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Abstract—Under study is the bilevel nonlinear facility location and mill pricing problem. It is
shown that the problem belongs to the class Poly-APX . We present the two hybrid algorithms
that are based on local search: variable neighborhood descent (VND-metaheuristics) and genetic
local search. These algorithms are compared with available algorithms and CPLEX software and
show their competitiveness. Computational experiments are conducted on the instances from the
benchmark library “Discrete Location Problems.” The results show high efficiency of the developed
methods and possibility of solving the problems of large dimension.
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INTRODUCTION

Facility location and/or pricing constitutes a broad spectrum of mathematical models, methods, and
applications in operation research [6, 13, 17, 18, 20, 21, 30]. In most models the aspects of location
and allocation are considered without pricing. The processes of facility location and pricing are usually
studied separately and independently of each other because they belong to different planning horizons.
The location represent a long-term decision, while the pricing represent a short-term decision [19].
It turns out that at first we usually select location and only later prices [26]. However, separation of
the location and pricing decisions may be inacceptable, for example, in the cases where the locations
are chosen in dependence on the client’s demand which, in turn, depends on prices [22]. Moreover, the
separation of location and pricing is not reasonable when there is no need to know the exact prices, and
only an interval of prices acceptable for the market is desired [8]. Thus, up-to-date approaches in the
location and pricing problems are usually based on simultaneous analysis of both aspects in the same
model [8–10, 14, 28, 29]. However, in order to estimate the quality of decisions we must be able to
analyze the market reaction on the suggested location of facilities as well as the prices. To this aim it is
convenient to use the bilevel model of the whole process [5, 15].

Based on [24], many mathematical models for location and pricing decisions under competition have
been studied (e.g., see [19, 22, 26]). In this paper, we assume that some pre-existing facilities are fixed
to their current prices and location [16]. They cannot adjust easily. A new company tries to open its own
facilities and charge prices in order to maximize total revenue. Each client knows the transportation cost
of servicing from each facility and has his own budget (threshold defined by the pre-existing facilities).
The client selects a facility with minimal total payment (price and transportation cost). He buys the
product if his payment does not exceed his budget. That is, we consider the Stackelberg type leader–
follower game. The company is a leader. The clients form a set of followers. The objective of the leader
is to find r facilities and assign the prices for them in order to maximize total revenue. We also assume

*E-mail: jkochet@math.nsc.ru
**E-mail: arteam1897@gmail.com

***E-mail: apljas@math.nsc.ru

392



СOMPARISON OF METAHEURISTICS 393

that the client demand is concentrated at a finite set of discrete points. If there are several facilities with
minimal total payment then the client selects the facility with minimal transportation cost.

There are three spatial pricing strategies identified by [22]: mill pricing when each facility may charge
a different price; uniform pricing when facilities charge identical price; and discriminatory pricing when
each client may be charged a different price. In this paper, we consider the mill pricing strategy, but the
transportation costs may be different for any client and any facility. Similar problems with uniform and
discriminatory strategies were considered in [19, 22, 26].

Thus, we consider the following facility location and pricing problem: A company wishes to open
some facilities and assigns prices for the product of each opened facility. Each client knows the
transportation cost of servicing from each facility and has his own budget (more precisely, this budget is
a threshold defined by the leader facilities). The client selects a facility with minimal total payment: price
and transportation cost. He buys the product if his payment does not exceed his budget. The objective is
to locate r facilities for the company and assign the prices for each opened facility in order to maximize
overall revenue.

In Section 1, we present a bilevel nonlinear programming model. In Section 2, we describe our
hybrid heuristics for solving this problem. Since the pricing subproblem for fixed location is NP-
hard in the strong sense, we developed a bilevel approach: firstly, local search for the facility locations
under fixed price vector and, secondly, local search for price vector under fixed location. For the pricing
subproblem, we use Genetic and VND metaheuristics. For the location subproblem, we apply a local
search method. In Section 3, we discuss the computational results obtained for the data from the
library of test problems “Discrete location Problems.” The proposed algorithms are compared with some
available approximation algorithms and exact methods of the CPLEX software.

1. MATHEMATICAL MODEL

Let us introduce the notations: I = {1, ..., n} is the set of potential facility locations, J = {1, ...,m}
is the set of clients, r is the number of facilities to open, bj ≥ 0 is the budget of client j, and cij ≥ 0 is the
transportation cost for each pair of client j and facility i.

