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Abstract 
In this paper we consider the resource constrained 
project scheduling problem. We propose an 
evolutionary algorithm based on path relinking 
strategy and tabu search with variable 
neighborhood. Computational experiments are made 
for the PSPLib data set. For most benchmarks the 
algorithm found best known solutions. For several 
test instances the best solutions was improved. 

1. Introduction 
In the resource constrained project scheduling problem 
we consider the single project which consists of a set of 
activities. Each activity has duration and must be 
executed without preemptions. During the processing 
period of an activity, constant amounts of renewable 
resource are needed. The available capacity of each 
resource type is limited. A partial order representing 
precedence relations between activities is given. The 
objective is to determine the starting time for each 
activity such that to minimize the total project length. 

The resource constrained project scheduling problem, as 
generalization of well-known job-shop problem, is NP - 
hard in the strong sense [1]. There are exact and heuristic 
algorithms for solving the problem. In this paper we 
propose a hybrid approach combining concepts of tabu 
search [3], variable neighborhood search [4] and genetic 
algorithms [3]. The main idea of the approach is to 
accumulate useful information which is contained in the 
best found local optima. 

2. Problem statement 
By J={1,…,n}∪{0, n+1} denote the set of activities. The 
dummy activities 0 and n+1 has zero duration and zero 
resource requirements. They represent the beginning and 
the end of the project. For each activity j∈ J we denote its 
processing time by pj ≥ 0, p0 = pn+1 = 0. The precedence 
relations on J are represented by the set of pairs C={(i,j)}, 

where activity i is a predecessor of the activity j. By Pj 
denote the set of all predecessors of the activity j. The set 
C contains all pairs (0,j) and (j,n+1), 1 ≤  j ≤ n. 

By K={1,…,m} denote the set of renewable resources. We 
assume that amount of each resource Rk, k∈ K is a 
constant. By rjk denote the activity j per-period usage of 
the kth type resource.  

Now we introduce variables. The starting time of the 
activity j is denoted by sj. The set A(t) = {j∈J |  sj ≤  t <  
sj+pj} is a set of activities which are in progress at the 
time t. The formal problem statement can be written as 
follows:  
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The objective function minimizes theproject makespan. 
The first constraint corresponds to the precedence 
relations. The second one corresponds to the resource 
constraints.  

3. Algorithm outline 
The algorithm is evolutionary. At the each stage of 
evolution, we have a population of local optima. The 
crossover operator is based on path relinking strategy. We 
choose a pair of solutions from the population and 
construct a path between them in the neighborhood graph. 
For this purpose we use the greedy randomized adaptive 
search procedure (GRASP) [2]. The path constructed is a 
collection of feasible solutions. We select one of them 
and improve it by the tabu search algorithm with variable 
neighborhood. The improved solution is added to the 
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population. The worst one is removed from it. The 
diversification strategy is applied at the end of evolution. 

3.1 Solution Representation 
We use an activity list representation [5]. Feasible 
solution is coded by the list of activities L=(j1,…,jn). All 
lists considered are assumed to be compatible with the 
precedence relations. In other words, activity i is listed 
before activity j if the precedence relations require to 
finish i before start j. For arbitrary list L, the serial 
decoding procedure [5] calculates an active schedule 
S(L). It is known that there is an optimal schedule among 
active schedules. 

3.2 Neighborhoods 
Let L be a list of activities and S be a correspondent 
active schedule. 

Definition 1. Block of activity j is a set of activities which 
are scheduled in parallel with activity j: 
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If the block contains at least one predecessor of the 
activity j then we put Blockj:=∅. 

For a given schedule S we define the directed graph 
GS(V,E), where V=J and E={(i, j)  | si+pi=sj, i ∈ Pj}. 

Definition 2. Outcoming Network of the activity j is a 
maximal due to inclusions subgraph of the graph GS 
which is a connected network with a source 
corresponding to the activity j. 

The element L′ of the neighborhood N1(L) is constructed 
for each activity j with non-empty block. The list L′ is 
obtained from the list L in four stages. 

On the first stage we define two positions First and Last 
in the list L. The First is a minimal position in the list L 
among all activities in the block of the activity j. The Last 
is a maximum of two values Last1 and Last2 which are 
maximal positions in the list L among all activities in the 
block and in the outcoming network of the activity j 
respectively. 

On the second stage we calculate a partial schedule for 
the First-1 activities from the beginning of the list L via 
serial decoding procedure. 

