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Preface 
In 2000, professor Toshiyuki Nakagaki, a biologist and a physicist at the 
University of Hokkaido, Japan, took a sample of yellow fungus mold 
Physarum polycephalum and put it at the entrance to the labyrinth, which 
is used to test the intelligence and memory of mice. At the other end of 
the labyrinth, he placed a sugar cube. 

Physarum polycephalum smelled sugar and began to send their shoots on 
its quest. Cobweb fungus bifurcate at each intersection of the labyrinth, 
and those who fell into a dead end turns around and starts to look in oth-
er directions. Within a few hours of mushroom cobweb filled labyrinth 
of passages and by the end of the day one of them found its way to sugar. 

After that, Toshiyuki and his team of researchers took a piece of gossa-
mer fungus, which participated in the first experiment, and laid it at the 
door of copies of the same maze, also with a cube of sugar on the other 
end. What happened surprised everyone. Gossamer was divided into 
two: one process has paved its way to the sugar, without any extra turn, 
the other – climbed the wall of the maze and crossed it on the ceiling 
directly to the target. Mushroom gossamer not only memorized the road, 
but also changed the rules of the game. 

Further studies Toshiyuki found that mushrooms can plan transportation 
routes are not worse and faster than engineering professionals. Toshiyuki 
took the map of Japan and put the pieces of food in locations correspond-
ing to the major cities of the country. Mushrooms he put “on Tokyo”. 
After 23 hours, they are building a network of spider webs all pieces of 
food. The result is an almost exact copy of the railway network in the 
Tokyo area. 

“Not too difficult to connect several dozen points but put them together 
effectively and economically the most – it’s not easy. I believe that our 
research will not only help to understand how to improve the infrastruc-
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ture, but also how to build more effective information network.” – 
Toshiyuki Nakagaki. 

This textbook is devoted to the study of algorithms that allow to builds 
effectively the best routes – the sub-graphs of a given graph that have 
given extreme properties. The spanning trees, the shortest paths in 
graphs, the communication networks, and Hamiltonian cycles will be in 
the tutorial in the spotlight. Along with the classical algorithms of dis-
crete optimization, we’ll become acquainted with new approaches to the 
construction of algorithms borrowed from nature: a genetic algorithm, a 
simulated annealing algorithm, etc. 

The book consists of five chapters. The first one is devoted to the prob-
lems of construction of the spanning trees in a given weighted graph. 
The second chapter is a collection of problems associated with the con-
struction of the shortest paths. The third chapter is devoted to the Stei-
ner’s tree problem, the analysis of its complexity and the description of 
the approximation algorithms to solve it. In the 4th chapter the traveling 
salesman problem is considered.  

Further we will use the following notation. 

Z+ – set of non-negative integers; 

nZ+  – set of n-dimensional non-negative integer vectors; 

N = {1, 2, …, n} ⊂ Z+;  

R – set of real numbers; 

R+ = {x ∈ R, x ≥  0}; 

Rn – set of n-dimensional real vectors x = (x1, …, xn),  
xj ∈ R; 

nR+ = {x ∈ Rn, xj ≥ 0, j = 1, …, n}; 
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Bn – set of n-dimensional Boolean vectors x = (x1, …, xn),  
xj ∈ {0, 1}; 

|M| – cardinality of the set M; 

⎣a⎦ – integral part of a; 

⎡a⎤ – the smallest integer that is not less than a;  

a+ = max{0, a}; 

),...,( **
1

*
nxxx =  − optimal solution; 

� – end of the proof. 

For the reader’s convenience, we recall the definitions of some basic 
concepts that will be used further. 

Definition 1. A graph G = (V, E) is a pair of sets V and E, where 
V = {1, …, n} is the set of vertices and E = {(i, j) | i, j ∈ V} is the set of 
edges of the graph. To display the node, usually the point as an image 
edge – the line segment between two points will be used. Ordered pair of 
vertices defines the arc and is depicted by an arrow, which ends at the 
end node of the arc. 

Definition 2. Two vertices which are connected by an edge are adjacent. 
If the node is one of the ends of the edge, then the vertex and the edge 
are incident to each other. A vertex’s degree is a number of edges inci-
dent to it. The degree of the graph coincides with the maximum node’s 
degree. 

Definition 3. A simple chain is an acyclic connected sub-graph of degree 
2. Directed chain in which all edges are oriented from the beginning to 
the end of the chain, called the path. 

Definition 4. Connected sub-graph with all vertices of degree 2 is called 
a cycle. The cycle that includes all vertices of the graph is a Hamiltonian 
cycle. 
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Definition 5. Graph, each edge of which (i, j) ∈ E is attributed to the 
number – the “weight”, is called weighted. Sum of weights of the edges 
belonging to the sub-graph is called the weight of the sub-graph. 

Definition 6. The number of characters in the standard (binary) data cod-
ing of instance problem X ∈ P is called the length of the input and de-
noted as L = L(X). 

Definition 7. Let algorithm A solves a problem P and tA(X) is the number 
of elementary operations (arithmetic and comparison operations) per-
formed by an algorithm A in solving the instance X ∈ P. Then the func-
tion 

})(:)({sup)( nXLXtnT A
PX

A ==
∈

 

is a complexity of algorithm A. 

A polynomial algorithm is one with complexity equals )()( d
A nOnT = , 

where d is a positive integer. 

Algorithm which complexity is not limited by a polynomial of the length 
of the input is called exponential. 

In the computational complexity theory a decision problem, that is prob-
lems in which the possible answer “Yes” or “No” are considered. For 
example, is it true that a given graph is a tree? Among the decision prob-
lems it is customary to distinguish the classes P and NP. Recall that the 
class P consists of decision problems that are solvable in polynomial 
time. Class NP is more inclusive. It includes all of the decision problems, 
to which the answer “Yes” can be tested in polynomial time. The prob-
lem belongs to this class if, without even knowing how to solve it, one 
can “easily” check the answer. It is sufficient to be able to check only the 
answer “Yes”. Sometimes checking the answer “Yes” may be easier or 
more difficult than checking the answer “No”. Consider the Hamiltonian 
graph: given a simple undirected graph, and we wants to find out wheth-
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er it contains a Hamiltonian cycle? This problem belongs to the class NP. 
Really, suppose that the graph is Hamiltonian, and someone suggested 
the answer by clicking one of these cycles. Can we try this tip in poly-
nomial time? To do this, check that the specified set of edges forms a 
simple cycle, and it covers all the vertices. Obviously, this is “easy” to 
do, and therefore, the problem belongs to the class NP. Note that the an-
swer “No” is much more difficult to check in for this problem.  

It is said that the decision problem belongs to co-NP, if the answer “No” 
can be checked in polynomial time. It is easy to show that, the following 
problem belongs to co-NP. Asked a simple undirected graph, is it true 
that it is not a Hamiltonian? “No” means an existence of Hamiltonian 
cycle, and it can be easily checked.  

It’s evident that P ⊆ NP. To prove or disprove the reverse inclusion no 
one can so far. To date, this is one of the central problems of mathemat-
ics – “the problem of the Millennium”. For its decision the American 
Mathematical Society promises a prize – a million dollars. 

Many years of intensive studies suggest that P ≠ NP. An indirect proof of 
this hypothesis is the fact that in the class of NP found the so-called NP- 
complete problems. 

Definition 8. The problem in the class NP is called NP-complete if the 
existence of a polynomial algorithm for its solution implies the existence 
of polynomial algorithms for all the problems in the class NP. 

By now we know a lot of NP-complete problems [4, 14]. However, for 
none of them an exact polynomial-time algorithm has been developed. 

Definition 9. Approximation algorithm for the problem P is an algorithm 
for constructing a feasible solution. Estimates of the accuracy of the al-
gorithm A is said to be a number ε > 0, such that the ratio )()( * IWIWA  

does not exceed ε for any instance I ∈ P for minimization problem, and 
at least ε for any instance I ∈ P for the maximization problem. Here 
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)(* IW  is the value of the objective of the optimal solution to the instance 
I, and )(IWA  is the value of the functional of the solution yielded by al-

gorithm A. In this case, the algorithm A is called ε-approximate. 
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Chapter 1. Spanning trees 
Given a simple undirected connected graph G = (V, E) with vertex set 
V = {1, …, n} and edge set E, |E| = m.  

Definition 1.1. Spanning sub-graph of G is a connected sub-graph 
O = (V, EO), EO ⊆ E, i.e. connected sub-graph containing all the vertices 
of the graph G.  

Definition 1.2. Spanning tree in a graph G is acyclic spanning sub-graph. 

Obviously, in the spanning tree, every pair of vertices is connected by a 
simple chain, and a spanning tree has the minimum number of edges 
among all spanning sub-graphs. 

The number of different spanning trees of a graph is exponentially de-
pendent on the number of vertices n. For example, in the complete graph, 
the number of different spanning trees equals nn – 2. This fact is proved by 
dozens of different ways [1]. If the selection criterion is difficult for for-
malization, or is subjective, then in order to find the “best” tree one need 
to iterate over all of them. The correct trees enumeration algorithm is 
proposed, for example, in [1]. 

 

1.1. Minimum spanning tree  

Definition 1.3. A spanning tree, in which the sum of the edge’s weights 
is minimal, is called a minimal spanning tree (MST). 

Many practical problems can be reduced to the construction of the MST. 
Suppose one wants to link a given set of settlements with the road net-
work in such a way as to minimize the associated costs. If one knows the 
cost of building the road between each pair of points – the weight of the 
corresponding edge, then by finding the MST in a complete graph whose 
vertices correspond to the settlements, one will solve the problem. There 
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are several efficient (polynomial time) algorithms for finding the MST. 
Here are the most popular. 

 

Prim’s algorithm 

The idea of the algorithm belongs to Prim, but its effective implementa-
tion is proposed by Dijkstra [1]. The algorithm consists of n – 1 itera-
tions. At each iteration, to the partially constructed tree one vertex and 
one edge are added. First, the tree under construction T = (VT, ET) com-
prises one arbitrary vertex and none of the edges. The edge to be added 
links the vertex i in VT, with the vertex j not in VT: 

pqVqVpqp
cji

TT ∉∈
=

,:),(
minarg),( . 

Set }{ jVV TT ∪= , )},{( jiEE TT ∪= . If nVT = , then stop, MST is con-

structed.  

The effective implementation of the algorithm [1] is that each not in VT 
node j is assigned a label (αj, βj), where αj is the closest to j node in VT, 
and βj is the weight of the edge (αj, j). Then, after the accession of the 
next edge, the label of each vertex is updated (with time complexity 
O(1)). The number of iterations is n – 1, each iteration’s complexity is 
O(n). Therefore, the overall complexity of effective implementation of 
Prim's algorithm is O(n2). 

 

Kruskal’s algorithm 

The algorithm [1] starts with the trivial graph T = (V, ∅). Order the edges 
in decreasing order of their weights and add the edges to T in the order. 
Next edge is added to T and is removed from the list if it does not lead to 
the formation of a cycle. Otherwise, it is simply removed from the list, 



 12

and we consider the next edges in the list. This is repeated until the num-
ber of edges in T becomes n – 1. The constructed tree is MST. 

The complexity of sorting the edges is O(m log m). Obviously, when 
constructing the tree, in the worst case all m edges are considered. Until 
MST is built, partially constructed graph is disconnected, and the added 
edge links vertices in the different connected components. In reviewing 
the edges in the ordered list, one need to avoid any cycles, i.e. do not 
span the nodes of one connected component. The corresponding proce-
dure described in [1] (Sections 2.2.1 and 2.2.2), and it can be done with 
constant complexity. The connected components conveniently stored in 
the form of a system of disjoint sets. All operations performed in this 
case with complexity O(m α(m, n)), where α is the inverse of Acker-
mann's function [2]. Since in any practical problems α(m, n) < 5, it is 
possible to take it as a constant, so the overall complexity of Kruskal’s 
algorithm is O(m log m). Therefore, this algorithm is suitable for the con-
struction of MST in the graphs with a small amount of edges. 

 

Borůvka’s algorithm 

The algorithm was first published in 1926 by O. Borůvka as a method of 
finding the optimal power supply system. The algorithm consists of itera-
tions, each of which is sequentially add one edge forming a spanning for-
est until one tree is built. The algorithm assumes that the weights of the 
edges are different or edges somehow arranged to select only one edge 
with minimal weight (in the case of a several edges having a minimum 
weight, chosen, for example, an edge with a minimal number). 

First, T = (VT, ET), VT = V, ET = ∅, is a spanning forest in which each ver-
tex is a tree. While |ET | < n – 1 do: 

• For each connected component (tree) find the minimum weight edge 
that connects this component with some other connected component.  
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• Add all the found edges in the set ET. 

The resulting tree T is a MST. 

At each iteration, the number of trees in a forest reduced at least twice, so 
the algorithm performs O(log n) iterations. The complexity of one itera-
tion is O(m), so the overall complexity of the algorithm is O(m log n). 

 

1.2. Spanning trees and applications 

In practical problems it is often required to construct a spanning tree that 
satisfies the various additional properties. This section describes some of 
these problems.  

Limited degree MST is a minimum spanning tree in which each node is 
adjacent to at most d other vertices, where d is a given integer. If d = 2, 
then this is a problem of constructing a minimal Hamiltonian chain, 
which implies that the problem of building a limited degree MST is NP-
hard in the general case [4]. If the vertices of the graph are the points in 
the plane, and edge weights are equal to the Euclidean distance between 
them, and we need to build a MST with degree at most k, then for k = 5, 
the problem is polynomially solvable [3]. 

In some applications, it is necessary to construct a spanning tree in which 
the maximum weight of the edge is minimal. Obviously, in this case, 
MST is one of the desired trees.  

When describing the algorithms Prima and Kruskal, we do not impose 
restrictions on the signs of the edge weights, so that the problem of con-
structing a spanning tree of maximum weight can be solved by algo-
rithms Prim or Kruskal after multiplication the edge weights by –1 and 
the construction of a MST in the graph with the new weights. 

Let us consider (as an example) the problem of building a single-source 
communication network of minimum cost with the restriction on the 
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number of switching nodes in the circuits connecting the points with the 
source. This problem is a constructing of MST with the limited radius, 
which can be stated as follows. 

Given a complete undirected weighted graph G = (V, E), V = {0,1, ..., n}, 
with non-negative edge weights aij ≥ 0. Denote as F = F(G) a set of 
spanning trees of graph G, and let Ck(T) is a chain connecting node k 
with a root node 0 – a signal source in the tree T ∈ F. It is required to 
construct a tree T* ∈ F, which is the solution of the problem 

FT
Tji

ija
∈

∈

→∑ min
),(

; (1.1) 

|Ck(T)| ≤ R,  k = 1, …, n, (1.2) 

where R ≤ n is a given positive integer, and |Ck(T)| is the number of edges 
in the chain Ck(T). The number )(max TCk

Vk∈
 is a radius of the tree T. 

The problem (1.1) - (1.2) is NP-hard when R ≥ 2, that naturally follows 
from the NP-hardness of the problem of building the MST of limited di-
ameter [4]. In [5] showed the NP-hardness of the maximization problem, 
which is closely related to the problem (1.1) - (1.2). Indeed, if 
aij ∈ [a, A], then the problem  

FT
Tji

ijb
∈

∈

→∑ max
),(

 

with the constraint (1.2), where bij = A – aij, is equivalent to (1.1) - (1.2).  

In [5] for the maximization problem a series of polynomial algorithms 
for constructing the solutions with a guaranteed relative error 1/2, is pro-
posed. If the weights of the edges are satisfy the triangle inequality, then 
the relative error is improved to the  

⎭
⎬
⎫

⎩
⎨
⎧

++ 1
2,

7
4,

5
2min

RR
. 



