker maximizes his own profit or market share. The problem is to define p facilities which
should be opened by the leader to maximize his market share. We assume that the number
of customers is finite and facilities can be opened at the finite number of sites.

The history of the competitive location models is originated from the Hotelling work
[15]. The formalization of this class of problems and fundamental complexity results were
established by Hakimi [14]. Later the different groups of scientists studied the complexity
status for some particular cases of the (r |p)-centroid problem [12,16,22,23,28]. Thus, this
problem is a back-breaker due to its Σ P

2 -completeness even in the case of the Euclidean
distances between customers and facilities. Nevertheless, some exact approaches based on
enumeration ideas have been developed taking into account the combinatorial nature of the
problem [10,13]. Due to the laboriousness of these approaches the new appeared heuristics
based on local search procedures have became more prominent techniques. They have been
applied successfully for some location problems. Moreover, they have opened a new wide
class of algorithms to tackle bi-level mixed integer programming problems. The readers
can find the heuristical approaches for the discrete (r |p)-centroid problem based on tabu
search [3,6,27], genetic algorithm [3], particle swarm optimization [9], p-median solution
heuristics [2]. Before developing a heuristic, one should remember that many heuristics
are based on the fact that the objective function of the underlying problem is polynomially
computable. This concernsmanymetaheuristics such as hill climbing, variable neighborhood
search, tabu search, simulated annealing, genetic algorithms and others. For the discrete (r |p)-
centroid problem, in order to calculate the leader’s objective function, we have to solve the
follower’s problem which is NP-hard in the strong sense. Hence, we could not immediately
apply these heuristic approaches. An approach based on using metaheuristics at each level
might find only so called semi-feasible solutions. To overcome this obstacle, the hybridization
of heuristics at the upper level with exact approaches at the lower level has been proposed
in [3,7,11].

In this paper we present a method which is an improved version of the exact iterative
method previously developed in [3]. We use a new single level reformulation of the discrete
(r |p)-centroid problem suggested by Roboredo and Pessoa [25]. This reformulation has a
polynomial number of variables and exponentially many constraints. If we extract a small
family of the constraints (the follower strategies), we get an upper bound for the global
maximum. Our method iteratively increases the family and terminates when the upper bound
coincides with a lower bound. At each iteration we have a family of constraints and try to
find the best leader’s solution against this family. A local search heuristics is used to this end.
To accelerate the search, we adapt the data structures developed for the p-median problem
by Resende and Werneck [26]. The method is able to solve optimally the instances with

123



J Glob Optim (2015) 63:445–460 447

p = r ∈ {5, 10, 15} for the Euclidean benchmarks and produces near optimal solutions for
the case p = r = 20. Moreover, for the first time we present computational results for a
classUniform. It is more difficult class than the class Euclidean for the uncapacitated facility
location problem [19]. We confirm the difficulty of this class for the discrete (r |p)-centroid
problem.

The paper is organized as follows. In Sect. 2, we present a bi-level mixed integer formula-
tion of the problem. It demonstrates the nature of the problem and allows us to define clearly
the conceptions of optimal and feasible solutions. In Sect. 3, a single-level mixed integer
linear reformulation is presented. We discuss the complexity status of this problem for the
small number of constraints. In Sect. 4, we formulate a feasibility problem which we solve
instead of the full single-level reformulation and develop a local search algorithm with a
randomized neighborhood. In Sect. 5, a main framework of the method is presented. Finally,
comparative computational results and conclusions are discussed in Sects. 6 and 7.

2 Problem formulation

Let I be a set of m potential facility locations and J be a set of n customers’ locations. Each
element of matrix (di j ) defines the distance between customer j ∈ J and facility i ∈ I . Each
component of positive vector (w j ) defines the weight of customers j .

Let X and Y be the sets of locations occupied by the leader and the follower, respectively.
Denote as d( j, X) and d( j, Y ) the distance between customer j and its nearest facility from
X and Y , respectively. Customer j prefers Y over X if d( j, Y ) < d( j, X) and prefers X over
Y otherwise. Let J (Y ≺ X) be a set of customers that prefer Y over X . The total weight
of the customers that prefer Y to X is denoted as W (Y ≺ X). Therefore, W (Y ≺ X) =∑

j∈J (Y≺X) w j .

