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Abstract—Two players, the leader and his competitor, open facilities, striving to capture the
largest market share. The leader opens p facilities, then the follower opens r facilities. Each
client chooses the nearest facility as his supplier. We need to choose p facilities of the leader
in such a way as to maximize his market share. This problem can be represented as a bilevel
programming problem. Based on this representation, in this work we propose two numerical
approaches: local search with variable neighborhoods and stochastic tabu search. We pay the
most attention to improving the methods’ efficiency at no loss to the quality of the resulting
solutions. Results of numerical experiments support the possibility to quickly find an exact
solution for the problem and solutions with small error.
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1. INTRODUCTION

Facility location problems comprise a wide array of mathematical models in operations research.
This is a fruitful topic for both theoretical and experimental studies and for applications that arise
in placing facilities and warehouses, police stations and fire stations, first aid facilities, constructing
wireless communication networks and so on [1]. In most such models, one person makes a decision
aiming to maximize his profit or minimize the total costs of servicing clients. In this work, we
consider a more complex situation when two persons (players) sequentially make facility location
decisions. This is the field of competitive location problems. It was initiated in a pioneering work
of Hotelling [2]. This field studies self-interested strategies of behavior for two players under the
assumption that clients are located along a line (a highway, coastline and so on). Later, richer model
appeared, interesting from the points of view of both economics and game theory and for methods
of optimization and operations research. A survey of such models and results of the corresponding
studies is given, for instance, in [3, 4] (see also [5]).

One of such problems, namely the centroid problem, was first studied by Hakimi [3]. Consider a
finite set I of possible locations for the facilities and a finite set J of the locations of the clients. The
matrix (dij), i ∈ I, j ∈ J , specifies distances from clients to facilities. The value wj determines a
player’s profit in servicing client j. Players sequentially make decisions on opening facilities, aiming
to maximize their profits. First, the first player (leader) enters the market and opens p facilities.
Knowing his decision, the second player (follower) opens his r facilities. Each client chooses the
nearest facility out of the p+ r facilities both players have opened as his supplier. As a result, the
set of clients is divided into two parts: clients of the leader clients of the follower. The problem is to
find the p locations for the leader’s facilities that will give him maximal profit (market share) under
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the strongest possible response by the follower. At present, fundamental studies of this problem
have been divided into three directions:

—discrete problems, when sets of clients and facilities are finite [6–8];

—problems on a network, when clients are located at vertices of a graph, and facilities can be
opened at arbitrary points on its edges [9, 10];

—problems in a Euclidean space, when clients are represented by a finite set of points, and
facilities can be located at arbitrary points or in a given bounded region [11].

Yet another case appears when the set of clients is not finite but rather is given by a certain
region on a plane with a given distribution density, but in this work we will not consider it further.

It is known [12] that the centroid problem in each of these three cases is ΣP
2 -hard, and the

follower’s problem for a given solution of the leader is NP-hard in the strong sense even if matrix (dij)
specifies Euclidean distances on a plane. We will further restrict our attention to the problem when
sets I and J are finite and coincide with each other.

Despite the problem’s high complexity status, there are both exact and approximate meth-
ods for solving it that rely upon its combinatorial nature. Methods of implicit enumeration [13],
branch-and-bound techniques [14], and an iteration method based on sequentially growing the set
of follower’s solutions [6] guarantee that the global optimum is found but are very computationally
intensive already for |I| = |J | = 100, p = r � 10. Heuristics based on solutions of the p-median
problem, genetic algorithms, particle swarm algorithms, and local search algorithms have shown
high accuracy for a relatively small number of iterations [7], but the complexity of each iteration
still remains rather high. This is due primarily to the fact that computing the leader’s objective
function requires an exact solution for the follower’s problem. Since this problem is NP-hard in the
strong sense, and we have to solve it multiple times, high computational costs seem to be inevitable.
In [15], greedy algorithms are used for the follower’s problem to reduce complexity. In [16], La-
grange relaxations have been used to the same purpose. The work [6] relaxed conditions on the
fact that variables are integer, and the follower’s problem was formulated as a linear programming
problem. The resulting upper bound on the follower’s profit was then used in local transformations
of the leader’s solutions. In [17], a particle swarm optimization algorithm was used instead of linear
programming to solve the follower’s problem.

