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Abstract
We study the talent scheduling problem which can be reformulated as the column permu-

tation problem for a binary matrix. The problem is NP-hard in the strong sense. Modified
greedy algorithm and iterative local search metaheuristics are developed for this problem.
Computational experiments show that we can find optimal or near optimal solutions easily
by these methods if number of columns and number of rows of the matrix are at most 100.
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1 Introduction

In the talent scheduling problem we assume that a film production project is divided into n
independent shooting days (scenes). There are m talents (actors) involved at different scenes
of the project. An (m × n) binary matrix A indicates the scenes for each talent. The element
aij of the matrix is set to 1 if talent i is needed for scene j and it is 0 otherwise. The per-diem
payment for talent i is a positive value wi. Each talent starts to job in his first shooting day
and finishes in his last shooting day. We wish to find a permutation of scenes to minimize the
total payment for the talents.

If there is a permutation without delays of the talents (free days) then the total payment
is

∑n
i=n wi

∑m
j=1 aij and the problem is polynomially solvable [1, 2]. If it is not the case, the

problem is NP-hard. The branch and bound method for the problem is presented in [3]. It allows
us to solve the problem for small dimensions only, n = m ≤ 15. Three integer linear programming
formulations of the problem are studied in [4]. They can be used for solving the problem by
commercial software. Unfortunately, the integrality gap is large for these formulations and solver
CPLEX 11.0 can not find global optimum for n = m = 30 during 24 hours on Pentium 2.8 GHz.
The dynamic programming method for the problem is presented in [5]. We can solve the problem
for small dimensions by the method again, n = m ≤ 30. The first metaheuristic approach, a
genetic algorithm, in presented in [6]. It is not strong and tested for m ≤ 40, n ≤ 70 only.

In this paper we develop three metaheuristic algorithms: a hybrid simulated annealing,
stochastic tabu search and genetic local search. We show that these algorithms can discover the
optimal solutions for random generated instances with n = m ≤ 100 quickly. They use a new
constructive heuristic to create good starting solutions and three neighborhoods Insert, Rotate,
and k-Opt for improving a current solution or population of solutions. These metaheuristics
incorporate idea of Variable Neighborhood Search method [7] to change neighborhoods during
the iterative process.

The paper is organized as follows. Section 2 introduces the notations and the mathematical
model. Section 3 describes the constructive greedy heuristics. Three neighborhoods for local
search are presented in Section 4. The stochastic tabu search, hybrid simulated annealing, and
genetic local search are described in Sections 5, 6 and 7 correspondingly. Computational results
are discussed in Section 8. In final Section 9, we give some conclusions and directions for future
research.
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2 Mathematical model

Let us introduce the following variables:
ei is the earliest shooting day for talent i;
li is the latest shooting day for talent i;
xjt is the scheduling for the project, i.e.

xjt =
{

1 if scene j is scheduled in day t of shooting
0, otherwise.

We wish to minimize the total payment F (e, l, x) defined by

F (e, l, x) =
m∑

i=1

wi(li − ei + 1)

subject to
n∑

j=1

xjt =
n∑

t=1

xjt = 1, 1 ≤ j, t ≤ n;

aijei ≤
n∑

t=1

aijtxjt ≤ li, 1 ≤ i ≤ m, 1 ≤ j ≤ n;

xjt ∈ {0, 1}, 1 ≤ j, t ≤ n;

li, ei ≥ 1, integer, 1 ≤ i ≤ m.

The objective function is the total payment for the talents. The first restriction requires one day
for each scene and one scene for each day. The second restriction defines the earliest and latest
days for each talent. Other restrictions are integrality constraints. It is easy to see that the last
restriction can be omitted. The optimal solution is not changed in this case. Thus we have got
the mixed integer linear program with n2 binary variables xjt and nonnegative 2m continuous
variables ei and li. Unfortunately, this formulation has large integrality gap as the previous pure
integer formulations [4] and we can solve the problem by CPLEX software for small dimensions
only. For large scale instances we develop metaheuristics which can discover optimal or near
optimal solutions.