For each X , the follower’s strategy is a set of others locations Y that provides the follower
with the maximal market share. This market share, denoted as W ∗(X), is a solution of the
following problem:

W ∗(X) = max
Y,|Y |=r

W (Y ≺ X).

This problem is called the follower’s problem. The leader is interested in a strategy that
maximizes his (or her) market share or, in other words, minimizes the follower’s market
share. This strategy denoted as X∗ is a solution to the following problem:

W ∗(X∗) = min
X,|X |=p

W ∗(X).

This problem is called the leader’s problem. Once strategy X∗ is found, the leader’s market
share is calculated as

∑
j∈J w j − W ∗(X∗). In the (r |p)-centroid problem we need to find

X∗ and the corresponded leader’s market share [4,10,11].
Now we present a 0–1 bi-level reformulation of the problem that we use in solving

approach. Let us introduce the decision variables:

xi =
{
1 if facility i is opened by the leader,
0 otherwise,

yi =
{
1 if facility i is opened by the follower,
0 otherwise,

z j =
{
1 if customer j is served by the leader,
0 if customer j is served by the follower.
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Denote x = (xi ), y = (yi ), i ∈ I , and z = (z j ), j ∈ J , for short. Remember that each
customer is served either by the leader or the follower. Define the set of facilities I j (x)which
allows the follower to capture customer j if the leader uses a solution x :

I j (x) =
{
i ∈ I | di j < min

l∈I | xl=1
dl j

}
, j ∈ J.

Note that we deal with conservative customers [14]. It means that if a customer has the same
distances to the closest leader’s and the closest follower’s facilities, he (or she) prefers the
leader’s facility. Hence, the follower never opens a facility at the same site where the leader
has already occupied. Now the problem can be rewritten as follows [3,20]:

max
x

∑

j∈J

w j z
∗
j (1)

subject to
∑

i∈I
xi = p, (2)

xi ∈ {0, 1}, i ∈ I, (3)

where z∗ = z(x) is a component of the optimal solution to the follower’s problem:

max
y, z

∑

j∈J

w j (1 − z j ) (4)

subject to
∑

i∈I
yi = r, (5)

1 − z j ≤
∑

i∈I j (x)
yi , j ∈ J, (6)

xi + yi ≤ 1, i ∈ I, (7)

yi , z j ∈ {0, 1}, i ∈ I, j ∈ J. (8)

The objective function (1) defines the market share of the leader. Equation (2) guarantees
that the leader opens exactly p facilities. The objective function (4) defines the market
share of the follower. Equation (5) guarantees that the follower opens exactly r facilities.
Constraints (6) determine the market shares of the decision makers. If the follower has no
facility in the set I j (x), then customer j is served by the leader. Constraints (7) guarantee
that each facility can be opened by at most one decision maker. Actually, these constraints
are redundant. Nevertheless, we use them to reduce the feasible domain of the follower’s
problem. Note that we can drop the integrality constraints for the variables z. The opti-
mal value is not changed in this case. Thus, the formulation (1)–(8) can be rewritten as a
mixed integer bi-level program. Note that the follower problem is linear for each leader solu-
tion x and we can use, for example, CPLEX software for finding the best strategy for the
follower.

Let us remind some definitions which help to understand the nature of the bi-level problem
deeper.

Definition 1 [5] The triple (x, y, z) is called a semi-feasible solution to the bi-level prob-
lem (1)–(8) if and only if x satisfies the constraints (2)–(3) and the pair (y, z) satisfies the
constraints (5)–(8).
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Definition 2 [5] The semi-feasible solution (x, y, z) is called a feasible solution to the bi-
level problem (1)–(8) if and only if the pair (y, z) is an optimal solution to the follower’s
problem (4)–(8).

Note that semi-feasible solutions can be found in polynomial time. To find feasible solutions,
we have to solve the follower’s problem, which is NP-hard in the strong sense even for
Euclidean distances between facilities and customers [12].