In this work, we make another attempt to reduce the complexity of local search methods. We
study two schemes: variable neighborhood search (VNS) and stochastic tabu search (STS). The
main idea is to adapt these well known schemes to the considered bilevel programming problem.
Both schemes use a neighborhood Swap for the leader’s variables. The local search is made faster
by dividing this neighborhood into three parts. Two of them are most promising and are searched
through first of all. Since they are relatively small, we can quickly find the direction of ascent and
reduce the complexity of one iteration. To solve the follower’s problem we use exact methods or
linear programming with metaheuristics, which also leads to reducing its complexity. Finally, in
both methods the local search is randomized in order to diversify local search. As a result, we find
efficient methods for solving the centroid problem that let us find exact solutions for p = r � 15
by an order of magnitude faster and for the first time find solutions for p = r = 25 and p = r = 30,
a feat previously impossible due to high computational costs. Moreover, for p = r = 30 these
methods work faster on average than for p = r = 15.

The paper is organized as follows. In Section 2, we give an exact mathematical setting of the
problem. In Section 3, we present the variable neighborhood search. Section 4 is devoted to the
stochastic method of tabu search. Section 5 gives results of numerical experiments with the exam-
ples from the Discrete Location Problems electronic library (http://math.nsc.ru/AP/benchmarks/).
Results of these experiments indicate that both methods quickly find known optimal solutions, and
on test examples where the optimum is not known their solutions differ little from each other.
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2. PROBLEM SETTING

We denote by X the set of facilities opened by the leader; by Y , the set of facilities opened by
the follower. We denote by d(j,X) the distance between client j and the nearest leader’s facility.
Similarly, d(j, Y ) is the distance to the nearest facility of the follower. We will say that a client j
prefers Y if d(j, Y ) < d(j,X) and prefers X otherwise. We denote by J(Y ≺ X) the set of clients
who prefer Y , i.e.,

J(Y ≺ X) = {j ∈ J | d(j, Y ) < d(j,X)}.
Then the follower’s profit W (Y ≺ X) is defined as the sum of profits received from all his clients:

W (Y ≺ X) =
∑

j∈J(Y≺X)

wj.

For a given solution X, the follower aims to maximize his profit. The value of his profit W ∗(X) is
defined as the solution of the following problem:

W ∗(X) = max
Y,|Y |=r

W (Y ≺ X).

We call it the follower’s problem, or the medianoid problem [3]. The leader aims to maximize his
own profit or, which is the same, minimize the follower’s profit. The minimal value W ∗(X∗) of the
leader’s losses is defined as the solution of the following problem:

W ∗(X∗) = min
X,|X|=p

W ∗(X).

The best solution of the leader X∗ defines its profit
∑

j∈J wj −W ∗(X∗). In the (r|p)-centroid
problem we have to find X∗ and W ∗(X∗).

We represent this minimax problem in terms of bilevel integer programming. We introduce the
following variables:

xi =

{
1, if the leader opens facility i
0 otherwise,

yi =

{
1, if the follower opens facility i
0 otherwise,

zj =

{
1, if client j is serviced from the leader’s facilities
0, if client j is serviced from the follower’s facilities.

Then X = {i ∈ I|xi = 1}, Y = {i ∈ I|yi = 1}. For each client j, we define the set of facili-
ties Ij(X) that lets the follower “capture” client j, i.e.,

Ij(X) =

{
i ∈ I

∣∣∣ dij < min
l∈I
{dlj |xl = 1}

}
.

