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Abstract: We consider the well known NP–hard teacher/class timetabling problem. 
Variable neighborhood search and tabu search heuristics are developed based on idea of 
the Formulation Space Search approach. Two types of solution representation are used in 
the heuristics. For each representation we consider two families of neighborhoods. The 
first family uses swapping of time periods for teacher (class) timetable. The second 
family bases on the idea of large Kernighan-Lin neighborhoods. Computation results for 
difficult random test instances show high efficiency of the proposed approach.  
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1. INTRODUCTION  

In this paper we consider the teacher/class timetabling problem for the 
Specialized Physical–Mathematical School which is a part of the Novosibirsk State 
University. All students in this school are gathered into classes. Each class has its own 
list of subjects with prescribed teachers. The teachers in this school are, in fact, the 
scientific researchers. They are working at the Novosibirsk State University and at the 
Physical and Mathematical Institutes of the Novosibirsk Scientific Center. So, the 
teachers have a lot of restrictions for teaching time. Each teacher has a list of available 
time periods. Moreover, some time periods in this list actually are inconvenient for him 
(her). The managers of the school try to create the most suitable timetable for the 
teachers, i.e. a timetable without time gaps and with classes in the most appropriate time 
for the teachers.  

In this paper we describe the mathematical model for this timetabling problem 
and develop local search heuristics based on idea of the Formulation Space Search 
approach (FSS) [4], [7]. In Section 2 we present an exact mathematical formulation for 
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this multi criteria optimization problem and reduce it to the classical timetable problem 
by a penalty function [9]. In Section 3 we introduce two types of solution representations 
and show how to transform one of them to the other. In Section 4 a polynomial time 
heuristic is developed in order to create a starting solution for local search. For each time 
period, the well known assignment problem is applied and used for finding a timetable 
with minimal violations of the teachers restrictions. In Section 5 we introduce four 
families of neighborhoods. The first two families use swapping of time periods for 
teacher and class timetables. The last two families are based on the idea of large 
Kernighan–Lin neighborhoods [5], [6]. In Section 6 we present the Probabilistic Tabu 
Search algorithm [2] where two types of the solution representations are systematically 
alternated to diversify the search. The randomization of the neighborhoods is used to 
speedup each iteration of the algorithm. In Section 7 the Variable Neighborhood Search 
heuristic [3] is presented. We modify the framework of this metaheuristic and change not 
only the neighborhoods but solution representations as well. In the final Section 8 we 
discuss the computational results for random test instances with real dimension for the 
School and illustrate the high efficiency of the proposed approach. 

2. PROBLEM FORMULATION  

In the teacher/class timetabling problem we are given the following finite sets: J 
is the set of subjects, K is the set of classes, L is the set of teachers, T is the set of time 
periods. All periods are distributed in 6 week days. By lT T⊆  we denote the set of time 
periods which are available for teacher l L∈ . We suppose that classes are disjoint sets of 
students. All students in each class have the same subjects, and correspondence between 
subjects and teachers for a chosen class is one-to-one. Without loss of generality we may 
assume that for each subject j J∈  it is known class ( )k j  and teacher ( )l j . By ja  we 
denote the number of lessons for subject j J∈ . We assume that there is sufficient 
number of rooms in the School and it is possible to find an appropriated room for each 
class for any time period.  

Let us introduce the decision variables:  

1, if subject  is assigned in period 
0, otherwise.jt

j t
x ⎧

= ⎨
⎩

 

An arbitrary matrix ( )jtX x=  is called a timetable.  
 
Definition 1. We say that a timetable ( )jtX x=  is feasible if the following restrictions hold:  
a) a teacher l has at most one lesson at a time period t if lt T∈  and no lessons otherwise:  

| ( )
1, , ,

0, , ;

jt l
j l j l

jt l

x t T l L

x t T l L
=

≤ ∈ ∈

= ∉ ∈

∑
 

b) a class k has at most one lesson at a time period t:  
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| ( )
1, , ;jt

j k j k
x k K t T

=
≤ ∈ ∈∑  

c) all subjects are distributed by time periods:  

, .jt j
t T

x a j J
∈

= ∈∑  

 

The goal is to find a feasible timetable with minimal number of violations of the 
following soft constraints:  

1. each teacher has no time gaps;  
2. each teacher has no lessons in inconvenient time periods;  
3. each class has no double lessons.  

 
This is a multi criteria discrete optimization problem. We reduce it to the well 

known timetable design problem (see [1], page 243) by a penalty function. More exactly, 
we wish to minimize the following objective function:  

6 6
1 2 3

1 1
( ) ( ) ( ) ( ),ld ld lt lt kd kd

l L d l L t T k K d
F X f X f X f Xα β γ

∈ = ∈ ∈ ∈ =
= + +∑ ∑ ∑ ∑ ∑ ∑  

where positive α, β, and γ are the penalties and ( )if X  is the number of violations of the 
soft restriction i, i = 1, 2, 3.  

The optimization problem is NP–hard. Moreover, the decision problem on 
existence of a feasible solution is NP–complete [1]. So, we introduce semi feasible 
solutions to enlarge the search space and apply metaheuristics to find near optimal 
solutions.  

3. SOLUTION REPRESENTATIONS  

We introduce two types of semi feasible solutions.  
 