 15

For the problem (1.1) - (1.2) a priori estimates of accuracy depends on 
the parameters of the problem and are not guaranteed (constants) [5]. 

Another example of the practical problem is selecting of radio transmis-
sion ranges of the elements in the wireless networks. This problem is 
known in the literature as a “Min-Power Symmetric Connectivity Prob-
lem” and it is as follows. 

A simple weighted undirected graph G = (V, E) with vertex set V, |V| = n, 
and a set of edges E is given. Let cij ≥ 0 is the weight of the edge 
(i, j) ∈ E. It is required to find a spanning tree T* in graph G, which is a 
solution of the problem: 

T
Vi

ijTNj
cTW

i

minmax)(
)(

→=∑
∈

∈
, (1.3) 

where Ni(T) is the set of vertices adjacent to the vertex i in the tree T. 
Any feasible solution to the problem (1.3) – spanning tree – also called a 
communication tree.  

Problem (1.3) is strongly NP-hard even in the case when the nodes are 
the points in R2, and the edge weight is the Euclidean distance between 
the corresponding points. In general, the NP-hardness follows naturally 
from the polynomial reducibility of the minimal covering (MC) to the 
problem (1.3).  

For any spanning tree T are just the obvious inequalities holds 

∑∑
∈∈

≤≤
Tji

ij
Tji

ij cTWc
),(),(

2)( , 

which implies that the MST is a 2-approximate solution of the problem 
(1.3). That is  

2*
MST ≤

W
W , 
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where MSTW  is the value of the objective of the MST, and *W  is the op-
timum of the objective function. We proved the 

Theorem 1.1. Let the weights of the edges that are included in the MST, 
belong to the interval [a, b], then  

)2/(2
22*

MST

−++
−≤

nbba
a

W
W ; 

and when +∞→n , the next inequality holds 

ba
b

W
W

+
≤

2
*

MST . 

Theorem 1.2. If the problem of constructing -approximate solution of 
the minimal vertex cover (MVC) in a graph, which degree do not exceed 

, is NP-hard, then the problem of building ⎟
⎠
⎞

⎜
⎝
⎛

+
−

+
1
11

k
R -approximate so-

lution of the problem (1.3) is also NP-hard. 

Corollary 1.1. It’s known that the problem of building ( )52/11+ -
approximate solution for the MVC when k = 4 is NP-hard. Then from 
Theorem 1.2, in particular, follows the NP-hardness of construction of 
the ( )260/11+ -approximate solution to the problem (1.3).  

 

1.3. Examples and exercises 

Example 1.1. Build a MST in the graph shown in Fig. 1.1a (next to the 
edges are their weight), using Prim’s algorithm. 

Solution. Set T = ({1}, ∅). Then the labels of the vertices (αj, βj), αj = 1, 
j = 2, …, 7, β2 = β3 = 2, β5 = 4, other βj = +∞. The nodes 2 and 3 are 
nearest to T, add, for example, vertex 2, obtain T = ({1, 2}, {(1, 2)}) and 
recalculate the labels of the nodes 3, …, 7. Then (α3, β3) = (1, 2), 
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(α4, β4) = (2, 1), (α5, β5) = (2, 3), (α6, β6) = (1, +∞), (α7, β7) = (1, +∞). 
Now the closest to T the node 4, add it: T = ({1, 2, 4}, {(1, 2), (2, 4)}). 
Continuing the process, add successively vertices 5, 3, 6 and 7 together 
with the edges (4, 5), (1, 3), (5, 7) and (3, 6). MST is shown in Fig. 1.1b 
and its weight is 14. 

4
5

7

3

6

2

1

1
1

3 5

3

2

4

8

2

5
4

5

7

3

6

2

1

a) b)
 

Fig. 1.1. a) Graph; b) MST. 

 

Example 1.2. Find the number of spanning trees of the graph shown in 
Fig. 1.1a of degree at most 2. 

4
5

7

3

6

2

1

a)

4
5

7

3

6

2

1

b)
 

Fig. 1.2. Two spanning trees of degree 2. 
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Solution. Number the edges. Obviously, the edge 1 = (5, 7) will be in-
cluded in all spanning trees. One can build a binary decision tree, starting 
from the edge 1, including (if it does not lead to a cycle, or that exceeds 
the degree of vertices), or not including the next edge. As a result, we 
obtain three Hamiltonian paths. One of them is shown in Fig. 1.1b, the 
other two – in Fig. 1.2. 

4
5

7

3

6

2
1

1

1

2

5

3

3

4

1

4

6

6

6

2

3
4

3

3

3

 

Fig. 1.3. Next to each edge lists its weight. 

 

Exercise 1.1. Prove that the algorithms Prima, Kruskal and Borůvka 
build a MST. 

Exercise 1.2. Show that in the tree, which has two or more nodes, there 
are at least two vertices of degree 1. 

Exercise 1.3. Find a spanning tree in the graph shown in Fig. 1.1a, where 
the maximum weight of the edge is minimal. 

Exercise 1.4. Find MST in the graph shown in Fig. 1.1a, using the algo-
rithms of Kruskal and Borůvka. 

Exercise 1.5. Find all MST in the graph shown in Fig. 1.3. 
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Chapter 2. Construction of the shortest paths 
Given a directed (or undirected) graph G = (V, A), where V = {1, …, n} 
is the set of vertices and A – the set of arcs. Assign to each arc (i, j) ∈ A 
the “length” dij ≥ 0. 

Definition 2.1. The path Pij from vertex i to node j is defined as a se-
quence of arcs that starts at i and ends at j, in which the end of the previ-
ous arc is the beginning of the next one. The sum of the lengths of the 
arcs in a path is called the length of the path. 

The problem of constructing the shortest paths arises naturally in a varie-
ty of applications. For example, if in the communication network an in-
formation from the source should reach the receivers during the minimal 
time, then we can construct a graph in which the length of the arc coin-
cides with the time of passage of the signal along this arc and reduce 
problem to the problem of construction a shortest path tree (SPT) from 
source to receiver. 

If one wants to build a network of roads connecting a given set of cities 
so that the travel time from one city to another is minimal, then one need 
to find the shortest path between all pairs of cities. 

 

2.1. Dijkstra’s algorithm 

Algorithm invented by the Dutch scientist E. Dijkstra in 1959 [1]. It 
builds a SPT from the initial vertex (the root) to all other vertices in the 
graph with the non-negative lengths of the arcs (edges). 

Let s be the initial vertex (source node). The algorithm, at each step adds 
to the partially constructed tree T rooted at s one closest to s vertex which 
is not in T. If one wants to find the shortest path to the vertex t, then algo-
rithm stops after the addition of this node. Otherwise, a spanning tree that 
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connects all the vertices by the shortest paths from s, i.e. SPT, will be 
constructed. 

Denoted by Nj = {i ∈ V | (i, j) ∈ A}. Set the initial tree T = (s, ∅). Assign 
a label di to each vertex i ∈ V, which is equal to the (current) minimum 
length of the path from s to i. Source label is ds = 0 and it does not 
change during operation of the algorithm. Initially di = +∞ for all i ≠ s. At 
each step of the algorithm looks for an arc: 

}{minarg),(
,; pqpTqTpNp

ddji
q

+=
∉∈∈

, 

which is added to T, and update the label of j-th vertex ijij ddd += . 

Thereafter (with the constant complexity) a label of each node not in T is 
updated: },min{ jkjkk dddd += , k ∉ T. 

The algorithm stops when all vertices are included in the tree T (after n 
steps). The complexity of one step (selection of a node for inclusion in 
the T) is equal to O(n). Therefore, the overall complexity of the 
Dijkstra’s algorithm is O(n2). 

 

2.2. Bellman-Ford algorithm 

If the lengths of some edges (arcs) take negative values in the absence of 
cycles of negative length, shortest path from one vertex to all other builds 
the Bellman-Ford algorithm [1]. 

We introduce p(v) as a node number immediately preceding the vertex v 
in the path Psv. Then the Bellman-Ford algorithm can be written in steps 
as follows. 

Step 1. For each vertex v ∈ V: if v = s, then set dv = 0, otherwise set 
dv = +∞ and p(v) = null. 
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Step 2. For each vertex i = 1, …, n – 1 and for each edge (u, v) ∈ A: if 
du + duv < dv, then set dv = du + duv and p(v) = u. 

Step 3. For each edge (u, v) ∈ A: if du + duv < dv, then graph contains 
negative cycle. 

Lemma 2.1. After performing i iterations: 

1) If du < +∞, then du is the length of some path from s to u; 

2) If there is a path from s to u, with at most i edges, then du does not 
exceed the length of the shortest path from s to u, containing at most i 
edges. 

Proof. At zero iteration (i = 0) path length containing no edges ds = 0. 
For other nodes du = +∞, because there is no path from source to the u 
with zero edges. Let us prove the first statement. Consider the case where 
the length of the path to v is changed, i.e. executed the assignment 
dv = du + duv. By the induction hypothesis, du is the length of a path from 
source node to u. Hence, the value of du + duv is the length of the path 
Psu ∪ {(u, v)}. 

To prove the second statement, consider the shortest path from s to u, 
with at most i edges. Let v be the penultimate vertex of this path. Then 
the part of the path from s to v is the shortest path from the source to v, 
containing at most i – 1 edges. By the induction hypothesis, dv after i − 1 
iterations does not exceed the length of this path. Consequently, duv + dv 
not exceed the length of the path from s to u. At the iteration i, the value 
du is compared to the duv + dv, and it is assigned a new value if duv + dv is 
less. Therefore, after i-th iteration, du not does exceed the length of the 
shortest path from the source to u, comprising no more than i edges. � 

If graph has no negative cycles, then every vertex will have a single path 
of minimum length, and in step 3 it cannot occur decreasing of the length 
of any path. Otherwise a negative cycle exists. 
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2.3. Floyd–Warshall algorithm 

Floyd-Warshall algorithm was developed in 1962 [1] and is used to find 
the shortest distances between all pairs of vertices of a directed weighted 
graph. 

We denote k
ijd  the length of the shortest path from i to j, which passes 

through the vertices of the set {1, 2, …, k}. Then ijij dd =0  is the arc 

length if (i, j) exists; otherwise +∞=0
ijd . 

If the shortest path from i to j does not pass through the vertex k, then 
1−= k

ij
k
ij dd . If there exists a shortest path from i to j, passing through k, 

then 11 −− += k
kj

k
ik

k
ij ddd . Recursive formula for the calculation of k

ijd  is: 

ijij dd =0 ; 

{ }111,min −−− += k
kj

k
ik

k
ij

k
ij dddd . 

Floyd-Warshall algorithm consistently calculates the values k
ijd  for all 

i, j, k = 1, …, n. The values n
ijd  are the lengths of the shortest paths be-

tween any nodes i and  j. It is easy to see that the complexity of the algo-
rithm is equal to O(n3). If, in addition, for each pair of vertices we store 
the information about the first vertex in the path, in addition to the dis-
tance between two nodes, we find ourselves able to recover the shortest 
path. 

There is the shortest path between the pair of vertices i, j, which is a part 
of the negative cycle as path length from i to j can be arbitrarily small 
(negative). By default, the application of the algorithm means the ab-
sence of negative cycles in the graph. However, if there is a negative cy-
cle, the Floyd-Warshall algorithm can be used to find it: 
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• algorithm iteratively calculates lengths of shortest paths between 
each pair of nodes i, j, including i = j; 

• first, all the length of the path from i to i are equal to zero; 

• path Pik ∪Pki length  may be smaller if it is negative, i.e. this is 
negative cycle; 

• after stopping of algorithm, path length from i to i is negative in 
case if there is a cycle of negative length. 

The presence of negative numbers dii indicates the presence of negative 
cycles in the graph.  

 

2.4. Examples and exercises 

Example 2.1. Build a SPT from vertex s to all the vertices of the directed 
graph shown in Fig. 2.1a (next to the arcs are their length) using 
Dijkstra's algorithm. 

Solution. First we set the length of the shortest path to the node – vertex 
labels equal ds = 0, di = +∞, i ≠ s, and partially built the shortest path tree 
setting T = (s, ∅). Find 

)4,(}{minarg}{minarg
;,;

sdddd sqsTqNspqpTqTpNp qq

=+=+
∉∈∉∈∈

 

and set T = ({s, 4}, {(s, 4)}), d4 = 1. The labels of other nodes do not 
changed, because vertex 4 is a sink. Then find 

)2,(}{minarg
,;

sdd pqpTqTpNp q

=+
∉∈∈

 

and set T = ({s, 2, 4}, {(s, 4), (s, 2)}), d2 = 3. Update the label of the node 
1: 5}23,min{},min{ 21211 =++∞=+= dddd . Labels of other nodes do not 
changed. Continuing the process, add successively in the constructed tree 
edges (s, 5), (2, 1), (1, 3), (3, 6) and the nodes 5, 1, 3, 6. As a result, a 
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tree will be constructed as shown in Fig. 2.1b, in which the label next to 
the node is the length of the shortest path from the source s. 
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35 =d

0=sd

Fig. 2.1. 

 

Example 2.2. Find the length of the shortest paths between all pairs of 
vertices of the graph shown in Fig. 2.1a using the Floyd-Warshall algo-
rithm.  

0 - 2 - - 8 4
2 0 - 1 - - - 
- - 0 - - 5 - 
- - - 0 - - - 
- - - - 0 - - 
- - - - - 0 5
- 3 - 1 3 - 0

 

0 7 2 5 8 8 4 
2 0 4 1 - 10 6 
- - 0 - - 5 10 
- - - 0 - - - 
- - - - 0 - - 
- 8 - 6 8 0 5 
5 3 - 1 3 - 0 

 
a) 0

ijd  
 

b) 1
ijd  

Table 2.1. 
 

Solution. We prescribe the initial lengths of the paths between the nodes 
as a matrix with the elements ijij dd =0 , setting s = 7 (see Table. 2.1a, in 
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which the symbol “-” corresponds to infinity). We use the recurrence 
relations { }0001 ,min kjikijij dddd +=  for calculating the path lengths after the 

first iteration (see Table. 2.1b). There are no paths from the nodes 4 and 
5 to the other nodes, so the infinity in the lines 4 and 5 will continue as 
after the first iteration, and further.  

0 7 2 5 8 8 4 
2 0 4 1 9 10 6 
17 13 0 11 13 5 10 
- - - 0 - - - 
- - - - 0 - - 

10 8 12 6 8 0 5 
5 3 7 1 3 13 0 

 
Table 2.2. 4

ijd  

 

After the fourth iteration, we obtain the final values of minimum lengths of 
paths connecting all pairs of vertices (Table 2.2). 
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Fig. 2.1. Next to the arcs are their lengths. 

 

Exercise 2.1. Prove that Dijkstra's algorithm builds a tree of shortest paths. 
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Exercise 2.2. Find the shortest path between all pairs of vertices of the graph 
shown in Fig. 2.1a. 

Exercise 2.3. Whether there is a negative cycle in the graph shown in Fig. 2.2? 

Exercise 2.4. Use the Bellman-Ford algorithm to construct the shortest paths 
from the vertex s in the graph shown in Fig. 2.2, removing the arcs ending in s. 

Exercise 2.5. Prove the correctness of the Floyd-Warshall algorithm. 
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Chapter 3. Steiner tree problem  
Suppose there are three points in the plane, the distance between them is 
determined by the Euclidean metric, and we want to connect these points 
through the MST. The corresponding tree is shown in Fig. 3.1a, and its 
length (the sum of the lengths of the edges) is equal 105 + . 

a) MST b) Steiner tree

0 1 2 3

3

2

1

0 1 2 3

3

2

1

x x

y y

 
Fig. 3.1.  

