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Abstract

We study a new variant of the bin packing problem. Given a set of items, each
item has a set of colors. Each bin has a color capacity, the total number of colors
for a bin is the union of colors for its items and can not exceed the bin capacity.
We want to pack all items into the minimal number of bins. For this NP-hard
problem we apply the column generation technique based on the VNS matheuristic
for the pricing problem. To get optimal or near optimal solutions we apply VNS
matheuristic again using optimal solution for the large scale linear programming
relaxation. Computational experiments are reported for the randomly generated
test instances with large bin capacity and number of items up to 250.
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1 Introduction

In the classical bin packing problem, a set of weighted items must be packed
in minimal number of identical bins such that the sum of weights of items in
a bin does not exceed the bin’s capacity. In this paper we study a new variant
of the bin packing problem. Each item has not weight but has some colors.
The bin capacity limits the total number of colors for its items. The goal is to
pack all coloring items in the minimal number of identical bins such the the
total number of colors of items in a bin does not exceed the bin capacity. It
is NP-hard problem and it can be reformulated as a biclique vertex covering
problem for bipartite graphs [5].

The bin packing problem with color constraints (CPP) is a relatively recent
line in combinatorial optimization. One of the applications of the problem is
beverage package printing [10]. In [12] the bin packing problem with classes
of items (colors) is used to model video-on-demand applications. A biclique
covering (biclustering), which is a straight reformulation of CPP, is used to
model protein-protein interaction [4].

There are some versions of the problem with online and offline settings
[2,11]. In the colored bin packing [3], each bin has a maximum color capacity,
i.e. a limit on the number of items of a particular color. This version is
originated in the production planning of a steel plant. In a more generalized
version of the color bin packing problem [8,9] the constraints among items are
described by a conflict graph. In the black and white bin packing problem
with alternation constraints [1], two items with the same color can not be
packed adjacently to each other.

In this paper we consider a new version of the colored bin packing problem
which is a special case of the co-printing problem [10]. We assume that each
item has zero weight and arbitrary number of colors. We apply the column
generation technique to get lower bound for number of bins in optimal solution
and VNS matheuristic for the pricing problem. We use this heuristic to get
upper bound as well. Solutions for the linear programming relaxation are
rounding down and the remaining items are packed by the VNS matheuristic.

The paper is organized as follows. In Section 2 we introduce notations and
present the mathematical model. In Section 3 we describe the pricing problem
and discuss its complexity. In Section 4 we define three types of neighborhoods
and present a pseudocode of the VNS matheuristic for the pricing problem.
In Section 5 we design a heuristic for the CPP problem. Finally, in Section 6
we discuss some preliminary experimental results for randomly generated test
instances with large bin capacity and number of items up to 250.
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2 Mathematical Model

Let us introduce the following notations:
I = {1, . . . , n} is the set of items;
J = {1, . . . , m} is the set of colors;
Ki ⊂ J is the set of colors for item i;
b is the number of different colors for each bin;
p = (p1, . . . , pi, . . . , pn) is a bin pattern (or bin for shot) where pi ∈ {0, 1}
denotes whether item i is in the bin or not;
P = {p : | ∪i∈I(Ki : pi = 1) |≤ b} is the set of all feasible bins.

Decision variables:
yp = 1 if bin p is used in the solution and yp = 0 otherwise.

Now we can write the CPP as follows:

min
{∑

p∈P
yp :

∑
p∈P

piyp ≥ 1, i ∈ I, yp ∈ {0, 1}
}
.

In this linear integer programming formulation we have a lot of variables
and a few constraints. The large scale formulations allow us to exclude sym-
metries which usually presented in the bin packing compact representations.
Moreover, large scale formulations as a rule have small integrality gap and
the linear programming relaxation can be solved exactly by column genera-
tion technique. Below we apply this approach and use VNS and matheuristic
ideas for accelerating method.

