
Facility Location: Discrete Models
and Local Search Methods

Yury KOCHETOV
Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract. Discrete location theory is one of the most dynamic areas of op-
erations research. We present the basic mathematical models used in this
field, as well as their properties and relationship with pseudo-Boolean
functions. We also investigate the theory of PLS-complete problems,
average and worst case computational complexity of the local search
algorithms, and approximate local search. Finally, we discuss compu-
tationally difficult test instances and promising directions for further
research.

Keywords. local search, PLS–complete problems, pseudo–Boolean function,
Karush–Kuhn–Tucker conditions, metaheuristics

Introduction

Facility location constitutes a broad spectrum of mathematical models, methods,
and applications in operations research. It is an interesting topic for theoreti-
cal studies, experimental research, and real-world applications. Examples include
storage facilities, warehouses, police and fire stations, base stations for wireless
services, and others [1]. Who actually proposed the first mathematical model in
this field will probably never be known. It is most common to credit Pierre de Fer-
mat (1601–1665) and Evangelista Torricelli (1608–1647), who studied a basic form
of the spacial median problem (see [2] for a historical review of the literature).

Surely no paper can cover all aspects of facility location. In these lecture
notes, we discuss only the basic discrete models and present theoretical results
for local search methods. In Section 1 we consider the well-known uncapacitated
facility location problem and its generalizations. The main idea of this section
is to show the useful relationship between facility location models and pseudo–
Boolean functions. In Section 2 we introduce some simple neighborhoods and
discuss the relations between local optima and classical Karush–Kuhn–Tucker
conditions. In Section 3 we define the class PLS (polynomial time local search
problems) and show that some local search problems in facility location are the
most difficult in this class. In Section 4 we investigate the quality of local optima.
More precisely, we introduce the class GLO (Guaranteed Local Optima) and show
that the closure of GLO under PTAS reductions coincides with the class APX,
which is the set of optimization problems with underlying decision problem in NP
that allow polynomial-time constant-factor approximation algorithms. Finally, in
Section 5 we discuss difficult test instances for the local search methods.

1

1. Discrete facility location models

1.1. The uncapacitated facility location problem

This problem (UFLP) has been also called the simple plant location problem in the
early literature [3,4]. Its input consists of a finite set I of sites with nonnegative
fixed costs fi of opening a facility in site i and a finite set J of users with a
nonnegative production–transportation costs cij of servicing user j from a facility
opened in site i. The goal is to find a set of sites such that opening facilities there
minimizes the total cost of servicing all users. This means finding a nonempty
subset S of I, which minimizes the objective function F defined by

F (S) =
∑

i∈S

fi +
∑

j∈J

min
i∈S

cij :

the first term is the fixed cost for opening facilities in all sites in S and the second
term is the production-transportation cost for servicing all users from these sites.

This problem is NP-hard in the strong sense and it is difficult to approximate:
unless P = NP, it admits no constant-factor polynomial-time approximation al-
gorithm, and so it does not belong to the class APX. Polynomially solvable cases
and approximation algorithms are described in [5,6].

For the metric case, when the matrix (cij) satisfies the triangle inequality, the
problem is strongly NP-hard again and Max SNP-hard. The best approximation
algorithm has a guaranteed performance ratio of 1.52 and is suggested in [7]. A
1.463 factor approximation algorithm would imply P = NP [8]. For the special
case of the metric UFLP when facilities and users are points in d–dimensional Eu-
clidean space and the production-transportation costs are geometrical distances
between the points, an approximation scheme is suggested meaning an (1+ ε)-
factor approximation algorithm for each positive ε with running time polyno-
mial in |I| and |J | and exponential in d and 1/ε. An excellent review of different
techniques for approximations in the metric case can be found in [9].

Exact branch and bound methods with lower bounds based on linear program-
ming relaxations have been developed by research teams in several countries. In
describing these bounds, we shall find it convenient to assume that I = {1, . . . , m}
and J = {1, . . . , n}. The first approaches used a weak linear 0–1 programming
formulation [10]. Let us introduce the decision variables:

xi =
{

1 if facility i is opened,
0 otherwise,

xij =
{

1 if user j is serviced from facility i,
0 otherwise.

Now the UFLP can be written as a 0–1 program:

min
{ ∑

i∈I

fixi +
∑

j∈J

∑

i∈I

cijxij

}

2

subject to
∑

i∈I

xij = 1, j ∈ J,

nxi ≥
∑

j∈J

xij , i ∈ I,

xi, xij ∈ {0, 1}, i ∈ I, j ∈ J.

If we replace the last restriction by xi, xij ∈ [0, 1] for all i ∈ I, j ∈ J we see that
every optimal solution satisfies

xi =
1
n

∑

j∈J

xij , i ∈ I

and a lower bound can be computed as the optimal value of the following trivial
linear programming problem:

min
∑

j∈J

∑

i∈I

(fi/n + cij)xij

subject to
∑

i∈I

xij = 1, j ∈ J,

0 ≤ xij ≤ 1, i ∈ I, j ∈ J.

We may compute the optimal solution for the problem easily, but this lower bound
is not sharp. If we replace m restrictions nxi ≥

∑
j∈J xij by n×m restrictions

xi ≥ xij , i ∈ I, j ∈ J,

we will get an equivalent reformulation of the UFLP with a better lower bound.
Note that we do not have an analytical solution yet. This strong reformulation
has been used in the exact methods by researchers of Russia [11,12], Ukraine [13],
Scandinavia [14], and the USA [15] independently. Recently, the strong formula-
tion was used for solving large scale instances as well [16,17]. Therefore, for com-
binatorial optimization problems we can find different equivalent reformulations
and the choice of formulation is important.

There is a useful relationship between the UFLP and minimization problem
for pseudo–Boolean functions. It was first noted by P. Hammer and S. Rudeanu
[18,19]. Later, V. Beresnev [20] suggested another reduction of the UFLP to a
minimization problem for pseudo–Boolean polynomial with positive coefficients
for nonlinear terms. Moreover, it has been shown that these combinatorial opti-
mization problems are equivalent. Below we discuss the reduction in details.

3

For a vector g = (g1, . . . , gm) with ranking

gi1 ≤ gi2 ≤ . . . ≤ gim ,

we introduce a vector ∆g = (∆g0, . . . , ∆gm) in the following way:

∆g0 = gi1 ;

∆gl = gil+1 − gil
, 1 ≤ l < m;

∆gm = gim .

Lemma 1 [11,20]. For each 0-1 vector z = (z1, . . . , zm) distinct from {1, . . . , 1}
the following equations hold:

min
i|zi=0

gi = ∆g0 +
m−1∑

l=1

∆glzi1 . . . zil
;

max
i|zi=0

gi = ∆gm −
m−1∑

l=1

∆gm−lzim−l+1 . . . zim .

Let the ranking for column j of the matrix (cij) be

cij
1j ≤ cij

2j ≤ . . . ≤ cij
mj

Using Lemma 1, we can get a pseudo–Boolean function for the UFLP:

b(z) =
∑

i∈I

fi(1− zi) +
∑

j∈J

m−1∑

l=0

∆cljzij
1
. . . zij

l
.

Below we will see the relationship between the UFLP and the minimization prob-
lem for this real-valued function defined on the 2n − 1 points of the hypercube
distinct from (1, . . . , 1).

Theorem 1 [11,20]. The minimization problem for the pseudo–Boolean func-
tion b(z) for z 6= (1, . . . , 1) and the UFLP are equivalent. For optimal solutions
z∗, S∗ of these problems we have F (S∗) = b(z∗) and z∗i = 0 ⇔ i ∈ S∗ for all
i ∈ I.

Let us consider an illustrative example. Put I = J = {1, 2, 3},

fi =

10
10
10

 cij =

0 3 10
5 0 0
10 20 7

 .

4

According to Lemma 1, the corresponding function b(z) is the following:

b(z) = 10(1− z1) + 10(1− z2) + 10(1− z3) + (5z1 + 5z1z2) + (3z2 + 17z1z2)+

(7z2 + 3z2z3) = 15 + 5(1− z1) + 0(1− z2) + 10(1− z3) + 22z1z2 + 3z2z3.

Let us try to reconstruct an instance of the UFLP: we obtain I ′ = I, J ′ = {1, 2},

f ′i =

5
0
10

 c′ij =

0 3
0 0
22 0

 .

The dimension of the new instance is less than the dimension of the original one,
|J ′| < |J |. Moreover, f ′2 = 0, hence, we may open the second facility without loss
of optimality. In other words, we get a new equivalent instance of the UFLP with
smaller dimension. Different instances of the UFLP can lead to the same function
b(z). Thus, we may try to reduce the dimension before solving the problem.

Theorem 2. [21] For the minimization problem of the pseudo–Boolean func-
tion b(z) with positive coefficients in the nonlinear terms, the equivalent instance
of the UFLP with a minimal number of users can be found in polynomial time
from n and m.

Idea of proof. Consider an arbitrary pseudo–Boolean function b(z) with pos-
itive coefficients in the nonlinear terms. Let L be the set of nonlinear terms and
the function b(z) defined by

b(z) =
∑

i∈I

αi(1− zi) +
∑

l∈L

βl

∏

i∈Il

zi, where βl > 0 and Il ⊂ I for all l ∈ L.

The family of subsets {Il}l∈L of the set I with order relation Il′ < Il′′ ⇔ Il′ ⊂ Il′′

forms a partially ordered set (poset). An arbitrary sequence of subsets Il1 < . . . <
Ilk is called a chain. An arbitrary partition of the family {Il}l∈L into nonoverlap-
ping chains induces a matrix (cij) for the UFLP. Each element of the partition
corresponds to a user. The requirement to find an instance of the UFLP with a
minimal number of users is equivalent to finding a partition of the poset into the
minimal number of nonoverlapping chains. This is a well-known problem, which
can be solved in polynomial time (see Dilworth’s Theorem [22]).

The minimization problem for b(z) is equivalent to the UFLP but it has some
new properties. Let us consider this problem for continuous variables zi from the
interval [0, 1]. In the UFLP this replacement leads to an integrality gap:

gap = (F (S∗)− FLP)/F (S∗),

where FLP is the optimal value for the linear programming relaxation. It can be
arbitrary close to 1 [23]. For the minimization problem of b(z) the gap equals 0.

5

Theorem 3 [24]. The set of optimal solutions of the minimization problem
for arbitrary pseudo–Boolean function with continuous variables contains a pure
integer solution.

Suppose now that the fixed costs are the same for all facilities and that we
open exactly p facilities. The first item in the objective function of the UFLP is
a constant and we wish to minimize the objective function F defined by

F (S) =
∑

j∈J

min
i∈S

cij

for every subset S from I with cardinality p. This problem is known as the discrete
p-median problem. It is NP–hard in the strong sense and existence of a 2q(n,m)-
factor approximation algorithm for a polynomial q would imply P=NP [25]. In
other words, this problem does not belong to the class APX and a good approx-
imate solution is hard to find, as is the optimal one. The p-median problem can
be reduced to the minimization problem for a pseudo–Boolean function as well.
However, now one additional restriction

∑
i∈I zi = m−p is added. Reformulations

of Theorems 2 and 3 for the problem are valid as well.

1.2. The Multi–Stage Facility Location Problem

Let us consider a more complicated situation, where we need several facilities to
produce the goods for users. We assume that there are k types of facilities (plants,
warehouses, distribution centers and others) and we need facilities of all types
to produce the goods. As in the previous model, the set of facilities I and the
set of users J are finite. We assume that I = I1 ∪ . . . ∪ Ik, where Il is the set
of facilities of type l and Il1 ∩ Il2 = Ø whenever l1 6= l2. Let P denote the set
of all admissible facility paths. For each path p from P we know a sequence of
facilities p = {i1, . . . , ik}, where il ∈ Il for each l from 1 to k. For each facility
i we have the following nonnegative parameters: ci is the production cost, dii′ is
the transportation cost between facilities i and i′, and the set Pi of facility paths,
which contain this facility. Denote by Dpj the total transportation cost for the
facility path p and user j:

Dpj = di1i2 + . . . + dik−1ik
+ dikj .

