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Abstract In the (r | p)-centroid problem, two players, called leader and follqwer
open facilities to service clients. We assume that cliergsdentified with their lo-
cation on the Euclidian plane, and facilities can be opemssvhere in the plane.
The leader opengfacilities. Later on, the follower opemdacilities. Each client pa-
tronizes the closest facility. Our goal is to fipdacilities for the leader to maximize
his market share. For this Stackelberg game we develop altewating heuristic,
based on the exact approach for the follower problem. At éacdtion of the heuris-
tic, we consider the solution of one player and calculatétst answer for the other
player. At the final stage, the clients are clustered, andxasteolynomial-time
algorithm for the(1 | 1)-centroid problem is applied. Computational experiments
show that this heuristic dominates the previous altergatieuristic of Bhadury,
Eiselt, and Jaramillo.

1 Introduction

This paper addresses a Stackelberg facility location gama two—dimensional
Euclidian plane. It is assumed that the clients demandsareentrated at a finite
number of points in the plane. In the first stage of the gamdayep called the
leader, opens his owmfacilities. At the second stage, another player, called tez
follower, opens his own facilities. At the third final stage, each client chooses the
closest opened facility as a supplier. In case of ties, theédes facility is preferred.
Each player tries to maximize his own market share. The gaakogame is to find

p points for the leader facilities to maximize his market ghar
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This Stackelberg game was studied by Hakimi in 1981 [8, 9]doation on a
network. Following Hakimi, the leader problem is callec¢dentroid problemand
the follower problem is called enedianoid problemln [1] the centroid problem
with another behavior of clients was considered. In [7] aacolynomial time
algorithm is presented for these problems in gaser = 1. Similar models with lo-
cational constraints are studied in [3,4]. For arbitragndr, an alternating heuristic
is presented in [2]. A greedy and a minimum-differentiatidgorithm are used for
approximation of the follower market share. A comprehemsdview of complexity
results and properties of the problems can be found in [1,Q,3]1

In this paper we improve the alternating heuristic from [2jng an exact ap-
proach for the follower problem. We reduce it to the discrai@ximum capture
problem and apply the branch and bound method. At the encedltbrnating pro-
cess, the final solution for the leader is improved by usingxatt algorithm for the
(1] 1)-centroid problem. All clients are clustered imicubsets. For each subset we
relocate the leader facility using the optimal solutiontioe (1 | 1)-centroid prob-
lem. Computational results for randomly generated ingaijg] show that the new
approach dominates the benchmark procedures.

2 Mathematical model

Let us consider a two—dimensional Euclidian plane in whidients are located.
We assume that each cliehhas a positive deman. Let X be the set op points
where the leader opens his own facilities andvldde the set of points where the
follower opens his own facilities. The distances from digto the closest facility of
the leader and the closest facility of the follower are dedatsd(j,X) andd(j,Y)
respectively. The clieng prefersy overX if d(j,Y) < d(j,X) and preferX overY
otherwise. By
U(Y <X):={j]d(j.Y) <d(},X)}

we denote the set of clients preferriigover X. The total demand captured by the
follower by locating his facilities a¥ while the leader locates his facilities 4tis
given by

W(Y < X):= Z(Wj [ i €Uy <X)).

For X given, the follower tries to maximize his own market sharee Thaximal
valueW*(X) is defined to be

W*(X) := max W(Y < X).
(X) = max w(Y <X)

This maximization problem will be called tHellower problem.The leader tries to
minimize the market share of the follower. This minimal \&W/*(X*) is defined

to be

W*(X*) == _min W*(X).
(X7) = min W(X)
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For the best solutioX* of the leader, his market shareg$_; wj —W*(X*). In the
(r | p)—centroid problemthe goal is to findX* andwW*(X*).

3 The follower problem

Let us first describe an exact approach for the follower moblSuch problem will
be rewritten as an integer linear programming problem, aheed using a branch
and bound method.

For each clieng, we introduce a dislo; with radiusd(j, X) and center in the
point where this client is located. Let us consider the tesyintersection of each
set of two or more such disks. These disks and their intécsecwvill be calledre-
gions The total number of regions is large, but we can eliminatees@and consider
the maximal regions as those defined by intersections amlginy case, we have
at mostn? + n regions. Now we define a binary matriay;) to indicate the clients
which will patronize a facility of the follower if it is operkinside a region. For-
mally, defineay; := 1 if a facility of the follower in regiork captures the clien
anday; := 0 otherwise. In order to present the follower problem as teyier linear
program we introduce two sets of the decision variables:

| 1 ifthe follower opens his own facility inside of regién
k=1 0 otherwise,

|1 ifthe follower captures clien,
171 0 otherwise.

Now the follower problem can be written as the maximum capproblem:

n
maxij z
J:

n2+n

subject to 7 < Z ajyk, j=1,...,n,
K=1

n2+n
> Y=t
K=1

Yk, Zj € {0,1}.

