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Abstract

In this paper we present the problem of decision making on the facility location
and pricing. We assume that the facilities can charge the different prices and the
objective is to maximize the overall revenue. It is known that the problem is NP-
hard in the strong sense even for the given facility location. A two level local search
heuristic based on the VNS framework is developed for this nonlinear problem.
To evaluate the global maximum, we reformulate the problem as a mixed integer
linear program with additional constraints and variables. Computational results for
randomly generated test instances are discussed.
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1 Introduction

Facility location constitutes a broad spectrum of mathematical models, meth-
ods, and applications in operations research. In most part of the models we
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consider location – allocation aspects without pricing. Locations represent
long–term decision, pricing represent short–term decisions [2]. As a results,
we have to consider two stages approaches: first, location; later on, pricing
[8]. Nevertheless, separation of location and pricing decisions may be not ac-
ceptable, for example, in the cases where locations are chosen conditionally on
client’s demand which, in turn, depends on prices [4]. Based on the pioneer
paper of Hotelling [6], a lot of mathematical models for location and pric-
ing decisions under competition have been studied (see, e.g., [2,1,3]). In this
paper we assume that pre-existing facilities are fixed to their current prices
and locations. They cannot easily adjust. A new company tries to open own
facilities and charging own prices in order to maximize the revenue. In other
words, we want to find the optimal strategy of the follower in a Stackelberg
type leader–follower game [1]. We assume that the client demand is concen-
trated at a finite set of discrete points. Buying power of each client is assigned
entirely to the facility providing the minimal sum of price and transportation
cost. If this sum exceeds the corresponding value for the pre-existing facilities,
then the client patronizes a leader facility.

There are three spatial pricing strategies identified by Hanjoul et al [4]:

— mill pricing, where each facility may charge a different price;
— uniform pricing, where facilities charge identical price;
— discriminatory pricing, where each client may be charged a different price.

In this paper we consider the mill pricing strategy, but the transportation
cost may by different for the client of the same facility. Thus, we consider
the following facility location and pricing problem. A company wishes to
open some facilities and assigns prices for the product of each opening facil-
ity. Each client knows the transportation cost of servicing from each facility
and has own budget (more precisely, this budget is a threshold defined by the
leader facilities). Client selects a facility with minimal total payment: price
and transportation cost. He buys the product if his payment does not exceed
his budget. The objective is to find p facilities for the company and assign the
prices for each opening facility in order to maximize the overall revenue.

In Section 2 we present exact mathematical model with nonlinear objective
function and some nonlinear constraints. In Section 3 we describe our local
search heuristics for this model. Since the pricing subproblem is NP-hard
in the strong sense even for fixed location, we develop a two-level approach:
local search for location and local search for pricing under fixed location.
In such framework, the pricing subproblem has small dimension and we can
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solve it easily. For the pricing problem we use the VNS metaheuristic. For
the location problem we apply the VNS and SA metaheuristics. In order to
evaluate the quality of the solutions we reformulate the problem as a mixed
integer program and apply the branch and bound method. In section 4 we
discuss the computational results.

2 Mathematical model

We assume that
J = {1, . . . , n} is the set of clients;
I = {1, . . . , m} is the set of potential facility locations;
p is the number of opening facilities;
bj is the budget of client j;
cij is the transportation cost for client j if he obtains the product of facility i.

Decision variables:
pi is the price for the product of facility i;

xi = 1 if facility i is opened and xi = 0 otherwise;

xij = 1 if client j is serviced from facility i and xij = 0 otherwise.

Now we can present the problem as the following mixed integer nonlinear
program

max
∑

i∈I
pi
∑

j∈J
xij

subject to ∑

i∈I
xij ≤ 1, j ∈ J ;

xi ≥ xij , i ∈ I, j ∈ J ;
∑

i∈I
xi = p;

∑

i∈I
(pi + cij)xij ≤ bj , j ∈ J ;

(pi + cij)xij ≤ pk + ckj, i, k ∈ I, i �= k, j ∈ J ;

pi ≥ 0, xi, xij ∈ {0, 1}, i ∈ I, j ∈ J.