Similarly, the total production cost for the facility path p is the following:

Cp = ci1 + . . . + cik
.

The amount of goods for user j we denote by ϕj . In the Multi–Stage Uncapaci-
tated Facility Location Problem (MSUFLP) we need to find a subset of facilities
and a subset of facility paths in such a way to service all users with minimal total
cost for opening facilities, producing the goods and transporting them to users.
Using similar variables as for the UFLP, we can write the problem in the following
way:

6

min

∑

i∈I

fixi +
∑

j∈J

ϕj

∑

p∈P

(Cp + Dpj)xpj

subject to
∑

p∈P

xpj = 1, j ∈ J,

∑

p∈Pi

xpj ≤ xi, i ∈ I, j ∈ J,

xpj , xi ∈ {0, 1}, i ∈ I, p ∈ P, j ∈ J.

The objective function is the total cost. The first restriction ensures that all users
are satisfied. The second restriction allows us to use opening facilities only for
servicing the users.

The problem is strongly NP–hard and closely related to standardization and
unification problems [11,14], pseudo–Boolean functions, and as we will see below,
the bilevel facility location problems. If each facility path contains exactly one
facility then we get the UFLP. Therefore, it is a difficult problem for approxima-
tion. For the metric case some approximation algorithms are developed in [26,27].
The branch and bound methods based on heuristics for the dual linear program-
ming problems are studied in [28,29]. Polynomially solvable cases are described
in [30,31].

The restriction xpj ≤ xi for all p ∈ Pi, i ∈ I, j ∈ J, can be used instead of

∑

p∈Pi

xpj ≤ xi, i ∈ I, j ∈ J.

It is easy to check that this replacement gives the same integer optimal solution
but a weak linear programming relaxation. The same effect will occur (see [33])
if we introduce new variables yp = 1 if the facility path p is used and yp = 0
otherwise, and replace the restriction

∑
p∈Pi

xpj ≤ xi for all i ∈ I, j ∈ J, by the
following:

yp ≥ xpj , j ∈ J, p ∈ P,

xi ≥ yp, p ∈ Pi, i ∈ I.

Again, we have the same 0–1 optimal solution and a weak linear programming
relaxation. Moreover, there is a family of instances for the MSUFLP where the
ratio of optimal value of the original and new linear programming relaxations may
be arbitrarily large. Let us rewrite the MSUFLP as an unconstrained problem.
Define Cpj = ϕj(Cp +Dpj) for all p ∈ P, j ∈ J. Now the MSUFLP can be written
as the minimization problem for the function F defined by

7

F (y) =
∑

i∈I

fi max
p∈Pi

{yp}+
∑

j∈J

min
p∈P

{Cpj | yp = 1}.

Using Lemma 1 we can obtain the following pseudo–Boolean function:

B(z) =
∑

i∈I

fi(1−
∏

p∈Pi

zp) +
∑

j∈J

|P |−1∑

l=0

∆Cljzij
1
. . . zij

l
.

Note that this function has positive and negative nonlinear terms.

Theorem 4. [11,20] The MSUFLP is equivalent to the minimization problem
for pseudo–Boolean function B(z) for z 6= (1, . . . , 1). For optimal solutions z∗, y∗

of these problems we have B(z∗) = F (y∗) and z∗p = 1− y∗p for all p ∈ P .

Therefore, the MSUFLP can be reduced to a minimization problem for a
pseudo–Boolean function. For an arbitrary pseudo–Boolean function we can re-
construct an equivalent instance of the MSUFLP with the minimal number of
users.

1.3. Facility location with user preferences

Thus far we have assumed that there was only one decision maker who tried to
minimize the total cost of opening facilities and servicing users. However, users
may be free to choose the facility. They may have their own preferences, for
example, the travel time to a facility. They do not have to minimize the production
and transportation costs of the firm. Hence, we should include user preferences
in the mathematical model [32].

Let the matrix (gij) define the user preferences on the set I. If gi1j < gi2j ,
then user j prefers facility i1. We assume for simplicity that all elements are
different in each column of the matrix. Otherwise, we must consider cooperative
and noncooperative strategies for the decision maker and users [34]. Therefore,
the decision maker wishes to find a subset S of opening facilities in such a way
that all users will be serviced with minimal total cost, taking into account user
preferences. For this case, the mathematical model can be presented as the 0–1
bilevel linear programming problem [35,36]: minimize the objective function F
defined by

F (xi) =
∑

i∈I

fixi +
∑

j∈J

∑

i∈I

cijx
∗
ij(xi)

where x∗ij(xi) is an optimal solution for the user problem:

min
xij

∑

j∈J

∑

i∈I

gijxij

8

subject to
∑

i∈I

xij = 1, j ∈ J,

xij ≤ xi, i ∈ I, j ∈ J,

xij ∈ {0, 1}, i ∈ I, j ∈ J.

The objective function of the decision maker is, as before, the total cost of opening
facilities and servicing all users. However, now the feasible domain is described by
constraints xi ∈ {0, 1} for all i ∈ I and the auxiliary optimization problem (the
user problem). The values of variables xi are known for the auxiliary problem.
The bilevel problem is a new type of optimization problem. Such problems can be
NP-hard even with continuous variables, linear constraints and linear objective
functions [34].

The uncapacitated facility location problem with user preferences (UFLPUP)
can be reduced to a single level problem [35,36]. Observe that only the ranking
of the gij ’s for each j is of importance and not their numerical values. Let the
ranking for user j be

gi1j < gi2j < ... < gimj .

Put Sij = {l ∈ I| glj < gij} for all i ∈ I. For an optimal solution x∗ij(xi) of the
user problem we have x∗ij = 1 ⇒ xl = 0 for all l ∈ Sij . We may therefore rewrite
the UFLPUP as follows:

min
∑

i∈I

fixi +
∑

j∈J

∑

i∈I

cijxij

subject to xij + xl ≤ 1, l ∈ Sij , i ∈ I, j ∈ J,

∑

i∈I

xij = 1, j ∈ J,

0 ≤ xij ≤ xi, i ∈ I, j ∈ J,

xi, xij ∈ {0, 1}, i ∈ I, j ∈ J.

Indeed, in every optimal solution of the problem all constraints of UFLP will be
satisfied and the first constraint will ensure that xij is an optimal solution for the
user problem. The number of variables in the problem is the same as in the UFLP.
However, while the UFLP already has the large number of constraints n+nm, the
UFLPUP has O(m2n) additional ones. This prohibits a direct resolution except

9

in small instances. In order to avoid additional constraints from becoming too
numerous we can rewrite them in the equivalent form:

∑

l∈Sij

xl ≤ |Sij |(1− xij), i ∈ I, j ∈ J,

or

xi ≤ xij +
∑

l∈Sij

xl, i ∈ I, j ∈ J,

or

xi ≤ xij +
∑

l∈Sij

xlj , i ∈ I, j ∈ J.

It is not difficult to show that the last inequality produces a better linear pro-
gramming relaxation than the three previous ones [36].

The special case of the UFLPUP when fi = 0 for all i ∈ I is also interesting.
For the UFLP this case is trivial; the optimal solution can be computed in linear
time. However, for the UFLPUP this case is NP–hard and the integrality gap can
be arbitrarily close to 1. If cij = gij then we get the UFLP. If cij = −gij then
we can solve the problem in polynomial time [37]. Other reformulations, valid
inequalities, branch and cut methods and computational results for local search
methods can be found in [38,39,40].

As with the previous location problems, the UFLPUP can be reduced to the
minimization problem for the pseudo–Boolean functions. For each j ∈ J we put

∇ci1j = ci1j

∇cilj = cilj − cil−1j , 1 < l ≤ m,

and define the pseudo–Boolean function B(z) in the following way:

B(z) =
∑

i∈I

fi(1− zi) +
∑

j∈J

∑

i∈I

∇cij

∏

l∈Sij

zl.

Theorem 5 [35]. The UFLPUP is equivalent to the minimization problem for the
pseudo–Boolean function B(z) for z 6= (1, . . . , 1). For the optimal solutions z∗, x∗

of these problems we have B(z∗) = F (x∗) and z∗i = 1− x∗i for all i ∈ I.

Note that the coefficients ∇cij can be positive or negative. In other words, for
an arbitrary pseudo–Boolean function we can reconstruct an equivalent instance
of the UFLPUP and vice versa. Moreover, we can reconstruct an instance of the
UFLPUP with a minimal number of users in polynomial time by the same method
as in the proof of Theorem 2.

10

1.4. Competitive location with foresight

Let us assume that two firms want to open facilities. The first firm, which we will
refer to as the leader, opens its own set of facilities X from the set I. We assume
that |X| = p. Later, the second firm, which we will refer to as the follower, opens
its own set of facilities Y from the set I \ X. We assume that |Y | = r. Each
user selects one facility from the union X ∪ Y according to its own preferences,
for example, according to distances to the facilities. Each firm will get a positive
profit wj if it services the user j. The firms try to maximize own profits. They do
not have the same rights. The leader makes a decision first. The follower makes
a decision by analyzing the set X. It is a Stakelberg game for two players, where
we need to maximize the total profit of the leader [41,42,43].

Let us introduce the decision variables:

xi =
{

1 if the leader opens facility i,
0 otherwise,

yi =
{

1 if the follower opens facility i,
0 otherwise,

zj =
{

1 if user j is serviced by a leader facility,
0 if user j is serviced by a follower facility.

For each vector x and each user j we can define the set of facilities

Ij(x) = {i ∈ I| gij < min
l∈I

(glj |xl = 1)},

which allow ”capturing” user j by the follower. Note that we consider conservative
users [43]. If a user has the same distances to the closest leader and the closest
follower facilities, he prefers the leader facility. Now the model can be written as
a linear 0-1 bilevel programming problem [44]:

max
x

∑

j∈J

wjz
∗
j (x)

subject to
∑

i∈I

xi = p,

xi ∈ {0, 1}, i ∈ I,

where z∗j (x), y∗i (x) is the optimal solution of the follower problem:

max
z,y

∑

j∈J

wj(1− zj)

11

subject to 1− zj ≤
∑

i∈Ij(x)

yi, j ∈ J,

∑

i∈I

yi = r,

yi, zj ∈ {0, 1}, i ∈ I, j ∈ J.

The objective function of the upper level defines the total profit of the leader.
The feasible domain is described by two constraints and an auxiliary optimization
problem of the follower. The vector x and the sets Ij(x) for all j ∈ J are known
in the follower problem. The objective function of the lower level defines the total
profit of the follower. The first constraint guarantees that user j is serviced by
the leader if the follower has no facilities in the set Ij(x). The second constraint
requires opening exactly r facilities for the follower.

In [43] the follower problem is called the medianoid problem. It is shown there
that the medianoid problem is NP–hard and that the original bilevel problem
is NP–hard even for r = 1. Note that z∗j (x) =

∏
i∈Ij(x)(1 − y∗i (x)) for all j ∈

J . Hence, the follower problem can be rewritten for the polynomial P (y, x) =∑
j∈J wj(1−

∏
i∈Ij(x)(1− yi)) as follows:

max
y

{
P (y, x) |

∑

i∈I

yi = r, yi ∈ {0, 1} for all i ∈ I

}
.