 
Let’s introduce an additional (intermediate) point and connect the origi-
nal points with intermediate point. The result is a tree of length 35 +   
(Fig. 3.1b). This tree is a geometric (or metric) Steiner tree, and it con-
tains one extra point (2, 2) – the Steiner node. In order to construct the 
minimal Steiner’s tree, one can use additional points in the plane to re-
duce the length of the tree.  

Next, let’s consider the Steiner tree problem in graph, the statement of 
which is given in the next section. In the last problem the Steiner nodes 
are selected from a given set of vertices. 
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3.1.  Steiner tree problem and its complexity 

Given a simple undirected weighted graph G = (V, E), where the vertex 
set is the union of two sets V = S ∪ I. The vertices in S are called the 
terminals, and the vertices in the set I are intermediate vertices. Each 
edge (i, j) ∈ E, i, j ∈ V, attributed to the “weight” (or “length”) cij ≥ 0. 
The goal is to link the vertices in S with the minimum weight tree, which 
is called the minimum-weight Steiner tree (MWST). In this case, the re-
quired tree may include the intermediate vertices in the set I. 

 
Fig. 3.2. Example of the Steiner tree in a graph. 

 
In Fig. 3.2 by dashed lines are shown the edges of the graph G, which 
connect terminals – painted nodes and intermediate (not painted) verti-
ces. The solid lines show the Steiner tree, which include three intermedi-
ate nodes. 

For a MWST on the plane with the Euclidean metric we have the follow-
ing properties. 

Property 3.1. Steiner point has degree 3. 
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Property 3.2. If vertex i has degree 3 in the MWST, then the angle be-
tween any two edges incident to i, is equal to 120°. 

Property 3.3. The number of Steiner points in MWST is k ∈ [0, |S| – 2]. 

It is known that the Steiner tree problem in graphs (as well as the geo-
metric Steiner tree problem) is strongly NP-hard [4], so in practice, vari-
ous approximation algorithms for constructing MWST are used. 

 

3.2.  Approximate algorithms 

Obviously, MST is a fesible solution to the Steiner tree problem, and the 

ratio 2MST ≤*WW  holds in the case of Euclidean distance, where MSTW  

is the weight of the minimum spanning tree, and *W  is the minimum 
length of the Steiner tree. That is, Prim’s (or Kruskal’s) algorithm builds 
a 2-approximate solution to the Steiner tree problem by polynomial com-
plexity. 

0 1 2 3

3

2

1

x

y

A

B C

D

 
Fig. 3.3. The bold lines show MWST in the Hannan’s grid  

 
For the geometric Steiner tree problem (with the Euclidean metric) there 

is stronger result: 32MST ≤*WW . It is also proposed several algo-
rithms that build a 2-approximate solution to the Steiner tree problem for 
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arbitrary graphs. For example, it is sufficient to find the shortest path be-
tween each pair of vertices of the graph, go to the new graph without in-
termediate nodes with edge lengths equal to the lengths of the shortest 
paths, and build a MST. This will be a 2-approximate solution to the 
original Steiner tree problem. 

Published a number of papers in which  the algorithms with a lower ratio 
are proposed, for example, the algorithm of constructing 1.55-
approximate solution for the case where the points are located on the 
plane and the distance between them is given by a rectilinear (Manhat-
tan) metric L1 [6]. In this case, the Steiner tree consists of a set of vertical 
and horizontal segments connecting terminals and intermediate points. 
Uniquely determined the smallest rectangle containing all terminals, and 
its sides are parallel to the axes (rectangle ABCD in Fig. 3.3). Obviously, 
all the edges of the MWST are within the the rectangle. In 1966, Hannan 
showed [7] that there is a MWST, which includes only the nodes of the 
lattice, resulting from the intersection of the horizontal and vertical lines 
passing through terminals – Hannan’s grid (Fig. 3.3). In 1976, Hwang [8] 
showed that the MST is a 3/2-approximate solution in thia case. In 1992, 
Zelikovsky [9] developed an algorithm for constructing a rectangular 
Steiner tree with ratio 11/8, the first heuristic algorithm that builds a bet-
ter solution than MST. 

 

3.3. Some problems of network synthesis using Steiner trees 

The problems of constructing the Steiner trees that have certain proper-
ties arise in the synthesis of data networks, the design of communica-
tions, roads, pipelines, routing very large scale integrated circuits (VLSI), 
etc.  

For example, consider the following problem of constructing MWST 
with restrictions on the lengths of the paths from a given node – the root 
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or source of the signal, which arises in connection with a routing in 
VLSI. In [10] problem is set as follows. 

Given a weighted graph G = (V, E), V = {0, 1, …, n}, where the selected 
node 0 is called the root. For each terminal k ∈ S ⊆ V the maximum per-
missible length of the path from the root dk ≥ 0 is given. Each edge 
(i, j) ∈ E attributed integer “weight” cij ∈ [c, C] and “length” dij ∈ [d, D], 
c ≥ 0, d ≥ 0. The problem 
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where F is a set of Steiner trees spanning nodes in S, and Pk(T) is a path 
from the root to the vertex k in the tree T. 

The problem (3.1) − (3.2) is NP-hard even in the case S = V. In [10] the 
following heuristic algorithm is proposed to solve the problem (3.1) − 
(3.2). 

First, the tree is being constructed from a single root, i.e. T0 = ({0}, ∅). 
At each iteration k of the algorithm to a tree built in the previous steps  
Tk-1 one vertex j ∉ Tk-1 and one edge (i, j) ∈ E are added: 

)}({minarg),(
11, iijijTjTi
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kk

++=
−− ∉∈

, 

where Ri is a length of path Pi(Tk-1), Rj = dij + Ri, the parameter q ≥ 0, and 
get a tree Tk.  

The variation of the parameter q allows to control the “quality” of the 
solution. In particular, we show that in the case of integer weights and 
lengths of the edges the mentioned algorithm builds a tree of shortest 
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paths when q ≥ Cn. When q = 0, the algorithm obviously builds a kind of 
Steiner tree without restrictions on the lengths of the paths. By changing 
parameter’s value, one can get different trees and remember the best fea-
sible tree as an approximate solution. It is shown that for the construction 
of various trees it is enough to run the algorithm with a finite number of 
values of q, which leads to the polynomial complexity of  
O(n2 log(CDn)). 

The above algorithm does not have a guaranteed ratio and for its analysis 
the numerical experiment was performed, which showed a high efficien-
cy of the approach. 

Let us turn to the next example. One of the stages of designing large-
scale integrated circuits (after placement of elements in VLSI) is a rout-
ing. This phase is divided into global and detailed routing. Global routing 
is one of the most important stages of VLSI design, where for each cir-
cuit the routing areas under resourse and delay constraints is determined. 
In the literature there are several formulations of the global routing prob-
lem (GRP) with different criteria and constraints. The main objective of 
the global routing is tracing all of VLSI circuits without constraint viola-
tions. However, even the simplest setting in which to carry out the rout-
ing of two-terminal circuit with limited routing resources (without time 
delay) is an NP-hard problem. 

To solve the GRP the researchers proposed various approaches where the  
routing is usually performed on only two layers. At the core of these ap-
proaches are sequential routing algorithms, routing and rerouting algo-
rithms, algorithms based on the solution of of multicommodity flow 
problems, hierarchical methods, and different metaheuristics. 

In the modern VLSI at the design stage of the global routing along with 
the trace resource increasing attention gets the signal propagation time. 
The wire density and the time delay are generally competing criteria and 
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practically absent in the literature publications, which are considered to-
gether these criteria.  

VLSI logical scheme can be represented by an acyclic graph with several 
primary inputs and primary outputs. It includes heterogeneous elements 
connected by partially ordered circuits. Each element of the circuit im-
plements a Boolean function and has several inputs and one output, 
which, along with the primary inputs and outputs are called terminals. 
The circuit is defined by a single terminal-source and multiple terminals 
− the recipients of the signal. For example, in Fig. 3.4 the circuit shown 
in bold lines, has one source − the output of element 5 and the four ter-
minals that are the inputs of the 7, 8, 9 and 11. 
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Input pin Output pin
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Fig. 3.4. An example of a logical network 

 

For each primary input the  arrival time (AT) of signal is set, and for 
each primary output the most later allowed time to get a signal (RT – 
required time) is given. 

Layout routing area consist of identical rectangles, one above the other, 
called layers. The deployment of elements of the integrated circuit is giv-
en, so the coordinates of all the terminals are assumed to be known. 
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The terminals of adjacent layers are connected by “vias”, which will be 
considered parallel to the axis 0z. Trace each layer is either parallel to the 
axis 0x, or parallel to the axis 0y. However, some layers can be used for 
placement of circuit elements only. 

On the stage of the global routing all the layers are split into identical 
global cell-shaped rectangles. 
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Fig. 3.5. An example of building a global graph 

 
As a result, each terminal falls into one of these cells. Then built the next 
global graph. Each global cell is assigned a global vertex. A pair of glob-
al vertices are connected with a global edge in the following cases (see 
Fig. 3.5): 

• if they are located on the same layer and corresponding global cells 
have a common side which is perpendicular to the given routing di-
rection; 
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• if the vertices are located on neighboring layers, and (x, y)-
coordinates coincide. 

To connect the terminals of every circuit a Steiner tree in the global 
graph is used. Each edge is attributed to the global trace resource or ca-
pacity – the maximum number of occurrences of this edge in the set of 
Steiner trees. 

So, let us assume that the global graph G = (V, E) with vertex set V and 
edge set E is given. To each edge (i, j) ∈ E is assigned the length lij > 0, 
the capacitance cij ≥ 0, the electrical resistance (resistance) rij ≥ 0 and 
capacity of qij ≥ 0. 

Circuit s (denote it just the number s = 1, …, S) is given as a set of ter-
minals Vs ⊆ V. For the terminals, which are the primary inputs of VLSI, 
the time of receipt of signals from the outside (ATs) is given. For each 
of the primary outputs a later feasible time of signal reception (RT) is 
specified. Terminal i ∈ Vs has a capacity 0≥s

ic , which is determined by 

the type of the element. Each circuit s has one source 0s ∈ Vs with the 
resistance 00 ≥sr .  

For the analytical calculation of the delay, in the modern VLSI common-
ly the Elmore model is used. Let tree T rooted in the node 0 is given. De-
noted by: 

• Pk(T) − path from the root to the vertex k in the tree T; 

• Cj – capacity of the subtree Tj rooted in the node j, i.e. 
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Then the propagation time along the arc (i, j) ∈ T is calculated by the as 
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The propagation time from the root to any vertex k in tree T is given as 
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Let the time delays are computed using Elmore formulas (3.3)-(3.4). In a 
given n-vertex tree, the complexity of these calculations is O(n). 

In GRP is necessary to link each set of vertices Vs, s = 1, …, S, using the 
Steiner tree so that each edge of the global graph (i, j) ∈ E included not 
more than in qij different trees, and the arrival time in the primary outputs 
do not exceed the RTs. 

In practice, the permissible tracing can not exist, or it is difficult to find 
due to the large dimension of the problem and its NP-hardness. There-
fore, the problem of perform routing close to the admissible and further 
namely this problem we call the global routing problem. In other words, 
the GRP is to find the routes which results in compromise between the 
excess over tracer resources and time delay. 

To solve the GRP, the following iterative procedure is proposed. Sorting 
the circuits is performed first, based on one of the empirical criteria, 
which can be used as the number of terminals in the chain, a minimum 
perimeter of a rectangle containing all terminal circuit and others. Then, 
for each circuit s in the ordered list, taking into account the time delays 
and residual capacities of edges of the global graph, we construct a set of 
candidate trees Qs. It then selects one tree from each set Qs, s = 1, …, S. 
To do that, we solve the problem of minimizing the sum of penalties for 
exceeding the trace of resources which is formulated in the form of quad-
ratic integer programming. Adapted gradient algorithm is proposed 
which yields a solution of continuous relaxation of the latter problem, 
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and then using various heuristics we build an integer solutions, the best 
of which is selected as an approximate solution of GRP. 

To construct a timing-driven tree we proposed the algorithm MAD. Con-
sider arbitrary circuit s with the sourse node 0 ∈ Vs. MAD builds a Stei-
ner tree for the circuit s in some connected subgraph G' = (V', E') of the 
graph G, where V' ⊇ Vs. From G' the edges which capacity is less than 
some integer q (a parameter of the algorithm) are removed. For each of 
the remaining edges (i, j) ∈ E' (using (3.3)) delay dij is calculated. It can 
be calculated in a tree constructed at the previous iterations (initially this 
tree has no edges). The different ways of calculating delays dij are dis-
cussed below. 

Algorithm MAD is a modification of Dijkstra's algorithm, but does not 
guarantee the construction of a tree with a minimum delay due to the 
specific Elmore model. Note that the construction of the tree with the 
minimum transmission time from the root to the terminals is NP-hard 
problem, because special case where the resistance of the edges are zero, 
that is a Steiner tree problem in graphs. 

The topology of the constructed tree depends on the sub-graph G', the 
values of the parameter q and the edge delays dij. As G' can be used the 
entire graph G, the Hannan’s graph, the minimal grid containing the set 
of terminals, or other sub-graphs of the global graph. 

For the construction of a variety of trees according to Elmore delays 
proposed to apply the algorithm MAD iteratively using the previously 
constructed trees to calculate dij. As can be seen from (3.3), the value of 
dij depends on the capacitance Cj of the subtree Tj. Since the capacitance 
of the subtree Cj in the process of constructing the tree is not known to 
compute dij, one can use the values of this magnitude in the previously 
constructed trees. For example, Cj can be a capacitance of the subtree Tj, 
built at the previous iteration, or the arithmetical mean of the capacitanc-
es in all subtrees Tj  in previously constructed trees. 
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The diversity of trees (using algorithm MAD) one can achieves by 
changing the values of the parameter q. Furthermore, one can use the 
trees constructed by other algorithms. For example, if the resistance and 
capacitance is proportional to the length of the links, one can build a 
minimal Steiner trees as a candidate tree, and trees that contain the 
shortest paths from the root to the terminals. Since the problem of con-
struction a minimum Steiner tree belongs to the class of NP-hard prob-
lems, it is necessary to use different approximation algorithms that build 
different trees. This will expand the set of candidate trees, which may 
allow to get a better solution with the trace of the global resources of the 
graph. 

Suppose that for each circuit s the set of candidate trees is found Qs. If 
for some s the set Qs consists of a single tree, it included into solution, 
and then the capacities of global edges and circuit is recalculated and s is 
excluded from the list. 

Consider the problem of optimal allocation of routing resources, that is 
the problem of choosing the trees of the sets Qs, |Qs| > 1. For brevity, the 
subscript e ∈ E is used for the edges of a graph G, and the index 
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=∈  − for the trees. Let aet = 1, if edge e belongs to the tree t, 

and aet = 0 otherwise. The variable xt takes value xt = 1, if tree t is select-
ed, and xt = 0 otherwise.  

In our notation, consider the problem: 
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The objective function (3.5) is the total penalties for exceeding the trace 
resources qe, e ∈ E. Tracing without exceeding the capacities of global 
edges corresponds to zero value of the objective function. 