3 Pricing problem

According to the classical column generation approach we select a subset of
bins P ′ ⊂ P , remove the integrality constraints and solve the dual linear
programming problem:

max
{∑

i∈I
wi :

∑
i∈I

piwi ≤ 1, p ∈ P ′, wi ≥ 0
}
,

where the dual variable wi can be considered as a price for item i. To enlarge
the subset P ′ or terminate the method, we should solve the following pricing
problem with optimal values wi of the dual variables.

Let us introduce additional variables:
xi = 1 if item i is placed in a bin and xi = 0 otherwise.
zj = 1 if a bin contains item with color j and zj = 0 otherwise.
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Then, the pricing problem can be stated as follows:

min(1−
∑
i∈I

wixi)

s.t.
∑
j∈J

zj ≤ b;

xi ≤ zj , j ∈ Ki, i ∈ I;

xi, zj ∈ {0, 1}, i ∈ I, j ∈ J.

The objective function minimizes the reduced cost. The first constraint con-
trols the total number of colors for a bin. The second constraint shows the
relations between items and colors. It is easy to see that a knapsack problem
can be reduced to the pricing problem, and as a result, the pricing problem is
NP-hard. We have to solve a lot of the pricing problems with different prices.
Thus, we design a VNS matheuristic to find optimal or near optimal solutions.

4 VNS matheuristic

Variable Neighborhood Search is the well-known metaheuristic for combina-
torial and global optimization based upon systematic change of neighborhood
within local search [7]. Below we apply this approach to the pricing problem.
For a feasible solution (x0

i , z
0
j ), we put K0 = ∪{Ki | x0

i = 1} and define three
types of neighborhoods.

• k-ItemAdd neighborhood. We collect all items with at most k additional
colors to K0 and select one of them, say i′. Then we create a subset K ′ =
K0 ∪ Ki′ and a subset of items I ′ = {i ∈ I | Ki ⊆ K ′}. The neighboring
solution is defined as the optimal solution to the pricing problem with the
following restriction: xi = 0, i /∈ I ′. The size of the neighborhood is O(n).

• k-ColorDel neighborhood. We select a subset of colors K ′ ⊆ K0, |K ′| ≤ k.
The neighboring solution is defined as the optimal solution to the pricing
problem with the following restriction: zj = 1, j ∈ K0 \K ′. The size of the
neighborhood is exponential.

• k-ColorSwap neighborhood. We remove k colors from the set K0 and in-
clude other k colors resulting in a setK ′. The neighboring solution is defined
as all items with colors in K ′. The size of the neighborhood is exponential,
but each neighboring solution can be evaluated in polynomial time.

To get neighboring solutions for the k-ItemAdd and k-ColorDel neighbor-
hoods, we need to solve the pricing problems. For small k they have small

Y. Kochetov, A. Kondakov / Electronic Notes in Discrete Mathematics 58 (2017) 39–4642



dimension and can be solved easily by Gurobi software [6]. Resolution of
pricing problem in full dimension is time consuming.

For diversification, we collect the subsets K ′ during the search by the k-
ItemAdd neighborhood and include the cuts

∑
j∈K ′

zj ≤ b− 1

into the pricing problem for removing the previously visited solutions. For the
k-ColorDel neighborhood we use the cuts

∑
j∈J\(K0\K ′)

zj ≤ k − 1.

The cuts are accumulated in the TabuList with fixed length. The pseudocode
of the matheuristic is presented below.