Recall that each user is serviced by the leader or by the follower. Thus, the sum
of the objective functions for the upper and lower levels is a constant. Hence, we
can present the bilevel problem as a min-max problem as follows:

min
x

max
y

{
P (y, x) |

∑

i∈I

yi = r,
∑

i∈I

xi = p, xi, yi ∈ {0, 1} for all i ∈ I

}
.

In [45] it is shown that the problem is
∑P

2 -hard. Therefore, we are dealing with
a more difficult problem than the NP–complete problems. Polynomially solvable
cases and complexity results can be found in [46]. In order to get an upper bound
for the total profit of the leader we can rewrite the bilevel problem as a single
level mixed integer linear program with an exponential number of constraints
and variables. A similar approach is suggested in [42] for a partial enumera-
tion algorithm. If we extract a subfamily of constraints and variables, then we
may get an upper bound. In [44] a nonclassical column generation method is ap-
plied to find an optimal solution for the bilevel problem. Computational experi-
ments for the test instances from the benchmark library Discrete Location Prob-
lems (http://math.nsc.ru/AP/benchmarks/english.html) indicate that the exact
method allows us to find the global optimum for p = r = 5, n = m = 100.

12

For higher dimensions we may apply heuristics or metaheuristics. The sim-
plest heuristic for the leader is to ignore the follower. The leader opens its own
facilities to minimize the total distance between users and his facilities. He wishes
to service all users and solves the classical p-median problem. This strategy is not
so bad despite ignoring the follower. Computational experiments show that this
lower bound can be improved by a few percent only.

The second strategy is more sophisticated. The leader anticipates that the
follower will react to his decision. Therefore, (p + r) facilities will be opened.
According to the second heuristic, the leader solves the (p + r)-median problem
and opens the p most profitable facilities. Unfortunately, this strategy is weak.

There is a third strategy suggested for continuous locations [47]. This heuristic
is iterative. For a solution of one decision maker, we find the optimal solution for
the other one. In discrete case this strategy produces a cycle. The best solution in
the cycle is the result of the approach. If we use the previous strategies to create
a starting solution, we can improve the profit of the leader. Surely, this is a more
time consuming procedure.

One of the most powerful approaches is a hybrid memetic algorithm, where
a tabu search is used to improve the elements of the population [48]. To evaluate
neighboring solutions for the leader, the linear programming relaxation of the
follower problem is solved by CPLEX software. To reduce the running time at
each step of the tabu search, the idea of randomized neighborhoods is used. Other
heuristics can be found in [49,50].

2. Local optima and Karush–Kuhn–Tucker conditions

Let us consider the minimization problem for the pseudo–Boolean function
B(z) =

∑
l∈L

γl

∏
i∈Il

zi with arbitrary coefficients γl. The UFLP, MSUFLP, and

UFLPUP can be reduced to this problem. We wish to show the relationship be-
tween Flip-minimal solutions for B(z) and solutions that satisfy the classical
Karush–Kuhn–Tucker conditions for the Lagrange function L defined by

L(z, σ, µ) = B(z) +
∑

i∈I

σi(zi − 1)−
∑

i∈I

µizi

for continuous variables zi ∈ [0, 1] and nonnegative multipliers σi, µi correspond-
ing to constraints zi − 1 ≤ 0 and zi ≥ 0 for each i ∈ I. Recall that the Flip
neighborhood for solution z, or Flip(z) for short, is the set of 0-1 solutions that
can be obtained from z by flipping exactly one variable. A solution is called local
minimal, for example Flip-minimal, if it does not have neighboring solution with
smaller value of the objective function.

Theorem 6. [51] A 0-1 vector z∗ is Flip-minimal if and only if there exist
nonnegative multipliers σ∗i , µ∗i , for all i ∈ I such that the vector (z∗, σ∗, µ∗) sat-
isfies the Karush–Kuhn–Tucker conditions:

13

(i)
∂L

∂zi
(z∗, σ∗, µ∗) =

∑

l∈L|i∈Il

γl

∏

j∈Il\{i}
z∗j − µ∗i + σ∗i = 0, i ∈ I;

(ii) z∗i µ∗i = 0, i ∈ I;
(iii) σ∗i (z∗i − 1) = 0, i ∈ I.

Proof. Suppose that the vector (z∗, σ∗, µ∗) satisfies the conditions (i) – (iii).
Let z′ ∈ Flip(z∗) and z∗i = 0, z′i = 1 for an index i ∈ I. We then have

B(z∗)−B(z′) = −
∑

l∈L|i∈Il

γl

∏

j∈I\{i}
z∗j = σ∗i − µ∗i = −µ∗i ≤ 0.

Assume that z∗i = 1, z′i = 0. We have

B(z∗)−B(z′) =
∑

l∈L|i∈Il

γl

∏

j∈I\{i}
z∗j = µ∗i − σ∗i = −σ∗i ≤ 0.

For both cases B(z∗) ≤ B(z′), and z∗ is Flip-minimal.
Consider a Flip-minimal vector z∗. Denote by B′

i(z) the first derivative of
the function B(z) by the variable zi. Put

µ∗i =
{

0 if z∗i = 1
B′

i(z
∗) if z∗i = 0 , σ∗i =

{
0 if z∗i = 0

−B′
i(z

∗) if z∗i = 1 , i ∈ I.

If z∗i = 0, z′i = 1, then B(z∗)−B(z′) = −B′
i(z

∗) = −µ∗i . Since B(z∗) ≤ B(z′), we
have µ∗i ≥ 0. For both cases the conditions (i) – (iii) hold, which completes the
proof.

Let us introduce an additional constraint
∑

i∈I zi = m−p into the minimiza-
tion problem for B(z). This new problem corresponds to the p-median problem
and its generalizations. The Swap–neighborhood for z, or Swap(z) for short, is
the set of 0-1 solutions, which can be obtained from z by flipping exactly two
variables with different values.

The Lagrange function L with multiplier λ and nonnegative multipliers µi, σi

for each i ∈ I is defined as follows:

L(z, λ, µ, σ) = B(z) + λ(m− p−
∑

i∈I

zi) +
∑

i∈I

σi(zi − 1)−
∑

i∈I

µizi.

The corresponding Karush-Kuhn-Tucker conditions are presented as:

∂L

∂zi
(z, λ, µ, σ) = B′

i(z)− λ + σi − µi = 0, i ∈ I,

∑

i∈I

zi = m− p,

14

σi(zi − 1) = 0, i ∈ I,

µizi = 0, i ∈ I.

The vector (z∗, λ∗, µ∗, σ∗) is called a saddle point with respect to Swap neighbor-
hood or Swap–saddle point if

L(z∗, λ, µ, σ) ≤ L(z∗, λ∗, µ∗, σ∗) ≤ L(z, λ∗, µ∗, σ∗)

for all 0-1 vectors z ∈ Swap(z∗), for all λ, and all nonnegative multipliers µ, σ.

Theorem 7. [52] For each 0-1 vector z∗ the following properties are equivalent:
(i) z∗ is Swap-minimal.
(ii) z∗ satisfies the KKT conditions.
(iii) There are the multiplier λ∗ and nonnegative multipliers µ∗i , σ

∗
i for each

i ∈ I such that the vector (z∗, λ∗, µ∗, σ∗) is the Swap-saddle point of the Lagrange
function L(z, λ, µ, σ).

The reductions of the facility location problems to the minimization problem
for the function B(z) save the objective function value. Hence, the vector z is
Flip-minimal for B(z) (Swap-minimal) if and only if the corresponding solution
S defined by S(z) = {i ∈ I | zi = 0} is Flip-minimal (Swap-minimal) for the
location problem. When we use wider neighborhoods, for example, k-Flip, Lin–
Kernighan neighborhoods, Fiduccia–Mattheyses neighborhoods and others [52],
the set of local optima is decreased. However, all local optima satisfy the KKT con-
ditions. Hence, the large neighborhoods extract the highest quality KKT points
and we should use them in local search methods. Other theoretical properties of
polynomially searchable neighborhoods can be found in [53,54,55,56].

3. Complexity of local search

3.1. The class PLS and PLS–complete problems

In order to introduce the concept of local search problems, let us recall a formal
definition of an optimization problem. An optimization problem OP is defined
by the quadruple < I, Sol, F, goal >, where

1. I is the set of instances of OP ;
2. Sol is a function that associates to every input instance x of OP the set of its
feasible solutions;
3. F is the cost function that assigns an integer F (s, x) for every feasible solution
s of x;
4. goal ∈ {min,max} specifies whether OP is a maximization or a minimization
problem.

In the problem OP we need to find an optimal solution for a given instance.

15

Definition 1. A local search problem Π is a pair (OP,N), where OP is an
optimization problem and N is a function that, for every pair (x, s), assigns a set
N(s, x) of neighboring feasible solutions. In the local search problem we need to
compute a solution that does not have a better neighboring solution.

We will assume that for each instance x its feasible solutions have length
bounded by a polynomial in the length of x.

Definition 2. A local search problem Π is in the class PLS if there are three
polynomial-time algorithms A, B, C with the following properties:
1. For each string x, algorithm A determines whether x is an instance (x ∈ I),
and in this case it produces a feasible solution.
2. For each instance x and each string s, algorithm B determines whether s is a
feasible solution for x and if so, B computes the cost F (s, x).
3. For each instance x and each feasible solution s, algorithm C determines
whether s is a local optimum, and if it is not, C outputs a neighboring solution
for s with better cost.

This definition gives rise directly to the standard local search algorithm, which
starts from the initial solution generated by the algorithm A, and then applies
repeatedly algorithm C until it reaches a local optimum. The precise algorithm is
determined by the chosen pivoting rule. For a current solution that is not a local
optimum, the pivoting rule selects a neighboring solution with strictly better cost.

The class PLS is not empty. A lot of well-known combinatorial optimization
problems with natural polynomial neighborhoods belong to it, for example, the
traveling salesman problem with a polynomially searchable neighborhood, or the
uncapacitated facility location problem with the Flip or Swap neighborhoods.

Definition 3. A local search problem Π from the class PLS belongs to the
class PPLS if there exists a polynomial time algorithm that returns a local opti-
mum for every instance of the problem.

The class PPLS is the polynomially solvable part of the class PLS. The rela-
tionship between the classes PLS and PPLS is fundamental to complexity theory.
If PPLS 6= PLS then P6= NP.

The class PPLS contains many ”unweighted” problems. For example, the
maximal clique problem with the Flip-neighborhood is in it. The number of steps
of the standard local search algorithm is bounded by the number of vertices of the
graph. The unweighted set covering problem with each polynomial neighborhood
belongs to the class PPLS as well. A nontrivial example of the local search prob-
lem from PPLS is the linear programming problem with an arbitrary polynomially
searchable neighborhood. It is known that the optimal solution for this problem
can be found in polynomial time by the ellipsoid method. Hence, this local search
problem belongs to the class PPLS in spite of the fact that the simplex method
is not polynomial in the worst case for many well–known pivoting rules. Note
that the simplex method is in fact a local search. It moves from one basic feasible

16

solution to another one by exchanging a variable of the basis for another variable
outside the basis.

Theorem 8 [57]. If a PLS problem Π is NP–hard then NP=co–NP.

This statement shows that it is very unlikely that the class PLS contains an
NP–hard problem. Therefore, the local search problems may not be so difficult. In
other words, there are no NP–complete problems that can be reduced to a local
search problem from the class PLS in polynomial time. Therefore, the complexity
of problems in this class is lower than that of NP–complete problems. Note that
the conjecture NP 6= co-NP is stronger than the conjecture P 6= NP, since the
coincidence of the latter two classes implies the coincidence of the former ones.

Definition 4. Let Π1 and Π2 be two local search problems. A PLS–reduction
from Π1 to Π2 consists of two polynomial time computable functions h and g
such that:
1. h maps instances x of Π1 to instances h(x) of Π2.
2. g maps (solution of h(x), x) pairs to solutions of x.
3. For all instances x of Π1, if s is a local optimum for instance h(x) of Π2, then
g(s, x) is a local optimum for x.