For the feasible solution (x, y, z), let us denote the value of the leader’s objective function
as W (x, y, z). Note that the follower’s problem may have several optimal solutions for a
given x . As a result, the leader’s problem can be ill-posed. Fortunately, the sum of leader’s
and follower’s objective functions is

∑
j∈J w j , i.e. a constant. Thus, two feasible solutions

(x, y1, z1) and (x, y2, z2) give the same objective values for the leader and the follower. We
deal with a well-defined two players constant-sum game. Hence, we can define the optimal
solution as the best feasible solution.

Definition 3 The solution (x∗, y∗, z∗) is called an optimal solution if and only if
W (x∗, y∗, z∗) ≥ W (x, y, z) for each feasible solution (x, y, z).

In case of elastic or non-essential demands we deal with inconstant-sum game. Hence, we
should distinguish cooperative and noncooperative follower’s behaviors and modify these
definitions accurately. The readers can find the corresponded definitions in [2] and how to
work out in these cases of the competitive facility locations, for example, in [7].

3 A single-level reformulation

In spite of its complexity status, the problem admits a single level linear programming formu-
lation with polynomially many variables and exponentially many constraints. Nevertheless,
neither a polynomial formulation nor a formulation where the constraints can be separated
in polynomial time is possible unless NP = Σ P

2 .
Originally, a single-level reformulation with an exponential number of constraints and

variables was presented by Campos-Rodríguez and Moreno Pérez [8]. At that time it was the
first single-level reformulation for the discrete (r |p)-centroid problem. Alekseeva et al. [3]
presented another reformulation with an exponential number of constraints and variables.
Later on, a new improved reformulation (9)–(14) with an exponential number of constraints
and polynomially many variables was proposed by Roboredo and Pessoa [25]. This formu-
lation is important for our method. We present and discuss it here.

Suppose that the leader has opened facilities but the follower has not opened yet. Introduce
the new binary variables:

zi j =
{
1 if customer j patronizes the leader facility i,
0 otherwise,

and a positive variableW whichmeans the leader’s market share after the follower’s reaction.
LetF be the set of all possible follower’s solutions. Each y f ∈ F defines a set of r facilities
opened by the follower. For each y f we define a set of the facilities

I j (y
f ) =

{

i ∈ I | di j ≤ min
l∈I,y f

l =1
dl j

}

, j ∈ J

which allows the leader to keep the customer j if the follower uses the solution y f . The
discrete (r |p)-centroid problem can be reformulated as a single-level mixed integer linear
problem:
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max
W, x, z

W (9)

subject to
∑

i∈I
xi = p, (10)

0 ≤ zi j ≤ xi , i ∈ I, j ∈ J, (11)

∑

i∈I
zi j = 1, j ∈ J, (12)

W ≤
∑

j∈J

∑

i∈I j (y f )

w j zi j , y f ∈ F , (13)

W ≥ 0, xi , zi j ∈ {0, 1}, i ∈ I, j ∈ J. (14)

The objective in (9) is to maximize the market share of the leader. Constraint (10) indicates
as before that the leader opens p facilities. Constraints (11) ensure that the leader can serve
customers fromopened facilities only. Constraints (12) indicate that each customer patronizes
exactly one leader’s facility. Finally, constraints (13) ensure that the follower uses the best
own solution to minimize the market share for the leader. Note that we can remove the
integrality constraint for the variables (zi j ) without loss of generality.

Reformulation (9)–(14) contains a polynomial number of variables and an exponential
number of constraints. Unfortunately, it is NP-hard problem even when the follower uses
small subset of the set F .

Theorem 1 The problem (9)–(14) is NP-hard problem even when the follower uses only two
strategies from the set F .

Proof Consider the following Set partitioning problem. Given a finite set V , |V | = m, and a
positive integer weight a(i) for each element i ∈ V . Is there a partition of V into two subsets
V1 and V2, such that

∑
i∈V1 a(i) = ∑

i∈V2 a(i) = A?
We reduce this NP-hard problem to problem (9)–(14) constrained to two follower’s solu-

tions. For each element j ∈ V we introduce three customers j, j ′, and j ′′ with weights
w j ′ = w j ′′ = a j and w j = amax = maxi∈V ai . The total set of customers is J ∪ J ′ ∪ J ′′.
Each set J , J ′, and J ′′ has cardinality m. Denote J ∪ J ′ ∪ J ′′ as J . The set of candidate
facility locations is I such that I = J . The distances dik , for all i ∈ I , k ∈ J we define as
follows:

dik =
⎧
⎨

⎩

0 if i = k,
1 if i 	= k, i = j ′ or i = j ′′,
2 otherwise.