Now we define the decision variables: pi ≥ 0 is the price of facility i, yi = 1 if facility i is opened and
yi = 0 otherwise, xij = 1 if client j is serviced from facility i, and xij = 0 otherwise.

With these variables we can present the facility location and mill pricing problem (Problem FLMP)
as following:

max
y,p,x

∑

i∈I

pi

∑

j∈J

xij ,

∑

i∈I

yi = r, x ∈ F (y, p), pi ≥ 0, yi ∈ {0, 1}, i ∈ I, j ∈ J,

where F (y, p) is the set of optimal solutions of the inner problem:

max
x

∑

i∈I

∑

j∈J

(
bj − cij − pj

)
xij ,

∑

i∈I

xij ≤ 1, j ∈ J,

xij ≤ yi, i ∈ I, j ∈ J,

xij ∈ {0, 1}, i ∈ I, j ∈ J.

The objective function of the bilevel problem defines the total revenue of the company, and the company
constraint guarantees that exactly r facilities will be opened. The objective function of the inner problem
describes the strategy of each client: to minimize the total payment according to his budget. Constraints
of the inner problem guarantee that each client can be served by at most one opened facility.

Let us define the optimal solution of this bilevel problem as a feasible solution with the maximal value
of total revenue. However, when the inner problem has several optimal solutions which are equivalent for
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the clients, such definition might cause troubles. In this case, the company may lose some income. This
happens if the clients choose behavior that is optimal for the inner problem (i.e., each client tries to save
as much as possible), but at least one of them choose the facility with the price less than the company
expected. Thus, this choice is not optimal for the company.

In the case of several optimal solutions for the inner problem, we suppose that each client chooses
the facility (among all open) which is nearest to him. Conceptually, it means that the clients select the
serving facilities with the maximal income for the company. In other words, we consider a cooperative
statement of the problem. An analogues agrement was used in [6, 7]. Note that in the problem discussed
in [3] such a situation does not appear since, by a specific choice of the transport expenses, there is no
difference between the cooperative and noncooperative statements of the problem.

By the above assumptions, we can write this bilevel problem as the quadratic programming problem
with mixed variables: ∑

i∈I

pi

∑

j∈J

xij → max
p,x,y

,

∑

i∈I

(bj − cij − pi)xij ≥ 0, j ∈ J,

∑

i∈I

(cij + pi)xij ≤ (ckj + pk)yk, k ∈ I, j ∈ J,

∑

i∈I

yi = r,

∑

i∈I

xij ≤ 1, j ∈ J,

xij ≤ yi, i ∈ I, j ∈ J,

pi ≥ 0, xij, yi ∈ {0, 1}, i ∈ I, j ∈ J.

The objective function defines the total revenue of the company. The first group of constraints ensure
that the clients stay within their budgets. The fulfillment of the second group of constraints leads to
minimization of the total expenses of each client on purchase and transportation. The third constraint
guarantees that exactly r facilities will be opened. The fourth group of constraints means that each client
can be served by at most one facility. The last group of constraints imply that clients can be served only
at the opened facilities. We will keep the same notation FLMP for this reformulation of the problem.

Let us introduce some more conventions and notation:

Assume henceforth that all initial data bj and cij are rational numbers, OPT(FLMP) is the optimal
value of the objective function of Problem FLMP, and g(y, p, x) is the value of the objective function of
Problem FLMP at a feasible solution (y, p, x).

Let (y, p) be a vector satisfying the constraints of the leader problem, and let f(y, p) denote the
optimal objective function value of the problem for given y and p. Note that the value of f(y, p) is
computable in polynomial time [6].

2. LOCAL SEARCH HEURISTICS

It is known [6, 16] that Problem FLMP is strongly NP-hard even for the given facility location.
We show that it is possible to obtain more precise hardness properties of this problem. To this end we
consider the corresponding decision version of the problem known as Problem OPTFLMP. This problem
is constructed as follows: Add an integer parameter k to the instance of Problem FLMP and decide
wether k is an optimal value of the goal function on a set of feasible solutions of Problem FLMP.

Also, we make a correspondence between Problem FLMP and the standard decision version
D(FLMP) of this problem. The latter is to decide whether there exists a feasible solution with the value
of the goal function greater than or equal to k, where k is an integer parameter.

Further we use the three basic classes P, NP, and co-NP of the decision problems which represent
the first level of the polynomial hierarchy of complexity classes. Also we use Δp

2 class as an element
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of the second level of the above hierarchy [1, 11]. This class is defined as follows: The decision
problem D belongs to Δp

2 if there exists a deterministic oracle Turing machine which verifies problem D

in polynomial time by some NP language as an oracle. The class Δp
2 is frequently denoted by PNP.