PLS–reductions have the following standard properties.

Proposition 1. If Π1 PLS–reduces to Π2 and Π2 PLS–reduces to Π3 then Π1

PLS–reduces to Π3. Moreover, Π1 ∈ PPLS if Π2 ∈PPLS.

Proposition 2. Let Π1 = (OP,N1), Π2 = (OP, N2) be two local search prob-
lems in PLS and each local optimum under an N2 neighborhood is a local optimum
under an N1 neighborhood. Then Π1 PLS – reduces to Π2.

We say that a problem Π in PLS is PLS-complete if every problem in PLS
can be PLS-reduced to it. We describe below the first PLS-complete problem,
which is the basis of further reductions. This problem is called (Circuit, F lip).
An instance of this problem is a Boolean circuit x, which consists of AND, OR,
and NOT gates. The circuit x has m inputs and n outputs. The set of feasible
solutions consists of all the binary strings of length m. The neighborhood Flip(s)
of a solution s consists of all the binary strings of length m whose Hamming
distance equals one from s. The objective function F is defined as

F (s) =
n∑

j=1

2j−1yj ,

where yj is the j-th output of the circuit with input s.

Theorem 9 [58]. Both the maximization version and the minimization ver-
sions of (Circuit, F lip) are PLS-complete.

17

The following local search problems are PLS-complete:

1. Graph partitioning under the following neighborhoods: KL [58], Swap,
FM , FM1 [57]. Given an undirected graph G = (V, E) with |V | = 2n and positive
integer weights on its edges, we wish to find a partition of V into two subsets V1

and V2 with |V1| = |V2| = n, such that the sum of the weights of the edges that
have one endpoint in V1 and one endpoint in V2 is minimal. Swap neighborhood
is defined as follows: a partition (V1, V2) has as neighbors all the partitions that
can be produced by swapping a node in V1 with a node in V2.

In the Kernighan–Lin neighborhood we replace the single swap by a well–
chosen sequence of n swaps. At each step of the sequence we choose to swap the
best pair of nodes among those that have not been used in previous steps of the
sequence. By the term best, as above, we mean that the swap produces the best
improvement of the objective function. The FM neighborhood is defined in a
similar way but now each step consists of the two substeps. In the first substep,
we examine all the nodes that have not moved since the beginning of the sequence
and choose to move the best such node from one side to the other. In the second
substep, we move the best node that has not yet been moved from the opposite
side. The neighborhood FM1 contains one neighboring solution only. This solu-
tion is obtained after the first step of the FM procedure.

2. Traveling salesman problem under the k–Opt and LK ′ neighborhoods.
Given a complete undirected graph of n nodes with positive integer weights on
its edges, we wish to find the least–weight tour that passes exactly once through
each node. Neighboring tours for the k–Opt neighborhood are defined as follows.
We delete k edges from the tour in order to obtain k nonconnected paths. Then
we reconnect these k paths so that a new tour is produced. The TSP under the
k–Opt neighborhood is PLS–complete for large k [59].

The main idea of the Lin–Kernighan neighborhood is as follows. Given a
tour, we delete an edge (a, b) and obtain a Hamiltonian path with end nodes a
and b. Let a be stable and b variable. If we add an edge (b, c) then a circle is
created. There is a unique edge (c, d) that is incident on node c, whose deletion
breaks the circle, producing a new Hamiltonian path with a new variable end
node d. This procedure is called rotation. We can close a tour by adding an edge
between the stable end a and the variable end d. A move from the current tour to
a neighboring tour consists of removing an edge, then performing a sequence of
“greedy” rotations, and finally the reconnecting of the two ends to form a tour.
There are many variations of this main framework depending on how exactly the
rotation is chosen in each step, and on the restrictions on edges to enter and leave
the tour. A variant is denoted by LK ′. The PLS–completeness is shown in [60].

3. Max–Cut problem under the Flip neighborhood [57]. Given an undirected
graph G = (V, E) with positive integer weights on its edges, we wish to find a
partition of the set V into two not necessarily equal sets V1, V2 such that the sum
of the weights of the edges that have one end point in V1 and one end point in V2

is maximal. The maximization and minimization versions are not equivalent. The
minimization version can be solved in polynomial time, whereas the maximization

18

version is NP–hard. The Flip neighborhood is defined as in the previous case of
the graph partitioning problem.

4. Max–Sat problem under the Flip neighborhood [61,57]. The input is a
Boolean formula in a conjunctive normal form with a positive integer weight for
each clause. A solution is an assignment of 0 or 1 to all variables. We wish to
find an assignment such that the sum of the weights of the satisfied clauses is
maximized. The restriction of Max–Sat to instances with at most k literals in
each clause is called Max–kSat. In the Flip neighborhood two assignments are
neighbors if one can be obtained from the other by flipping the value of one vari-
able. This local search problem is PLS-complete even for k = 2.

5. Not–all–equal Max–Sat problem under the Flip neighborhood. The input
is a set of clauses of the form (α1, . . . , αK), where αi is either a literal or a con-
stant 0 or 1. Such a clause is satisfied if its elements do not all have the same
value. Each clause is assigned a positive integer weight. A set of feasible solutions
of the problem consists of all assignments of 0 or 1 to the variables. We wish to
find an assignment maximizing the sum of the weights of the satisfied clauses. If
we restrict the clauses to have at most k literals then we get the NAE Max–kSat
problem. The restriction to instances with no negative literals in their clauses
is called Pos NAE Max–Sat. The Flip neighborhood is defined as for Max–Sat.
The local search problem Pos NAE Max–3 Sat under the Flip neighborhood is
PLS-complete [61,57].

6. Stable configurations neural networks in the Hopfield model. The input is
an undirected graph G = (V, E) with a weight on each edge and a threshold tv for
each node v. A configuration assigns to each node v a state sv ∈ {−1, 1}. A node is
”happy” if sv = 1 and

∑
u

w(uv)susv +tv ≥ 0 or sv = −1 and
∑
u

w(uv)susv +tv ≤ 0.

A configuration is stable if all the nodes are happy. The problem is to find a
stable configuration. We get an optimization problem if we introduce the cost
function

∑
(uv)∈E

w(uv)susv +
∑

v∈V

tvsv. It is known [62] that if a node is unhappy

then changing its state will increase the cost. In fact, the stable configurations
coincide with the locally optimal solutions with respect to the Flip neighborhood.
This local search problem is PLS-complete [57].

Figure 1 shows the sequence of PLS–reductions for the local search problems
described above and for two local search problems in facility location. The neigh-
borhoods FM1, FM , and KL for the p−median problem are defined in a way
similar to the corresponding neighborhoods for the graph partitioning problem.

3.2. PLS–complete facility location problems

Theorem 10 [63]. The local search problem (UFLP , Flip) is PLS-complete.

Proof. Let us consider the PLS-complete problem (Max–Cut, Flip). Given
a graph G = (V, E) with positive weight we on each edge e, find a partition of

19

(Circuit; Flip)

´
´

´
´

´
´́+

B
B
B
BBN

PPPPPPPPPPPPPq

(Pos NAE Max-3Sat; KL) (Pos NAE Max-3Sat; Flip) (TSP; k-Opt)

¢
¢

¢®

(Graph Partitioning; KL)

À

Q
Q

Q
Q

Q
Q

QQs

(Graph Partitioning; FM1), ...
(Max-Cut; Flip)

À
(p-Median; FM1), ...

´
´

´
´́+

(UFLP; Flip)

J
J

J
Ĵ

(Max-2Sat; Flip)

A
AAU

(TSP; LK ′)

¢
¢

¢
¢

¢
¢

¢¢®

(Stable Configuration; Flip)

Figure 1. Reductions of the PLS–complete problems

the set V into two subsets V1 and V2 with maximal weight of the cut W (V1, V2).
We will reduce (Max–Cut, Flip) to (UFLP , Flip). To this end we present the
functions h, g from Definition 4 with the required properties.

Denote by E(i) the set of edges in G that are incident to the vertex i ∈ V .
Put I = V, J = E and

fi =
∑

e∈E(i)

we, cie =
{

0 if (i = i1) or (i = i2),
2we otherwise, e = (i1, i2).

For each solution S of the UFLP we define a partition (V1, V2) in the following
way: V1 = S, V2 = V \ V1. We claim that

∑

i∈S

fi +
∑

j∈J

min
i∈S

cij + W (V1, V2) = 2
∑

e∈E

we.

This guarantees the desired properties of the reduction. Let us consider three
cases for an edge e = (i1, i2).
Case 1: i1, i2 ∈ V1. The weight we is included in fi1 and fi2 , min

i∈S
cie = 0, and we

is not included in W (V1, V2). Hence, the value we is presented twice in both parts
of the equation.
Case 2: i1, i2 ∈ V2. The values fi1 and fi2 are not included into the first term,
min
i∈S

cie = 2we, and we is not included in W (V1, V2).

20

Case 3: i1 ∈ V1, i2 ∈ V2. The weight we is included in fi1 and W (V1, V2) but
min
i∈S

cie = 0.

Thus, we get the desired result.

Theorem 11 [52]. The local search problem (p-median, FM1) is PLS–complete.

Proof. Let us consider the PLS–complete problem (Graph Partitioning, FM1).
Given an undirected graph G = (V,E) with even number of vertices and positive
weight we on each edge e, find a partition of the set V into two subsets V1, V2 with
the same cardinalities and a maximal weight of the cut W (V1, V2). We reduce this
problem under the FM1 neighborhood to (p-median, FM1). Put

Wi =
∑

e∈E(i)

we, W =
∑

e∈E

we, I = {1, . . . , |V |}, J = {1, . . . , |E|+ |V |}, p = |V |/2.

For each index j = 1, . . . , |E| we assign the edge e ∈ E and put

cij =
{

0 if (i = i1) or (i = i2),
2we otherwise, e = (i1, i2).

For each j = |E|+ 1, . . . , |E|+ |V | we define

cij =
{

0 if i = j − |E|,
W −Wi otherwise.

For the partition (V1, V2) we put S = V1. The proof of the theorem is based on
the following equality:

∑

j∈J

min
i∈S

cij + W (V1, V2) = pW.

By definition we have

|E|∑

j=1

min
i∈S

cij = 2
∑

(we | e = (i1, i2), i1, i2 /∈ S)

and

|J|∑

j=1+|E|
min
i∈S

cij =
∑

i/∈S

(W −Wi) = pW −
∑

i/∈S

Wi.

Note that

∑

i/∈S

Wi = W (V1, V2) +
|E|∑

j=1

min
i∈S

cij ,

which completes the proof.

21

3.3. Complexity of the standard local search algorithm

As we have mentioned above, there are polynomially solvable local search prob-
lems in the class PLS. However, we still do not know of polynomial time algo-
rithms for PLS–complete problems. Whether such algorithms exist or not is still
an open question for further research. Below we will observe that the standard
local search algorithm is not appropriate since it takes, in the worst case, an
exponential number of iterations to reach a local optimum for every pivoting rule.
In other words, we need a fresh idea (new framework, new “ellipsoid” method)
to show that PLS=PPLS , if it is true.

Definition 5. Let Π be a local search problem and x be an instance of Π.
The transition graph TGΠ(x) of the instance x is a directed graph with one node
for each feasible solution of x and with an arc (s → t) whenever t ∈ N(s, x) and
F (t, x) < F (s, x). The height of a node v is the length of the shortest path in
TGΠ(x) from v to a sink (a vertex with no outgoing arcs). The height of TGΠ(x)
is the largest height of a node.

The height of a node v is a lower bound on the number of iterations needed
by the standard local search algorithm even if it uses the best possible pivoting
rule.