Put p = r = m and define two follower’s solutions y1 and y2:

y1i =
{
1 if i ∈ J ′
0 otherwise,

y2i =
{
1 if i ∈ J ′′
0 otherwise.

It is easy to see that the desired partition of the set V exists if and only if the leader market
share is (mamax + 3A). In this case he (or she) opens the facilities in J ′ for customers from
the V1 and in J ′′ for the customers from V2. The solutions y1 and y2 give the same market
share A to the follower. The leader has got (mamax + 3A). It is global leader’s maximum.
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If the desired partition does not exist, then one of the solutions y1 or y2 guarantees that the
follower has the market share greater than A. 
�
The case of one follower’s solution is not interesting. The leader opens facilities at the same
sites and gets the whole market if p ≥ r . In case of several follower’s solutions, the problem
is NP-hard.

4 Feasibility problem and heuristics

Let us replace the set F by a subset F and solve problem (9)–(14) with F instead of F .
The optimal solution provides an upper boundW (F) at the global maximum for the leader’s
market share. Our method iteratively increases the subset F and terminates when the upper
bound coincides with a lower bound which derived by the best found solution. Thus, the
method is exact and finite. To improve the upper bound, we apply the lifted inequalities
suggested by Roboredo and Pessoa [25].

4.1 Lifted inequalities

Themain idea of these inequalities comes from the following observation.Whenwe compute
the upper bound W (F), some of the constraints (13) make the upper bound weaker if the
leader locates a facility opened in y f . To avoid it, a function H : y f → I is defined. It gives
an alternative place for each facility opened by the follower, if the original place has already
been used by the leader. Then, in addition to the follower’s solution y f , the upper bound
takes into account the solution that replaces some facilities i such that y f

i = 1 by H(i). Now
the new family of inequalities is as follows:

W ≤
∑

j∈J

∑

i∈I j (y f )∪ Ĩ j (y f )

w j zi j , y f ∈ F, (15)

where

I j (y
f ) =

{
i ∈ I | y f

i = 0 and di j ≤ min
k∈I (dkj |y

f
k = 1)

}
,

Ĩ j (y
f ) =

{
i ∈ I | y f

i = 1 and di j ≤ min
{
min
k∈I (dkj |y

f
k = 1), dH(i) j

}}
, j ∈ J.

Set I j (y f ) contains the locations where no follower’s facility is opened for solution y f and
leader would capture customer j if he (or she) opens a facility at one of these locations. Set
Ĩ j (y f ) contains the locations where the follower has opened a facility and a facility would
keep customer j for the leader even if the follower moves the facility i to its alternative
location H(i). In other words, for each follower’s solution y f , the set I j (y f ) ∪ Ĩ j (y f )

contains the locations that allow the leader to keep customer j if the follower moves its
facility from i to the alternative location H(i).

Roboredo and Pessoa have shown that the lifted inequalities (15) are valid. For finding
some violated cuts, they have defined a separation problem. Given a fractional solution
(W̄ , x̄, z̄) that satisfies (10)–(12), and some of the constraints (15), the separation problem
is to find the follower’s solution y f ∈ F and a corresponding function H : y f → I that
minimizes the market share of the leader. But other functions might be adapted as well. To
avoid the separation problem at each step of the method, we use a static function H that is
an alternative closest site for each facility.
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4.2 Feasibility problem

Denote a lower bound for bi-level problem (1)–(8) asW ′ and consider the following feasibility
problem:

W > W ′, (16)

W ≤
∑

j∈J

∑

i∈I j (y f )∪ Ĩ j (y f )

w j zi j , y f ∈ F, (17)

∑

i∈I
xi = p, (18)

zi j ≤ xi , i ∈ I, j ∈ J, (19)
∑

i∈I
zi j = 1, j ∈ J, (20)

W ≥ 0, xi , zi j ∈ {0, 1}, i ∈ I, j ∈ J. (21)

If we have a feasible solution x(F) to this system then the leader’s a market share is greater
than W ′ when the follower reacts selecting his best strategy from the family F . In this case,
we solve follower’s problem (4)–(8) for x(F) and include the optimal solution y(F) into the
set F . Otherwise, when this problem is infeasible, W ′ is the global maximum to problem
(1)–(8). Note that the feasibility problem is easier than the optimization one because we do
not need to prove the optimality. We can apply IP solvers or heuristics for finding a feasible
solution. We use a local search procedure with a randomized neighborhood to this end.

