
Workshop on Computer Science and Information Technologies CSIT’2003, Ufa, Russia, 2003

Evolutionary Local Search with Variable Neighborhood for the
Resource Constrained Project Scheduling Problem

Yu.A. Kochetov

Sobolev Institute of Mathematics

Novosibirsk, Russia

e-mail: jkochet@math.nsc.ru

A.A. Stolyar

Sobolev Institute of Mathematics

Novosibirsk, Russia

e-mail: asto@math.nsc.ru

Abstract
In this paper we consider the resource constrained
project scheduling problem. We propose an
evolutionary algorithm based on path relinking
strategy and tabu search with variable
neighborhood. Computational experiments are made
for the PSPLib data set. For most benchmarks the
algorithm found best known solutions. For several
test instances the best solutions was improved.

1. Introduction
In the resource constrained project scheduling problem
we consider the single project which consists of a set of
activities. Each activity has duration and must be
executed without preemptions. During the processing
period of an activity, constant amounts of renewable
resource are needed. The available capacity of each
resource type is limited. A partial order representing
precedence relations between activities is given. The
objective is to determine the starting time for each
activity such that to minimize the total project length.

The resource constrained project scheduling problem, as
generalization of well-known job-shop problem, is NP -
hard in the strong sense [1]. There are exact and heuristic
algorithms for solving the problem. In this paper we
propose a hybrid approach combining concepts of tabu
search [3], variable neighborhood search [4] and genetic
algorithms [3]. The main idea of the approach is to
accumulate useful information which is contained in the
best found local optima.

2. Problem statement
By J={1,…,n}∪{0, n+1} denote the set of activities. The
dummy activities 0 and n+1 has zero duration and zero
resource requirements. They represent the beginning and
the end of the project. For each activity j∈ J we denote its
processing time by pj ≥ 0, p0 = pn+1 = 0. The precedence
relations on J are represented by the set of pairs C={(i,j)},

where activity i is a predecessor of the activity j. By Pj
denote the set of all predecessors of the activity j. The set
C contains all pairs (0,j) and (j,n+1), 1 ≤ j ≤ n.

By K={1,…,m} denote the set of renewable resources. We
assume that amount of each resource Rk, k∈ K is a
constant. By rjk denote the activity j per-period usage of
the kth type resource.

Now we introduce variables. The starting time of the
activity j is denoted by sj. The set A(t) = {j∈J | sj ≤ t <
sj+pj} is a set of activities which are in progress at the
time t. The formal problem statement can be written as
follows:

.,0

,0,,

,),(,..

min

)(j

1

Jjs

tKkRr

Cjispsts

s

j

tA
kjk

jii

n

∈≥

≥∈≤

∈≤+

∑
∈

+

The objective function minimizes theproject makespan.
The first constraint corresponds to the precedence
relations. The second one corresponds to the resource
constraints.

3. Algorithm outline
The algorithm is evolutionary. At the each stage of
evolution, we have a population of local optima. The
crossover operator is based on path relinking strategy. We
choose a pair of solutions from the population and
construct a path between them in the neighborhood graph.
For this purpose we use the greedy randomized adaptive
search procedure (GRASP) [2]. The path constructed is a
collection of feasible solutions. We select one of them
and improve it by the tabu search algorithm with variable
neighborhood. The improved solution is added to the

Evolutionary Local Search with Variable Neighborhood for the Resource Constrained Project Scheduling Problem

population. The worst one is removed from it. The
diversification strategy is applied at the end of evolution.

3.1 Solution Representation
We use an activity list representation [5]. Feasible
solution is coded by the list of activities L=(j1,…,jn). All
lists considered are assumed to be compatible with the
precedence relations. In other words, activity i is listed
before activity j if the precedence relations require to
finish i before start j. For arbitrary list L, the serial
decoding procedure [5] calculates an active schedule
S(L). It is known that there is an optimal schedule among
active schedules.