Definition 6. Suppose Π1 and Π2 are problems in PLS and let (h, g) be a
PLS–reduction from Π1 to Π2. This reduction is tight if for every instance x of
Π1 we can choose a subset R of feasible solutions for the image instance h(x) so
that the following properties are satisfied:
1. R contains all local optima of h(x).
2. For every solution t of x we can construct in polynomial time a solution q ∈ R
of h(x) such that g(q, x) = t.
3. Suppose that the transition graph of h(x), TGΠ2(h(x)), contains an arc from
q ∈ R to q′ ∈ R or a directed path from q to q′ such that all internal path nodes
are outside R, and let t = g(q, x) and t′ = g(q′, x) be the corresponding solutions
of x. Then either t = t′ or TGΠ1(x) contains an arc from t to t′.

Tight reductions allow us to transfer lower bounds on the running time of
the standard local search algorithm from one problem to another. Thus, if the
standard local search algorithm of Π1 takes exponential time in the worst case,
then so does the standard algorithm for Π2.

All PLS–complete problems that we have referred to are complete under tight
PLS reductions. We now want to show that in the worst case the running time of
the standard local search algorithm is exponential for the tightly PLS-complete
problems. To prove this it suffices to find a local search problem in the class PLS
which has this property.

Lemma 2 [64]. There is a local search problem in PLS whose standard local
search algorithm takes exponential time.

22

Proof. Consider the following artificial minimization problem. For every in-
stance x of size n, the solution set consists of all n-bit integers 0, . . . , 2n − 1. For
each solution i, its cost is i, and if i > 0 it has one neighbor, i− 1. Thus, there is
a unique local and global minimum, namely 0, and the transition graph is a path
from 2n − 1 down to 0. The local search algorithm starting at 2n − 1 will follow
this path.

Theorem 12. The standard local search algorithm takes exponential time in the
worst case for the following problems, regardless of the tie-breaking and pivoting
rules used:

• Graph partitioning under the neighborhoods KL [58], Swap, FM , FM1

[57].
• Traveling salesman problem under the k-Opt neighborhood for some con-

stant k [59], and the LK ′ neighborhood [60].
• Max-Cut, Max-2Sat and Pos NAE Max-3Sat under the Flip neighbor-

hood [61,57].
• Stable configuration for neural networks [57].
• Uncapacitated facility location problem under the Flip neighborhood [63].
• p-median problem under the FM1, Swap, KL, FM neighborhoods [65].

It is interesting to see a family of nonartificial instances and initial solutions
for which the local search algorithm takes an exponential number of iterations
to find a local optimum. In order to do so we consider the Generalized Graph
2-Coloring problem (2-GGCP) with the Flip-neighborhood: given an undirected
graph G = (V, E) with integer weight we on each edge e, find a color assignment c :
V → {1, 2} of the vertices that minimizes the total weight of the monochromatic
edges. For each solution c(V), a Flip neighbor is obtained by choosing a vertex
and assigning a new color. A solution is Flip-optimal if the flipping of every
single vertex does not decrease the total weight of monochromatic edges. The
local search problem (2GGCP , Flip) is tightly PLS-complete as a reformulation
of the Max-Cut problem under the Flip neighborhood.

To illustrate the exponential number of iterations needed for finding a Flip-
optimal solution, we present an example of a graph and an initial solution for
2GGCP for which the best improvement, meaning always flipping the best vertex,
takes an exponential number of iterations. This graph consists of K modules with
weights on the edges as shown in Figure 2 for i = 1, . . . ,K and a chain of three
additional vertices as shown in Figure 3. Vertex 1 is called the input node and
vertex 7 is called the output node of a module. The input node of module i is
adjacent to the output node of module i + 1, for i = K − 1, . . . , 1, and the input
node of module K is adjacent to the rightmost vertex of the chain of Figure 3.
The output node of module 1 is only adjacent to vertices 4, 5, 6, and 10 of this
module. An edge of weight −M , where M is some large positive value, makes
sure that the two vertices incident to this edge have the same color.

Let us consider a starting solution with vertices of the same color. In this
case, only flipping the rightmost vertex of the chain yields an improvement. This
flip results in a solution in which the input node of module K is “unhappy”.

23

j1
@

@
@@

¡
¡

¡¡
j2

j3

j4

j5

j9 j8 j6

@
@

@@

¡
¡

¡¡
j7

j10 j11

−Ai+1

−8Ai − 2−i

−8Ai − 1

−8Ai

−M

−8Ai

−5Ai 4Ai

−5Ai

−5Ai

−2Ai

−2Ai

−Ai

−2Ai

−M

Figure 2. Module i : Ai = 20i−1

j j j−M M

Figure 3. Chain

Theorem 13 [66]. If the input node of module K is the only unhappy node,
then the output node of module 1 flips 2K times.

3.4. Average case behavior

The worst–case analysis yields bad predictions about local search and metaheuris-
tics such as Genetic algorithms, Variable Neighborhood Search, Ant Colony al-
gorithms, and others [67,68,69]. However, computational experiments show a lot
of positive results for local search. In practice, it finds a local optimum quickly,
with a small number of iterations as compared to the size of the search space. It
is interesting to understand why the local search methods are so successfully used
in applications. Is the standard local search algorithm polynomial on average?
The first results in this direction have been obtained by C. Tovey [70,71].

Consider the problem of maximizing a real valued function F defined on the
vertices of the n–dimensional 0–1 hypercube. We assume that the values of F are
distinct. In the Flip neighborhood for the hypercube, two vertices are neighbors
if they differ in exactly one component. For each F we can construct an ordering:
a list of the vertices from best to worst function value. The random distribution
we consider is such that all orderings are equally likely to occur.

Theorem 14 [72]. Under the assumption that all orderings are equally likely,
the expected number of iterations of the standard local search algorithm with the
Flip neighborhood and every pivoting rule is less than 3

2en, where e is the loga-
rithmic constant.

Note, that the statement holds for every kind of pivoting rule. Even a careful
rule such as picking the worst better neighbor has an expected performance of
less than 3

2en.

24

Theorem 15 [72]. Suppose the ratio of probabilities of occurrence satisfies

Prob [v]
Prob [v′]

≤ 2αn

for all orderings v, v′ and a positive constant α. Then the expected number of
iterations of every local search algorithm with the Flip neighborhood is less than
(α + 2)en.

This statement can be extended for more powerful neighborhoods.

Theorem 16 [72]. Suppose the vertices of the hypercube are assigned neighbors
in such a way that every vertex has at most q(n) neighbors, where q(n) ≥ n is a
polynomial. Then for every probability distribution satisfying

Prob [v]
Prob [v′]

≤ 2αn for all orderings v, v′,

the expected number of iterations of every local search algorithm is less than
e(α + 2)q(n).

Other results for more powerful neighborhoods and other random distribu-
tions can be found in [72]. It is not clear how to use these results for the facil-
ity location models. Can we get a polynomial upper bound for the running time
of the standard local search algorithm on average for (UFLP, Flip), (p-median,
Swap), and others? This is an open question for further research.

3.5. Approximate local search

Computational studies of local search algorithms and metaheuristics have been
extensively reported in the literature for various NP–hard optimization problems.
Empirically, local search heuristics appear to converge very quickly, in low–order
polynomial time. The standard local search algorithm terminates in a pseudo
polynomial number of iterations, but polynomial–time algorithms for finding a
local optimum are not known in general. It is interesting to explore the possibility
of identifying approximately locally optimal solutions in polynomial time. We say
that a feasible solution sε to an instance of a combinatorial optimization problem
OP with neighborhood function N is an ε-local minimum if

F (sε) ≤ (1 + ε)F (s) for all s ∈ N(sε) and some positive ε.

Hence, while sε is not necessarily a local minimum, it almost is. A family of
algorithms (Aε)ε>0 for the local search problem is an ε-local optimization scheme if
Aε produces an ε-local optimum. If the running time of algorithm Aε is polynomial
in the input size and 1/ε, it is called a fully polynomial-time ε-local optimization
scheme. In [73] it is shown that every local search problem in the class PLS with a
linear objective function has a fully polynomial-time ε-local optimization scheme.

25

In particular, an ε-locally optimal solution can be computed in polynomial time
for the PLS–complete problems mentioned above.

Let us consider a linear combinatorial optimization problem OP, where the
set Sol of feasible solutions is a family of subsets of a finite ground set E =
{1, . . . , n}. The objective function F : 2E → Q+ assigns a nonnegative cost to
every feasible solution s ∈ Sol through F (s) =

∑
e∈s fe. Note that we focus on a

linear combinatorial optimization problem as opposed to a general combinatorial
optimization problem. The class of problems we are looking at is equivalent to that
of 0–1 integer linear programming problems. The UFLP, MSUFLP and UFLPUP
belong to this class.

The algorithm starts with a feasible solution s0. We then alter the element
costs fe for e ∈ E according to a prescribed scaling rule to generate a modified
instance. Using local search on this modified problem, we look for a solution with
an objective function value (with respect to the original cost) that is half that of
F (s0). If no solution is found then we are at a local optimum for the modified
problem and output this solution. Otherwise, we replace s0 by the solution, which
has a cost of at most 0, 5F (s0), and the algorithm is repeated. All details of the
algorithm are described below. Note that the modification of the cost coefficients
in Step 2 merely amounts to rounding them up to the closest integer multiple of
q.

Algorithm ε-Local Search

1 Find s0 ∈ Sol(x) and put i := 0.
2 Put K := F (si), q := εK/(2n(1 + ε)), f ′e := d fe

q eq, e ∈ E.

3 Put j := 0 and sij := si.
4 Repeat

If sij is a local minimum then sε := sij , STOP
else select better solution sij+1 ∈ N(sij), F (sij+1) < F (sij) and put j :=
j + 1.

until F (sij) ≤ K/2
5 Put si+1 := sij , i := i + 1 and goto 2.

Theorem 17 [73]. Algorithm ε-Local Search produces an ε-local minimum and
its running time is polynomial in the input size and 1/ε.

Proof. Let sε be the solution produced by the algorithm and s ∈ N(sε). Note
that

F (sε) =
∑
e∈sε

fe ≤
∑
e∈sε

dfe

q
eq ≤

∑
e∈s

dfe

q
eq ≤

∑
e∈s

q(
fe

q
+1) ≤

∑
e∈s

fe+nq = F (s)+nq.

If F (s) ≥ K/2 then

F (sε)− F (s)
F (s)

≤ nq

F (s)
≤ nq

F (sε)− nq
≤ 2nq

K − 2nq
= ε.

26

Let us analyze the running time. Step 1 is polynomial because the local search
problem is in the class PLS. In each improvement move in Step 4 we get an
improvement of at least of q units. Thus the number of local search iterations in
Step 4 is O(n(1 + ε)/ε) = O(n/ε). Step 2 is executed at most log F (s0) times.
Thus, the total number of local search iterations is O(n log F (s0)/ε). More accu-
rate calculations give O(n2ε−1 log n) iterations.

If we replace the relative error in the definition of an ε-local optimum with
the absolute error, then the existence of a polynomial ε–Local Search algorithm
will imply PLS=PPLS .

Theorem 18 [73]. If there is an algorithm that for every instance x of a PLS-
complete local search problem (OP, N) finds a feasible solution sε in polynomial
time, such that

F (sε) ≤ F (s) + ε for all s ∈ N(sε)

for some fixed positive ε, then PLS=PPLS.

Proof. Recall that the objective function is an integer–value. For each instance
x we create a new instance x′ with the same set of feasible solutions, Sol(x′) =
Sol(x), and a new objective function defined by

F ′(s) =
∑
e∈s

f ′e, for all s ∈ Sol(x′), where f ′e = fe(1 + ε) for every e ∈ E.