3 Fast constructive algorithms

As we have mentioned above, the problem is polynomially solvable if there is a scheduling without
free days of the talents. For testing this property, a PQ–tree data structure is applied [2]. It is
polynomial and sophisticated algorithm. It carries out at most m iterations. In each iteration
we consider a subset of talents, and the current permutation of scenes is modified in order to
remove free days for an additional talent. If it is not possible, the algorithm terminates with
answer ”No”. If we do that for all talents, we obtain the desired permutation and the algorithm
terminates with answer ”Yes”. Below we present two greedy algorithms for the general case.
The first naive algorithm carries out n iterations. It starts by selecting a scene for the first day.
In each iteration a subset of scenes is considered and we select an additional scene for this subset
to minimized an additional payment for the talents.

There are at least two weak points in this framework. It is not clear how to select the first
scene. But we can test all scenes and return the best found solution. In each iteration, we
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consider a subset of scene and calculate the objective function for this subset only. It may be
not correct. For some talents we must pay for free days because they will be needed later. Now
we present a modified greedy algorithm where in each iteration we check whether a talent will
be needed for unscheduled scenes or not. An auxiliary set J is used for the unscheduled scenes
and permutation σ is a result of the algorithm.

Modified Greedy Algorithm

1. Put J ← {1, . . . , n}, I ← Ø.

2. Select a scene j for the first day, put σ(1) ← j, J ← J \ {j}.
3. For i:=1 to m do if aij = 1 then I ← I ∪ {i}. { Identify the involved talents }
4. For each day t := 2 to n do

4.1. For each i ∈ I, if
∑

j∈J aij = 0 then I ← I \ {i}. { Remove unused talents }
4.2. Find a scene j0 with minimal additional payment

∆j0 = min
j∈J

{∑

i∈I

wi(1− aij) +
∑

i/∈I

wiaij

}

4.3. Put σ(t) ← j0; J ← J \ {j0}.
4.4. For each i ∈ I, if aij0 = 1 then I ← I ∪ {i}. { Involve new talents}

5. Return the permutation σ.

Figure 1 shows computational results for the greedy algorithms. Each point at the curves
corresponds to the average deviation from the optimum for 30 randomly generated instances,
n = m = 100. For each instance we apply the algorithms 100 times with each scene for the first
day and return the best found solution. As we can see, the algorithms produce near optimal
solutions for instances with high density, d =

∑
ij aij/mn. For low density d = 0.05 the average

deviation is large, it is about 50% for the naive greedy algorithm and about 10% for the modified
greedy algorithm. The instances with low density are the most difficult. Thus, the remain part
of the paper is devoted to metaheuristics for this difficult case.

Figure 1: Average deviations of the greedy algorithms
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4 Neighborhoods

For a permutation σ we define the following neighborhoods.
The Insert neighborhood is the set of all permutations which can be obtained from σ by

insertion an element (scene) to a new position (day).
The Rotate neighborhood is the set of all permutations which can be obtained from σ by

choosing two elements and using inverts order for these elements and all elements between them.
The k-Opt neighborhood is the set of all permutations which differ from σ in at most k

positions.
It is easy to verify that the neighborhoods have the following important property. For two

arbitrary permutations σ′ and σ′′ there is a finite number q and permutations σl, l = 0, . . . , q such
that σ0 = σ′, σq = σ′′ and each permutation σl is neighboring for σl−1. In other words, using
each neighborhood we can reach arbitrary solution (for example, optimal one) from arbitrary
starting solution. This property is important for asymptotic properties of the iterative processes
based on the Markov Chains [8, 9].

5 Stochastic tabu search

In this section we present a variant of the well-known tabu search algorithm [10] which uses
three randomized neighborhoods. For a neighborhood N , the randomized neighborhood Np

with parameter p is a subset of N . Each element of N is included in Np with probability p
independently from other elements. The neighborhood Np may be found empty or coincide with
N . By definition of the Insert, Rotate and k-Opt neighborhoods, each neighboring solution is
defined by at most k positions in current permutation. We store these positions and use three
tabu lists, one for each neighborhood. The length of each list is a constant. Following [9], we
use small lists for small p. Below we show the pseudocode for the stochastic tabu search heuris-
tic. Parameters ∆in and ∆div define number of iterations for intensification and diversification
stages. The earliest and latest days for each talent are easily calculated by the scheduling xjt.
Thus we use notation F (x) for the objective function instead of F (e, l, x).