Note that if the distance to facilities of the leader and the follower is equal, the client will prefer
the leader [3]. In the notation introduced above, the (r|p)-centroid problem can be represented as
follows [6, 8]:

max
x

∑

j∈J
wjz

∗
j (X),

∑

i∈I
xi = p,

xi ∈ {0, 1}, i ∈ I,
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where z∗j (X), y∗i (X) is the optimal solution for the follower’s problem:

max
y,z

∑

j∈J
wj(1− zj),

∑

i∈I
yi = r,

1− zj �
∑

i∈Ij(X)

yi, i ∈ I,

yi, zj ∈ {0, 1}, i ∈ I, j ∈ J.

The objective function W ∗(X) =
∑

j∈J wjz
∗
j (X) defines the total profit of the leader given that

he opens exactly p facilities. This value depends on the follower’s optimal solution. The
sets Ij(X) for all j ∈ J in this problem are assumed to be known. The objective function
W (Y ≺ X) =

∑
j∈J wj(1− zj) defines the follower’s profit. The first constraint allows the follower

to open exactly r facilities. The second constraint does not let him service client j if his facilities
are not present in the set Ij(X).

Note that the condition that variables zj are integer can be replaced with condition zj � 0 for all
j ∈ J . The optimal value of the objective function in the follower’s problem will remain unchanged.
To solve it exactly one can use, for instance, the branch-and bound method.

A representation of the problem in terms of bilevel programming indicates a natural way to
solve it: we restrict the search with the space of the leader’s variables, computing his profit W ∗(X)
with one method or another. Since this problem is close to the p-median problem in its structure,
it is natural to use the method that has proven to be efficient in that problem [18].

3. VARIABLE NEIGHBORHOOD SEARCH

Metaheuristics are a powerful tool for solving complex combinatorial optimization problems.
Their efficiency has been demonstrated with routing, location, and clustering problems, scheduling
problems etc. [19]. Metaheuristics are general schemes for constructing heuristic algorithms that
combine elements of randomization and learning, intensifying and diversifying the search, adequate
control mechanisms, constructive heuristics, and local search techniques. Metaheuristics include
simulated annealing approaches, tabu search, genetic algorithms, variable neighborhood search,
ant colony optimization, and other techniques. In this section, we present one local search meta-
heuristic, namely variable neighborhood search. Its advantages include easy adaptation to complex
mathematical models, e.g., load balancing models for web servers, where one has to predict user
activity taking into account both the multicriterial nature of the load and a possibility to migrate
web sites between servers.

Variable neighborhood search has been proposed as a general approach to combinatorial opti-
mization problems by N. Mladenovic and P. Hansen [20]. Its main idea is to systematically vary
the neighborhoods and the corresponding change in the landscape during the search for a global
optimum. This method relies on the following three ideas:

—a local optimum with respect to one neighborhood is not necessarily also a local optimum
with respect to another neighborhood;

—the global optimum is a local optimum with respect to any neighborhood;

—in many combinatorial optimization problems, local optima with respect to one or several
neighborhoods are located rather close to each other.

The last fact is an empirical one; it is often observed in problems on the Euclidean plane [8].
This fact lets us narrow down the search region by using information about already found local
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optima. This idea underlies crossover operators for genetic algorithms, path relinking methods, ant
colony optimization, and other approaches.

In application to the (r|p)-centroid problem, we introduce three neighborhoods to solve X that
together will comprise a known neighborhood Swap(X). By definition, it consists of all solutions
of the leader obtained by closing one facility and opening another. Its size is p(|I| − p). We divide
it into three parts as follows.

Neighborhood Fswap(X) consists of all leader’s solutions that result from X by closing one
facility and opening one facility from the solution Y ∗(X). The size of this neighborhood is pr.

Neighborhood Nswap(X) consists of all leader’s solutions that result from X by closing one
facility and opening another, located at no more than the lth facility nearest to it. The size of this
neighborhood is pl, where l is the neighborhood’s parameter.

Neighborhood Cswap(X) is the complement of these two neighborhoods,

Cswap(X) = Swap(X) \
(
Fswap(X) ∪Nswap(X)

)
.

The idea of this partition is to find, in a large neighborhood, small most promising parts that
let us quickly find the best neighboring solution. Previous studies have shown that in the optimal
solution, the follower’s facilities are often in the immediate vicinity of the leader’s facilities [7]. The
follower attempts to “cut out” the leader from his clients. Due to this property, distinguishing
neighborhoods Fswap and Nswap is in essence an attempt to predict the follower’s behavior and
find the strongest preventive move for the leader.