Replacing the integrality condition of variables on the condition of non-
negativity, we get a continuous relaxation of the problem (3.5) − (3.6). 
Smoothness and convexity of the objective function allows us to solve 
the last problem with the gradient algorithm. We propose a gradient algo-
rithm in which the complexity of each iteration is O(|E|⋅|J|), and the total 
number of iterations is at most )ln( 11 −− εεO . In the proposed method, at 
each iteration we are not trying to find the direction of steepest descent, 
which would increase the complexity of the algorithm, but choose the 
direction of descent from the current point to the integer point. 

Choosing one tree ts from each set Qs gives a set of Steiner trees, which 
is an approximate solution of the problem (3.5) − (3.6). This set of trees 
depends on the current point and, therefore, may vary from iteration to 
iteration. During the descent we keep the best (for example, in the sense 
of the criterion (3.5), or the density of connections) of the found solu-
tions. 

The last example is the construction of the signal tree in the computing 
system. Signal network is responsible for the synchronization of the 
whole system. Command signals are generated outside the system and 
fed into it through the entrance (the root). Each functional element is 
connected with the root through the signal network. It performs a series 
of logical operations (functions) and waiting for the signal to transmit the 
results to the other elements, until the next cycle of calculations. Thus, 
there is control information flow within the computer system. Clock skew 
is the maximum time difference between receiving the signals by the var-
ious components of the system. The increase in clock skew in computing 
systems leads to decrease in the rate of calculation. In the modern sys-
tems, where the size of elements is significantly less than a micron, clock 
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skew is one of the main factors that determine the functioning of the sys-
tem. Clock skew reduces the clock frequency, as between two successive 
signals a period should be increased so that all circuit components have 
time to receive a signal. It is believed that high-speed circuitry for clock 
skew should not exceed 5% of the maximum transmission time. 

Synchronization problem can be formulated as follows. Each terminal 
(circuit element) performs certain operations. All terminals operate part 
of the overall program and they need to work in concert. The requirement 
for receiving signals of all terminals at the same time can be satisfied, if 
one build a tree in which all the paths from the source to the terminals 
have the same delay. Such a tree is said to be feasible. Furthermore, 
among the feasible trees a minimum weight tree should be selected, 
which would minimize the space occupied by the tree. 

This routing is done on the edges of the uniform planar rectangular grid 
(in particular, have that degree of each vertex in a graph does not exceed 
four). Consequently, not always possible to construct a valid tree. 

From a mathematical point of view, the problem is to construct a 
rectlinear minimum Steiner tree in which the distance (in the tree) from 
the root to each terminal is equal to the radius of the grid graph. It is 
known that this problem is NP-hard. Approximation algorithm for solv-
ing the problem is proposed, for example, in [11]. 

 

3.4. Examples and exercises 

Example 3.1. Find MWST to link up four points located in the plane in 
pairs symmetrically with respect to the horizontal line (Fig. 3.6). 
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o120 o120

Steiner points

 

Fig. 3.6. 

Solution. From the properties of metric MWST follows that the number 
of Steiner points is not greater than 2, and the edges incident to these 
points form an angles of 120°. Draw a horizontal line halfway between 
the left and right points. From each point draw a line that intersects the 
horizontal line at 120°. The points of intersection – Steiner points. 
MWST built, it included 2 Steiner points (Fig. 3.6). 

Example 3.2. Suppose the graph vertices are located in the unit grid as 
shown in Fig. 3.7. It is necessary to link terminals by 2-approximate 
Steiner tree using a rectangular metric L1. 

a) Hannan’s grid and MWST b) MST

3
3

4

3

Fig. 3.7 
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Solution. We first construct a Hannan’s grid, having horizontal and verti-
cal lines passing through the terminals (Fig. 3.7a). Find the length of the 
shortest path between each pair of terminals and construct a MST (Fig. 
3.7b). On a grid representation of the constructed tree is not unique, but 
any representation is a 2-approximate solution of the Steiner tree prob-
lem. The Fig. 3.7a  shows a tree that is MWST.  
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Fig. 3.8. Example of routing in 3-layer global graph.  

 
Example 3.3. To illustrate the method to solve the GRP, we give an ex-
ample. Suppose there are 11 circuits (networks), 3 layers and 5×2 grid. 
All elements of VLSI are located on the ground (bottom) layer, the vias 
have a high capacity, a zero capacitance and the resistance 0.00937. The 
second layer is used for vertical wires (i.e., parallel to the axis 0y), the 
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link (corresponding to the global edge of the graph) has a capacity 16, a 
specific capacitance 0.470431, and specific resistance 0.016209. A vias 
between the layers 2 and 3 have a high capacity, a zero capacitance and a 
resistance 0.00781. The third layer is used for connections parallel to the 
axis 0x and has a capacity 12, a specific capacitance 0.456122  and a 
specific resistance 0.010763.  

Fig. 3.8 shows the result of the method, which built a trace with the den-
sity (the maximum number of wires at one edge of the graph) equals 5. 
Arrival time in the primary output 12 is 34 ps (picoseconds), and AT in 
the primary output 13 is 36 ps. Fig. 3.9 shows the projection of the trees 
on the plane (x, y). 
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Fig. 3.9. Projections of trees 

 

The similar example was resolved after the addition of two layers (resis-
tivity layers 4 and 5, we reduced 10 times as compared with the layers 2 
and 3, the specific capacitance and via characteristics left unchanged as 
layers 2 and 3 respectively). The algorithm has built the solution shown 
in Fig. 3.10 with a routing density of 3. Here we do not take into account 
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the density of the vias, as the capacity of such edges in the example is not 
limited. ATs in the primary outputs 12 and 13 are comparable with simi-
lar times for the 3-layer routing. 
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Fig. 3.10. 5-layer routing. Density is 3 

 

Exercise 3.1. Build a MWST in the graph shown in Fig. 3.7a for the case 
of Euclidean metric. 

Exercise 3.2. Build a MWST in the graph shown in Fig. 3.7a, where the 
path lengths from the bottom left of the terminal is minimal. Euclidean 
metric. Rectangular metric. 
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Chapter 4. Traveling salesman problem 

In the traveling salesman problem we are given a matrix of pairwise dis-
tances between ݊ cities. You want to find an order of cities that minimiz-
es the total distance of a journey when a salesman visits each city exactly 
once and comes back to the initial city. In other words, in complete 
weighted undirected graph we wish to find a Hamiltonian cycle of a min-
imum weight. In the directed graph, we need to find a Hamiltonian tour 
of minimum weight. The traveling salesman problem has many applica-
tions, from VLSI chip fabrication to X-ray crystallography, and a long 
history. Decades of research, combined with the rapid growth in comput-
er speeds and memory capacities, have led to one new record after an-
other. Over the past 25 years, the record for the largest nontrivial TSP 
instance solved to optimality has increased from 100 cities to 1000000 
cities. It is NP-hard problem.  So, any exact algorithm must have a 
worst-case running time that grows faster than any polynomial (assum-
ing P ≠ NP). This leaves researchers with two alternatives: either look 
for heuristics that merely find near-optimal tours, but do so quickly, or 
attempt to develop optimization algorithms that work well on ‘‘real-
world,’’ rather than worst-case instances. Because of its simplicity and 
applicability, the TSP has for decades served as an initial proving ground 
for new ideas related to both these alternatives. These new ideas include 
most of the local search variants covered in this chapter, which makes 
the TSP an ideal subject for a case study. In addition, the new ideas in-
clude many of the important advances in the related area of combinatori-
al optimization, and to keep our discussions of optimization algorithms 
in perspective, let us begin from the well-known definitions of the com-
plexity classes P and NP.  
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4.1. Computational complexity 

The theory of NP-completeness is perhaps one of the most interesting 
topics in computer science. The major investigator of this field, Professor 
S. A. Cook of Toronto University received a Turing Award for his con-
tribution in this field of research. There is no doubt at all, among many 
interesting research results in computer science, the theory of NP-
completeness is one of the most exciting, and also puzzling, theories. 
The main theorem, now called Cook’s theorem, is perhaps the most 
widely cited theorem. Now we will try to explain the real meaning of the 
theorem.    

The theory of computational complexity is important because it identi-
fies a large class of difficult problems. Here, by a difficult problem, we 
mean a problem whose algorithmic lower bound seems to be in order of 
an exponential function. In other words, the theory of NP-completeness 
has identified a large class of problems which do not seem to have any 
polynomial time algorithms to solve them. 

Roughly speaking, we may say that the theory of NP-completeness first 
points out that many problems are called NP problems. The notation NP 
denotes non-deterministic polynomial. Let us first define a non-
deterministic algorithm as follows: A non-deterministic algorithm is an 
algorithm consisting of two phases:  guessing and checking. Further-
more, it is assumes that a non-deterministic algorithm always makes a 
correct guessing. 

For instance, given the satisfiability problem with a particular Boolean 
formula, a non-deterministic algorithm at first guesses an assignment and 
then checks whether this assignment satisfies  the formula or not. An 
important concept to note here is that a correct solution is always ob-
tained by guessing.  In other words, if the formula is satisfiable, them a 
non-deterministic algorithm always guesses correctly and obtains an as-
signment satisfying this formula. 



47 

Consider the traveling salesperson decision problem: for given constant 
ܿ, we need to check is there a Hamiltonian tour with length at most ܿ.  A 
non-deterministic algorithm will always guess a tour and check whether 
this tour is shorter than the constant ܿ.  

The reader may by outraged by this concept of non-deterministic algo-
rithms because it is physically impossible to have such an algorithm. 
How can we always make a correct guess? Actually, non-deterministic 
algorithms do not exist and they will never exist. The concept of non-
deterministic algorithms is useful only because it will help us later define 
a class of problems, called NP problems. 

Definition 4.1. If the checking stage of a non-deterministic algorithms is 
of polynomial time complexity, then this non-deterministic algorithms is 
called a non-deterministic polynomial algorithms. If a decision problem 
can be solved by a non-deterministic polynomial algorithms, this prob-
lem is called a non-deterministic polynomial (NP for short) problem. 

From the above definition, we may immediately conclude that every 
problem which can be solved in polynomial time (by deterministic algo-
rithms, of course) must be a non-deterministic polynomial problem. Typ-
ical cases are searching, merging, sorting, and minimum spanning tree 
problems. The reader is reminded here that we are talking about decision 
problems. Searching is a decision problem; sorting is obviously not. But 
we can always create a decision problem out of the sorting problem. The 
original sorting problem is to sort ܽଵ, ܽଶ, … , ܽ௡ into an ascending or de-
scending sequence. We may construct a decision problem as follows: 
Given ܽଵ, ܽଶ, … , ܽ௡, and ܥ, determine whether there exists a permuta-
tion of ܽ௜-s ሺܽଵ, ܽଶ, … , ܽ௡ሻ such that  |ܽ′ଶ െ ܽ′ଵ| ൅ |ܽ′ଷ െ ܽ′ଶ| ൅ ڮ ൅
|ܽ′௡ െ ܽ′௡ିଵ| ൏ -All of the problems which can be solved in polyno .ܥ
mial time are called P problems. 

The satisfiability problem and the traveling salesman decision problem 
are both NP problems because the checking stage for the both problems 
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is of polynomial time complexity. In fact, most solvable problems that 
one can think of are NP problems. 

A famous decision problem which is not an NP problem is the halting 
problem. The halting problem is defined as follows: Given an arbitrary 
program with an arbitrary input data, will the program terminate or not? 
Another problem is the first-order predicate calculus satisfiability prob-
lem. Both problems are the first-order predicate calculus satisfiability 
problem. Both problems are so called undecidable problems. 

Undecidable problems  cannot be solved by guessing and checking. Alt-
hough they are decision problems, somehow they cannot be solved by 
exhaustively examining the solution space. The reader should notice that 
the Boolean logic (or also called propositional logic), an assignment is 
characterized by an ݊-tuple. But, for first-order predicate calculus, an 
assignment is not bounded. It may be of infinite length. This is why the 
first-order predicate calculus is not an NP problem. It suffices to remind 
the reader that undecidable problems are even more difficult than NP 
problems. 

Let us be more explicit. For the satisfiability problem and the traveling 
salesman decision problem, the number of solutions is finite. There are 
2௡ possible assignments for the satisfiability problem and ሺ݊ െ 1ሻ!  pos-
sible tours for the traveling salesman decision problems. Therefore, alt-
hough these problems are difficult, they at least have some upper bounds 
for them. For instance, for the satisfiability problem, we can at least use 
an algorithm with ܱሺ2௡ሻ time complexity to solve it. There is, however, 
no such upper bound for the undecidable problems. It can be shown that 
the upper bounds never exist. Intuitively, we may say that we can let the 
problem run, say 1 million years, and still cannot make any conclusion 
because it is still possible that in the next step, the program halts. Simi-
larly, for the first-order predicate calculus satisfiability problem, we have 
the same situation. Suppose after running the program for a very long 
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time, we still have not produced an empty clause. But, it is actually pos-
sible that the next clause being generated is an empty clause. 

Now we shall introduce Cook’s theorem. We shall only give an informal 
proof because a formal proof is very complicated. Cook’ theorem can be 
stated follows. 

Theorem 4.0 (Cook)  NP=P  if and only if the satisfiability problem  
is a P problem. 

The proof of the above theorem consists of two parts. The first part is “If 
NP=P, then  the satisfiability problem is a P problem”. The part is obvi-
ous because the satisfiability problem is an NP problem. The second part 
is “If the satisfiability problem is a P problem, then  NP=P”. This is a 
crucial part of Cook’s theorem and we shall elaborate this in the rest of 
this section. 

Let us now explain the main spirit of Cook’s theorem. Suppose that have 
an NP problem ܣ which is quite difficult to solve. Instead of solving this 
problem ܣ directly, we shall create another problem ܣ′ and by solving 
that problem ܣ′, we shall obtain the solution of ܣ. It is important to note 
here that every problem is a decision problem. Our approach is the fol-
lows: 

(1) Since problem ࡭ is an NP problem, there must exist an NP 
algorithm ࡮ which solves this problem. An NP algorithm is a non-
deterministic polynomial algorithm. It is physically impossible and 
therefore we cannot use it. However, as we shall see, we can still use ࡮ 
conceptually in the following steps. 

(2) We shall construct a Boolean formula ࡯ corresponding to ࡮ 
such that ࡯ is satisfiable if and only if the non-deterministic algorithm 
-is unsatis ࡯ terminates successfully and returns an answer “yes”. If ࡮
fiable, then algorithm B would terminate unsuccessfully and return the 
answer “no”. 
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We shall note at this point that when we mention a problem, we mean an 
instance of a problem, That is, we mean a problem with a particular in-
put. Otherwise, we cannot say that the algorithm terminates. 

We shall also delay the discussion about how ࡯ is constructed. This part 
is the crucial part of Cook’s theorem. 

(3) After constructing formula ࡯, we shall temporarily forget 
about our original problem ࡭  and the non-deterministic algorithm ࡮. 
We shall try to see whether ࡯ is satisfiable or not. If it is satisfiable, 
then we say that the answer of problem ࡭ is “yes”; otherwise, the an-
swer is “no”. That we can do so is due to the property of formula ࡯ 
stated in Step (2). That is, ࡯ is satisfiable if and only if ࡮ terminates 
successfully. 

All thing are beautiful. The above approach seems to suggest that we 
only have to pay attention to the satisfiability problem. For instance, we 
never have to know how to solve the traveling salesman decision prob-
lem; we merely have to know how to determine whether the Boolean 
formula corresponding to the traveling salesman problem is satisfiable or 
not. Yet, there is a big and serious problem here. If the satisfiability 
problem is hard to solve, the original the traveling salesman problem is 
still hard to solve. This is the heart of Cook’s theorem. In indicates that if 
the satisfiability problem can be solved in polynomial number of steps, 
essentially because of the above approach. 