Stochastic Tabu Search

Initialization: Create a starting solution (xjt) and empty tabu lists;
put (x∗jt) ← (xjt), N ← Rotate, t ← 1, tin ← −∆in, tdiv ← −∆div, p ← p0;

Iterative process: While not termination condition do

1. If t > tin + ∆in then N ← Rotate; If t = tdiv + ∆div then p ← 2p;

2. Find the best solution (x′jt) in Np(xjt) without forbidden elements;

3. Put (xjt) ← (x′jt); t ← t + 1; update the corresponding tabu list;

4. If F (x∗jt) > F (xjt) then (x∗jt) ← (xjt);

5. If intensification condition met then tin ← t; N ← Insert ∪ 2-Opt; (xjt) ← (x∗jt);

6. If diversification condition met then tdiv ← t; p ← p/2;

end while
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Out computational results show that the Rotate neighborhood produces better local optima
than the Insert and 2-Opt neighborhoods. We use the Rotate neighborhood for local search
and other neighborhoods for intensification. In order to diversify the search process we decrease
the size of the randomized neighborhood at Step 6. As a result, the local search becomes more
chaotic, and after ∆div iterations we continue the search in a new area of the feasible domain.
The starting value p0 is selected as 0.10.

6 Hybrid simulated annealing

This algorithm explicitly combines ideas of two well-known metaheuristics: simulated annealing
[8] and variable neighborhood search [7]. We use framework of the annealing and systematically
change neighborhoods in this iterative process. The local improvement algorithm is applied to
intensify the search after decreasing the temperature. For diversification we apply a random
walk by the 3-Opt neighborhood. Below we show the pseudocode for our hybrid algorithm.

Hybrid Simulated Annealing

Initialization: Create a starting solution (xjt); put t ← 1, (x∗jt) ← (xjt),
define starting temperature c and cooling factor γ;

Iterative process: While not termination condition do

1. For t := 1 to Tmax do
1.1. Select a neighborhood;
1.2. Pick out a neighboring solution (x′jt) and calculate ∆ = F (x′jt)− F (xjt);

1.3. If ∆ ≤ 0 then (xjt) ← (x′jt) else (xjt) ← (x′jt) with probability e−∆/c;
1.4. If F (x∗jt) > F (xjt) then (x∗jt) ← (xjt);
1.5. If diversification condition met then apply a random walk under 3-Opt neighborhood.

2. Decrease the temperature c ← cγ;

3. Apply the local improvement algorithm under Insert and 2-Opt neighborhoods;

end while

The good starting solution we obtain by modified greedy algorithm. It allows us to start
with low temperature. The maximal number of iterations Tmax for the given temperature is
defines as the sire of the Rotate neighborhood. The cooling factor γ we put 0.99, the starting
temperature is 18.

7 Genetic local search

As we have mentioned in Introduction, the first genetic algorithm for this problem is presented
in [6]. In this algorithm the reproduction operator selects a number of solutions from the current
population for crossing depending on their fitness. This is done by constructing a Monte Carlo
wheel. A linear scaling of the fitness function is used for the wheel. Crossover is the well-known
randomized two points operator. Mutation is a random step under the 2-Opt neighborhood. The
starting population is generated at random. Below we show another genetic algorithm which
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dominates the previous one. The main operators are modified in order to use the scheduling
structure of the problem. Moreover, we apply the local improvement algorithm for each element
of population to intensify the search process.

