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Abstract We propose a model where two competitors, a Leader and a Follower, are
sequentially creating their hub and spoke networks and setting prices. The existence
of the unique Stackelberg and Nash pricing equilibria is shown. On the basis of these
results we give the conclusion about existence of the profit maximising solution for
the Leader.

1 Introduction

The Hub Location Problem consists of finding the optimal locations for one or more
hubs with respect to some given objective. Because markets are usually oligopolies,
the profit of a company is not only affected by the decision of its management, but
also by the moves and responses of the competitors. Competition between firms that
use hub and spoke networks has been studied mainly from a sequential location ap-
proach. An existing firm, the Leader, serves the demand in some region, and a new
firm, the Follower, wants to enter. One thing that can strongly affect the competition
is the price. In the Facility Location Theory, the pricing has been studied for some
time now (some more recent works are [1] and [2]), but that is not the case with
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the hub location problems. Recently, Lüer-Villagra and Marianov in [3] analysed a
competitive case of hub location problem where the pricing is taken into account.
They argued that a location, or route opening decisions, or even the entrance into a
market can be very dependent on the revenues that a company can obtain by operat-
ing these locations and routes. In turn, revenues depend on the pricing structure and
competitive context.

Here, we consider a sequential hub location and pricing problem in which two
competitors, a Leader and a Follower, compete to attract clients in a given market.
Each player tends to maximize his own profit rather than a market share. Customers
choose which company and route to patronize by price. It is expected that the de-
mand is split according to the logit model. The location of hubs, allocation of spokes,
and pricing are to be determined so as to maximize the profit of the Leader. For this
Stackelberg competition we show that there are Stackelberg and Nash pricing equi-
libria, if the networks of the competitors are already set. Besides their existence
and uniqueness, transcendental equations for finding both pricing equilibria are pro-
vided. On the basis of these results we give the conclusion about existence of the
profit maximising solution for the Leader.

2 A Leader-Follower Hub Location and Pricing Problem

The problem is defined over a directed multi-graph G = G(N,A), where N is the
non-empty set of nodes and A is the set of arcs. For every arc (i, j) ∈ A, there is
an opposite arc ( j, i) ∈ A. If a competitor wants to locate a hub at node i ∈ N, that
would cost him some fixed amount fi. Also, hubs can be shared and there are no
capacity constraints. For every arc (i, j) ∈ A there is a fixed (positive) cost gi j for
allocating it as a spoke, and a (positive) transport cost per unit of flow ci j. The cost
itself is a non-decreasing function of distance. On the inter-hub transfer there is a
known fixed discount factor α ∈ (0,1). At most two hubs are allowed to be on a
single route. The transportation cost ci j/kl over a route i→ k→ l → j is given by
the following expression ci j/kl = cik +αckl + cl j. Demand wi j for every OD pair
(i, j) ∈ A is assumed to be non-elastic and positive. Every customer is served either
by the Leader or by the Follower. The logit model is used as a discrete choice model.
There are no budget constraints. Following the work [4] and [5], we address the
setting where both players are forced to serve all nodes. Now, we introduce the
decision variables for the players:

• xk = 1 if the Leader locates a hub at node k ∈ N and 0 otherwise
• λi j = 1 if the Leader establishes a direct connection between nodes i, j ∈ N,

where (i, j) ∈ A, and 0 otherwise
• pi j/kl is the price charged by the Leader for the flows between nodes i ∈ N and

j ∈ N, using the intermediate hubs k, l ∈ N.
• yk = 1 if the Follower locates a hub at node k ∈ N and 0 otherwise
• ζi j = 1 if the Follower establishes a direct connection between nodes i, j ∈ N,

where (i, j) ∈ A, and 0 otherwise
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• qi j/kl is the price charged by the Follower for the flows between nodes i ∈ N and
j ∈ N, using the intermediate hubs k, l ∈ N.