The objective function gives the market share of the follgue be minimized.
The first constraint guarantees that cligmtill patronize a facility of the leader only
if the follower has no facility at the distance less tltiij, X). The second constraint
allows the follower to open exactlyfacilities.

In [2] itis claimed that the problem is NP-hard, and two hetick are developed.
We note that the integrality gap is small for this problemhe tase of the two-
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dimensional Euclidian plane. The branch and bound methpedsily finds the
optimal solution. For this reason, the exact valig X) is used in our heuristic for
the centroid problem.

4 Alternating heuristic

In this section we present an improved alternating heari$tie idea of alternating
methods is well-known [2, 12]. Given a solutiohfor the leader, the best-possible
solutionY for the follower is computed. Once that is done, the leadey teata-
tively assume the role of the follower and reoptimize hisa$dacilities by solving
the corresponding problem for the given solutdonThis process is then repeated
until a termination condition is satisfied. In other wordig players alternately solve
a follower problem. Convergence results of similar alténgpalgorithms for equi-
librium problems can be found in [14].

In our case, a key issue is that an exact-polynomial time atelly Drezner [7]
for the (1| 1)-centroid problem is applied. The method is described dsvisl

Improved alternating heuristic
1. Create a starting solutioffor the leader.
2. While not termination conditiordo:
2.1. Find the best solutiori for the follower against the solutioxX.
2.2. Find the best solutioX for the leader against the solutidn
end while

3. Improve the final solutioX by solving exactly th¢1 | 1)—centroid problem.

The starting solution is generated at random. Calculawederminated after a
sufficiently large number of iterations. Note that the ogtisolution of the follower
problem shows us a subset of regions only. However we neegkthet coordinates
for the facilities. For the follower, all points inside eaggion are equivalent. But it
is not the case for the leader at Step 2.2. of alternatinggssoc

In order to minimize the market share of the follower, we dtiaxompute the
coordinates of the leader facilities inside of the regiozy\carefully. To reduce the
running time of the iterative process, we take the centertpaif the regions. At the
final iteration the current solutiod is modified as follows. All clients are clustered
in p subsets according %. Clients are allocated to the same subset if their closest
leader facility is the same. For each subset,(thgl)—centroid problem is solved,
assuming that the follower will attack each subset by opgpime facility. Optimal
solutions for these subsets generate a new solution foretddet. As a result, we
may get a new clustering of the clients and the procedurepeated. The best
found solution is the result of the method.
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5 Computational experiments

We have coded the improved alternating algorithm in Delp@iehvironment and
tested it on benchmark instances from the electronic §pescrete Location Prob-
lems[6]. For all instances we have= 100, and demand points are randomly dis-
tributed among the square 7000000 uniformly. Two types of weights are consid-
ered:w; = 1 andw; € [1,200. For all instances the behavior of the algorithm with
p=r is studied.

Two types of experiments were performed. In the first expenimve wanted to
measure the influence of the starting solution of the lead®teg 1 of the algorithm.
Different random solutions arabrner solutions when all facilities are concentrated
near a corner of the square were created. For all cases weveltisat the algorithm
produces the same final facilities locations for the leadebbth types of weights.
We guess that for higher dimensioms;> 100 andp # r, we may get another be-
havior of the algorithm, but now we are observing a fast coyeece to the same
equilibrium.

Table 1 Comparison of alternating heuristics

Instance Heuristic of Improved Procedure of

number Eiselt et al. heuristic clustering
111 1404 (31%) 1581 (35%) 1671 (37%)
211 1591 (28%) 1820 (32%) 1992 (35%)
311 1379 (29%) 1662 (35%) 1756 (37%)
411 1541 (29%) 1749 (33%) 1917 (36%)
511 1418 (31%) 1574 (35%) 1668 (37%)

In the second experiment our algorithm and the alternatewyiktic from [2]
are compared. Our goal is to understand the influence of thet epproach for the
follower problem at Step 2 and idea of clustering at Step Bl€TaA presents the
computational results for the casg < [1,200, p =r = 10. The second column
of the Table 1 presents the market share of the leader acgoa([2]. Actually, we
apply this algorithm to create a solution for the leader d&weththe exact value of the
leader market share is computed. We show in brackets suoks/ak percentages.
The third column shows the same values for our algorithmauittStep 3. The last
column presents the leader market share for the final solufie we can see, the
exact method for the follower problem and the clusteringcpdure are important
and they increase the leader market share. The same camdwgere obtained in
the casav; = 1. These values seem to be optimal, though we do not have a proof.
Constructing sharp upper bounds for the global optimum isrg interesting and
important direction for further research.
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6 Conclusions

We have considered the well-known Stackelberg facilityatmn game on the two-
dimensional Euclidian plane. An improved alternating ligitris presented. In this
new heuristic, we have used the exact method for the foll@raslem, and a clus-
tering procedure with an exact polynomial-time methodlie(i | 1)-centroid prob-
lem is used. Computational results for random generatéarinss show advantages
of the proposed approach against benchmark procedures.
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