The objective function is the total revenue of the company. The first con-
straint quarantines that each client selects at most one facility as supplier.
The second constraint allows company to service clients from opened facilities
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only. The third constraint ensures that p facilities can be opened by the com-
pany. The fourth constraint is the budget constraint for each client. The fifth
constraint describes the strategy of clients. Each client selects the cheapest
variant according to the price and transportation cost.

3 Local search heuristics

This facility location and pricing problem is NP–hard in the strong sense.
Moreover, it is NP–hard in the strong sense even for given facility location.
Therefore, we develop a two-level heuristic:

— local search for facility location by the decision variables xi,

— for the given p facilities, local search for the pricing problem by the
decision variables pi.

In this framework, the pricing problem has small dimension and we can
evaluate the total revenue for the given location quickly. The VNS approach
[5] is applied for this end. We use the neighborhoods Nk, k = 1, . . . , kmax,
where the prices of at most k facilities are changed. For the facility location,
we apply local search again but for other decision variables. SA and VNS
heuristics are used in this stage of our method. The neighboring solutions
are generated by the k-swap and Lin–Kernighan neighborhoods [7]. In the
k-swap neighborhood we move at most k facilities to new locations. Surely,
the finding of the best neighboring solution is time consuming procedure for
large k. Thus, we use small k (k ≤ 3) for the VNS and k = 1 for the SA.

The most interesting feature of our approach is the Lin–Kernighan neigh-
borhood for the facility location. This neighborhood allows us to discover the
most promising regions in the feasible domain. For given solution S which
consists of p opened facilities, the neighboring solutions can be defined by the
following way [7]:

1. Choose two facilities iins ∈ I \ S and irem ∈ S such that the objective
function F (S ∪ {iins} \ {irem}) is maximal even if it less than F (S).
2. Perform exchange of irem and iins.
3. Repeat steps 1, 2 k′ times so that a facility can not be chosen to be inserted
in S if it has been removed from S in one of the previous iterations of step 1
and step 2.

The sequence {(iτins, iτrem)}τ≤k′ defines k′ neighboring solutions for S. We
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say that S is local maximum with respect to this neighborhood if F (S) ≥
F (Sτ) for all τ ≤ k′. We apply the local improvement algorithm under this
neighborhood in SA every time when the temperature is decreased, and in VNS
when the incumbent solution cannot be improved during some iterations. The
parameter k′ is defined from the interval [min(p, n− p),max(p, n− p)].

In order to evaluate the quality of the solutions obtained we rewrite the
problem as the mixed integer linear program. We introduce new variables
zij = pixij and include additional constraints with a large positive constant
pmax:

zij ≤ pmaxxij , i ∈ I, j ∈ J ;

pmax(xij − 1) ≤ zij − pi ≤ pmax(1− xij), i ∈ I, j ∈ J.

Now we can use CPLEX software for finding global maximum. Unfortunately,
we cannot solve the medium size instances even by supercomputer during 24
hours. Moreover, the best found solutions for this solver were the same or
worse than heuristic solutions in all our experiments.

4 Computational experiments

We have tested our method on the randomly generated instances with dimen-
sion n = 100, m = 40, p = 5. The budget of each client is taken from the
interval [1, 100]. The transportation costs cij are generated as Euclidean dis-
tances between points i and j on the two-dimensional plane. The points are
taken at random from the square 100× 100.

Table 1 shows the computational results for 10 benchmarks. The running
time is presented for PC Intel Core i7, 2.7 Ghz. As we mentioned above, the
branch and bound method (CPLEX) is interrupted after 24 hours. It shows
the worse results. The methods SA+VNS and VNS+VNS show the same ob-
jective values for all instances. We guess that the global optima are found for
all cases. Nevertheless, the VNS+VNS heuristic is faster.
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Dimension SA + VNS VNS + VNS CPLEX 12.4

n m p revenue/time revenue/time revenue

100 40 5 2245/9h 2245/45min 2226

100 40 5 2259/10h 2259/51min 2259

100 40 5 2019/10h 2019/41min 2019

100 40 5 1533/12h 1533/42min 1508

100 40 5 2386/18h 2386/46min 2313

100 40 5 1960/14h 1960/60min 1949

100 40 5 2179/12h 2179/60min 2142

100 40 5 2139/11h 2139/51min 2139

100 40 5 1895/12h 1895/59min 1877

100 40 5 2209/13h 2209/37min 2209

Table 1. Computational results
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