The method’s general scheme looks as follows. On each iteration, we apply to the leader’s cur-
rent solution X a probabilistic procedure Shake(X, k) that replaces k randomly chosen facilities
of the leader by other randomly chosen facilities. To the resulting solution X ′, we apply a local
improvement procedure first with respect to neighborhoods Fswap and Nswap, and then, if nec-
essary, with respect to the neighborhood Cswap. The resulting local optimum X ′′ is compared to
the solution X. If the new local optimum is better than the previous one, we pass to the new local
optimum. Otherwise, we change the parameter k and go to the next iteration. Here is the VNS
method in pseudocode.

VNS method.

1. Find initial solution X, define the parameter kmax.

2. Repeat until the stopping criterion is met:

2.1. k ← 1,

2.2. repeat until k � kmax:

(a) X ′ ← Shake(X, k);

(b) X ′′ ← LocalSearch(X ′);
(c) if W ∗(X ′′) > W ∗(X) then (X ← X ′′, k ← 1) else k ← k + 1.

3. Output X as the result of the algorithm.

On step 1, as the initial solution we have selected an approximate solution of the p-median
problem with a weighted distance matrix (wjdij). In this case, the leader ignores the follower but
tries to place his facilities as close to his product’s customers as possible. This approach yields a
good approximate solution [7]. As the stopping criterion, we use the number of transitions into an
adjacent solution during local improvement or the computation time. Step 2.2(b) is the most com-
putationally intensive. The efficiency of the entire approach mainly depends on its implementation.
The first improvement rule let us stop investigating a neighborhood and pass to the next iteration
as soon as we have found, for the current solution, an adjacent solution with a better value of the
objective function. Since we go through the neighborhoods Fswap and Nswap first of all (first
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Fswap, then Nswap), one often does not have to check the main part, Cswap. Besides, when
we compute the objective function for adjacent solutions, we solve a linear programming problem
instead of the original NP-hard follower’s problem, which also reduces the computational cost of
one iteration. Nevertheless, on step 2.2(c) we have to compute the value of W ∗(X ′′) exactly. To
this purpose, we use the branch-and bound method (as implemented in CPLEX software). The
best resulting solution (local maximum) is output as the result of the algorithm.

4. LOCAL TABU SEARCH

The tabu search method has been proposed by Fred Glover. It belongs to the class of trajectory
metaheuristics and has been widely used to solve hard combinatorial optimization problems [21].
The method is based on an original local search scheme that lets one “travel” from one optimum to
another in search for a global one rather than stop at a local optimum point. The main mechanism
that lets us get out of local optima is a tabu list. This list contains solutions from previous iterations
or fragments of such solutions (edges of the graph, colors of vertices, indices of replaced facilities
and so on). With the tabu list, we remove a part of adjacent solutions from the neighborhood of
the current solution and move to the best solution out of the remaining ones.

Together with the tabu list, randomizing the neighborhood also plays an important part. It lets
us avoid looping, significantly reduces the time per iteration, and improves search efficiency. We
denote by Swapq(X) the part of the neighborhood Swap(X) chosen at random. Each element of
the sets Swap(X) is included in the set Swapq(X) independently of other elements with nonzero
probability q. The set Swapq(X) may turn out to be empty or may coincide with the entire
set Swap(X). Under certain restrictions on the length of the tabu list, local search with this
randomized neighborhood can asymptotically find the exact solution of the problem [16]. The
previous method with varying neighborhoods also possesses similar properties [22]. Below we show
a description of this method and adapt its main elements to solve the leader’s problem. Below we
show the pseudocode of the STS approach.

STS method.