We call D a nontrivial Δp
2-problem [27] if

D ∈ Δp
2, D �∈ Σp

1 ∪ Πp
1.

Theorem 1. If NP �= co − NP then OPTFLMP is a nontrivial Δp
2-problem.

Proof. Let us show that the following are satisfied: OPTFLMP ∈ Δp
2 and if NP �= co − NP then

OPTFLMP �∈ NP ∪ co − NP.

Is is easy to see that the decision problem D(FLMP) is in NP class. Modifying the reduction of [6]
and [16], it is possible to show the strong NP-completeness of D(FLMP). Owing to the structure of
the goal function of Problem FLMP, the optimal value of the latter is bounded by a polynomial of the
input length. Applying the binary search and Problem D(FLMP) as an oracle, we find the solution of
OPTFLMP in polynomial time. By the definition of Δp

2-class, we see that OPTFLMP ∈ Δp
2.

Since Problem D(FLMP) is NP-complete in the strong sense and there is a trivial polynomial
reduction to OPTFLMP, from [27] it follows that

OPTFLMP �∈ NP ∪ co − NP.

Thus, if NP �= co − NP then OPTFLMP is a nontrivial Δp
2-problem.

The proof of Theorem 1 is complete.

Theorem 1 implies that if NP �= co − NP finding an optimal solution of Problem FLMP becomes
harder with the growth of the size of an instance. Note that NP �= co − NP hypothesis is stronger than
usual P �= NP [1, 11]. So it is reasonable to focus the efforts on finding some “good” feasible solution.
Usually, in that case the problem is considered from the point of complexity of constructing an algorithm
with approximation ratio; i.e., to find the position of the optimization problem in the approximation
hierarchy [12]

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ Log − APX ⊆ Poly − APX ⊆ Exp − APX ⊆ NPO.

Further we use the class Poly-APX. It is a class of optimization problems such that there exist
a polynomial algorithm with approximation ratio which is polynomially bounded with respect to the
length of the input. All notions and definitions can be found in [12].

With [6, 7], we can show the following

Theorem 2. Problem FLMP belongs to Poly-APX.

Proof. Denote by FLMP1 some Problem FLMP with at most one opened facility (r = 1). It is
shown in [7] that rmFLMP 1 is polynomially solvable. We use an optimal solution to this problem
in order to build a feasible solution of the original problem. Let (y1, p1, x1) be an optimal solution of
Problem FLMP1 and let y1

i1
be the unique unit component of the vector y1. Choose r − 1 different indices

i2, . . . , ir from the set I such that i1 �∈ {i2, . . . , ir}. Put

yi1,r
i =

{
1, if i ∈ {i1, i2, . . . , ir},
0, otherwise,

xi1,r
ij =

{
x1

ij, if i = i1,

0, otherwise,

pi1,r
i =

⎧
⎨

⎩
p1

i , if i = i1,

1 + max
j∈J

bj, otherwise.

Obviously, (yi1,r, pi1,r, xi1,r) is a feasible solution to Problem FLMP and

g(yi1,r, pi1,r, xi1,r) = g(y1, p1, x1).
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In order to verify that

OPT(FLMP) ≤ rg(yi1,r, pi1,r, xi1,r).

take an arbitrary feasible solution (ỹ, p̃, x̃) to Problem FLMP. Now put

i∗ = arg max
i∈I| ỹi=1

{∑

j

p̃ix̃ij

}
,

yi∗
i =

{
1, if i = i∗,

0 otherwise,
xi∗

ij =

{
x̃ij, if i = i∗,

0 otherwise.

Then (yi∗ , p̃, xi∗) is the feasible solution to Problem FLMP1. Thus we have

g(ỹ, p̃, x̃) =
∑

i∈I

p̃i

∑

j∈J

x̃ij ≤ r
∑

i∈I

p̃i

∑

j∈J

xi∗
ij ≤ r · g(yi1,r, pi1,r, xi1,r)

and hence

OPT(FLMP) ≤ r · g(yi1,r, pi1,r, xi1,r).

This completes the proof of Theorem 2.

In other words, we can find an approximate solution in polynomial time with deviation from the
optimum at most O(l(z)), where l(z) is a polynomial in the length z of Problem FLMP. Unfortunately,
the deviation can be large. Therefore, we developed the two hybrid algorithms based on local search
method: Variable Neighborhood Descent (VND) and Genetic Local Search (GLS) [13, 22, 25].