3.2 Neighborhoods
Let L be a list of activities and S be a correspondent
active schedule.

Definition 1. Block of activity j is a set of activities which
are scheduled in parallel with activity j:

]}.,[|{

]},[|{

jjji

jjjiij

psssJi

psspsJiBlock

+∈∈

+∈+∈=

U

U

If the block contains at least one predecessor of the
activity j then we put Blockj:=∅.

For a given schedule S we define the directed graph
GS(V,E), where V=J and E={(i, j) | si+pi=sj, i ∈ Pj}.

Definition 2. Outcoming Network of the activity j is a
maximal due to inclusions subgraph of the graph GS
which is a connected network with a source
corresponding to the activity j.

The element L′ of the neighborhood N1(L) is constructed
for each activity j with non-empty block. The list L′ is
obtained from the list L in four stages.

On the first stage we define two positions First and Last
in the list L. The First is a minimal position in the list L
among all activities in the block of the activity j. The Last
is a maximum of two values Last1 and Last2 which are
maximal positions in the list L among all activities in the
block and in the outcoming network of the activity j
respectively.

On the second stage we calculate a partial schedule for
the First-1 activities from the beginning of the list L via
serial decoding procedure.

On the third stage we extend the partial schedule by
scheduling of next Last-First+1 activities of the list L via
parallel decoding procedure. According to the procedure
at each stage of scheduling we have a schedule time t and
the correspondent eligible set Et, i.e. a set of activities
which could be started at t without violation of any
constraints. There are exponentially number of

possibilities to select a subset of activities from the
eligible set to include into the schedule. In order to
choose the subset we solve the multi-dimensional
knapsack problem with objective function maximizing the
resource

utilization ratio [7]:

}.1,0{

,,..

,1max
1

∈

∈−≤ ∑∑

∑∑

∈∈

=∈

j

tAj
jkkjk

tEj
j

K

k k

jk

tEj
j

x

KkrRrxts

R
r

K
x

Right side of the restriction ∑ ∈
−

tAj jkk rR is a

remaining capacity the kth type resource at the time t. We
use GRASP algorithm [2] to solve the problem. Solution
obtained is a subset of eligible set Et. Each activity of the
subset is included into the partial schedule at the time t.

On the fourth stage we construct a list L′ as follows. First,
we set L′ = L in first First-1 positions. Second, we put the
next Last-First+1 activities into list L′ in non-decreasing
order of its starting times in the partial schedule. Finally,
remaining activities are listed in the list L′ at the same
order as in the list L.

3.3 Reverse Neighborhood
The reverse neighborhood N2(L) is constructed at the
symmetrical manner. For this purpose it is sufficiently to
transform current active schedule into right active
schedule and replace outcoming network by
correspondent incoming network.

3.4 Randomization
We use randomization of neighborhoods in order to
reduce efforts per iteration. Each element of the
neighborhoods is considered with some probability p ≤ 1.

3.5 Tabu List
We use a tabu list of constant length. As tabu status of a
solution L we consider the sum of starting times:

∑
=

=
n

j
jsLTS

1
)(

for the schedule S(L).

3.6 Crossover operator
The crossover operator is based on the path relinking
strategy [3]. We introduce a shift operator Shiftij(L) which

Workshop on Computer Science and Information Technologies CSIT’2003, Ufa, Russia, 2003

moves activity i immediately after activity j together with
all successors tk placed before than activity j in the list L:

Ctiti
tjitLjttiL

LShift

m

mm

ij

∈

=′→=

),(,),,(
),()(

:)(

1

11

K

KKKKKKKK

Let L and L′ be two solutions. We construct a path L=L0,
L1,…,Lk = L′, Li = Shiftpq(Li-1). By B(j) (B′(j)) denote the
set of activities listed before than activity j in the list L
(L′).

Definition 3. We say that the order condition is fulfilled
for the activity j, if B′(j) ⊆ B(j).

By Order denote the set of activities for which the order
condition holds. The path construction procedure
transforms the list L into the list L′ successively
decreasing the cardinality of the set J \ Order
monotonically.