1. Find initial solution X, define the randomization parameter q, construct an empty tabu list.

2. Repeat until the stopping criterion is met.

2.1. Construct neighborhood Swapq(X) and remove forbidden elements from it.

2.2. If the neighborhood is empty, return to step 2.1.

2.3. Find an adjacent solution X ′ with the largest estimate of the leader’s profit.

2.4. Let X ← X ′ and compute the exact value of W ∗(X).

2.5. Update the tabu list.

3. Show the best solution found.

The initial solution is chosen as before, by solving the p-median problem. The randomization
parameter q for the neighborhood is set to be sufficiently small and does not change as the number
of iterations grows. Neighborhood Swapq on step 2.3 is looked through in the same order as in the
previous algorithm: first Fswap, then Nswap, and only then Cswap, if necessary. As soon as we
have found an adjacent solution with a larger estimate of the objective function’s value than the
current solution, we stop going through the neighborhood. As the tabu list, we use an ordered list
of pairs of the leader’s facilities that have been closed and opened over the last few iterations. The
length of the tabu list changes in a given interval during local search. If the best found solution
begins to repeat itself, we increase the tabu list length by one; otherwise, we reduce it by one. On
step 2.4 we use the CPLEX suite to compute the exact value of W ∗(X). The method stops after
a given number of iterations are over or after a certain computation time has elapsed.
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Step 2.3 is the most computationally intensive. For each adjacent solution, we have to estimate
the value of the leader’s objective function, i.e., solve the follower’s problem. For this purpose, we
again use stochastic local search with tabus. As the starting solution, we take the optimal solution
of the follower’s problem Y ∗(X) for the current leader’s solution, which lets us restrict ourselves to
a small number of iterations. We again use a randomized neighborhood Swapq, but this time for
the follower’s solutions. Data structures proposed by Resende and Werneck [23] for the p-median
problem can be adapted for the follower’s problem, which significantly reduces the time needed to
estimate the leader’s profit.

5. EXPERIMENTAL STUDIES

Both methods have been implemented and have been tested on the examples from the Discrete
Location Problems electronic library located at the server of the Institute of Mathematics of the
Siberian Branch of the RAS. All samples have the same dimension |J | = |I| = 100. They are
divided in two classes: Euclidean and Uniform. In the first class, the matrix (dij) specifies
Euclidean distances between points on a plane, uniformly selecting 100 points in a square with
size 7000. The values dij correspond to distances between points i and j, and the sets I and J
coincide. In the second class, each element of the matrix (dij) is chosen independently of other
elements uniformly at random in the interval from 0 to 104. In each class, we considered two types
of profits. In the first case, wj = 1 for all j ∈ J . In the second case, these values were chosen
independently, uniformly at random in the interval from 1 to 200.

The first numerical experiment was designed to test the efficiency of the developed methods
on test examples with known exact solutions. For the Euclidean class, such examples exist for
p = r � 15. For p = r = 20, only record values are known together with estimates of how far they
are from the optimum. For the second class of examples with uniform distribution of elements dij ,
optimal solutions are only known for p = r = 7. For large values of parameters, exact methods
have too high computational costs.

Tables 1–4 show experimental results and the time needed to solve the problem in both methods.
As the stopping criterion we used computational time. On each example, we used 5 minutes on a
Pentium Intel Core Dual PC, 2.66 GHz, 2Gb RAM. The computation time in the tables corresponds
to the moment when the best solution was obtained. This solution usually turned out to be optimal.
If the optimal solution was not found, the resulting approximate solution had an error of less than
one percent. Comparing these results with the best of already known results, the tabu search
method with Lagrange relaxations (TSL) [16], we can note that the new approach indeed finds
optimal solutions faster, especially for large values of the parameters p and r. In particular, for

Table 1. Results for the Euclidean class, p = r = 10

Inst Optimum WV NS tV NS WSTS tSTS WTSL tTSL

111 4361 4361 20.7 4361 63.71 4361 342
211 5310 5310 24.47 5310 23.47 5310 405
311 4483 4483 20.41 4483 33.81 4483 819
411 4994 4994 20.72 4994 19.26 4994 270
511 4906 4906 200.38 4906 27.18 4906 396
611 4595 4595 107.44 4595 44.51 4595 504
711 5586 5586 56.56 5586 101.0 5586 207
811 4609 4609 207.56 4609 88.28 4609 603
911 5302 5302 24.9 5302 19.17 5302 297