For solving Problem FLMP, in [16] was developed the bilevel heuristics:
• local search for the facility location with the decision variables yi and fixed price vector pi,
• for the case of given p facilities, local search for the pricing problem with the decision variables pi.
In this framework, the pricing problem has small dimension, and we can quickly evaluate the

total revenue for a given location. The VNS metaheuristics [23] is applied to this end. We used the
neighborhoods Nk, k = 1, . . . ,K, where the prices pi of at most k open facilities are changed.

To obtain a solution of the facility location problem, we applied the local search again but with
another decision variables. The SA and VNS metaheuristics are used at this stage. For a given vector
with components yi, the neighboring solutions are generated by the k-swap and Lin–Kernighan
neighborhoods [25]. In the k-swap neighborhood, we move at most k facilities to new locations or,
in other words, we open some k′ � k new facilities and close exactly k′ previously opened facilities.

Put S = {i | yi = 1} and let χS stand for the characteristic function of S, so yi = χS(i), i = 1, . . . ,m.
Further, for the sake of simplicity, we identify a Boolean vector and the appropriate characteristic
function.

A Lin–Kernighan neighborhood of yi is constructed by the iterative procedure:

Step 1. Take a pair of the elements i1 ∈ S and i2 ∈ S such that f(χS∪{i2}\{i1}, p) is maximal among
all these pairs. If we have several pairs then take one of them arbitrarily.

Step 2. Choose an element i1 of S and add i2.

Step 3. Repeat Steps 1 and 2 k times. Note that, at each iteration, we are allowed to use as the indices
i1 ∈ S and i2 ∈ S only those that did not appear at all previous iteration steps.

This procedure defines k neighbors of an available location yi. The parameter k is chosen from
the interval [min(r,m − r),max(r,m − r)]. The local search in this neighborhood is used in the VNS
metaheuristics when we did not manage to improve the record solution in several iterations.

Surely, the finding of the best neighboring solution with respect of every of these neighborhoods is
a time consuming procedure for k large. Thus, we used k small: k ≤ 3 for the VNS metaheuristics and
k = 1 for the SA heuristics. All needed details are available in [16].
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2.1. Neighborhood Structures

Let us describe the neighborhood structures that are used in hybrid algorithms.
Let Flip(p | y) denote the neighborhood of the price vector p for a given location y. This neighborhood

consists of all vectors that differ from p exactly in one component. If p ∈ Flip(p | y) and for some k we
have pi = pi for all i �= k, then to calculate the value of the objective function and find the component pk
we solve Problem FLMP with a fixed location y, prices pi for i �= k, and the only variable pk. This problem
is solvable in polynomial time [7].

The neighborhood Swap(y | p) is defined for a given price vector p. It contains all vectors y such that∑
yi = r, with the Hamming distance from y to y equal to 2. Consider such a vector y. Then, for some

i0 and i1 such that yi0 = 0 and yi1 = 1, we have

yi = yi, i �= i0, i1, yi0 = 1, yi1 = 0.

Since some facility is closed and a new facility appeared, it is necessary to recalculate the prices for
the components with indices i0 and i1. Let pi = pi for i �= i0, i1, and let pi1 = 0; then the value of the
component pi0 is obtained by solving Problem FLMP with a given facility location y, prices pi for all
i �= i0, and one variable pi0 .

Let LSpr(p | y) denote the local search algorithm with neighborhood Flip(p | y), while LSloc(y | p),
the local search algorithm with neighborhood Swap(y | p).

2.2. The Metaheuristics Gen and VND

Using algorithm LSpr(p | y), we describe the VND and Genetic metaheuristics. The evolution
strategies, evolution programming, and the genetic algorithms are famous approaches in combinatorial
optimization. They have sustained many modifications according to the variety of problems.

In this paper, we use the genetic local search algorithm (GLS) that is interesting both from the
theoretical and practical points of view. It is a variant of a Memetic algorithm in which we apply different
greedy strategies and crossover operators [5]. Algorithm GLS is an iterative method. At each iteration,
we have a set of local optima within the prescribed neighborhoods. This set constitutes a population.
The population evolves during a succession of iterations until some termination criterion is satisfied. The
framework of our metaheuristic can be presented as follows:

Algorithm Gen

Input: y is the facility location, and Imax is the total number of iterations.

Output: The best found price vector p.

Step 0: i ← 0. Randomly generate a starting population of price vectors. For each vector p from
population, apply Algorithm LSpr(p | y).