3.7 Diversification
At the end of evolution, we generate a new population to
explore new regions of the feasible domain. The new
population should be selected as far as possible from the
current one. For this purpose we consider the traveling
salesman problem with the precedence relations. Let mij
be a number of solutions (lists) of the current population
in which the activity j is listed immediately after activity
i. The objective function minimizes the closeness between
new solution and solutions of the current population:

}.{..

,min

11

1

kj

jj

jjPts

m

k

kk

K⊆
+

+
∑

In order to solve the problem we use the GRASP
algorithm [2].

4. Computational experiments
The algorithm was tested on the benchmarks taken from
the PSPLib data set [6].

4.1 Allocation of local optima
We make the following experiment to study the allocation
of local optima in the feasible domain. We randomly
generate 1000 feasible solutions and apply local descent
to everyone. For each local optima obtained we calculate
size and weight. The size is a number of local optima
from the sample which are located inside of the fixed
range around the current local optimum. The weight is an
average makespan of these local optima. Figure 1 shows
the dependence between local optimum makespan and its
weight. We see that good local optima are located near

the good ones. The bad local optima are located near the
bad ones. The experiment confirms that the genetic
selection is quite promising search strategy for this
problem.

Figure 1: Allocation of local optima

4.2 Algorithm behavior
We test the algorithm in three modes: with single
neighborhood without evolution, with variable
neighborhood without evolution and with variable
neighborhood and evolution. Table 1 shows average
percent deviations from the best known upper bound for
the most hard benchmark classes with 30 and 60
activities.

Test
Classes

Single
Neighb.

Variable
Neighb.

Evolutionar
y Algorithm

J3013

J3029

J3045

2,49

1,96

1,93

0,00

0,00

0,00

0,00

0,00

0,00

J6013

J6029

J6045

3,47

4,01

2,90

0,96

0,93

0,17

0,61

0,44

0,18

Table 1: Average percent deviation from the best known
upper bound

One can see that the algorithm with variable
neighborhood provides better results than algorithm with
single neighborhood. For most benchmark classes the
evolutionary algorithm overcomes the algorithm without
evolution. Sum total 60 benchmarks were considered. In
49 cases best known solutions were obtained. For two
instances with 60 activities and for one instance with 120
activities the algorithm found new best solutions.

4. Acknowledgement
This research was supported by the Russian Foundation
for Basic Research, grant No. 03-01-00455.

Evolutionary Local Search with Variable Neighborhood for the Resource Constrained Project Scheduling Problem

References
1. Blazewich J., Lenstra J. K., Rinooy Kan A. H. G.

"Scheduling subject to resource constraints:
Classification and complexity". Discr. Appl. Math.
1983; 5:11--24

2. Feo T. A., Resende M. G. C. "Greedy Randomized
Adaptive Search Procedures". Journal of Global
Optimization 1995; 6:109--133

3. Glover F., Laguna M. "Tabu Search". Kluwer
Academic Publishers, Boston/Dordrecht/London,
1997

4. Hansen P., Mladenovic N. "Developments of
Variable Neighborhood Search". In: Ribeiro C.,
Hansen P. (eds.) Essays and Surveys of
Metaheuristics. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2002, pp 415--440

5. Kolisch R., Hartmann S. "Heuristic algorithms for
the resource-constrained project scheduling problem:
classification and computational analysis". In:
Weglarz J. (ed.) Project Scheduling: Recent Models,
Algorithms and Applications. Kluwer Academic
Publishers, 1999, pp 147--178

6. Kolisch R., Schwindt C., Sprecher A. "Benchmark
instances for project scheduling problems". In:
Weglarz J. (ed.) Handbook of recent advances in
project scheduling. Kluwer, Dordrecht, 1998,
Chapter 9

7. Valls V., Ballestin F., Quintanilla S. "A Population-
based Approach to the Resource-Constrained Project
Scheduling Problem". Technical report 10-2001,
University of Valencia, 2001