1011 5005 5005 213.58 5005 103.54 5005 333

Avg 4915.1 4915.1 89.672 4915.1 52.39 4915.1 417
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Table 2. Results for the Euclidean class, p = r = 15

Inst Optimum WV NS tV NS WSTS tSTS WTSL tTSL

111 4596 4596 297.55 4596 173.28 4596 545
211 5373 5373 200.47 5373 88.92 5373 12021
311 4800 4800 22.55 4800 91.1 4800 3126
411 5064 5058 110.35 5064 121.3 5064 1442
511 5131 5123 193.88 5131 216.23 5123 1928
611 4881 4881 83.18 4881 114.77 4881 781
711 5827 5827 280.44 5827 210.91 5827 2043
811 4675 4620 301.67 4675 123.41 4675 1088
911 5158 5157 253.84 5158 157.8 5158 1322
1011 5195 5195 22.35 5195 48.19 5195 2403

Avg 5070 5063 176.628 5070 134.59 5069.2 2669.9

Table 3. Results for the Euclidean class, p = r = 20

Inst BestKnown WV NS tV NS WSTS tSTS WTSL tTSL

111 4512 4481 274.55 4484 118.14 4512 6008
211 5432 5432 245.89 5432 289.15 5432 4922
311 4893 4893 115.61 4893 211.32 4893 9365
411 5209 5209 234.56 5209 288.86 5209 5165
511 5334 5334 120.38 5334 133.18 5334 7922
611 4952 4944 234.46 4944 198.07 4952 13 081
711 5893 5893 126.68 5893 254.25 5893 6000
811 4858 4858 285.74 4858 118.8 4858 8526
911 5459 5455 273.42 5455 202.24 5459 1023

1011 5399 5399 166.26 5399 184.43 5399 2347

Avg 519.1 5189.8 207.755 5190.1 199.84 5194.1 6435.9

Table 4. Results for the Uniform class, p = r = 7

Inst Optimum WV NS tV NS WSTS tSTS

123 5009 5009 304.17 5009 65.09
223 5459 5459 182.91 5459 63.18
323 5019 5009 145.01 5019 54.69
423 4908 4908 296.63 4908 145.22
523 5208 5198 292.05 5208 22.63
623 5032 5032 296.52 5032 197.08
723 5055 5055 286.04 5055 62.23
823 4951 4860 295.77 4951 74.49
923 5127 5060 217.7 5127 111.27
1023 5084 5067 322.48 5084 278.18

Avg. 5085.2 5065.7 263.928 5085.2 107.406

p = r = 15 average time of computation reduces by a factor of up to 15 even when the difference
in computer performance is taken into account. Thus, the proposed methods are able to find the
global optimum rather quickly.

The second computational experiment was designed to study the algorithms’ behavior on the
same test examples but with the hardest values of parameters p and r. As noted in [6, 7], these
values correspond to a third of the size of the set I. Tables 5–7 show computation results for
p = r = 25 and p = r = 30. Previously, computational experiments have not been conducted in
such dimension. As the stopping criterion we used the number of iterations, i.e., the number of
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Table 5. Results for the Euclidean class

p = r = 25 p = r = 30

Inst WV NS tV NS WSTS tSTS WV NS tV NS WSTS tSTS

111 4653 19.85 4653 27.46 4945 19.99 4945 29.41
211 5302 252.82 5301 64.12 5581 20.09 5581 34.18
311 5101 53.01 5101 113.82 5237 68.32 5273 61.15
411 5375 157.5 5375 104.18 5509 34.58 5509 54.28
511 5425 43.98 5425 48.67 5602 27.16 5541 46.81
611 5051 89.48 5051 22.61 5352 23.69 5352 44.52
711 5978 30.00 5978 64.18 6187 102.91 6195 108.61
811 5104 143.62 5104 54.6 5336 107.29 5336 18.45
911 5801 22.74 5801 212.81 5922 20.22 5922 27.46