Step 1. Randomly select two elements from population as parents. Using uniform crossover, create
an offspring solution p′ for the parents. Apply local search for the new price vector p′ and find local
optimum p∗ := LSpr(p′ | y).

Step 2. Update population i ← i + 1. If i ≤ Imax then go to Step 1, else Stop.

The algorithm Variable Neighborhood Descend (VND) performs several descents with different
neighborhoods until a local optimum is reached for all considered neighborhoods. Let N1, N2, . . . , NK

denote a set of K neighborhood structures. Starting with the first structure N1, VND algorithm performs
local search until no further improvements are possible. From this local optimum, it continues local
search with neighborhood structure N2. If an improved solution could be found with this structure then
VND returns to N1 again; otherwise, it continues with N3; and so forth.

Thus, if the last structure NK has been applied and no further improvements are possible then the
solution represents a local optimum with respect to all neighborhood structures; and VND terminates.
The neighborhood structures are explored in order typically from the smallest and fastest to evaluate,
to the slower and bigger one.

We present our implementation of this heuristics:
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Algorithm VND

Input: y is the facility location, Imax is the maximal number of iterations, d is the number of
improvements in Procedure Improve, and k is the parameter of neighborhood k-Flip(p | y).

Output: The best found price vector p.

Step 0. i ← 0. Generate randomly a starting price vector p.
Step 1. Apply local search for the price vector p and find a local optimum p∗ ← LSpr(p | y).

Step 2. i ← i + 1. If i > Imax then Stop, else p ← Improve(k, p∗ | y). If f(y, p) > f(y, p∗) then go
to Step 1, else Stop.

In the Improve procedure we explore only the following neighborhood structures: 2-Flip(p | y) and
3-Flip(p | y). Searching for the best neighboring solution is a time consuming procedure for k large, so
we perform each move within the neighborhood structure k-Flip(p | y) as k consecutive moves within
Flip(p | y) neighborhood.

Each of these neighborhood structures are explored by d-improvement search strategy; i.e., if we find
d improvements in the current neighborhood then the search is terminated [23].

2.3. The Hybrid Algorithms LS+GEN and LS+VND
Given the current solution (y, p), at each iteration of the algorithms we first apply the local search

with Flip(p | y) neighborhood and then apply the local search with Swap(y | p) neighborhood. The price
vector p at the second step is obtained from the first step. As the stopping criterion we use some given
number of iterations. The result of the algorithm is the best found solutions.

The first stage procedure is realized on the Genetic framework in the first algorithm. In the second
algorithm, this procedure is based on the VND approach. Using the algorithms of Section 2.2 and local
search algorithm LSloc(y | p), we now describe the hybrid VND and Genetic heuristics. Let Y denote
the set of all vectors y, where

∑
yi = r, and let L denote the tabu list.

Algorithm LS+Gen

Input: Imax is the maximum total number of iterations.
Output: The best found solution.

Step 0. Put i ← 0 and L ← ∅. Generate randomly a starting location y.
Step 1. If i > Imax then Stop, else L := L ∪ {y}, i ← i + 1, apply Genetic metaheuristic, and find

local optimum p.

Step 2. Find local optimum y∗ := LSloc(y | p). Let p∗ be the price vector corresponding to the
location y∗. If f(y∗, p∗) ≤ f(y, p) then select an arbitrary y ∈ Y \ L, else y := y∗; and go to Step 1.

To obtain Algorithm LS+VND we replace the Genetic algorithm by Algorithm VND.

3. COMPUTATIONAL RESULTS
We tested our hybrid methods on PC Intel Core i7-3612QM, RAM 4Gb. We compared the two

developed algorithms LS+Gen and LS+VND with the already known method VNS+VNS [16] and
CPLEX software on the instances from the benchmark library “Discrete Location Problems” with
dimension n = 40, 100, m = 100, and r = 5 (see Table 1).

Moreover, we compared Algorithms LS+Gen and LS+VND (see Table 2) on these instances but
only with n = 40, m = 100, and r = 10, 15. In [16], the heuristics SA+VNS was under study together
with the bilevel method VNS+VNS. Details of the method SA+VNS are omitted since this algorithm
shows the same results as Algorithm VNS+VNS, but requires significantly more computing time.