Definition 4.2 Let ܣଵ and ܣଶ  be two problems. ܣଵ reduces to ܣଶ (writ-
ten as ܣଵ ן  ଵ can be solved in polynomial time, byܣ ଶ) if and only ifܣ
using a polynomial time algorithm which solves ܣଶ. 

From the above definition, we can say that if ܣଵ ן -ଶ, and there is a polܣ
ynomial time algorithm solving ܣଶ, then there is a polynomial time algo-
rithm to solve ܣଵ. Using Cook’s theorem, we can say that every NP 
problem reduces to the satisfiability problem, because we can always 
solve this NP problem by first solving the satisfiability problem of the 
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corresponding Boolean formula. From this definition, we can easily see 
the following: If  ܣଵ ן ଶܣ ଶ andܣ ן ଵܣ ଷ, thenܣ ן  ଷ. Having definedܣ
“reduce to”, we can now define NP-complete problems. 

Definition 4.3 A problem ܣ is NP-complete if ܣ א ܰܲ and every NP 
problem reduces to ܣ. 

From the above definition, we know that if ܣ is NP-complete problem 
and ܣ can be solved in polynomial time, then every NP problem can be 
solved in polynomial time. Clearly, the satisfiability problem is an NP-
complete because of Cook’s theorem. By definition, if any NP-complete 
problem can be solved in polynomial time, then P=NP. 

The satisfiability problem was the first found NP-complete problem. 
Later, R. Karp showed 21 NP-complete problems. These NP-complete 
problems include node cover, feedback ark set, Hamiltonian cycle, etc. 
Karp received a Turing Award in 1985. 

To show that a problem ܣ is NP-complete, we do not have to prove that 
all NP problems reduce to ܣ. This is what Cook did when he showed the 
NP-completeness of the satisfiability problem. Nowadays, we merely 
have to use the transitive property of “reduce to”. If ܣଵ is NP-complete 
problem, ܣଶ is an NP problem and we can prove that ܣଵ ן  ଶܣ  ଶ, thenܣ
is NP-complete problem. The reasoning is rather straightforward. If ܣ is 
NP-complete problem, then all NP problems reduce to ܣ. If ܣ ן  then ,ܤ
all NP problems reduce to ܤ because of the transitive property of “re-
duce to”. Therefore, ܤ must be NP-complete. 

In the previous discussion, we made the following statements: 

1. The satisfiability problem is the most difficult problem among  
all NP problems. 

2. When we prove the NP-completeness of a problem ܣ, we often try to 
prove that the satisfiability problem reduces to ܣ. Thus, it appears 
that ܣ is more difficult than the satisfiability problem. 
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To see that there is no inconsistency in these statements, let us note that 
every NP problem reduces to the satisfiability problem. Thus, if we are 
interested in an NP problem ܣ, then certainly ܣ reduces to the 
satisfiability problem. However, we must emphasize here that saying a 
problem ܣ reduces to the satisfiability problem is not significant at all 
because it only means that the satisfiability problem is more difficult 
than ܣ, which is well-established fact. If we successfully proved that the 
satisfiability problem reduces to ܣ, then ܣ is even more difficult than the 
satisfiability problem, which is a highly significant statement. Note that 
ܣ ן the satisfiability problem and the satisfiability problem ן -There .ܣ
fore, so far as the degree of difficulty is concerned, ܣ is equivalent to the 
satisfiability problem.  

We may extend the above arguments to all NP-complete problems. If ܣ 
is an NP-complete problem, then by definition every NP problem, say ܤ, 
reduces to ܣ. If we further prove that ܤ is NP-complete by proving 
ܣ ן   are equivalent to each other. In summary, all ܤ and ܣ then ,ܤ
NP-complete problems form an equivalent class. 

Note that we have restricted NP problems to be decision problems.  
We may now extend the concept of NP-completeness to optimization 
problems by defining “NP-hardness”.  

Definition 4.4 A problem ܣ is NP-hard if every NP problem  
reduces to ܣ. 

Note that ܣ is not necessarily an NP problem. In fact, ܣ may be an opti-
mization problem. Thus, a problem ܣ is NP-complete if ܣ is NP-hard 
and ܣ is an NP. Through this way, an optimization problem is NP-hard if 
its corresponding decision problem is NP-complete. For instance, the 
traveling salesman problem is NP-hard. 

The concept of NP-completeness is perhaps one of the most difficult 
concepts to understand in computer science. The most important paper 
concerning with this concept was written by Cook in 1971 which showed 
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the significance of the satisfiability problem. In 1972, Karp proved many 
combinatorial problems are NP-complete. These two papers have been 
considered landmark papers on this subject. Since then, numerous prob-
lems have been proved to be NP-complete. There are so many of them 
that a database is maintained by David Johnson of AT&T. The best book 
totally devoted to NP-completeness is Garey and Johnson, 1979. It gives 
the history of the development of NP-completeness and can always be 
used as an encyclopedia of it. 

Note that NP-completeness is in worst case analysis only. That a prob-
lem is NP-complete should not discourage anyone from developing effi-
cient algorithms to solve it in average cases. For instance,   there are 
many algorithms developed to solve the satisfiability problem. Many of 
them are based on the resolution principle. This principle was invented 
by Robinson. Recently, several algorithms for the satisfiability problem 
have been found to be polynomial for average cases. Another famous 
NP-hard problem is the traveling salesman problem, whose NP-hardness 
can be established by reducing the Hamiltonian cycle problem to it. 
There are several books devoted to the algorithms for the traveling 
salesman problem [1, 2, 3].   

 

4.2. Theoretical results 

Two fundamental complexity-theoretic results constrain the behavior of 
any heuristic for the TSP. For a given heuristic A and TSP instance ܫ, let 
 ሻ denoteܫሻ denote the length of the tour produced by A and let ܱܲܶሺܫሺܣ
the length of an optimal tour. The first result concerns the best perfor-
mance guarantee that is possible when there are no restrictions on the 
types of instances considered.  

Theorem 4.1. Assuming P ≠ NP, no polynomial-time TSP heuristic can 
guarantee ܣሺܫሻ/ܱܲܶሺܫሻ  ൑  2௣ሺ௡ሻ for any fixed polynomial ݌ and all 
instances ܫ. 
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Fortunately, most applications impose substantial restrictions on the 
types of instances allowed. In particular, in most applications distances 
must obey what is called the triangle inequality. This says that the direct 
path between two cities is always the shortest route. Thus much of the 
theoretical work on TSP heuristics is predicated on the assumption that 
the triangle inequality holds. In this case the result of Sahni and Gonza-
lez (1976) no longer applies, and the only known constraint is the fol-
lowing  much more limited (and recent) one, derived as a consequence of 
the deep connection between approximation and the characterization of 
NP in terms of probabilistically checkable proof systems. 

Theorem 4.2. Assuming P≠NP, there exists an ߝ ൐  0 such that no pol-
ynomial-time TSP heuristic can guarantee ܣሺܫሻ/ܱܲܶሺܫሻ  ൑  1 ൅  for ߝ
all instances ܫ satisfying the triangle inequality.  

Even this lower bound evaporated if one is willing to consider the further 
restriction to instances consisting of points in the plane under a geomet-
rical norm such as the Euclidean metric, a condition holding in many 
applications. For such instances, Arora (1996) has proved that polynomi-
al time approximation schemes exist. Stated in Euclidean terms, Arora’s 
result is as follows. 

Theorem 4.3. There is an algorithm A that, given an Euclidean TSP in-
stance and a constant ߝ ൐  0, runs in time ݊ைሺଵ/ఌሻ and guarantee 
ሻܫሻ/ܱܲܶሺܫሺܣ  ൑  1 ൅  .ߝ 

Unfortunately, Arora’s result appears to be of only theoretical signifi-
cance, both because of the constants built into the O( ) notation and be-
cause the algorithm  also requires space ݊ைሺଵ/ఌሻ. Thus in practice, we 
may have to settle for algorithms with worse guarantees but better time 
and space requirements. In this chapter we shall concentrate on four such 
tour constructive algorithms: Nearest Neighbor, Greedy, Clarke-Write, 
and Chritofides-Serdukov. The first three all provide a substantially bet-
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ter guarantee than would be possible without the triangle inequality. The 
fourth provides a far better guarantee and is the current champion with 
respect to this worst-case measure. 

 

4.3. Tour construction algorithms 

Nearest Neighbor 

Perhaps the most natural heuristic for the TSP is the famous Nearest 
Neighbor algorithm (NN). In this algorithm one mimics the traveler 
whose rule of thumb is always to go next to the nearest as-yet-unvisited 
location. We construct an ordering  ߨሺ1ሻ, … ,  ሺ݊ሻ of the cities, with theߨ
initial city ߨሺ1ሻ chosen arbitrarily and in general  ߨሺ݅ ൅ 1ሻ chosen to be 
the city ݇ that minimizes the distance to the next city. The corresponding 
tour traverses the cities in the constructed order, returning to ߨሺ1ሻ after 
visiting city ߨሺ݊ሻ . The running time for NN as described is ܱሺ݊ଶ ሻ. If 
we restrict attention to instances satisfying the triangle inequality, NN 
does substantially better than the general upper bound of Theorem 4.1, 
although it is still far worse than the limit provided by Theorem 4.2. In 
particular, we are guaranteed that ܰܰ ሺܫሻ/ܱܲܶ ሺܫሻ  ൑  0. 5 ሺہlogଶ ۂ݊ ൅
1ሻ. No substantially better guarantee is possible, however, as there are 
instances for which the ratio grows as ܱሺlogଶ ݊ሻ.  

Greedy 

Some authors use the name Greedy for Nearest Neighbor, but it is more 
appropriately reserved for the following special case of the ‘‘greedy al-
gorithm’’ of matroid theory. In this heuristic, we view an instance as a 
complete graph with the cities as vertices. A tour is then simply a Hamil-
tonian cycle in this graph, i.e., a connected collection of edges in which 
every city has degree 2. We build up this cycle one edge at a time, start-
ing with the shortest edge, and repeatedly adding the shortest remaining 
available edge, where an edge is available if it is not yet in the tour and 
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if adding it would not create a degree-3 vertex or a cycle of length less 
than ݊. In view of the intermediate partial tours typically constructed by 
this heuristic, it is called the multi-fragment heuristic. 

The Greedy heuristic can be implemented to run in time ܱሺ݊ଶ log ݊ሻ and 
is thus somewhat slower than NN. On the other hand, its worst-case tour 
quality may be somewhat better. As with NN, it can be shown that 
ሻܫሻ/ܱܲܶ ሺܫሺݕ݀݁݁ݎܩ  ൑  0.5ሺڿlogଶ ۀ݊ ൅ 1ሻ for all instances ܫ obeying 
the triangle inequality, but the worst examples known for Greedy only 
make the ratio grow as (logଶ ݊ሻ/ሺ3 log logଶ ݊ሻ. 

Clarke-Wright 

The Clarke-Wright savings heuristic (Clarke-Wright or simply CW for 
short) is derived from a more general vehicle routing algorithm due to 
Clarke and Wright. In terms of the TSP, we start with a pseudo-tour in 
which an arbitrarily chosen city is the hub and the salesman returns to 
the hub after each visit to another city. In other words, we start with a 
multi-graph in which every non-hub vertex is connected by two edges to 
the hub. For each pair of non-hub cities, let the savings be the amount by 
which the tour would be shortened if the salesman went directly from 
one city to the other, bypassing the hub. We now proceed analogously to 
the Greedy algorithm. We go through the non-hub city pairs in non-
increasing order of savings, performing the bypass so long as it does not 
create a cycle of non-hub vertices or cause a non-hub vertex to become 
adjacent to more than two other non-hub vertices. The construction pro-
cess terminates when only two non-hub cities remain connected to the 
hub, in which case we have a true tour. As with Greedy, this algorithm 
can be implemented to run in time ܱሺ݊ଶ log ݊ሻ. The best performance 
guarantee currently known (assuming the triangle inequality) is ܹܥሺܫሻ/
ܱܲܶ ሺܫሻ  ൑ logଶڿ  ۀ݊ ൅ 1 (a factor of 2 higher than that for Greedy), but 
the worst examples known yield the same (logଶ ݊ሻ/ሺ3 log logଶ ݊ሻ ratio 
as obtained for Greedy. 
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Christofides–Serdukov 

The previous three algorithms all have worst-case ratios that grow  with 
݊ even when the triangle inequality holds. Theorem 4.2 does not rule out 
much better performance, however, and in fact a large class of algo-
rithms do perform much better. As observed by Rosenkrantz, Stearns, 
and Lewis, there are at least three simple polynomial-time tour genera-
tion heuristics, Double Minimum Spanning Tree, Nearest Insertion, and 
Nearest Addition, that have worst-case ratio 2 under the triangle ine-
quality. That is, they guarantee ܣሺܫሻ/ܱܲܶ ሺܫሻ  ൑  2 under that re-
striction, and there exist instances with arbitrarily large values of ݊ that 
show that this upper bound cannot be improved. We do not discuss these 
heuristics in detail since they are all dominated in practice by NN, 
Greedy, and CW, despite the fact that their worst-case performance is so 
much better. One tour construction heuristic with a constant worst-case 
performance ratio is not so dominated, however. This is the algorithm of 
Christofides and Serdukov the current champion as far as performance 
guarantee is concerned, having a worst-case ratio of just 3/2 assuming 
the triangle inequality. This bound is tight, even for Euclidean instances.  
The heuristic proceeds as follows. First, we construct a minimum span-
ning tree ܶ for the set of cities. Note that the length of such a tree can be 
no longer than ܱܲܶሺܫሻ, since deleting an edge from an optimal tour 
yields a spanning tree. Next, we compute a minimum-length matching M 
on the vertices of odd degree in ܶ. It can be shown by a simple argument 
that assuming the triangle inequality this matching will be no longer than 
ܱܲܶሺܫሻ/2. Combining ܯ with ܶ we obtain a connected graph in which 
every vertex has even degree. This graph must contain an Euler tour, i.e., 
a cycle that passes through each edge exactly once, and such a cycle can 
be easily found. A traveling salesman tour of no greater length can then 
be constructed by traversing this cycle while taking shortcuts to avoid 
multiply visited vertices. A shortcut replaces a path between two cities 
by a direct edge between the two. By the triangle inequality the direct 
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route cannot be longer than the path it replaces. Not only does this algo-
rithm provide a better worst-case guarantee than any other currently 
known tour construction heuristic, it also tends to find better tours in 
practice, assuming care is taken in the choice of shortcuts. Its running 
time cost is substantial, however, compared to those for Nearest Neigh-
bor, Greedy, and Clarke-Wright. This is primarily because the best algo-
rithms currently available for its matching step take time ܱሺ݊ଷ ሻ, where-
as none of the other three algorithms takes more than ܱሺ݊ଶ݈݊݃݋ሻ time. 
In theory this running time gap can be reduced somewhat: A modifica-
tion of the Christofides-Serdukov algorithm with the same worst-case 
guarantee and an ܱሺ݊ଶ.ହ ሻ running time can be obtained by using a scal-
ing based matching algorithm and halting once the matching is guaran-
teed to be no longer than 1 ൅  ሺ 1/ ݊ሻ times optimal. As far as we know, 
however, this approach has never been implemented, and as we shall see, 
the competition from local search algorithms is sufficiently strong that 
the programming effort needed to do so would not be justified. 