The Leader wishes to maximize his profit, anticipating that the Follower will react to
his decision by creating own hub and spoke network and own pricing structure. This
Stackelberg game can be presented as the following nonlinear mix-integer bilevel
optimization problem. The model for the Leader is

max ∑
i, j,k,l∈N

(pi j/kl− ci j/kl)wi jui j/kl−∑
i∈N

fixi− ∑
(i, j)∈A

gi jλi j (1)

∑
s,t∈N

xsxtλisλstλt j ≥ 1, ∀i, j ∈ N (2)

ui j/kl =
xkxlλikλklλl je

−Θ pi j/kl

∑s,t∈N xsxtλisλstλt je
−Θ pi j/st + γ∗i j

, ∀i, j,k, l ∈ N (3)

γ
∗
i j = ∑

s,t∈N
y∗s y∗t ζ

∗
isζ
∗
stζ
∗
t je
−Θq∗i j/st , ∀i, j ∈ N (4)

((y∗i ),(ζ
∗
i j),(v

∗
i j/kl),(q

∗
i j/st)) ∈ F∗((xi),(λi j),(ui j/kl),(pi j/kl)) (5)

pi j/kl ≥ 0, ∀i, j,k, l ∈ N (6)

xi ∈ {0,1}, ∀i ∈ N (7)
λi j ∈ {0,1}, ∀(i, j) ∈ A (8)

Feasible solutions are tuples ((xi),(λi j),(pi j/kl),(y∗i ),(ζ
∗
i j),(q

∗
i j/st)) satisfying con-

straints (1)-(8), where (5) indicates that the Follower’s problem has the optimal so-
lution F∗((xi), (λi j),(ui j/kl), (pi j/kl)) for a particular Leader’s solution ((xi),(λi j),
(ui j/kl),(pi j/kl)). The model for the Follower is

max ∑
i, j,k,l ∈ N

(qi j/kl− ci j/kl)wi jvi j/kl− ∑
i ∈ N

fiyi− ∑
(i, j) ∈ A

gi jζi j (9)

∑
s,t∈N

ysytζisζstζt j ≥ 1, ∀i, j ∈ N (10)

vi j/kl =
ykylζikζklζl je

−Θqi j/kl

∑s,t∈N ysytζisζstζt je
−Θqi j/st +ηi j

, ∀i, j,k, l ∈ N (11)

ηi j = ∑
s,t∈N

xsxtλisλstλt je
−Θ pi j/st ∀i, j ∈ N (12)

qi j/kl ≥ 0, ∀i, j,k, l ∈ N (13)

yi ∈ {0,1}, ∀i ∈ N (14)
ζi j ∈ {0,1}, ∀(i, j) ∈ A (15)

The objective functions (1) and (9) are representing the profits of the competitors.
Constraints (2) and (10) are assuring that all OD pairs are going to be served. Equa-
tions (3) and (11) are representing the Leader’s and the Follower’s market shares,
respectively. Next, (4) is characterizing the effect of the Follower’s optimal solution
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on the Leader’s market share. Equation (12) characterizes the Leader’s effect on the
Follower’s market share. In addition, we are distinguishing two extreme cases for
the Follower’s behaviour: altruistic and selfish.

3 Stackelberg Pricing Equilibrium

We have the optimal pricing expression for the Follower, provided in [3]. Let HL
i j de-

notes the Leader’s set of inter-hub arcs which are connecting OD pair (i, j). Follow-
ing that, let HF∗

i j represents the Follower’s set of inter-hub arcs that are connecting
OD pair (i, j), based on his optimal solution (a hub and spoke topology).

Theorem 1. (Lüer-Villagra and Marianov (2013)). The Follower’s optimal price for
every route i→ k→ l→ j is given by q∗i j/kl = ci j/kl +

1
Θ

(
1+W0

(
1

ηi j
∑(s,t)∈HF∗

i j
e−Θci j/st−1

))
,

where W0 is the principal branch of the Lambert W function.

One could ask if a similar result holds for the Leader? How many equilibria are
there? Are they finite? But before we give some answers, we are going to prove one
small lemma.

Lemma 1. If the Follower uses a fixed margin in his best response on all OD pairs,
then the Leader should also use a fixed margin in his best response.

Proof. It is enough to prove that First Order Conditions (FOC) are satisfied only for
a fixed margin. Objective function is decomposable, so we can focus our attention
to some particular OD pair (i, j) ∈ N2, thus neglecting the OD indices. This reduces
analysis to the objective

maxw

∑
(k,l)∈HL

(pkl − ckl)e−Θ pkl

∑
(k,l)∈HL

e−Θ pkl + γ∗

In next few lines, we give a sketch for the essentially straightforward proof. For
particular hubs s and t, we can compute ∂γ∗

∂ pst
from the FOC expression. The deriva-

tive can also be computed from (4), using the Theorem 1. These two expression are
constructing an equation, hard-wired to the hubs s and t. We can derive the similar
equation choosing some other hubs, e.g. (m,g) ∈ HL, and from there to obtain that
pst − cst = pmg− cmg. ut

Now, we present the theorem about the Stackelberg pricing equilibrium.