4.3 Local search procedure for the feasibility problem

Here we describe a local search procedure to the feasibility problem. It provides us with a
new leader’s solution x(F) against the set F . We apply the randomized local search although
other meta-heuristics, for example, Variable Neighborhood Search, Simulated Annealing, or
Genetic Algorithms [17,30], can be adapted as well.

The local search procedure focuses on the leader’s variables. The basic attribute of the
local search is a neighborhood. We adapt the well-known swap neighborhood. It contains
all the leader’s solutions which can be obtained from the current solution by closing one
leader’s facility and opening another one. The size of the neighborhood is p(m− p). For each
neighboring solution we have to calculate the market share of the leader. It is time-consuming
for large F . Thus,we use randomization. This procedure independently includes each element
of the swap neighborhoodwith a fixed probability q in the randomized neighborhood denoted
Nq to prevent the local search from coming back to the previously visited solutions and
cycling.

Figure 1 shows the framework of the local search. As an initial solution at Step 1 we can
take the best solution from the previous iteration with smaller set F . At Step 2.2 we have to
compute the objective function value for each element of Nq . To reduce the running time,
in addition to randomization, we adapt the procedure developed for the p-median problem
by Resende and Werneck [26]. This procedure finds the most prominent pair of the opened-
closed facilities for a current leader’s solution and results in the best neighboring solution.Due
to the special data structures, it is significantly faster than the straightforward calculations.

Following Resende andWerneck, we define four components: gain(y f , io), loss(y f , ic),
extra(y f , io, ic) and prof i t (y f , io, ic), where io (ic) is a candidate facility for opening
(closing) in the leader’s solution. We calculate gain(y f , io) to estimate potential leader’s
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1 Choose an initial leader’s solution.
2 Repeat the following until the stopping condition is met:

2.1 Generate the randomized neighborhood Nq;
2.2 If Nq /0 then

Find a neighbor from Nq with the best market share against F
else go to Step 2.1;

2.3 Move to the best neighboring solution;
3 Return the best found leader’s solution.

Fig. 1 Local search procedure

gain from opening io and loss(y f , ic) to estimate potential leader’s losses from closing ic if
the follower uses y f . We have

prof i t
(
y f , io, ic

)
= gain

(
y f , io

)
− loss

(
y f , ic

)
+ extra

(
y f , io, ic

)
,

where extra(y f , io, ic) intends to correct the estimation due to some particular cases arising
after closing ic and opening io. The value prof i t (y f , io, ic) means the effect of opening-
closing facilities under a given the follower’s solution y f . The follower’s decision is a solution
which delivers miny f ∈F prof i t (y f , io, ic).

Resende and Werneck have shown that we can avoid calculating these four components
straightforwardly. We calculate them only once for each candidate facility and use these
values during one step of the neighborhood search.

As the stopping condition, we use the total number of iterations or inequality (16). If we
cannot find a feasible solution by the local search, we call the branch-and-bound method
from an IP solver. Our computational experiments demonstrate that the local search allows
us to decrease calling the IP solver significantly.

5 Framework of the method

Figure 2 presents the framework of the exact iterative method for bi-level problem (1)–(8). It
combines metaheuristics for the feasibility problem andmathematical programming tools for
the follower’s problem. Themain idea is to find a subset F so that the corresponded feasibility
problem becomes infeasible. To create an initial subset F , we apply the alternating heuristics
and heuristics based on the p-median solution [2]. For finding a tight lower boundW ′ at Step
1, we use the hybrid memetic algorithm [3]. The efficiency of the method strongly depends
on the size of the final set F . Ideally, if we find the set F at Step 1 that contains the reaction
of follower to the best strategy of the leader and corresponded valueW ′. Because in this case
we need to check the feasibility of the system only once. Otherwise, we have to solve the
system many times improving the set F .