We apply the algorithm to the new instance x′ and let s′ be the resulting solution.
Then, F ′(s′) − F ′(s) ≤ ε for all s ∈ N(s′). Thus, F (s′) − F (s) ≤ ε/(ε + 1) < 1
for all s ∈ N(s′) and s′ is a local optimum for x.

Theorem 19 [73]. If a PLS-complete local search problem (OP,N) has a fully
polynomial time ε-local optimization scheme (Aε)ε>0 such that the actual running
time of Aε is polynomial in the input size and log 1/ε, then PLS=PPLS.

Proof. Choose ε = 1/(nfmax + 1), fmax = max
e∈E

fe and apply Aε. Note that its

running time is polynomial in the input size. If sε is the solution returned by the
algorithm, then F (sε) ≤ (1 + ε)F (s) < F (s) + 1 for all s ∈ N(sε). Hence, sε is a
local optimum.

Observe that the results hold for the facility location problems as well.

4. The quality of local optima

We say that a neighborhood is exact if each local optimum is a global one. The
standard local search algorithm with an exact neighborhood produces the opti-
mal solution of the problem. However, for the p-median problem (the traveling
salesman problem [74] and some others) the existence of the polynomially search-

27

able exact neighborhoods implies P=NP [65]. In general, this property can be
presented in the following way.

An optimization problem OP with optimal value F ∗(x) is called pseudo poly-
nomially bounded if there is a polynomial q in the length of x ∈ I and Max(x),
which is the maximal absolute value of the components of x, such that

|F (s)− F ∗(x)| ≤ q(|x|,Max(x))

for all x ∈ I and for all s ∈ Sol(x). The set of the pseudo polynomially bounded
problems is denoted by NPOB .

Theorem 20 [65,64]. Let OP ∈ NPOB and (OP, N) ∈ PLS. If the approxi-
mation of OP within a factor ε is strongly NP–hard then N cannot guarantee a
ratio of ε unless P=NP.

For ε = 1 we have the following.

Corollary 1. If OP ∈ NPOB, (OP, N) ∈ PLS and OP is strongly NP–hard
then N cannot be exact unless P=NP.

Theorem 21 [64]. If (OP,N) ∈ PLS and the approximation of OP within a
factor ε is NP–hard then N cannot guarantee a ratio of ε unless NP=co–NP.

Corollary 2. If (OP,N) ∈ PLS and OP is NP–hard, then N cannot be exact
unless NP=co–NP.

As we have mentioned in Section 1, the uncapacitated facility location prob-
lem is NP–hard in the strong sense even for the metric case. Moreover, the exis-
tence of a polynomial time 1.463–factor approximation algorithm for this prob-
lem implies P=NP. Therefore, it is difficult to find an exact polynomially search-
able neighborhood for this problem or a neighborhood that guarantees the ratio
ε ≤ 1.463. This is bad news. However, below we will present some good news.

We say that an optimization problem OP is polynomially bounded if there
exists a polynomial r such that F (s) ≤ r(|x|) for every instance x of OP and
every feasible solution s of x.

Definition 7. An optimization problem OP has guaranteed local optima if
there exists a polynomial time searchable neighborhood N and a constant k such
that F (s) ≤ kF ∗(x) for every instance x of OP and every local minimum s of x
with respect to N .

Definition 8. For an instance x and feasible solutions s, s′ of x we say that
s′ is an h-bounded neighbor of s if the Hamming distance between s and s′ is at
most h. A neighborhood N is said to be h-bounded if there exists a constant h
such that every neighbor of s is an h-bounded for every feasible solution s and
every instance x.

28

Definition 9. Let OP be a polynomially bounded optimization problem. We
say that OP belongs to the class Guaranteed Local Optima (GLO) if the following
two conditions hold:

– at least one feasible solution s of x can be computed in polynomial time for
every instance x of OP ,

– there exists a constant h such that OP has a guaranteed local optima with
respect to a suitable h-bounded neighborhood.

Definition 10. Let A and B be two optimization problems. A is said to be
PTAS-reducible to B (in symbol A ≤PTAS B) if three functions f, g, c exist such
that:

– for every x ∈ IA and for every ε ∈ (0, 1)Q, (Q is the set of rational numbers)
f(x, ε) ∈ IB is computable in polynomial time with respect to | x |;

– for every x ∈ IA, for every s ∈ SolB(f(x, ε)), and for every ε ∈ (0, 1)Q,
g(x, s, ε) ∈ SolA(x) is computable in time polynomial with respect to both
|x| and |s|;

– c : (0, 1)Q → (0, 1)Q is computable and surjective;
– for every x ∈ IA, for every s ∈ SolB(f(x, ε)), and for every ε ∈ (0, 1)Q

EB(f(x, ε), s) ≤ c(ε) implies EA(x, g(x, s, ε)) ≤ ε, where E(x, s) is the rel-
ative error of s for x,

E(x, s) =
|F (s)− F ∗(x)|

max{F (s), F ∗(x)} .

Suppose that A ≤PTAS B and B ∈ APX, then A ∈ APX. If C is a class
of optimization problems, then by C we denote the closure of C under PTAS
reductions, that is, the set of problems defined by

C = {A | ∃B ∈ C such that A ≤PTAS B}.

Theorem 22 [75]. GLO = APX.

In other words, “... the basis of approximability of a large class problems
stands an important combinatorial property, namely, the fact that all local optima
have guaranteed quality with respect to global optima” G. Ausiello, M. Protasi [75].

5. Computationally difficult instances

The iterative local search methods show high performance for many combinatorial
optimization problems in business, engineering, and science. These metaheuris-
tics provide fast and robust tools, producing high quality solutions for location
problems as well [77,78,79,76]. As a rule, they deal with the set of local optima
under polynomially searchable neighborhoods. If the local optima cluster is in a
small part of the feasible domain, as for the metric TSP [80], we understand why
these heuristics are so effective. Conversely, if we wish to generate computation-

29

ally difficult instances for the local search methods then we may try to create
instances, where local optima are scattered all around the feasible domain. Such
computationally difficult instances for the UFLP based on binary perfect codes,
finite projective planes, and others [63] are described below.

5.1. POLYNOMIALLY SOLVABLE INSTANCES

Let us consider a finite projective plane of order k [81], which is a collection of
n = k2 + k + 1 points x1, . . . xn and lines L1, . . . , Ln. An incidence matrix A is
an n× n matrix defining the following: aij = 1 if xj ∈ Li and aij = 0 otherwise.
The incidence matrix A satisfying the following properties:

1. A has constant row sum k + 1;
2. A has constant column sum k + 1;
3. the inner product of every pair of distinct rows of A is 1;
4. the inner product of every pair of distinct columns of A is 1.

These matrices exist if k is a power of a prime. A set of lines Bj = {Li|xj ∈ Li}
is called a bundle for the point xj . The cardinality of each bundle is k + 1 and
|Bj1 ∩Bj2| = 1 for every pair of different points xj1 and xj2. Let us define a class
of instances for the UFLP. Put I = J = {1, . . . , n} and

cij =
{

ξij if aij = 1,
+∞ otherwise, fi = f for all i ∈ I, where f >

∑

i∈I

∑

j∈J

ξij .

We denote this class by FPPk. It is easy to see that the optimal solution for FPPk

corresponds to a bundle. Hence, the problem can be solved in polynomial time.
Every bundle corresponds to a strong local optimum of the UFLP under

the neighborhood Flip ∪ Swap. Global optimum is one of them. The Hamming
distance for an arbitrary pair of the strong local optima equals 2k. Hence, the
diameter of the area, where local optima are located, is quite large. Moreover,
there are no other local optima with distance to the bundle less than or equal to
k. As we will see in some computational results, the local optima have large basins
of attraction. For metaheuristics it is an additional obstacle for moving from one
local optimum to another. In Tabu Search we have to use a large tabu list. For
Simulated Annealing we need high temperatures. If the population in Genetic
Algorithm is a collection of the bundles then the crossover operators produce
“bad” local optima or the same bundles. For the GRASP heuristic this class is
difficult too [76].

5.2. INSTANCES WITH EXPONENTIAL NUMBER OF STRONG LOCAL
OPTIMA

Let us consider two classes of instances, where the number of strong local optima
grows exponentially as dimension increases. The first class uses binary perfect
codes with code distance 3. The second class involves a chess board.

30

Let Bk be a set of words (or vectors) of length k over an alphabet {0,1}. A
binary code of length k is an arbitrary nonempty subset of Bk. A binary perfect
code C with distance 3 is a subset of Bk with property |C| = 2k/(k+1) such that
the Hamming distance d(c1, c2) for all c1, c2 ∈ C is at least 3 whenever c1 6= c2.
These codes exist for k = 2r−1 and r > 1, integer. Put n = 2k, I = J = {1, . . . , n}.
Every element i ∈ I corresponds to a vertex x(i) of the binary hypercube Zk

2 .
Therefore, we may use a distance dij = d(x(i), x(j)) for every pair of elements
i, j ∈ I. Now we define

cij =
{

ξij if d(x(i), x(j)) ≤ 1,
+∞ otherwise, fi = f for all i ∈ I.

An arbitrary perfect code C produces a partition of Zk
2 into 2k/(k + 1) disjointed

spheres of radius 1 and corresponds to a strong local optimum for the UFLP. The
number of perfect codes ℵ(k) grows exponentially as k increases. The best known
lower bound [82] is

ℵ(k) ≥ 22
k+1
2 log2(k+1) · 32

k−3
4 · 22

k+5
4 log2(k+1)

.

The minimal distance between two perfect codes or strong local minima is at
least 2(k+1)/2. We denote the class of benchmarks by BPCk.

Let us glue boundaries of the 3k× 3k chess board so that we get a torus. Put
r = 3k. Each cell of the torus has 8 neighboring cells. For example, the cell (1, 1)
has the following neighbors: (1, 2), (1, r), (2, 1), (2, 2), (2, r), (r, 1), (r, 2), (r, r). De-
fine n = 9k2, I = J = {1, . . . , n} and

cij =
{

ξij if the cells i, j are neighbors,
+∞ otherwise, fi = f for all i ∈ I.

The torus is divided into k2 squares with 9 cells in each of them. Every cover of
the torus by k2 squares corresponds to a strong local optimum for the UFLP. The
total number of these strong local optima is 2 · 3k+1 − 9. The minimal distance
between them is 2k. We denote this class of benchmarks by CBk.

5.3. INSTANCES WITH LARGE INTEGRALITY GAP

As we will see later, the integrality gap for the described classes is quite small.
Therefore, the branch and bound algorithm finds an optimal solution and proves
the optimality quickly. It is interesting to design benchmarks, which are compu-
tationally difficult for both metaheuristics and branch and bound methods.

As in previous cases, let the n × n matrix (cij) have the following property:
each row and column have the same number of finite elements. We denote this
number by l. The value l/n is called the density of the matrix. Now we present
an algorithm to generate random matrices (cij) with the fixed density.

31

Random matrix generator (l, n)

1. J ← {1, . . . n}
2. Column [j] ← 0 for all j ∈ J
3. c[i, j] ← +∞ for all i, j ∈ J
4. for i ← 1 to n
5. do l0 ← 0
6. for j ← 1 to n
7. do if n− i + 1 = l − Column[j]
8. then c[i, j] ← ξ[i, j]
9. l0 ← l0 + 1
10. Column[j] ← Column[j] + 1
11. J ← J \ j
12. select a subset J ′ ⊂ J, |J ′| = l − l0 at random

and put c[i, j] ← ξ[i, j], for j ∈ J ′.