Theorem 2. In LFHLPP, where hub and spoke networks are already given, there is
a unique finite Stackelberg equilibrium in terms of pricing.

Proof. Like in the preceding lemma, we focus our attention to OD pairs. Using the
definition of the Lambert W function, the subject of our analysis becomes

z(r) =
wr

1+W0(QeΘr−1)
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where r = pkl − ckl , and Q = ∑(k,l)∈HF∗ e−Θckl/∑(k,l)∈HL e−Θckl (which is always
greater than 0). Now, it is easy to see that z(r) has a unique maximizer r∗. FOC can
be written as a system

x2 +(2−Θr)x+1 = 0 (16)

x =W0(QeΘr−1) (17)

The quadratic equation (16) gives us that the feasible solution exists only when
r ≥ 4

Θ
. From the straightforward examination of the slopes for the left and right

hand sides of (17), we can conclude that z(r) has only one maximum. ut

The number of possible hub and spoke networks for both players is finite. For
each pair of them there is a Stackelberg pricing equilibrium. So, for both types of
the Follower’s behaviour, there exists a finite optimal solution for the Leader.

Theorem 3. A Stackelberg equilibrium exists in the LFHLPP.

4 Nash Pricing Equilibrium

One can think about relaxing the pre-commitment in terms of pricing, a.k.a ”the
price war” from [6]. Thus, we need to show if the Nash equilibrium exists.

Theorem 4. For already given hub and spoke networks there is a unique finite Nash
equilibrium in terms of pricing.

Proof. Again, we can focus our attention to the OD pairs, and neglect the corre-
sponding indices. For both competitors we have the expressions for their best re-
sponses, that is rL(rF) =

1
Θ

(
1+W0

(
QeΘrF−1

))
and rF(rL) =

1
Θ

(
1+W0

(
eΘrL−1

Q

))
for the Leader and the Follower, respectively. Here, Q =

∑(k,l)∈HL e−Θckl

∑(k,l)∈HF e−Θckl
. Now, the

equation r∗L = rL(r∗F) = rL(rF(r∗L)) needs to be solved, which is equivalent to

t =W0

(
QeW0

(
et
Q

))
(18)

r∗L =
t +1

Θ
(19)

Taking into account that W0(QeW0(
et
Q )) = QeW0(

et
Q ), we can transform (18)-(19) into

W0(Qeξ ) =
1
ξ
∧ ξ > 0 (20)

ξ =W0

(
et

Q

)
(21)

r∗L =
t +1

Θ
∧ r∗L ≥ 0 (22)

The first equation always has a solution on (0,∞). Now, we check the feasibility of
the solution, that is if r∗L ≥ 0. The last two equations result in
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et = Qξ eξ ∧ ξ > 0 ∧ t ≥−1 ⇔ ξ ≥W0

(
1

Qe

)

What is left to be shown is that W0(QeW0((Qe)−1)) ≤ 1/W0((Qe)−1), for all Q > 0.
For that one could just analyse a function f (Q) =W0((Qe)−1)W0(QeW0((Qe)−1)) on
the corresponding interval. ut

When it comes to the profit, Stackelberg pricing equilibria is the best one-shot
move, by its concept. But these two scenarios, could lead to different outcomes
from the hub location point of view. It is not clear that the scenario with the pre-
commitment in terms of pricing (LFHLPP) will bring more profit. Nevertheless, we
have the following conclusion.

Theorem 5. In the leader-follower hub location and pricing competition, where
competitors are allowed to change their prices, there is a profit maximising solu-
tion for the Leader.

5 Conclusion and Future Work

We have analysed the Leader-Follower setting for hub location and pricing problem,
extending the results of Lüer-Villagra and Marianov [3]. It is shown that, when
it comes to the pricing, there is a unique solution for the Leader to minimize the
damage that can be done by the Follower. This result implied the existence of the
solution for this problem.

In future, we plan to address this problem from the computational point of view,
and to compare the solutions for LFHLPP and the ”pricing war” version. Another
line of the research is oriented to a setting where the demand is elastic.
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