 

4.4. Lin-Kernighan algorithm 

For over a decade and a half, from 1973 to about 1989, the world cham-
pion heuristic for the TSP was generally recognized to be the local 
search algorithm of Lin and Kernighan. This algorithm is both a general-
ization of 3-Opt and an outgrowth of ideas the same authors had previ-
ously applied to the graph partitioning problem, ideas that have much in 
common with tabu search. In this section we will give a more complete 
description of the one for the TSP.  

An LK search is based on 2-Opt moves: replace two edges by two other 
edges to form another tour. The Lin-Kernighan heuristic allows the re-
placement of an arbitrary number of edges in moving from a tour to a 
neighboring tour, where again a complex greedy criterion is used in or-
der to permit the search to go to an unbounded depth without an expo-
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nential blowup. We can sketch the basic idea as follows. Given a tour, 
we can remove an edge ሺܽ, ܾሻ to obtain a Hamiltonian path with end-
points ܽ and ܾ. Regard one of the endpoints as fixed, say ܽ, and the oth-
er, ܾ, as variable. If we add an edge ሺܾ, ܿሻ from the variable endpoint ܾ, 
a cycle is formed; there is an unique edge ሺܿ, ݀ሻ incident to ܿ whose re-
moval breaks the cycle, producing a new Hamilton path with a new vari-
able endpoint ݀. This operation is called rotation. We can always close a 
tour by adding the edge connecting the fixed endpoint ܽ with the current 
variable endpoint ݀. A move of the Lin-Kernighan heuristic from one 
tour to a neighbor consist of first removing an edge to form a Hamiltoni-
an path, then performing a sequence of greedy rotations, and finally re-
connecting the two endpoints to form a tour. There are different variants 
of this basic scheme depending on how exactly the rotations in each step 
is chosen, and on the restrictions on edges to enter and leave the tour. We 
define more precisely a variant which was shown some interesting theo-
retical properties about corresponding local optima. 

Let ܶ be a tour. All 2-opt and 3-opt neighbors of ܶ are included in the 
LK neighborhood. In addition, for every pair of adjacent edges  ݔଵ ൌ
ሺܽ, ܾሻ from ܶ and   ݕଵ ൌ ሺܾ, ܿሻ outside from ܶ with weights of these 
edges ݓሺݕଵሻ ൏  ଵሻ, we have  a sequence of neighboring toursݔሺݓ

ଵܶ, ଶܶ, … defined as follows. Let ܪ ൌ ܶ െ  ଵ be a Hamiltonian path withݔ
fixed endpoint ܽ and free endpoint ܾ. Perform the first rotation that adds 
the edge ݕଵ and deletes a uniquely determined edge ݔଶ to form a new 
Hamiltonian path ܪଵ,  then close the path to obtain the first neighboring 
tour ଵܶ. Edges ݔଵ and ݔଶ are marked “ineligible” and cannot reenter the 
tour during the sequence. 

For ݅-th step, ݅ ൌ 2, … consider all eligible edges ݕ௜ ב  ௜ିଵ incident toܪ
the variable endpoint such that ∑ ሾݓ൫ݕ௝൯ െ ௝൯ሿݔ൫ݓ ൏ 0;௜

௝ୀଵ  if none ex-
ists, the sequence is terminated. If there are some such edges, choose 
among them that edge  ݕ௜ whose addition to ܪ௜ିଵ and rotation leads to 
the least expensive new Hamilton path ܪ௜ with ties broken lexicograph-
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ically; i.e., ݓሺݕ௜ሻ െ  ௜ାଵ is the uniqueݔ ௜ାଵሻ is minimized, whereݔሺݓ
edge that has to be removed after adding  ݕ௜. Edge ݔ௜ାଵ becomes ineligi-
ble.  The ݅-th neighbor ௜ܶ  is the tour obtained by closing the path ܪ௜. Ob-
serve that the sequence terminates after less than ݊ଶ steps because once 
an edge leaves the tour, it becomes ineligible and cannot reenter. This 
concludes the formal description of the neighborhood LK.  

The main difference with the original Lin-Kernighan definition is that an 
edge is allowed to enter the tour and later depart again, whereas in the 
original algorithm it cannot: the set of departing edges and entering edg-
es are required there to be disjoint.   

The simplest way to accelerate the Lin-Kernighan algorithm is to intro-
duce the neighbor-list  3-Opt. More specifically, we proceed as in 3-Opt, 
considering all possibilities for  ݐଵ, ,ଶݐ ,ଷݐ   ହ that satisfyݐ ସ, andݐ

, ଶݐሺݓ ଷ ሻݐ  ൏ , ଵݐሺݓ   ଶ ሻݐ

, ଶݐሺݓ ଷ ሻ  ൅ݐ , ସݐሺݓ ହሻݐ ൏ , ଵݐሺݓ   ଶ ሻݐ ൅ , ଷݐሺݓ     .ସ ሻݐ

For each such choice, we use the tour that would result from performing 
the corresponding 3-Opt move as the starting point for an LK search. 
Note that for some choices of ݐଵ through ݐହ there will be two possible 
ways of generating a corresponding 3-Opt move (two potential candi-
dates for ݐ଺ that yield legal 3- Opt moves), and both are considered. For 
other choices, there may be no way to generate a legal 3-Opt move, and 
in these cases we attempt to find cities ݐ଺, ݐ଻, and ଼ݐ that together with ݐଵ 
through ݐହ yield a legal 4-Opt move that meets the one-tree restriction 
(with ݐ଻ restricted to those cities on the neighbor list for ݐ଺). The first 
such move found is used to produce the starting tour. In addition, we pre-
load the tabu lists for the LK search with the edges added by the 3- or  
4-Opt move that yielded the initial path for the search.  

The algorithm proceeds in a series of phases based on the notion of a 
champion tour, i.e., the best tour seen so far. Initially, this is just the tour 
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produced by a starting heuristic, such as the Greedy algorithm. Until a 
new champion is crowned, all of our LK searches are based on tours ob-
tained from this champion by 3-Opt (4-Opt) moves, with the search pro-
ceeding systematically through possible choices of ݐଵ through ݐହ as in 3- 
Opt. Note that this method for restarting an LK search naturally embod-
ies the tabu search concept of intensification, since it ensures that we 
keep exploring the vicinity of the current champion tour.  

Whenever a tour is found that is better than the current champion, we 
complete the current LK search and then take as our new champion the 
best tour found during that search. If a given choice of ݐଵ through ݐସ 
yields a legal 2-Opt move that improves the current champion, and none 
of the LK searches derived from this choice yields a better improving 
move, we take as our new champion the tour resulting from performing 
that 2-Opt move. Whenever a new champion is crowned, we enter a new 
phase based on this new champion, restarting the basic 3-Opt loop with 
the next available value for ݐଵ. The Johnson implementation uses don’t-
look bits to restrict the choices for ݐଵ, as in neighbor-list 2- and 3-Opt. 
The algorithm terminates when all possible choices of ݐଵ through ݐହ have 
been considered for a given champion without yielding an improvement, 
i.e., when a tour is found that is locally optimal with respect to the ex-
panded neighborhood structure implicit in the Lin-Kernighan algorithm 
itself. 

Variants on this restart strategy have been considered in the literature, 
mostly with the idea of speeding up the algorithm. A common approach 
is to restrict attention to choices of ݐଵ through ݐ଺ that yield valid 3-Opt 
moves and are such that ݐଵ through ݐସ also yield a valid 2-Opt move. In 
addition, the number of LK searches made for each choice of ݐଵ can be 
more directly restricted. Whereas the Johnson et al. implementation con-
siders both tour neighbors of ݐଵ as candidates for ݐଶ, many implementa-
tions consider only one possibility for ݐଶ, typically the successor of ݐଵ in 
the current tour.  Given this, the ‘‘no backtracking’’ strategy of Mak and 
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Morton, simply starts an LK search as soon as ݐଵ has been chosen and its 
successor ݐଶ identified. Reinelt suggest considering only the first three 
possibilities for ݐଷ and starting an LK search as soon as ݐଷ has been cho-
sen. This yields at most 3 LK searches for each choice of ݐଵ. Mak and 
Morton suggest allowing alternatives for both ݐହ and ݐଷ, but only consid-
ering the first 5 choices for each (for a  bound of 25 on the total number 
of LK searches for a given choice of ݐଵ). In another variant, two options 
each are allowed for ݐଷ, ݐହ and ݐ଻, yielding 8 possible LK searches for 
each choice of ݐଵ. Only the more draconian of these approaches are like-
ly to provide substantial speedups by themselves, however. With neigh-
bor lists of length 20, the Johnson et al. implementation can theoretically 
perform 800 or more LK searches per choice of  ݐଵ, but the actual aver-
age number of calls is more like 6 for random Euclidean instances and 8 
for the larger of our random distance matrix instances.  

Another common modification that has been proposed is to limit the 
depth of LK searches, say to 50 steps. This again is unlikely to cause any 
significant speedup of the algorithm by itself, given that the average 
depth searched even when no bounds are imposed is only 3 moves be-
yond the level at which the LK search is initiated. It does however, ena-
ble use of the Segment-Tree data structure for tour representation pro-
posed by Applegate, Chvatal, and Cook, which for certain classes of in-
stances is a serious competitor to the two-level tree data structure used in 
the Johnson implementation.  

Finally, there have been various proposals to modify the LK- search 
method more drastically, either by using shorter neighbor-lists to further 
limit the alternatives considered for ݐଶ௜ାଵ, or conversely, by augmenting 
the class of possible moves considered. Mak and Morton suggest allow-
ing 2-Opt moves that flip a prefix of the current path as well as the 
standard ones that flip a suffix. Reinelt and Rinaldi suggest allowing 
moves in which a single city is moved from its current position to the 
end of the path. Dam and Zachariasen have spelled out an even more 
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flexible variant called a flower transition. In this search method, the base 
configuration is not a Hamiltonian path, as in LK search, but a one-tree 
consisting of a cycle (the blossom) attached to a path (the stem). Such a 
graph has more flexibility as there are two ways it can be turned into a 
tour, depending on which of the cycle edges adjacent to the stem is de-
leted. Individual steps of a search again involve adding an edge from the 
free end of the path, but now that edge may go either to another stem city 
or to a city in the cycle, and in the latter case there are again two choices 
for which edge to delete. 

 

4.5 Metaheuristics 

Unlike exact methods, metaheuristics allow to tackle large-size problem 
instances by delivering satisfactory solutions in a reasonable time. There 
is no guarantee to find global optimal solutions or even bounded solu-
tions. Metaheuristics have received more and more popularity in the past 
20 years. Their use in many applications shows their efficiency and ef-
fectiveness to solve large and complex problems. 

It is unwise to use metaheuristics to solve problems where efficient exact 
algorithms are available. An example of this class of problems is the P 
class. In the case where those exact algorithms give “acceptable” search 
time to solve the target instances, metaheuristics are useless. For in-
stance, one should not use a metaheuristic to find a minimum spanning 
tree or a shortest path in a graph. Polynomial-time exact algorithms exist 
for those problems. Hence, for easy optimization problems, 
metaheuristics are seldom used.  

Many combinatorial optimization problems belong to the NP-hard class 
of problems. This high-dimensional and complex optimization class of 
problems arises in many areas of industrial concern: telecommunication, 
computational biology, transportation and logistics, planning and manu-
facturing, engineering design, and so on. Moreover, most of the classical 
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optimization problems are NP-hard in their general formulation: travel-
ing salesman, set covering, vehicle routing, graph partitioning, graph 
coloring, and so on. For an NP-hard problem where state-of-the-art exact 
algorithms cannot solve the handled instances within the required search 
time, the use of metaheuristics is justified. For this class of problems, 
exact algorithms require (in the worst case) exponential time. Neverthe-
less, the NP-completeness of a problem does not imply anything about 
the complexity of a particular class of instances that has to be solved.  

Many classification criteria may be used for metaheuristics: 

Nature inspired versus nonnature inspired: Many meta-heuristics are 
inspired by natural processes: evolutionary algorithms and artificial im-
mune systems from biology; ants, bees colonies, and particle swarm op-
timization from swarm intelligence into different species (social scienc-
es); and simulated annealing from physics. 

Memory usage versus memoryless methods: Some metaheuristic algo-
rithms are memoryless; that is, no information extracted dynamically is 
used during the search. Some representatives of this class are local 
search, GRASP, and simulated annealing. While other metaheuristics use 
a memory that contains some information extracted online during the 
search. For instance, short-term and long-term memories in tabu search. 

Deterministic versus stochastic: A deterministic metaheuristic solves 
an optimization problem by making deterministic decisions (e.g., local 
search, tabu search). In stochastic metaheuristics, some random rules are 
applied during the search (e.g., simulated annealing, evolutionary algo-
rithms). In deterministic algorithms, using the same initial solution will 
lead to the same final solution, whereas in stochastic metaheuristics, dif-
ferent final solutions may be obtained from the same initial solution. 
This characteristic must be taken into account in the performance evalua-
tion of metaheuristic algorithms. 
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Population-based search versus single-solution based search: Single-
solution based algorithms (e.g., local search, simulated annealing) ma-
nipulate and transform a single solution during the search while in popu-
lation-based algorithms (e.g., particle swarm, evolutionary algorithms) a 
whole population of solutions is evolved. These two families have com-
plementary characteristics: single-solution based meta-heuristics are ex-
ploitation oriented; they have the power to intensify the search in local 
regions. Population-based metaheuristics are exploration oriented; they 
allow a better diversification in the whole search space. In the next chap-
ters of this book, we have mainly used this classification. In fact, the al-
gorithms belonging to each family of metaheuristics share may search 
mechanisms. 

Iterative versus greedy: In iterative algorithms, we start with a com-
plete solution (or population of solutions) and transform it at each itera-
tion using some search operators. Greedy algorithms start from an empty 
solution, and at each step a decision variable of the problem is assigned 
until a complete solution is obtained. Most of the  metaheuristics are it-
erative algorithms. Below we present some of them. 

 

4.4.1. Simulated annealing 

Simulated annealing applied to optimization problems emerges from the 
work of S. Kirkpatrick et al. and V. Cerny. In these pioneering works, 
SA has been applied to graph partitioning and VLSI design. In the 
1980s, SA had a major impact on the field of heuristic search for its sim-
plicity and efficiency in solving combinatorial optimization problems. 
Then, it has been extended to deal with continuous optimization prob-
lems. SA is based on the principles of statistical mechanics whereby the 
annealing process requires heating and then slowly cooling a substance 
to obtain a strong crystalline structure. The strength of the structure de-
pends on the rate of cooling metals. If the initial temperature is not suffi-
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ciently high or a fast cooling is applied, imperfections (metastable states) 
are obtained. In this case, the cooling solid will not attain thermal equi-
librium at each temperature. Strong crystals are grown from careful and 
slow cooling. The SA algorithm simulates the energy changes in a sys-
tem subjected to a cooling process until it converges to an equilibrium 
state (steady frozen state). This scheme was developed in 1953 by Me-
tropolis. 

Fig.4.1 Behavior of SA 
 

SA is a stochastic algorithm that enables under some conditions the deg-
radation of a solution. The objective is to escape from local optima and 
so to delay the convergence. SA is a memoryless algorithm in the sense 
that the algorithm does not use any information gathered during the 
search. From an initial solution, SA proceeds in several iterations. At 
each iteration, a random neighbor is generated. Moves that improve the 
cost function are always accepted. Otherwise, the neighbor is selected 
with a given probability that depends on the current temperature and the 
amount of degradation of the objective function. As the algorithm pro-
gresses, the probability that such moves are accepted decreases. This 
probability follows, in general, the Boltzmann distribution. It uses a con-
trol parameter, called temperature, to determine the probability of ac-
cepting nonimproving solutions. At a particular level of temperature, 
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many trials are explored. Once an equilibrium state is reached, the tem-
perature is gradually decreased according to a cooling schedule such that 
few nonimproving solutions are accepted at the end of the search (see 
Fig.4.1).  