The array Column[j] keeps the number of small elements in the j-th column
of the generating matrix. Variable l0 is used to count the columns, where small
elements must be located in the i-th row. These columns are detected in advance
(line 7) and removed from the set J (line 11). Note that we may get random
matrices with exactly l small elements for each row only if we remove lines 6-11
from the algorithm. By transposing we get random matrices with this property
for columns only. Now we introduce three classes of benchmarks:
Gap-A: each column of cij has exactly l small elements;
Gap-B: each row of cij has exactly l small elements;
Gap-C: each column and row of cij have exactly l small elements.

For these classes we save I = J = {1, . . . , n} and fi = f for all i ∈ I. The
instances have a significant integrality gap δ = 100%(F ∗ − FLP)/F ∗, where FLP

is an optimal value for the linear programming relaxation. For l = 10, n = 100 we
observe that δ ∈ [21%, 29%]. As a consequence, the branch and bound algorithm
evaluates about 0, 5 · 109 nodes in the branching tree for most of the instances
from the class Gap-C.

5.4. COMPUTATIONAL EXPERIMENTS

To study the behavior of metaheuristics, we generate 30 random test instances
for each class. The values of ξij are taken from the set {0, 1, 2, 3, 4} at ran-
dom and f = 3000. All instances are available at http://www.math.nsc.ru/AP/
benchmarks/english.html. Optimal solutions are found by the branch and bound
algorithm. Table 1 shows the performance of the algorithm on average. Column
Running time presents the execution times on a PC Pentium 1200 MHz, RAM
128 Mb. Column Iterations B&B shows the total number of iterations or number
of evaluated nodes in the branching tree. Column The best iteration shows itera-
tions for which optimal solutions were discovered. For comparison we include two
well known classes:

32

Table 1. Performance of the branch and bound algorithm in average

Benchmarks n Gap Iterations The best Running

classes δ B&B iteration time

BPC7 128 0.1 374 264 371 646 00:00:15

CB4 144 0.1 138 674 136 236 00:00:06

FPP11 133 7.5 6 656 713 6 635 295 00:05:20

Gap−A 100 25.6 10 105 775 3 280 342 00:04:52

Gap−B 100 21.1 30 202 621 14 656 960 00:12:24

Gap− C 100 28.4 541 320 830 323 594 521 01:42:51

Uniform 100 4.7 9 834 2 748 <00:00:01

Euclidean 100 0.1 1 084 552 <00:00:01

Table 2. Attributes of the local optima allocation

Benchmarks N Diameter Radius R100 R∗

classes min ave max

BPC7 8868 55 1 3 357 24 52

CB4 8009 50 1 13 178 78 53

FPP11 8987 51 1 2 8 3 1

Gap−A 6022 36 1 53 291 199 7

Gap−B 8131 42 1 18 164 98 16

Gap− C 8465 41 1 14 229 134 21

Uniform 1018 33 1 31 101 61 1

Euclidean 40 21 11 13 18 − 10

Uniform: values cij are selected in the interval [0, 104] at random with uni-
form distribution and independently from each other.

Euclidean: values cij are Euclidean distances between points i and j in two-
dimensional space. The points are selected in a square of size 7000 × 7000 at
random with uniform distribution and independently from each other.

For these classes f = 3000. The interval and size of the square are taken in
such a way that optimal solutions have the same cardinality as in the previous
classes. Table 1 confirms that classes Gap − A, Gap − B, and Gap − C have a
large integrality gap and they are the most difficult for the branch and bound
algorithm. The classes BPC7, CB4, and Euclidean have a small integrality gap.
Nevertheless, the classes BPC7 and CB4 are more difficult than the Euclidean
class. This has a simple explanation: classes BPC7 and CB4 have many strong
local optima with small waste over the global optimum.

In order to understand the difference between classes from the point of view of
local optima allocation, we produce the following computational experiment. For
9000 random starting points we apply the standard local improvement algorithm
with the Flip∪Swap neighborhood and get a set of local optima, some of which are
identical. Impressive differences between benchmark classes become clear when
the cardinality of the local optima sets are compared. Classes Uniform and

33

Euclidean have small pathological cardinalities of local optima sets and, as we will
see below, these classes are very easy for metaheuristics. In Table 2 the column N
shows the cardinalities for typical instances in each class. The column Diameter
yields a lower bound for the diameter of area, where local optima are located.
This value equals the maximal mutual Hamming distance over all pairs of local
optima obtained.

Figures 4 – 11 plot the costs of local optima against their distances from the
global optimum. For every local optimum we draw a sphere. The center of the
sphere has coordinates (x, y), where x is the distance, and y is the value of the
objective function. The radius of the sphere is the number of local optima, which
are located near this local optimum. More precisely, the Hamming distance d is
less than or equal to 10. In Table 2 columns min, ave, and max show the minimal,
average, and maximal radiuses for the corresponding sets of local optima. The
class FPP11 has an extremely small maximal and average value of the radiuses.
Hence, the basins of attraction for the local optima are quite large. In Figure 6 the
local optima, which correspond to the bundles, are shown by two lower spheres.
The distance between them is 22. One of them is the global optimum. All other
local optima are located quite far from global optimum and have higher values
of the objective function. The distance from global optimum to the nearest local
optimum is 12. Column R∗ in Table 2 gives the radius of the sphere for the global
optimum. It equals 1 for the classes FPP11 and Uniform. The maximal values
53 and 52 belong to classes CB4 and BPC7. Note that for all classes the sphere
of global optima is not the maximal or minimal one. It seems that there is no

Figure 4. Analysis of local optima for the class BPC7

34

Figure 5. Analysis of local optima for the class CB4

Figure 6. Analysis of local optima for the class FPP11

35

Figure 7. Analysis of local optima for the class GAP −A

Figure 8. Analysis of local optima for the class GAP −B

36

Figure 9. Analysis of local optima for the class GAP − C

Figure 10. Analysis of local optima for the class Uniform

37

Figure 11. Analysis of local optima for the class Euclidean

correlation between the density of local optima in the feasible domain and the
objective function. Column R100 shows the minimal radius for the 100 biggest
spheres. This column indicates that the classes Gap−A, Gap−B, Gap−C have
many large spheres. Class FPP11 has spheres that are not so large. In Figures
4, 5, 9, and 10 there are many small spheres quite far from the global optimum.
If we imagine the set of local optima as a galaxy then we observe many small
spheres at the border of the galaxy and a lot of large spheres at the center. The
region of high concentration of local optima consists of the spheres with high
and low values of the objective function. The global optimum can be located at
the center part of the galaxy and has a large sphere (see Figures 4, 5) or very
far from the center and has a small sphere (Figures 6, 10). We cannot predict
its radius or place in the galaxy. We can only observe that easy classes have a
small galaxy, N = 1018 for class Uniform and N = 40 for class Euclidean.
The difficult classes have large galaxies, N ≈ 9000 for classes BPC7, FPP11,
Gap − C. It is possible that the most difficult classes correspond to the cases,
where several galaxies are separated from each other by regions with high values
of the objective function. Test instances with this property are very interesting
for future research [83]. Theoretical properties of different landscapes for NP-hard
combinatorial problems can be found in [84].

Table 3 shows the frequency of finding an optimal solution using the follow-
ing metaheuristics: Probabilistic Tabu Search (PTS), Genetic Algorithm (GA)
and Greedy Randomizes Adaptive Search Procedure with Local Improvement
(GRASP + LI). The stopping criterion for the algorithms is the maximal num-

38

Table 3. Frequency of obtaining optimal solutions by metaheuristics

Benchmarks Dimension PTS GA GRASP+LI

classes

BPC7 128 0.93 0.90 0.99

CB4 144 0.99 0.88 0.68

FPP11 133 0.67 0.46 0.99

Gap−A 100 0.85 0.76 0.87

Gap−B 100 0.59 0.44 0.49

Gap− C 100 0.53 0.32 0.42

Uniform 100 1.0 1.0 1.0

Euclidean 100 1.0 1.0 1.0

ber of steps by the neighborhood Flip ∪ Swap. We use number 104 as the crite-
ria. The genetic algorithm uses local improvements for each offspring during the
evolution. Table 3 indicates that classes Euclidean and Uniform are easy. The
average number of steps before an optimal solution is reached is less than 103 for
all algorithms.

6. Conclusions

We have presented some discrete facility location models, as well as theoretical
and experimental results for local search methods. We have explained why the
concept of local optimality is important for the theory of computational complex-
ity and numerical methods. There are many open questions in this area. For ex-
ample, the well-known set covering problem can be reformulated as a facility loca-
tion problem. We still know very little about the complexity of the corresponding
local search problems. In [85] a one-to-one correspondence between Nash equilib-
ria in a facility location game and local optima in a special facility location model
is presented. This property helps to determine the computational complexity of
finding Nash equilibrium [21]. For the theory of approximation algorithms the
concept of local optimality plays an important role as well. In regards to combina-
torial optimization problems, the property that all local optima have guaranteed
quality with respect to global optima is the basis of the approximability of a large
class of problems [75].

Acknowledgments

Many thanks to Vašek Chvǎtal and Mark Goldsmith for their efforts for improving
the presentation of the paper. This work was supported by RFBR grants 09-01-
00059, 09-06-00032.

References

[1] B.P. Mirchandani, R.L. Francis (Eds.), Discrete Location Theory, Wiley-Interscience,
1990.

39

[2] Z. Drezner , K. Klamroth, A. Schobel, G. Wesolowsky, The Weber problem, in: Z. Drezner,
H. Hamacher (Eds.), Facility Location. Applications and Theory, Springer, 2004, 1–36.

[3] M.K. Balinski, P. Wolfe, On Benders decomposition and a plant location problem, Working
paper ARO-27, Mathematica, Princeton, 1963.

[4] M.A. Efroymson, T.L. Ray, A branch and bound algorithm for plant location, Operations
Research 14 (1966), 361–368.

[5] A.A. Ageev, V.L. Beresnev, Polynomially solvable cases of simple plant location problem,
Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference
IPCO 1990, Waterloo, 1990, 1–6.

[6] D.S. Hochbaum, Heuristics for the fixed cost median problem Mathematical Programming
22 (1982), 148–162.

[7] Y. Mahdian, M. Ye, J. Zhang, Improved approximation algorithms for metric facility lo-
cation problems, Proceedings of the 5th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization, LNCS 2462 (2002), 229–242.

[8] S. Guha, S. Khuller, Greedy strikes back: improved facility location algorithms, Journal
of Algorithms 31 (1999), 228–248.

[9] B. Korte, J. Vygen, Combinatorial Optimization. Theory and Algorithms, Springer, 2005.
[10] B.M. Khumawala, An efficient branch and bound algorithm for the warehouse location

problem, Management Science 18 (1972), 718–731.
[11] V.L. Beresnev, E.Kh. Gimadi, V. T. Dement’ev, Extremal Standardization Problems,

Novosibirsk, Nauka, 1978 (in Russian).
[12] S.S. Lebedev, M.I. Kovalevskaya, The Lagrange multiplieres in the simple plant location

problem, in: Researches in Discrete Optimization, Moscow, Nauka, 1976, 170–180 (in
Russian).

[13] V.S. Mikhalevich, V.A. Trubin, N.Z. Shor, Optimization Problems for Production–
Transportation Planing, Moscow, Nauka, 1986 (in Russian).

[14] O. Bilde, J. Krarup, Sharp lower bounds and efficient algorithms for the simple plant
location problem, Annals of Discrete Mathematics 1 (1977), 79–97.

[15] D. Erlenkotter, A dual-based procedure for uncapacitated facility location, Operations
Research 26 (1978) 992–1009.

[16] P. Avella, A. Sassano, I. Vasilev, Computational study of large-scale p-median problems,
Mathematical Programming 109(1) (2006), 89–114.

[17] F. Barahona, F. Chudak, Solving large scale uncapacitated facility location problems,
in: P. Pardalos (ed.) Approximation and Complexity in Numerical Optimization, Kluwer
Academic Publishers, Norwell, MA, 2000.