On the third stage we extend the partial schedule by 
scheduling of next Last-First+1 activities of the list L via 
parallel decoding procedure. According to the procedure 
at each stage of scheduling we have a schedule time t and 
the correspondent eligible set Et, i.e. a set of activities 
which could be started at t without violation of any 
constraints. There are exponentially number of 

possibilities to select a subset of activities from the 
eligible set to include into the schedule. In order to 
choose the subset we solve the multi-dimensional 
knapsack problem with objective function maximizing the 
resource 

utilization ratio [7]: 
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remaining capacity the kth type resource at the time t. We 
use GRASP algorithm [2] to solve the problem. Solution 
obtained is a subset of eligible set Et. Each activity of the 
subset is included into the partial schedule at the time t. 

On the fourth stage we construct a list L′ as follows. First, 
we set L′ = L in first First-1 positions. Second, we put the 
next Last-First+1 activities into list L′ in non-decreasing 
order of its starting times in the partial schedule. Finally, 
remaining activities are listed in the list L′ at the same 
order as in the list L. 

3.3 Reverse Neighborhood 
The reverse neighborhood N2(L) is constructed at the 
symmetrical manner. For this purpose it is sufficiently to 
transform current active schedule into right active 
schedule and replace outcoming network by 
correspondent incoming network. 

3.4 Randomization 
We use randomization of neighborhoods in order to 
reduce efforts per iteration. Each element of the 
neighborhoods is considered with some probability p ≤ 1. 

3.5 Tabu List 
We use a tabu list of constant length. As tabu status of a 
solution L we consider the sum of starting times: 
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for the schedule S(L). 

3.6 Crossover operator 
The crossover operator is based on the path relinking 
strategy [3]. We introduce a shift operator Shiftij(L) which 
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moves activity i immediately after activity j together with 
all successors tk placed before than activity j in the list L:  
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Let L and L′ be two solutions. We construct a path  L=L0, 
L1,…,Lk = L′, Li = Shiftpq(Li-1). By B(j) (B′(j)) denote the 
set of activities listed before than activity j in the list L 
(L′). 

Definition 3. We say that the order condition is fulfilled 
for the activity j, if B′(j) ⊆ B(j). 

By Order denote the set of activities for which the order 
condition holds. The path construction procedure 
transforms the list L into the list L′ successively 
decreasing the cardinality of the set J \ Order 
monotonically. 

3.7 Diversification 
At the end of evolution, we generate a new population to 
explore new regions of the feasible domain. The new 
population should be selected as far as possible from the 
current one. For this purpose we consider the traveling 
salesman problem with the precedence relations. Let mij 
be a number of solutions (lists) of the current population 
in which the activity j is listed immediately after activity 
i. The objective function minimizes the closeness between 
new solution and solutions of the current population: 
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In order to solve the problem we use the GRASP 
algorithm [2]. 

4. Computational experiments 
The algorithm was tested on the benchmarks taken from 
the PSPLib data set [6]. 

4.1 Allocation of local optima 
We make the following experiment to study the allocation 
of local optima in the feasible domain. We randomly 
generate 1000 feasible solutions and apply local descent 
to everyone. For each local optima obtained we calculate 
size and weight. The size is a number of local optima 
from the sample which are located inside of the fixed 
range around the current local optimum. The weight is an 
average makespan of these local optima. Figure 1 shows 
the dependence between local optimum makespan and its 
weight. We see that good local optima are located near 

the  good ones. The bad local optima are located near the 
bad ones. The experiment confirms that the genetic 
selection is quite promising search strategy for this 
problem. 

 
Figure 1: Allocation of local optima 

4.2 Algorithm behavior 
We test the algorithm in three modes: with single 
neighborhood without evolution, with variable 
neighborhood without evolution and with variable 
neighborhood and evolution. Table 1 shows average 
percent deviations from the best known upper bound for 
the most hard benchmark classes with 30 and 60 
activities. 

Test 
Classes 

Single 
Neighb. 

Variable 
Neighb. 

Evolutionar
y Algorithm 

J3013 

J3029 

J3045 

2,49 

1,96 

1,93 

0,00 

0,00 

0,00 

0,00 

0,00 

0,00 

J6013 

J6029 

J6045 

3,47 

4,01 

2,90 

0,96 

0,93 

0,17 

0,61 

0,44 

0,18 

Table 1: Average percent deviation from the best known 
upper bound 

One can see that the algorithm with variable 
neighborhood provides better results than algorithm with 
single neighborhood. For most benchmark classes the 
evolutionary algorithm overcomes the algorithm without 
evolution. Sum total 60 benchmarks were considered. In 
49 cases best known solutions were obtained. For two 
instances with 60 activities and for one instance with 120 
activities the algorithm found new best solutions. 
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