1 Create an initial subset F and find a lower boundW .
2 Find a feasible solution x F to system (16)–(21).

If it is infeasible then return the best found solution and stop.
3 Solve the follower’s problem for x F and find optimal solution y F

and lower bound LB F .
4 IfW LB F thenW : LB F .
5 Include y F into the subset F and go to Step 2.

Fig. 2 The iterative exact method
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At Step 2 we apply the local search procedure for the feasibility system. If we cannot find
a feasible solution x(F), we call a branch-and-bound method, for example, CPLEX software
to check infeasibility. If the feasible solution is found, we need a corresponded follower’s
response y(F) and the leader’s market share LB(F) for this solution x(F). To this end, we
solve the follower’s problem at Step 3 exactly by the IP solver. At Step 4 we improve the
best found valueW ′ for the leader if it is possible. Finally, at Step 5, we update the set F and
continue computations from Step 2.

Let us consider a positive parameter ε and replace inequality (16) in the feasibility problem
by the following:

W > (1 + ε)W ′.

In this case our method allows us to find approximate solutions with at most ε relative gap
of the optimum. Our computational experiments presented in the next section demonstrate
that we are able to find optimal and approximate solutions within a reasonable time.

6 Computational experiments

The method has been tested and compared on the instances from the benchmark library
Discrete Location Problems [1]. This electronic library contains the test instances for the
facility location problems including the competitive ones. For all instances, customers and
facilities are at the same sites. For the discrete (r |p)-centroid problem we have two classes of
benchmarks which are differed in the way of generating of the matrix (di j ). For the first class
called Euclidean the sites are chosen in 7,000×7,000 square uniformly and the elements
of matrix (di j ) are Euclidean distances between sites i and j . For the second class called
Uniform the elements of the matrix (di j ) are chosen from (0, 10,000) interval uniformly and
d ji = di j for all j ∈ J, i ∈ I . Each class has 10 test instances. There are two cases for each
instancewith respect to the customer’s weight. In the first case, all customers are identical and
w j = 1, for all j ∈ J . In the second case, all customers are different and each weight w j is
chosen from (0, 200) interval uniformly for all j ∈ J . The size of instances is m = n = 100
and p = r ∈ {5, 10, 15, 20}.

Our experiments have been carried out on a PC Intel Xeon X5675, 3 GHz, RAM 96 Gb,
running under theWindows Server 2008 operating system.We have used CPLEX 12.3. as an
optimization solver. Below we present comparative computational results which have been
carried out on a computer with other specifications. Namely, the branch-and-cut method by
Roboredo and Pessoa [25] has been performed on a PC Pentium Intel Core 2 duo, 2.13GHz,
RAM 2Gb and used CPLEX 12.1. We are not familiar with the best way to compare these
two machines’ efficiency. Thus, without being exact, we consider that PC Intel Xeon X5675
is 1.5 times more efficient than PC Pentium Intel Core 2 duo.

The method uses matheuristics for finding strong initial solution to the leader’s problem
and a corresponding tight lower bound for the global optimum. Our method tries to improve
it and then prove its optimality. Actually, the test instances are not difficult for themetaheuris-
tics. They are able to find the optimal solutions [3,25]. However, proving of its optimality is
a burdensome problem for exact method.

At the first experiment, we have explored the influence of parameters p and r on the
total number of iterations of the method. We have considered the instances from the class
Euclidean with m = n = 50, p = r and solved them with the different values p and r .
Figure 3 shows the cardinality of the final set F that is the total number of iterations. The
problem is easy and the total number of iterations is reasonable when p and r are less than
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Fig. 3 The total number of
iterations depending on p and r ,
n = m = 50, class Euclidean

15 or greater than 17. The problem becomes hard when 15 ≤ p = r ≤ 17 and the method
needs more than one thousand follower’s solutions at the final iteration. We conclude that the
case p = r = [m/3] might be the most difficult for the method even if we have the optimal
value at the first step of the method. Checking the feasibility of the system with a large set F
is the main reason why we cannot solve the large scale instances.