VNS matheuristic

1. Select the set of neighborhood structures for k = 1, . . . , kmax; find an initial
solution (x, z); put TabuList := Ø; choose a stopping condition;

2. Repeat the following sequence until the stopping condition is met:

(1) Set k := 1; t := 1;

(2) Repeat the following steps until k = kmax:

(a) Select a solution (x′, z′) at random by the k-ItemAdd neighborhood
for even t and by the k-ColorDel neighborhood for odd t;

(b) Update TabuList; t := t+ 1;
(c) If solution (x′, z′) is better than incumbent solution (x, z)
then move (x, z) := (x′, z′) and k := 1; else k := k + 1;

(d) If we have no improvement for kmax

2
iterations then move by the

k-ColorSwap neighborhood at random direction;

3. Return the best found solution (x, z).

The items with large color sets Ki are the most inconvenient for the heuris-
tic. To improve its efficiency, we select all large items, |Ki| ≥ b−r, 1 ≤ r ≤ 10,
and solve the pricing problem for each of them with additional constraint
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xi = 1. Then we apply the VNS matheuristic for the remaining items. The
best found solution is returned as a result of the modified algorithm.

We use this approach at each iteration of the column generation procedure
and include all solutions with negative reduced cost into the restricted master
problem. In such a way we decrease the number of iterations but increase
the total number of columns. If the VNS matheuristic cannot find a solution
with negative reduced cost, then we solve the pricing problem to optimality
by commercial solver Gurobi.

5 Heuristic for the CPP

We apply three heuristics to find optimal or near optimal solutions:

• The FFD heuristic. It is adaptation of the well known FFD algorithm for
the classical bin packing problem. The items are sorted by the nonincreasing
of the cardinality of their color sets. Then we put each item in the first bin
in which it fits. If it does not fit in any bin, we open a new bin.

• The FillBin heuristic. We put wi = |Ki|2 and use these artificial prices in
the pricing problem. The VNS matheuristic is applied to fill the first bin.
The packed items are removed and VNS matheuristic is applied again until
all items are packed into bins.

• The LP heuristic. We use the following idea [10] at the last iterations of
the column generation procedure. We take the round down LP solution to
the restricted master problem as a partial solution and apply the FillBin
heuristic to the remaining items. The best found solution is returned as the
result of the LP heuristic.

Note that the last LP heuristic is time consuming but produces the most
strong solutions. Moreover, we can use it for large scale instances as well if
the column generation procedure is terminated in an intermediate iteration.
Sure, in such a case we have not a lower bound for the global optimum.
The FFD and FillBin heuristics are fast but produce weak solutions. We use
these heuristics at the initialization step of the VNS and column generation
procedure.

6 Computational experiments

We conduct our computational experiments for the randomly generated test
instances in 8 sets of parameters n, m and b. For each set we generate 10
instances. Thus, the total amount of tests is equal to 80. The color set Ki for
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each item is generated by the following procedure. We uniformly choose an
integer l from 1 to b and uniformly choose a 0-1 vector with exactly l ones.

Table 1 presents the results of our experiments. First three columns show
the parameters of the instances. Column Iter shows the number iterations for
the column generation procedure. Column Cols shows an amount of generated
columns. Columns V NS and Gur show the total running time (in seconds) for
the VNS matheuristic and Gurobi solver respectively. Column T ime shows
the total running time for the method. Columns LB and UB present the
lower bound of the linear programming relaxation and the best upper bound
for the global optimum.

We note that the performance of the method strongly depends on the inte-
grality gap and the bin capacity. For instances without the gap, our approach
shows good performance both in running time and the quality of the solutions.
It seems that the uniformly generated instances are quite easy for the method.
Many of them have not the integrality gap in the large scale reformulation.
If the integrality gap is positive, we need a lot of efforts to solve the linear
programming relaxation. Nevertheless, we can apply the LP heuristic in such
a case as well even for large bin capacity. Note that previous studies [10] deal
with small bin capacity only, b ≤ 10.

n m b Iter Cols V NS Gur T ime LB UB

150 55 30 78 351 1303 755 2058 53 53

150 55 30 128 458 1794 3622 5416 52 54

200 90 40 31 132 191 182 373 82 82

200 90 40 87 242 1692 1785 3477 86 86

225 90 40 70 301 751 628 1379 91 91

225 90 40 57 221 676 1697 2373 95 96

250 90 40 88 394 1805 2980 4785 102 102

250 90 40 175 610 4376 13227 17603 109 112

Table 1
Computational results
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