[18] P.L. Hammer, S. Rudeanu, Boolean Methods in Operations Research and Related Areas,
Springer-Verlag, 1968.

[19] P.L. Hammer, Plant location — a pseudo-Boolean approach, Israel Journal of Technology
6 (1968) 330–332.

[20] V.L. Beresnev, Algorithms for minimization of polynomials in Boolean variables, Problemy
Kibernetiki 36 (1979), 225-246 (in Russian).

[21] Y. Kochetov, A. Kononov, A. Plyasunov, Competitive facility location models, Computa-
tional Mathematics and Mathematical Physics 49(6) (2009), 994–1009.

[22] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency, Berlin, Springer,
2003.

[23] J. Krarup, P.M. Pruzan, The simple plant location problem: survey and synthesis, Euro-
pean Journal of Operational Research 12 (1983), 36-81.

[24] E. Boros, P.L. Hammer, Pseudo-Boolean optimization, Discrete Applied Mathematics 123
(2002), 155–225.

[25] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley &
Sons, 1988.

[26] K.I. Aardal, F.A. Chudak, D.B. Shmoys, A 3-approximation algorithm for the k-level
uncapacitated facility location problem. Information Processing Letters 72 (1999), 161-
167.

[27] A. Ageev, Y.Ye, J. Zhang, Improved combinatorial approximation algorithms for the k-
level facility location problem, Proceeding of Automata, Languages and Programming,

40

30th International Colloquium, ICALP 2003, LNCS 2719 (2003), 145-156.
[28] E. Goncharov, Branch and bound algorithm for the two-level uncapacitated facility lo-

cation problem, Discrete Analysis and Operations Research, ser.2 5 (1998), 19–39 (in
Russian).

[29] D.W. Tcha, B.I. Lee, A branch-and-bound algorithm for the multi-level uncapacitated
facility location problem, European Journal of Operational Research 18 (1984), 35–43.

[30] E.Kh. Gimadi, Effective algorithms for solving multi-level plant location problems, Op-
erations Research and Discrete Analysis, Kluwer Academic Publishers, Dordrecht, 1997,
51–69.

[31] E.Kh. Gimadi, Exact algorithm for some multi-level location problems on a chain and a
tree, Operations Research Proceedings 1996, Springer-Verlag, Berlin, 1997, 72–77.

[32] P. Hanjoul, D. Peeters, A facility location problem with clients’ preference orderings,
Regional Science and Urban Economics 17 (1987), 451–473.

[33] A.I. Barros, M. Labbe, A general model for the uncapacitated facility and depot location
problem, Location Science 2 (1994), 173-191.

[34] S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, Dordrecht,
2002.

[35] L.E. Gorbachevskaya, Polynomially solvable and NP-hard bilevel standardization prob-
lems, Ph.D. Thesis, Sobolev Institute of Mathematics, Novosibirsk, 1998 (in Russian).

[36] P. Hansen, Yu. Kochetov, N. Mladenović, Lower bounds for the uncapacitated facility
location problem with user preferences, Preprint G-2004-24, Mart 2004, GERAD-HEC,
Montreal, Canada. 2004.

[37] J.M.W. Rhys, A selection problem of shared fixed costs and network flows, Management
Science 17 (1970) 200–207.

[38] E. Alekseeva, Y. Kochetov, Genetic local search for the p-median problem with user pref-
erences. Discrete Analysis and Operations Research. Series 2, 14(1) (2007), 3-31 (in Rus-
sian).

[39] L. Canovas, S. Garcia, M. Labbe, A. Marin, A strengthened formulation for the simple
plant location problem with order, Operations Research Letters 35(2) (2007), 141–150.

[40] I. Vasil’ev, K. Klimentova, Y. Kochetov, New lower bounds for the facility location problem
with user preferences Computational Mathematics and Mathematical Physics 49(6) (2009),
1055–1066.

[41] F. Plastria, L. Vanhaverbeke, Discrete models for competitive location with foresight,
Computers and Operations Research, 35 (2008), 683–700.

[42] C.M.C. Rodriguez , J.A.M. Perez, Multiple voting location problems, European Journal
of Operational Research 191 (2008), 437-453.

[43] S.L. Hakimi, Locations with spatial interactions: competitive locations and games, in: P.
Mirchandani, R. Francis (Eds.) Discrete Location Theory, Wiley, 1990, 439–478.

[44] E.V. Alekseeva, N.A. Kochetova, Y.A. Kochetov, A.V. Plyasunov, A heuristic and exact
methods for the discrete (r|p)-centroid problem. LNCS 6022 (2010), 11-22.

[45] H. Noltemeier, J. Spoerhase, H.C. Wirth, Multiple voting location and single voting loca-
tion on trees. European Journal of Operational Research 181 (2007), 654–667.

[46] J. Spoerhase, H.C. Wirth, (r, p)-Centroid problems on paths and trees, Tech. Report 441,
Inst. Comp. Science, University of Wurzburg, 2008.

[47] J. Bhadury, Y. Eiselt, J. Jaramillo, An alternating heuristic for medianoid and centroid
problems in the plane, Computers and Operations Research 30 (2003), 553–565.

[48] E. Alekseeva, N. Kochetova, Y. Kochetov, A. Plyasunov, A hybrid memetic algorithm
for the competitive p-median problem, Proceedings of INCOM 2009, Moscow, June 3-5,
2009.

[49] E. Alekseeva, N. Kochetova, Upper and lower bounds for the competitive p-median prob-
lem, Proceedings of XIV Baikal International School-Seminar, 1 (2008), 563-569 (in Rus-
sian).

[50] S. Benati, G. Laporte, Tabu search algorithms for the (r|Xp)–medianoid and (r|p)–centroid
problems, Location Science 2(4) (1994), 193–204.

[51] A.Plyasunov, Personal communication.
[52] E. Alekseeva, Y. Kochetov, A. Plyasunov, Complexity of local search for the p-median

41

problem, European Journal of Operational Research 191 (2008), 736–752.
[53] L. K. Grover, Local search and the local structure of NP-complete problems, Operations

Research Letters, 12 (4) (1992), 235–244.
[54] G. Gutin, Exponential neighborhood local search for the traveling salesman problem,

Computers & Operations Research 26 (1999), 313–320.
[55] G. Gutin, A. Yeo, Small diameter neighborhood graphs for the traveling salesman problem:

four moves from tour to tour, Computers & Operations Research, 26 (1999), 321–327.
[56] R.K. Ahuja, O.E. James, B. Orlin, and A.P. Punnen, A survey of very large-scale neigh-

borhood search techniques, Discrete Applied Mathematics, 123 (2002), 75-102.
[57] A.A. Schäffer, M. Yannakakis, Simple local search problems that are hard to solve, SIAM

Journal on Computing 20 (1991), 56–87.
[58] D.C. Johnson, C.H. Papadimitriou, M. Yannakakis, How easy is local search? Journal of

Computer and System Sciences 37 (1988), 56–87.
[59] M.W. Krentel, Structure in locally optimal solutions, 30th Annual Symposium on Founda-

tions of Computer Science, IEEE Comput. Soc. Press, Los Alamitos, CA, 1989, 216–222.
[60] C.H. Papadimitriou, The complexity of the Lin–Kernighan heuristic for the traveling sales-

man problem, SIAM Journal on Computing 21 (1992), 450–465.
[61] M.W. Krentel, On finding and verifying locally optimal solutions, SIAM Journal on Com-

puting 19 (1990), 742–751.
[62] J.J. Hopfield, Neural networks and physical systems with emergent collective computa-

tional abilities, Proceedings of the National Academy of Sciences of the USA 79 (1982),
2554–2558.

[63] Yu. Kochetov, D. Ivanenko, Computationally difficult instances for the uncapacitated
facility location problem, in: Ibaraki T. et al. (Eds.) Metaheuristics: Progress as Real
Solvers, Springer, 2005, 351–367.

[64] M. Yannakakis, Computational complexity, in: E. Aarts, J.K. Lenstra (Eds.) Local Search
in Combinatorial Optimization, Chichester: John Wiley & Sons, 1997, 19–55.

[65] Yu. Kochetov, M. Paschenko, A. Plyasunov, On complexity of local search for the p-
median problem, Discrete Analysis and Operations Research, Series 2, 12 (2005) 44–71
(in Russian).

[66] T. Vredeveld, J.K. Lenstra, On local search for the generalized graph coloring problem,
Operations Research Letters 31 (2003), 28–34.

[67] J. Dreo, P.Siarry, A. Petrowski, E. Taillard, Metaheuristics for Hard Optimization: Meth-
ods and Case Studies, Springer, 2006.

[68] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, Dordrecht, 1997.
[69] P. Hansen, N. Mladenović, Variable neighborhood search: principles and applications (in-

vited review), European Journal of Operational Research 130 (2001), 449–467.
[70] C. Tovey, On the number of iterations of local improvement algorithms, Operations Re-

search Letters, 2 (1983), 231–238.
[71] C. Tovey, Hill climbing with multiple local optima, SIAM Journal on Algebraic and Dis-

crete Methods, 6 (1985), 384–393.
[72] C. Tovey, Local improvement on discrete structures, in: E. Aarts, J.K. Lenstra (Eds.) Local

Search in Combinatorial Optimization, Chichester: John Wiley & Sons, 1997, 57–89.
[73] J.B. Orlin, A.P. Punnen, A. Schulz, Approximate local search in combinatorial optimiza-

tion, SIAM Journal of Computing 33 (2004), 1201–1214.
[74] C.H. Papadimitriou, K. Steiglitz, On the complexity of local search for the traveling sales-

man problem, SIAM Journal of Computing 6 (1977), 76–83.
[75] G. Ausiello, M. Protasi, Local search, reducibility and approximability of NP optimization

problems, Information Processing Letters 54 (1995), 73–79.
[76] M.G.C. Resende, R.F. Werneck, A hybrid multistart heuristic for the uncapacitated facility

location problem, European Journal of Operational Research 174 (2006), 54–68.
[77] Yu. Kochetov, E. Alekseeva, T. Levanova, M. Loresh, Large neighborhood local search for

the p-median problem, Yugoslav Journal of Operations Research 15 (2005), 53–63.
[78] T.V. Levanova, M.A. Loresh, Algorithms of ant system and simulated annealing for the

p-median problem, Automation and Remote Control 65 (2004), 431–438.
[79] N. Mladenović, J. Brimberg, P. Hansen, J. Moreno-Perez, The p-median problem: A survey

42

of metaheuristic approaches, European Journal Operational Research 179 (2007), 927–939.
[80] K.D. Boese, A.B. Kahng, S. Muddu, A new adaptive multi-start technique for combina-

torial global optimization, Operations Research Letters 16 (1994), 101–113.
[81] M. Jr. Hall, Combinatorial Theory, Blaisdell, Waltham, MA, 1967.
[82] D. Krotov, Lower bounds for number of m-quasi groups of order 4 and number of perfect

binary codes, Discrete Analysis and Operations Research 7 (2000), 47–53 (in Russian).
[83] M. Qasem, A. Prügel-Bennett, Learning the large–scale structure of the MAX–SAT land-

scape using populations, IEEE Transactions on Evolutionary Computation, 14 (4) (2010),
518–529.

[84] E. Angel, V. Zissimopoulos, On the classification of NP-complete problems in terms of
their correlation coefficient, Discrete Applied Mathematics, 99 (2000), 261–277.

[85] E. Tardos, T. Wexler, Network formation games and the potential function method, in:
N. Nisan, T. Roughgarden, E. Tardos, V. V. Vazirani (Eds.) Algorithmic Game Theory,
Cambridge University Press, 2007, 487–516.

43