Tables 1, 2, 3, 4, 5 and 6 present computational results: Tables 1, 2, 3 and 4 for class
Euclidean; Tables 5, 6 for class Uniform. In each Table the column I nstance indicates a
code name of a test instance. The column Opt contains the leader’s market share for the
optimal solution, the columns I M and BC show the total CPU time in minutes consumed
by the iterative method addressed in this paper and the branch-and-cut method by Roboredo
and Pessoa, respectively. The column 5% · Opt contains a leader’s market share with a gap
of at most 5% of the optimal value for the I M . The columns |Fopt | and |F | present the
total number of iterations consumed by the I M to prove optimality or find an approximate
solution, respectively.

Table 1 m = n = 100, p = r = 5, class Euclidean

Instance w j = 1, j ∈ J w j ∈ (0,200), j ∈ J

Opt Time (min) |Fopt | Opt Time (min) |Fopt |
I M BC IM BC

111 47 6 44.2 108 4,139 1 27.4 91

211 48 1 58.7 85 4,822 4 159.9 148

311 45 26 202.8 219 4,215 38 313.7 233

411 47 2 52.0 103 4,678 69 74.1 378

511 47 1 39.4 97 4,594 16 469.0 201

611 47 3 51.0 102 4,483 2 25.7 127

711 47 4 53.4 99 5,153 5 130.9 167

811 48 1 35.7 68 4,404 2 195.5 178

911 47 2 44.8 94 4,700 13 290.3 208

1,011 47 2 66.2 127 4,923 1 18.3 72
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Table 2 m = n = 100, p = r = 10, class Euclidean

Instance w j = 1, j ∈ J w j ∈ (0, 200), j ∈ J

Opt Time (min) |Fopt | Opt Time (min) |Fopt |
I M BC IM BC

111 50 13 38.1 485 4,361 60 170.3 678

211 49 20 78.5 488 5,310 42 158.1 798

311 48 195 222.8 959 4,483 146 317.9 1,209

411 49 135 188.6 873 4,994 33 229.1 679

511 48 270 315.4 1,231 4,906 399 1,340.2 1,288

611 47 900 381.8 1,443 4,595 143 859.7 1,503

711 51 12 42.2 382 5,586 73 339.2 773

811 48 145 259.9 888 4,609 152 446.8 1,198

911 49 102 187.3 877 5,302 6 39.6 345

1,011 49 180 237.1 733 5,005 97 562.7 1,301

Table 3 m = n = 100,
p = r = 15, class Euclidean

Instance w j ∈ (0,200), j ∈ J

Opt Time (min)

I M BC

111 4,596 72 162.53

211 5,373 3,845 1,349.27

311 4,800 395.00 461.78

411 5,064 1,223 1,402.33

511 5,131 2,120 1,318.32

611 4,881 2,293 472.37

711 5,827 1,320 810.00

811 4,675 4,570 1,919.73

911 5,158 >600 >600

1,011 5,195 >600 1,200.57

The columns I M and BC in Tables 1 and 2 show that the iterative method might be better
for test instances with m = n = 100 and p = r = 5, 10 than the branch-and-cut method in
comparison with the computational time.

Table 3 shows that the I M and BC methods take a lot of computational efforts for the
case p = r = 15. It means that these instances become difficult for both methods. Figure 3
illustrates the reason why this case is so hard. It deals with the growth of the subfamily F
as the values of p and r increase. The problem becomes the most difficult when the values
of p and r equal to about a one-third of m. The computational time for the BC algorithm
increases as both the number of branch-and-bound nodes and the number of cuts generated
expand [25]. Thus, for more difficult instances we have to develop other exact approaches or
apply approximate methods.

Table 4 shows the comparative results concerning the approximate solutions. The column
GapBC shows a root gap between the best known lower bound and the best upper bound
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Table 4 m = n = 100,
p = r = 20, class Euclidean

Instance w j ∈ (0, 200), j ∈ J

5% · Opt Time IM Gap (%) Time BC
IM (min) BC (min)

111 4,737.6 1 3.83 >600

211 5,703.6 185 3.35 >600

311 5,137.65 248 3.05 >600

411 5,677.81 5 1.99 >600

511 5,600.7 110 1.61 >600

611 5,199.6 190 1.90 >600

711 6,187.65 97 7.28 >600

811 5,100.9 570 2.46 >600

911 5,731.95 165 2.41 >600

1,011 5,668.95 130 1.64 >600

Table 5 m = n = 100,
p = r = 5, class Uniform

Instance w j = 1, j ∈ J w j ∈ (0,200), j ∈ J

Opt |Fopt | Opt |Fopt |
(market share in %)