The SA algorithm is described below: 

SA Algorithm 

1. Input: Cooling schedule:  ݔ: ൌ ; ଴ݔ   ܶ ൌ׷  ୫ܶୟ୶ ; 
2. Repeat Until  Stopping criteria satisfied  e.g. ܶ ൏  ୫ܶ୧୬ 

2.1. Repeat Until  Equilibrium condition 
2.1.1. Generate a random neighbor ݏ′ 
ൌ ܧ∆ .2.1.2  ݂ ൫ݔ ′൯ െ  ݂ ሺݔሻ; 
2.1.3. If ∆ܧ ൑  0  Then  ݔ ൌ׷ ݔ  ′  

Else  Accept ݔ ′ with a probability ݁ି∆ா ்⁄  
2.2. ܶ ൌ  ݃ሺܶ ሻ; 

3. Output: Best solution found. 

In the SA algorithm, the temperature is decreased. There is always a 
compromise between the quality of the obtained solutions and the speed 
of the cooling schedule. If the temperature is decreased slowly, better 
solutions are obtained but with a more significant computation time. The 
temperature can be updated in different ways: 

• Linear: In the trivial linear schedule, the temperature is updated as fol-
lows: ܶ ൌ  ܶ െ   .is a specified constant value ߚ where ,ߚ 

Hence, we have 

௜ܶ   ൌ  ଴ܶ   െ  ݅ ൈ  ߚ 

where ௜ܶ represents the temperature at iteration ݅. 

• Geometric: In the geometric schedule, the temperature is updated us-
ing the formula 
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ܶ ൌ  ,ܶߙ 

where ߙ ,ሿ0א 1ሾ. 

It is the most popular cooling function. Experience has shown that 
 .should be between 0.5 and 0.99 ߙ

• Logarithmic: The following formula is used: 

௜ܶ  ൌ ଴ܶ

logሺ݅ሻ
 

This schedule is too slow to be applied in practice but has the property of 
the convergence proof to a global optimum. 

• Very slow decrease: The main trade-off in a cooling schedule is the 
use of a large number of iterations at a few temperatures or a small num-
ber of iterations at many temperatures. A very slow cooling schedule 

such as ௜ܶ ൅ 1 ൌ ௜ܶ/ሺ1 ൅ ߚ  ௜ܶሻ, where ߚ ൌ  ଴ܶ– ்ಷ
௅ ି ଵ ଴ܶ ிܶ   and  ிܶ   is 

the final temperature. 

Only one iteration is allowed at each temperature in this very slow de-
creasing function. 

• Nonmonotonic: Typical cooling schedules use monotone tempera-
tures. Some nonmonotone scheduling schemes where the temperature is 
increased again may be suggested. This will encourage the diversifica-
tion in the search space. For some types of search landscapes, the opti-
mal schedule is nonmonotone. 

• Adaptive: Most of the cooling schedules are static in the sense that the 
cooling schedule is defined completely a priori. In this case, the cooling 
schedule is “blind” to the characteristics of the search landscape. In an 
adaptive cooling schedule, the decreasing rate is dynamic and depends 
on some information obtained during the search. A dynamic cooling 
schedule may be used where a small number of iterations are carried out 
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at high temperatures and a large number of iterations at low tempera-
tures. 

Concerning the stopping condition, theory suggests a final temperature 
equal to 0. In practice, one can stop the search when the probability of 
accepting a move is negligible. The following stopping criteria may be 
used:  

• Reaching a final temperature is the most popular stopping criteria.  

• Achieving a predetermined number of iterations without im-
provement of the best found solution. 

• Achieving a predetermined number of times a percentage of 
neighbors at each temperature is accepted; that is, a counter increases by 
1 each time a temperature is completed with the less percentage of ac-
cepted moves than a predetermined limit and is reset to 0 when a new 
best solution is found. If the counter reaches a predetermined limit, the 
SA algorithm is stopped. 

SA compared to local search is still simple and easy to implement. It 
gives good results for a wide spectrum of optimization problems: the 
historical ones such as TSP and VLSI design in different domains of ap-
plication. A good survey on SA can be found in [ ]. 

Other similar methods of simulated annealing have been proposed in the 
literature, such as threshold accepting, great deluge algorithm, record-to-
record travel, and demon algorithms. The main objective in the design of 
those SA-inspired algorithms is to speed up the search of the SA algo-
rithm without sacrificing the quality of solutions. 

Record-to-Record Travel This algorithm is also a deterministic optimi-
zation algorithm inspired from simulated annealing [229]. The algorithm 
accepts a nonimproving neighbor solution with an objective value less 
than the RECORD minus a deviation D. RECORD represents the best 
objective value of the visited solutions during the search. The bound de-
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creases with time as the objective value RECORD of the best found so-
lution improves. The RRT algorithm is described below: 

RRT Algorithm 

1. Input: Deviation ܦ ൐ ݔ ;0  ൌ׷ ܦܴܱܥܧܴ ;଴ݔ ൌ׷  ݂ሺݔሻ ;  
2. Repeat Until Stopping criteria satisfied 

2.1. Generate a random neighbor  ݔԢ; 
2.2. If ݂ሺݔ′ሻ ൏ ൅ ܦܴܱܥܧܴ  ݔ Then ܦ  ؔ  ;Ԣݔ
2.3. If  ܴܦܴܱܥܧ ൐  ݂ ሺݔ′ሻ Then  ܴܦܴܱܥܧ ൌ׷  ݂ ሺݔ′ሻ ;  

3. Output: Best solution found. 

The RRT algorithm has the advantage to be dependent on only one pa-
rameter, the DEVIATION value. A small value for the deviation will 
produce poor results within a reduced search time. If the deviation is 
high, better results are produced after an important computational time. 

Great Deluge Algorithm The great deluge algorithm was proposed by 
Dueck in 1993. The main difference with the SA algorithm is the deter-
ministic acceptance function of neighboring solutions. The inspiration of 
the GDA algorithm comes from the analogy that the direction a hill 
climber would take in a great deluge to keep his feet dry. Finding the 
global optimum of an optimization problem may be seen as finding the 
highest point in a landscape. As it rains incessantly without end, the level 
of the water increases. The algorithm never makes a move beyond the 
water level. It will explore the uncovered area of the landscape to reach 
the global optimum. GDA describes the template of the algorithm in a 
minimization context. A generated neighbor solution is accepted if the 
absolute value of the objective function is less than the current boundary 
value, named level. The initial value of the level is equal to the initial 
objective function. The level parameter in GDA operates somewhat like 
the temperature in SA. During the search, the value of the level is de-
creased monotonically. The decrement of the reduction is a parameter of 
the algorithm. 
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GD  Algorithm 

1. Input: Level ܮ 
ݔ  ؔ   ; ଴ݔ
Choose the rain speed ܷܲ;  
Choose the initial water level ܮܧܸܧܮ; 

2. Repeat Until Stopping criteria satisfied 
2.1. Generate a random neighbor  ݔԢ ; 
2.2. If  ݂ ሺݔ′ሻ  ൏ ݔ Then  ܮܧܸܧܮ  ؔ  ′ݔ

ܮܧܸܧܮ ؔ െ ܮܧܸܧܮ   ܷܲ ;  
3. Output: Best solution found. 

The great deluge algorithm needs the tuning of only one parameter, the 
UP value that represents the rain speed. The quality of the obtained re-
sults and the search time will depend only on this parameter. If the value 
of the UP parameter is high, the algorithm will be fast but will produce 
results of poor quality. Otherwise, if the UP value is small, the algorithm 
will generate relatively better results within a higher computational time. 
An example of a rule that can be used to define the value of the UP pa-
rameter may be the following: a value smaller than 1% of the average 
gap between the quality of the current solution and the water level. 

Demon Algorithms Since 1998 many metaheuristics based on the demon 
algorithm (DA) have been proposed. The demon algorithm is another 
simulated annealing-based algorithm that uses computationally simpler 
acceptance functions. The acceptance function is based on the energy 
value of the demon (credit). The demon is initialized with a given  
value D.  A nonimproved solution is accepted if the demon has more 
energy (credit) than the decrease of the objective value. When a DA al-
gorithm accepts a solution of increased objective value, the change value 
of the objective is credited to the demon. In the same manner, when a 
DA algorithm accepts an improving solution, the decrease of the objec-
tive value is debited from the demon. 
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DA  Algorithm 

1. Input: Demon initial value ݔ   ,ܦ ؔ   ; ଴ݔ
2. Repeat until stopping criteria satisfied 

2.1 Generate a random neighbor ′ ; 
ܧ 2.2 ؔ ݂ ሺݔԢሻ  െ  ݂ ሺݔሻ ; 
2.3 If ܧ ൑ ݔ  Then ܦ  ؔ   ; Ԣݔ
ܦ 2.4 ؔ ܦ െ   ; ܧ

3. Output: Best solution found. 
 

The acceptance function of demon algorithms is computationally simpler 
than in SA. It requires a comparison and a subtraction, whereas in SA it 
requires an exponential function and a generation of a random number. 
Moreover, the demon values vary dynamically in the sense that the ener-
gy (credit) depends on the visited solutions (Markov chain) during the 
search, whereas in SA and TA the temperature (threshold) is not dynam-
ically reduced. Indeed, the energy absorbed and released by the demon 
depends mainly on the accepted solutions. Different variants of the DA 
algorithm can be found in the literature. They differ by the annealing 
schedule of the acceptance function: 

• Bounded demon algorithm: This algorithm imposes an upper bound 
 ଴  for the credit of the demon. Hence, once the credit of the demon isܦ
greater than the upper bound, no credit is received even if improving so-
lutions are generated. 

• Annealed demon algorithm: In this algorithm, an annealing schedule 
similar to the simulated annealing one is used to decrease the credit of 
the demon. The credit of the demon will play the same role as the tem-
perature in simulated annealing. 

• Randomized bounded demon algorithm: A randomized search 
mechanism is introduced in the BDA algorithm. The credit of the demon 
is replaced with a normal Gaussian random variable, where the mean 
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equals the credit of the demon ሺܦ௠ሻ, and a specified standard  
deviation Dsd. Hence, the energy associated with the demon will be  
ܦ ൌ׷ ௠ܦ  ൅  .݁ݏ݅݋݊ ݊ܽ݅ݏݏݑܽܩ

• Randomized annealed demon algorithm: The same randomized 
search mechanism of the RBDA algorithm is introduced as in the ADA 
algorithm. Compared to simulated annealing, the application of demon 
algorithms to academic and real-life problems show competitive quality 
of results within a reduced search time. Moreover, they are very easy to 
design and implement and they need tuning of few parameters. 

 

4.4.2. Tabu Search 

Tabu search algorithm was proposed by Glover. In 1986, he pointed out 
the controlled randomization in SA to escape from local optima and pro-
posed a deterministic algorithm. In a parallel work, a similar approach 
named “steepest ascent/mildest descent” has been proposed by Hansen. 
In the 1990s, the tabu search algorithm became very popular in solving 
optimization problems in an approximate manner. Nowadays, it is one of 
the most widespread metaheuristics. The use of memory, which stores 
information related to the search process, represents the particular feature 
of tabu search. 

TS behaves like a steepest LS algorithm, but it accepts nonimproving 
solutions to escape from local optima when all neighbors are 
nonimproving solutions. Usually, the whole neighborhood is explored in 
a deterministic manner, whereas in SA a random neighbor is selected. As 
in local search, when a better neighbor is found, it replaces the current 
solution. When a local optima is reached, the search carries on by select-
ing a candidate worse than the current solution. The best solution in the 
neighborhood is selected as the new current solution even if it is not im-
proving the current solution. Tabu search may be viewed as a dynamic 
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transformation of the neighborhood. This policy may generate cycles; 
that is, previous visited solutions could be selected again.  

To avoid cycles, TS discards the neighbors that have been previously 
visited. It memorizes the recent search trajectory. Tabu search manages a 
memory of the solutions or moves recently applied, which is called the 
tabu list. This tabu list constitutes the short-term memory. At each itera-
tion of TS, the short-term memory is updated. Storing all visited solu-
tions is time and space consuming. Indeed, we have to check at each it-
eration if a generated solution does not belong to the list of all visited 
solutions. The tabu list usually contains a constant number of tabu 
moves. Usually, the attributes of the moves are stored in the tabu list.  

By introducing the concept of solution features or move features in the 
tabu list, one may lose some information about the search memory. We 
can reject solutions that have not yet been generated. If a move is 
“good,” but it is tabu, do we still reject it? The tabu list may be too re-
strictive; a nongenerated solution may be forbidden. Yet for some condi-
tions, called aspiration criteria, tabu solutions may be accepted. The 
admissible neighbor solutions are those that are nontabu or hold the aspi-
ration criteria. 

In addition to the common design issues for metaheuristics such as the 
definition of the neighborhood and the generation of the initial solution, 
the main design issues that are specific to a simple TS are 

• Tabu list: The goal of using the short-term memory is to prevent the 
search from revisiting previously visited solutions. As mentioned, stor-
ing the list of all visited solutions is not practical for efficiency issues. 

• Aspiration criterion: A commonly used aspiration criteria consists in 
selecting a tabu move if it generates a solution that is better than the best 
found solution. Another aspiration criterion may be a tabu move that 
yields a better solution among the set of solutions possessing a given 
attribute.  
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Some advanced mechanisms are commonly introduced in tabu search to 
deal with the intensification and the diversification of the search: 

• Intensification (medium-term memory): The medium-term memory 
stores the elite (e.g., best) solutions found during the search. The idea is 
to give priority to attributes of the set of elite solutions, usually in 
weighted probability manner. The search is biased by these attributes. 

• Diversification (long-term memory): The long-term memory stores 
information on the visited solutions along the search. It explores the un-
visited areas of the solution space. For instance, it will discourage the 
attributes of elite solutions in the generated solutions to diversify the 
search to other areas of the search space. The TS algorithm is described 
below: 

TS Algorithm 

1. Input: Initialize starting solution  ݔ ൌ׷ -଴  and the tabu list, mediݔ
um-term and long-term memories; 

2. Repeat until stopping criteria satisfied 
1.1. Find best admissible neighbor ݔԢ ; 
ݔ .1.2 ؔ  ; ′ݔ
1.3. Update tabu list, aspiration conditions, medium and long 

term memories ; 
1.4. If intensification criterion holds Then intensification ; 
1.5. If diversification criterion holds Then diversification ; 

3. Output: Best solution found. 

Theoretical studies carried out on tabu search algorithms are weaker than 
those established for simulated annealing. A simulated annealing execu-
tion lies within the convex hull of a set of tabu search executions. There-
fore, tabu search may inherit some nice theoretical properties of SA. In 
addition to the search components of local search (hill climbing), such as 
the representation, neighborhood, initial solution, we have to define the 
following concepts that compose the search memory of TS: the tabu list 
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(short-term memory), the medium-term memory, and the long-term 
memory. 

Short-Term Memory The role of the short-term memory is to store the 
recent history of the search to prevent cycling. The naive straightforward 
representation consists in recording all visited solutions during the 
search. This representation ensures the lack of cycles but is seldom used 
as it produces a high complexity of data storage and computational time. 
For instance, checking the presence of all neighbor solutions in the tabu 
list will be prohibitive. The first improvement to reduce the complexity 
of the algorithm is to limit the size of the tabu list. If the tabu list con-
tains the last ݇ visited solutions, tabu search prevents a cycle of size at 
most ݇. Using hash codes may also reduce the complexity of the algo-
rithms manipulating the list of visited solutions. In general, attributes of 
the solutions or moves are used. This representation induces a less im-
portant data storage and computational time but skips some information 
on the history of the search. For instance, the absence of cycles is not 
ensured.  