Genetic Local Search

Initialization: Create a starting population, put (x∗jt) as the best solution in the population;
Iterative process: While not termination condition do

1. For l := 1 to L do
1.1. Select two parents from the population;
1.2. Produce an offspring solution;
1.3. Apply mutation operator with a small probability;
1.4. Include the obtained solution into the population;

2. Remove L the worst solutions from the population;

3. Update the best found solution (x∗jt);

4. If intensification condition met then apply local improvement algorithm under the ran-
domized Insert and 2-Opt neighborhoods for each element of the population;

end while

The starting population is generated by modified greedy algorithm. We create n solutions
using each scene for the first day and select an appropriate number of the best solutions. The
parents are taking at random but one of them is the best in the current population. The offspring
solution is produced as follows. We consider two permutations and move dn/2e random positions
from one of them into the new permutation. The last positions are fulfilled according to the
second permutation. The mutation operator is a moving to neighboring solution under one
of Insert, Rotate or 2-Opt neighborhoods. The local improvement is applied if the best found
solution is not changed during some iterations. For randomized neighborhoods we put p = 0.05.
Size of the population is 10, and L = 10.

8 Computational results

The presented heuristic algorithms are coded in C++ and tested on random generated test
instances with known optimal solutions and instances from the previous publications [3, 5, 6].
For random instances we put n = m = 100, wi ∈ [1, 100], d = 0.05. For each talent we generate
two scenes j1, j2 at random and put aij = 1 for j = j1, j1 +1, . . . , j2 and aij = 0 otherwise. Thus
we have optimal solution. Then we apply a random permutation for the columns of the matrix
and use the result as the benchmark. Table 1 show the average deviation from the optimum for
such 10 test instances. In brackets it is shown the number of trials from 10 when the optimal
value is discovered. As we see these heuristics show small average deviation and can find global
optima. The termination condition is the same for all methods: 15 · 105 objective function
calculations. The running time is a few minutes on Pentium 2.8 GHz under the Windows XP
Professional operating system.
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Table 1. Average deviations from the optimum (%)
N Naive Greedy

Algorithm
Hybrid

Simulated
Annealing

Genetic
Local
Search

Stochastic
Tabu
Search

1 1 0 (10) 0.001 (9) 0 (10)
2 22.1 0 (10) 0.006 (7) 1.82 (6)
3 54.35 0 (10) 0 (10) 4.73 (6)
4 24.73 0 (10) 0 (10) 1.10 (4)
5 53.8 0 (10) 0 (10) 2.92 (7)
6 63.46 0.23 (8) 0.006 (9) 3.87 (4)
7 4.81 0 (10) 0 (10) 0.01 (9)
8 16.2 0.15 (9) 0.006 (8) 1.20 (5)
9 5.74 0 (10) 0 (10) 0 (10)
10 88 0 (10) 0 (10) 0 (10)

It is interesting to note that when we change the test instances and include one or two zeros
between j1 and j2 for some talents and apply our heuristics, we discover solutions with better
value than

∑m
i=1 wi

∑
(j2 − j1 + 1). We do not know optimal values for this case but we have

good near optimal values. Nevertheless, our iterative methods can improve these values.
To compare our methods with previous ones we test them on the instances available from

internet [5, 6, 11]. For all cases we have n ≤ 70,m ≤ 100. Our methods have found the best
known solutions quickly. Thus, we conclude that our local search methods can find the optimal
or best known solutions with high frequency.

9 Conclusion and future research

In this paper we consider the talent scheduling problem and present iterative local search meth-
ods for solving this problem. We show that these methods can find the optimal solutions or the
best known solutions if the number of talents and the number of scenes are at most 100.

For future research it is interesting to study a more general case of the problem when each
scene has a time duration and we can shoot some scenes every day. Again, each talent starts
to job in his first shooting day and finishes in his last shooting day. This new problem includes
some aspects of the classical bin packing problem and may be more interesting from practical
point of view. For theoretical research some questions are still open. For example, it is not clear
how difficult the local search problem for each Insert, Rotate, and k-Opt neighborhoods. If
daily payments are the same for all talents, in particular, wi = 1 for all i = 1, . . . , m, we can find
local minimum in polynomial time by the simple local improvement algorithm. But for general
case this local search problem may be PLS-complete [12].
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