111 48 95 4,901 (46.6) 194

211 49 66 4,963 (47.2) 153

311 47 143 4,807 (45.7) 315

411 47 136 4,941 (46.9) 146

511 48 79 5,017 (47.7) 125

611 48 143 4,840 (46.0) 223

711 51 35 5,224 (49.7) 66

811 47 138 4,963 (47.2) 103

911 47 121 5,010 (47.6) 123

1,011 48 102 4,931 (46.9) 173

Table 6 m = n = 100,
p = r = 10, class Uniform

Instance w j = 1, j ∈ J w j ∈ (0,200), j ∈ J

5% · Opt
5% · Opt |F | (market share in %) |F |

111 48 379 5,125 (48.7) 373

211 54 41 5,157 (49.0) 339

311 50 280 5,374 (51.1) 236

411 48 499 5,022 (47.7) 578

511 48 464 5,220 (49.6) 261

611 49 486 5,273 (50.1) 407

711 51 115 5,288 (50.3) 197

811 48 326 4,949 (47.0) 486

911 50 214 5,164 (49.1) 409

1,011 51 115 5,241 (49.8) 394
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obtained by the branch-and-cut algorithm [25]. We can see that even for the problems where
the gap has been about 2%, the running time has reached 10 hours. It is unlikely that I M
would be able to find solutions with a lesser gap for admissible computational efforts but to
find solutions within 5% of the optimum by the I M takes a reasonable time on a powerful
computer.

The instances for the class Uniform have been solved for the first time in this paper.
According to the related works this class of test instances is more difficult than the class
Euclidean for the uncapacitated facility location problem [19]. In case of the discrete (r |p)-
centroid problem we have observed the same. The columns |Fopt | in Tables 1 and 5 support
this class characteristic on the average. Thus we were able to optimally solve the Uniform
class instances with p = r = 5 but I M did not optimally solve the same instances for
p = r = 10, 15.

We can conclude that the existing exact methods I M and BC are good enough since they
are able to tackle previously open instances with up to 100 customers, 100 potential facilities
and p = r = 15 in the Euclidean case for a reasonable time. They are alternative approaches.
The I M can be faster for relatively small instances and well suited to obtain approximate
solutions with a priori gap. The BC runs faster on the relatively large instances. Nevertheless,
both of them leave room for further improvements.

7 Conclusions

Since the nineties of the previous century, the competitive facility location models become
more andmore asked-for and create an active field of research. In this paperwe have discussed
the fundamental model in this field formalized by Hakimi, so-called the discrete (r |p)-
centroid problem. We have considered a discrete case, one decision criterion based on the
travel distances, the binary oriented customers’ behavior, and essential demands. Future
research direction could be connected with several aspects such as the introduction of the
quality measures for the facilities, different customers’ decision rules, non-essential demands
(the customers not necessarily use all their buying power, a part of the demand could be not
satisfied), etc. Some ideas may be found in [18,21,24,29].

The multicriteria models in competitive facility location could be considered included in
the design of new models. In some models the service quality is incorporated in the model
as a decision variable, the quality has a cost and the profit is a non-increasing function of
this variable. In this case, a bi-criteria optimization problem may be considered, one of the
objectives is to maximize the income and the other one is to minimize the cost associated to
the quality. Normally, the objective of maximizing the profit and the objective of maximizing
the service quality are in conflict, in this case the multicriteria optimization techniques are
useful.

Our local search procedure shows excellent results. Sure, it is time consuming approach
but we have got the global optimum by the relatively small number of steps. We guess that
the matheuristics are useful for bi-level optimization. We can apply these methods for the
discrete bi-level problems but have to spend a lot of efforts for computing the objective
function values. We have proposed an exact approach and compared it with the branch-and-
cut method by Roboredo and Pessoa. They use different ideas but they are based on the same
single level reformulation. Such formulation is easy to create for the min-max problems. Is it
possible to adopt these methods for other competitive location models with multiple criteria?
We believe that exact methods and matheuristics for this case are very interesting for further
research.
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