In Tables 1 and 2, the first column denotes the code of the instances. The column n(r) represents the
quantity of possible places to open a facility and the number of opened facilities. Columns “Revenue,”
“Time,” and “Iteration” denote respectively the best found revenue, the running time, and the iteration
at which the best solution was found. The CPLEX software was stopped after 24 hours, and the best
found solution was presented as the result for n = 40. For higher dimension (for example, n = 100) the
CPLEX software cannot find any feasible solution.
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Table 1. Comparison of Algorithms LS+Gen, LS+VND, and VNS+VNS with CPLEX software

Instance VNS+VNS CPLEX LS+Gen LS+VND

n(r) Revenue Time Revenue Revenue Iteration Time Revenue Iteration Time

1 40(5) 2245 45 m 2226 2245 5 36 s 2245 20 4 s

2 40(5) 2259 51 m 2259 2259 14 97 s 2259 72 16 s

3 40(5) 2019 41 m 2019 2019 8 47 s 1984 12 3 s

4 40(5) 1533 42 m 1508 1533 63 347 s 1552 22 5 s

5 40(5) 2386 46 m 2313 2386 11 77 s 2346 34 8 s

6 40(5) 1960 60 m 1949 1956 9 57 s 1987 17 4 s

7 40(5) 2179 60 m 2142 2179 55 415 s 2178 58 14 s

8 40(5) 2139 51 m 2139 2139 30 224 s 2140 31 7 s

9 40(5) 1895 59 m 1877 1904 17 115 s 1900 45 10 s

10 40(5) 2209 37 m 2209 2209 4 32s 2252 4 1 s

11 100(5) 2235 1 h 9 m 2230 7 48 s 2235 24 14 s

12 100(5) 2240 3 h 12 m 2240 295 2015 s 2233 31 18 s

13 100(5) 1923 1 h 19 m 1923 16 107 s 1957 13 8 s

14 100(5) 2133 1 h 48 m 2133 466 3194 s 2118 15 9 s

15 100(5) 2099 1 h 58 m 2099 27 197 s 2153 25 15 s

16 100(5) 2237 1 h 10 m 2237 108 806 s 2182 126 75 s

17 100(5) 1888 1 h 15 m 1893 31 202 s 1921 108 62 s

18 100(5) 1825 2 h 51 m 1825 48 312 s 1871 4 2 s

19 100(5) 1767 1 h 43 m 1767 8 48 s 1767 4 3 s

20 100(5) 2363 1 h 2 m 2368 55 369 s 2368 139 84 s

It follows from Table 1 that Algorithms LS+Gen and LS+VND show similar results as VNS+VNS
and CPLEX, but spend less running time. Moreover, Table 2 shows that LS+VND method dominates
LS+Gen only in running time for r large.

4. CONCLUSION

In this paper, we proposed the two metaheuristics based on local search: variable neighborhood
descent and genetic local search, for solving the bilevel facility location and mill pricing problem. Also
we discussed experimental comparison of those heuristics with the double VNS heuristic [16], and the
branch and bound method (CPLEX).

In future it would be interesting to apply other neighborhoods, for example, the Lin-Kernighan
neighborhood, and math-heuristics.
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Table 2. Comparison of Algorithm LS+Gen with Algorithm LS+VND

Instance LS+Gen LS+VND

n(r) Revenue Iteration Time Revenue Iteration Time

21 40(10) 2650 43 2157 s 2626 421 635 s

22 40(10) 2617 39 2266 s 2621 182 282 s

23 40(10) 2351 31 1601 s 2327 73 106 s

24 40(10) 1888 55 2305 s 1895 78 112 s

25 40(10) 2827 24 942 s 2793 88 141 s

26 40(10) 2261 53 2902 s 2289 349 538 s

27 40(10) 2481 15 498 s 2480 528 855 s

28 40(10) 2447 56 1842 s 2443 192 311 s

29 40(10) 2245 47 2629 s 2246 758 1250 s

30 40(10) 2497 58 3054 s 2596 112 180 s

31 40(15) 2804 26 3162 s 2796 794 3413 s

32 40(15) 2758 26 3635 s 2797 346 1616 s

33 40(15) 2515 13 1908 s 2477 146 620 s

34 40(15) 1952 29 3161 s 1983 453 2046 s

35 40(15) 2908 11 1881 s 2870 9 45 s

36 40(15) 2286 23 3129 s 2436 25 114 s

37 40(15) 2529 16 2144 s 2571 288 1369 s

38 40(15) 2532 8 545 s 2558 302 1510 s

39 40(15) 2355 6 630 s 2372 659 3091 s

40 40(15) 2424 24 3431 s 2698 52 261 s
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