1011 5465 62.22 5465 72.13 5646 34.06 5646 34.15

Avg. 5325.5 87.52 5325.4 78.45 5531.7 45.831 5530.0 45.9

Table 6. Results for the Euclidean class, wj = 1

p = r = 25 p = r = 30

Inst WV NS tV NS WSTS tSTS WV NS tV NS WSTS tSTS

111 53 33.14 53 56.88 58 155.74 58 84.16
211 52 65.78 52 21.17 56 58.35 56 119.57
311 57 80.48 57 12.16 58 34.3 58 56.61
411 53 274.94 53 106.18 55 64.56 55 33.98
511 53 18.84 53 37.14 58 48.02 58 45.18
611 57 15.69 57 148.12 59 25.67 59 27.11
711 54 18.71 54 8.14 58 31.92 58 18.67
811 55 42.25 55 86.11 57 40.52 57 25.94
911 58 46.18 58 89.17 59 15.71 59 35.85

1011 55 39.645 55 64.81 59 18.24 59 67.94

Avg. 54.7 63.57 54.7 62.98 57.7 49.3 57.7 51.5

Table 7. Results for the Uniform class, wj = 1

p = r = 25 p = r = 30

Inst WV NS tV NS WSTS tSTS WV NS tV NS WSTS tSTS

123 62 16.121 62 30.27 70 15.732 69 50.97
223 62 157.402 62 38.84 65 15.811 65 67.87
323 61 34.595 61 47.48 65 15.823 65 86.92
423 59 25.587 59 17.26 65 16.086 65 91.13
523 63 70.906 63 41.00 69 15.583 69 76.31
623 62 16.385 61 35.61 69 15.943 69 78.44
723 66 15.685 66 19.42 72 15.641 72 74.2
823 60 32.976 60 19.38 62 15.981 62 80.56
923 63 18.964 63 17.43 68 15.644 68 59.36
1023 65 15.49 65 21.58 73 15.421 71 126.19

Avg. 62.3 40.411 62.2 28.82 67.8 15.76 67.5 79.19

transitions from the current value to an adjacent one; we set this number to 1000. Since the global
optimum is not known, the methods were compared with each other by comparing the best found
solutions. The tables indicate that both methods demonstrate approximately the same efficiency,
and computation results often coincide or differ insignificantly. Increasing the number of iterations
does not cause the record values to grow. Since both methods are asymptotically exact, it appears
that the resulting solutions are optimal, but it appears very hard to prove this claim.
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Comparing Tables 2 and 5, one can note that the computation time, for instance, in tests 111,
511, 611, 711 drops as p and r grow. This may look odd since for p = r = 25 and p = r = 30 exact
methods are already unable to find a solution for the problem. Nevertheless, local search methods
find record values even faster than for p = r = 15. This can be explained by the fact that the size of
set I remains unchanged. As the parameter p grows, the follower’s problem reduces in dimension.
The leader captures more and more better facilities, and the follower’s problem simplifies. As a
result, the total time required to find the record solution may decrease, but also may increase since
the leader has more possibilities now.

6. CONCLUSION

We have considered a known ΣP
2 -hard (r|p)–centroid problem in the discrete setting. To solve

the problem, we have developed two local search methods based on representing the problem as a
bilevel discrete optimization problem. Since for a fixed upper level solution the problem remains
NP-hard in the strong sense, we pay the most attention to reducing complexity of one local search
iteration. We show that new methods are indeed much more efficient than their predecessors,
and they let one quickly find optimal solutions or solutions with small relative error. In further
studies, it will be interesting to find similar methods for problems on a network, when clients are
located at the vertices of a graph, and facilities can be opened in arbitrary points on its edges.
This version of the problem has only been studied from the point of view of its computational
complexity. Numerical methods are virtually nonexistent, although for the follower’s problem on
the lower level there already exist efficient metaheuristics [24]. Nontrivial upper bounds for the
optimum and exact methods for this problem are also unknown at present, and they are undeniably
very interesting for further studies.
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