The most popular way to represent the tabu list is to record the move 
attributes. The tabu list will be composed of the reverse moves that are 
forbidden. This scheme is directly related to the neighborhood structure 
being used to solve the problem. If the move is applied to the solution to 
generate new solution, then the move (or its reverse) is stored in the list. 
This move is forbidden for a given number of iterations, named the tabu 
tenure of the move. If the tabu list contains the last ݇ moves, tabu search 
will not guarantee to prevent a cycle of size at most ݇. 

In tabu search, many different tabu lists may be used in conjunction. For 
instance, some ingredients of the visited solutions and/or the moves are 
stored in multiple tabu lists. A move is not tabu if the conditions for all 
tabu lists are satisfied. In many optimization problems, it is more and 
more popular to use simultaneously various move operators, and hence 
different neighborhoods are defined. 
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The size of the tabu list is a critical parameter that has a great impact on 
the performances of the tabu search algorithm. At each iteration, the last 
move is added in the tabu list, whereas the oldest move is removed from 
the list. The smaller is the value of the tabu list, the more significant is 
the probability of cycling. Larger values of the tabu list will provide 
many restrictions and encourage the diversification of the search as many 
moves are forbidden. A compromise must be found that depends on the 
landscape structure of the problem and its associated instances. The tabu 
list size may take different forms: 

• Static: In general, a static value is associated with the tabu list. It may 
depend on the size of the problem instance and particularly the size of 
the neighborhood. There is no optimal value of the tabu list for all prob-
lems or even all instances of a given problem. Moreover, the optimal 
value may vary during the search progress. To overcome this problem, a 
variable size of the tabu list may be used. 

• Dynamic: The size of the tabu list may change during the search with-
out using any information on the search memory. 

• Adaptive: In the adaptive scheme, the size of the tabu list is updated 
according to the search memory. For instance, the size is updated upon 
the performance of the search in the last iterations. 

Medium-Term Memory The role of the intensification is to exploit the 
information of the best found solutions (elite solutions) to guide the 
search in promising regions of the search space. This information is 
stored in a medium-term memory. The idea consists in extracting the 
(common) features of the elite solutions and then intensifying the search 
around solutions sharing those features. A popular approach consists in 
restarting the search with the best solution obtained and then fixing in 
this solution the most promising components extracted from the elite 
solutions. 



78 

The main representation used for the medium-term memory is the 
recency memory. First, the components associated with a solution have 
to be defined; this is a problem specific task. The recency memory will 
memorize for each component the number of successive iterations the 
component is present in the visited solutions. The most commonly used 
event to start the intensification process is a given period or after a cer-
tain number of iterations without improvement. 

The intensification of the search in a given region of the search space is 
not always useful. The effectiveness of the intensification depends on the 
landscape structure of the target optimization problem. For instance, if 
the landscape is composed of many basins of attraction and a simple TS 
without intensification component is effective to search in each basin of 
attraction, intensifying the search in each basin is useless. 

Long-Term Memory As mentioned many times, metaheuristics are 
more powerful search methods in terms of intensification. Long-term 
memory has been introduced in tabu search to encourage the diversifica-
tion of the search. The role of the long-term memory is to force the 
search in nonexplored regions of the search space. The main representa-
tion used for the long-term memory is the frequency memory. As in the 
recency memory, the components associated with a solution have first to 
be defined. The frequency memory will memorize for each component 
the number of times the component is present in all visited solutions. The 
diversification process can be applied periodically or after a given num-
ber of iterations without improvement. Three popular diversification 
strategies may be applied: 

• Restart diversification: This strategy consists in introducing in the 
current or best solution the least visited components. Then a new search 
is restarted from this new solution. 

• Continuous diversification: This strategy introduces during a search a 
bias to encourage diversification. For example, the objective function 
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can integrate the frequency occurrence of solution components in the 
evaluation of current solutions. Frequently applied moves or visited solu-
tions are penalized. 

• Strategic oscillation: Introduced by Glover in 1989, strategic oscilla-
tion allows to consider (and penalize) intermediate solutions that are in-
feasible. This strategy will guide the search toward infeasible solutions 
and then come back to a feasible solution. 

As for the intensification, the diversification of the search is not always 
useful. It depends on the landscape structure of the target optimization 
problem. For instance, if the landscape is a “massif central” where all 
good solutions are localized in the same region of the search space with-
in a small distance, diversifying the search to other regions of the search 
space is useless. The search time assigned to the diversification and the 
intensification components of TS must be carefully tuned depending on 
the characteristics of the landscape structure associated with the problem. 
TS has been successfully applied to many optimization problems. Com-
pared to local search and simulated annealing, various search compo-
nents of TS are problem specific and must be defined. The search space 
for TS design is much larger than for local search and simulated anneal-
ing. The degree of freedom in designing the different ingredients of TS is 
important. The representation associated with the tabu list, the medium-
term memory, and the long-term memory must be designed according to 
the characteristics of the optimization problem at hand. This is not a 
straightforward task for some optimization problems. Moreover, TS may 
be very sensitive to some parameters such as the size of the tabu list. 

4.4.3. Variable neighborhood search 

Variable neighborhood search has been recently proposed by P. Hansen 
and N. Mladenovic. The basic idea of VNS is to successively explore a 
set of predefined neighborhoods to provide a better solution. It explores 
either at random or systematically a set of neighborhoods to get different 
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local optima and to escape from local optima. VNS exploits the fact that 
using various neighborhoods in local search may generate different local 
optima and that the global optima is a local optima for a given neighbor-
hood. Indeed, different neighborhoods generate different landscapes (see 
Fig.4.2). 

 

Fig. 4.2 Behavior of VNS 

Variable Neighborhood Descent The VNS algorithm is based on the 
variable neighborhood descent, which is a deterministic version of VNS. 
VND uses successive neighborhoods in descent to a local optimum. 
First, one has to define a set of neighborhood structures 

௟ܰ  ሺ݈ ൌ  1, . . . , ݈୫ୟ୶ሻ.  Let ଵܰ be the first neighborhood to use and ݔ the 
initial solution. If an improvement of the solution ݔ in its current neigh-
borhood ௟ܰሺݔሻ is not possible, the neighborhood structure is changed 
from ௟ܰ to ௟ܰାଵ. If an improvement of the current solution ݔ is found, 
the neighborhood structure returns to the first one ଵܰሺݔሻ to restart the 
search. This strategy will be effective if the different neighborhoods used 
are complementary in the sense that a local optima for a neighborhood 

௜ܰ will not be a local optima in the neighborhood ௝ܰ. 
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VND Algorithm 

1. Input: a set of neighborhood structures ௟ܰ  for  ݈ ൌ  1, . . . , ݈୫ୟ୶   
:ݔ ൌ ݈ ; ଴ݔ ൌ׷  1. 

2. While  ݈ ൑  ݈୫ୟ୶  Do 
2.1. Find the best neighbor  ݔᇱ of  ݔ in ௟ܰሺݔሻ; 
2.2. If  ݂ሺݔ′ሻ  ൏  ݂ ሺݔሻ Then ݔ: ൌ ݈  ;Ԣݔ ؔ  1; 
2.3. Otherwise ݈ ؔ  ݈ ൅ 1; 

3. Output: Best solution found. 
 

The design of the VND algorithm is mainly related to the selection of 
neighborhoods and the order of their application. The complexity of the 
neighborhoods in terms of their exploration and evaluation must be taken 
into account. The larger are the neighborhoods, the more time consuming 
is the VND algorithm. Concerning the application order, the most popu-
lar strategy is to rank the neighborhoods following the increasing order 
of their complexity. 

General Variable Neighborhood Search VNS is a stochastic algorithm 
in which, first, a set of neighborhood structures are defined. Then, each 
iteration of the algorithm is composed of three steps: shaking, local 
search, and move. At each iteration, an initial solution is shaked from the 
current neighborhood ௞ܰ. For instance, a solution ݔԢ is generated ran-
domly in the current neighborhood.  

A local search procedure is applied to the solution ݔԢ to generate the so-
lution ݔԢԢ. The current solution is replaced by the new local optima ݔԢԢ if 
and only if a better solution has been found. The same search procedure 
is thus restarted from the solution ݔԢԢ in the first neighborhood. If no bet-
ter solution is found, the algorithm moves to the next neighborhood, ran-
domly generates a new solution in this neighborhood, and attempts to 
improve it. Let us notice that cycling is possible. 
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Fig.4.3.  Idea of VNS 

VNS Algorithm 
1. Input: a set of neighborhood structures ௞ܰ  for ݇ ൌ  1, … , ݇௠௔௫    

ൌ ݔ  ; ଴ݔ 
2. Repeat until stopping criteria 

2.1. ݇ ൌ  1 ; 
2.2. Repeat Until ݇ ൌ  ݇௠௔௫ 

2.2.1. Shaking: pick a random solution ݔԢ from the ݇th neigh-
borhood  ௞ܰሺݔሻ  of  ݔ ; 

ᇱᇱݔ  .2.2.2 ؔ local search (ݔԢ) ; 
2.2.3.  If ݂ ሺݔԢԢሻ  ൏  ݂ ሺݔሻ  

Then ݔ ؔ ݇ ;ԢԢ;  Continue to search with ଵܰݔ  ؔ 1 ; 
Otherwise  ݇ ؔ ݇ ൅ 1 ; 

3. Output: Best solution found. 
 

In addition to the design of a simple local search, the design of the VNS 
algorithm is mainly related to the selection of neighborhoods for the 
shaking phase. Usually, nested neighborhoods are used, where each 
neighborhood contains the previous one. A compromise must be found 
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between intensification of the search and its diversification through the 
distribution of work between the local search phase and the shaking 
phase. An increased work in the local search phase will generate better 
local optima (more intensification), whereas an increased work in the 
shaking phase will lead to potentially better regions of the search space 
(more diversification). 

As in local search, VNS requires a small number of parameters. For the 
shaking phase, the single parameter is the number of neighborhood struc-
tures. If large values are used (i.e., very large neighborhoods are consid-
ered), VNS will be similar to a multi-start local search. For small values, 
VNS will degenerate to a simple local search algorithm. 

 

4.4.4  GRASP 

The GRASP metaheuristic is an iterative greedy heuristic to solve com-
binatorial optimization problems. It was introduced in 1989. Each itera-
tion of the GRASP algorithm contains two steps: construction and local 
search. In the construction step, a feasible solution is built using a ran-
domized greedy algorithm, while in the next step a local search heuristic 
is applied from the constructed solution. A similar idea, known as the 
semigreedy heuristic, was presented in 1987, where a multi-start greedy 
approach is proposed but without the use of local search. The greedy al-
gorithm must be randomized to be able to generate various solutions. 
Otherwise, the local search procedure can be applied only once. This 
schema is repeated until a given number of iterations and the best found 
solution are kept as the final result. We notice that the iterations are 
completely independent, and so there is no search memory. This ap-
proach is efficient if the constructive heuristic samples different promis-
ing regions of the search space that makes the different local searches 
generating different local optima of “good” quality. In the GRASP algo-
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rithm, the seed is used as the initial seed for the pseudorandom number 
generator. 

GRASP Algorithm 

1. Input: Number of iterations. 
2. Repeat until stopping criteria 

ݔ .2.1 ൌ׷   ; ሻ݀݁݁ݏሺݕ݀݁݁ݎܩ ݉݋ܴ݀݊ܽ 
ᇱݔ .2.2 ؔ   ; ሻݔሺ݄ܿݎܽ݁ܵ  ݈ܽܿ݋ܮ 

3. Output: Best solution found. 
 

The main design questions for GRASP are the greedy construction and 
the local search procedures: 

• Greedy construction: In the constructive heuristic, as mentioned, at 
each iteration the elements that can be included in the partial solution are 
ordered in the list (decreasing values) using the local heuristic. From this 
list, a subset is generated that represents the restricted candidate list. The 
RCL list is the key component of the GRASP meta-heuristic. It repre-
sents the probabilistic aspect of the metaheuristic. The restriction criteria 
may depend on 

Cardinality-based criteria: In this case, the RCL list is made of the ݌ 
best elements in terms of the incremental cost, where the parameter 
 .represents the maximum number of elements in the list ݌

Value-based criteria: It is the most commonly used strategy. It consists 
in selecting the solutions that are better than a given threshold value.  

At each iteration, a random element is picked from the list RCL. Once an 
element is incorporated in the partial solution, the RCL list is updated. 
To update the RCL list, the incremental costs of each element composing 
the RCL list must be reevaluated. 

• Local search: Since the solutions found by the construction procedure 
are not guaranteed to be local optima, it is beneficial to carry out a local 
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search step in which the constructed solution is improved. Traditionally, 
a simple local search algorithm is applied. Nevertheless, any 
metaheuristic can be used: tabu search, simulated annealing, noisy meth-
od, and so on. 
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4.6. Exercises 
 
1. Determine whether the following statements are correct or not  

(1) If a problem is NP-complete, then it cannot be solved by any 
polynomial algorithm in worst cases. 

(2) If a problem is NP-complete, then we have not found any poly-
nomial algorithm to solve it in worst cases. 

(3) If a problem is NP-complete, then it is unlikely that a polynomi-
al algorithm can be found in the future to solve it in worst cases. 

(4) If a problem is NP-complete, then it is unlikely that we can find 
a polynomial algorithm to solve it in average cases. 

(5) If we can prove that the lower bound of an NP-complete prob-
lem is exponential, then we have proved that P≠NP. 

2. We know how to prove that a problem is NP-complete. How can we 
prove that a problem is not NP-complete. 

3. Consider the following problem. Given two input variables a and b, 
return “Yes” if a>b and “No” if otherwise. Design a non-
deterministic polynomial algorithm to solve this problem. Trans-
form it into a Boolean formula such that the algorithm returns “Yes” 
if and only if the transform Boolean formula is satisfiable. 

4. Maximal clique decision problem: A maximal clique is a maximal 
complete subgraph of a graph. The size of a maximal clique is the 
number of vertices in it. The clique decision problem is to determine 
whether there is a maximal clique at least size k for some k in a 
graph or not. Show that the maximal clique decision problem is NP-
complete by reducing the satisfiability problem to it. 
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5. Traveling salesman decision problem: Show that the traveling 
salesman decision problem is NP-complete by proving that the 
Hamilton cycle decision problem reduces polynomially to it.  

6. Bottleneck traveling salesman decision problem:  Given a graph and 
a number M, the bottleneck traveling salesman decision problem is 
to determine whether there exist a Hamiltonian cycle in this graph 
such that the longest edge of this cycle is less that M. Show that the 
bottleneck traveling decision problem is NP-complete. 

7. Read the book of Papadimitriou and Steiglitz for the NP-
completeness of the 3-dimential matching problem. 

8. Let there be a set of points densely distributed on a circle. Apply the 
approximation Euclidean traveling salesman algorithm to find an 
approximation tour for this set of points. Is this result also an opti-
mal one?  

9. Consider the following bottleneck optimization problem: We are 
given a set of points in the plane and we are asked to find k points 
such that among these k points, the shortest distance is maximized. 
This problem is NP-hard. Design a Lin-Kernighan type heuristic for 
this problem.  

10. Consider the bottleneck traveling salesman problem in Euclidean 
plane. Design the SA, VNS, GD, TS, and GRASP meta-heuristics 
for this NP-hard problem. 
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