Definition 2. A timetable is a semi feasible solution of type a if it satisfies the restrictions 
(b) and (c).  
 

Class\Period 1  2  3  4  5  . . . T  
1  1  2  3  1  2  . . . 4  
2  J  0  J  5  6  . . . 5  
3  11 8  7  9  8  . . . 11 
M  M   M   M   M   M   . . . M   
K  21 22 23 24 24 . . . 22 

 

Figure 1: Semi feasible solution of type a  

It is convenient to represent a such semi feasible solution as a ×K T  matrix 
( )a

ktS , | |K=K , | |T=T , with values in {0,1,..., }J , | |J=J , where the k-th row of the 
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matrix is a timetable for the k-th class. Nonzero entries of the row mean subjects for the 
class k at the time period t; 0a

ktS =  means free time. Figure 1 illustrates an example of the 

( )a
ktS . For this representation, each class has at most one lesson per time period, but a 

teacher can get several lessons at the same time for different classes. Moreover, this time 
period may be unavailable for that teacher. Sure, we can easy compute solution X by the 
matrix aS . So, we call aS

 
as a solution too.  

 
Definition 3. A timetable is a semi feasible solution of type b if it satisfies the restrictions 
(a) and (c).  
 

In a similar way we represent such a semi feasible solution as a ×L T  matrix 
( )b

ltS , | |L=L , with values in { 1,0,1,..., }− J  [10]. Entries of the matrix mean subjects for 

the teacher l at the time period t if 0b
ltS > , and free time if 0b

ltS ≤ . The case 1b
ltS = −  

means that the time period t is unavailable for the teacher l. In Figure 2 we present an 
example of ( )b

ltS .  
 

Teacher\Period 1 2 3 4 5 . . . T 
1 1 0 J 2 2 . . . J 
2 3 −1 −1 22 0 . . . 3 
3 −1 −1 8 14 4 . . . −1
M  . M  M  M  M  M  . . . M  
L 7 9 5  21 . . . 0 

 

Figure 2: Semifeasible solution of type b  

The advantage of this representation is that it eliminates conflicts for teachers. 
The occurrence of conflicts in column happens when in a given period t more than one 
teacher is allocated to a class.  

We say that a matrix aS  (a matrix bS ) contains m conflicts if m is a minimal 
number of its entries which vanishing lead that the restrictions (a) (restrictions (b)) hold. 
Sure, the restrictions (c) are not satisfied in this case.  

 
Proposition 1. An arbitrary semi feasible solution of type a can be reduced to a semi 
feasible solution of type b in polynomial time without increasing of the number of 
conflicts.  
 

Proof: Let m denote the number of conflicts for a solution aS . We replace m entries in 
aS  by 0 in such a way that the restrictions (a) hold and denote the modified matrix by 

S′ . The restrictions (a) and (b) hold for it and the total violation for the restrictions (c) is 
m. Using S′

 
we can compute a matrix bS

 with the same property. In order to satisfy the 
restriction (c) we identify the lost lessons for each teacher and spread these lessons 
through 0 entries of the bS . As a result, the restrictions (c) hold, but the restrictions (b) 
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may be not satisfied. So, the bS
 is semi feasible solution of type b. Obviously, the 

number of conflicts is at most m which complete the proof.  
 

Proposition 2. An arbitrary semi feasible solution of type b can be reduced to a semi 
feasible solution of type a in polynomial time without increasing of the number of 
conflicts.  
 

The proof is similar.  
It is noticed that an arbitrary feasible solution can be presented as a solution aS  

or bS , but the inverse statement is not true.  
For a semi feasible solution X let us introduce the following penalty function:  

( ) ( ) ( ) ( ),a b
lt lt kt kt

l L t T k K t T
F X F X f X f Xλ μ

∈ ∈ ∈ ∈
= + +∑ ∑ ∑ ∑  

where min(λ,µ) > max(α,β,γ) and the function ( )af X , ( )bf X  are defined the number of 
violations of the restrictions (a) and (b) correspondingly. If F(X) = F(X) then X is a 
feasible solution. If F(X) = 0 then X is optimal solution. But the optimal solution may 
have a positive value of the penalty function.  

 
 

4. STARTING SOLUTION  

In order to get a starting semi feasible solution for the local search methods we 
use the well known assignment problem [8]. We apply it for each time period t one by 
one with adaptation of the problem parameters. As a result we create a semi feasible 
solution of type b.  

Let us introduce auxiliary variables  

1 if teacher  has a lesson in class  in time period ,
0, otherwise.kl

l k t
z

⎧
= ⎨
⎩

 

Sure, if the set ( ) { | : ( ) , ( ) }K l k K j J k j k l j l= ∈ ∃ ∈ = =  is empty or lt T∉  then we have to 
put 0klz = . But if | ( ) | 1K l ≥ , we have an assignment problem for teachers and classes.  

 

Let ( )lb t  denote the total number of lessons which are not included in the 
starting timetable for teacher l up to the time period t, ( )lc t  is the cardinality of the set 

\ {1,..., 1}lT t −  and ( )klh t  denote the total number of lessons in class k with teacher l which 
are not included in the starting timetable up to the time period t. Put  

( ) ( ) / ( ), if  ( ) ( ), ( ), ,
, if  ( ) ( ), ( ), ,

1, if  ,
0, otherwise,

l kl l l l l

l l lt
kl

l

b t h t c t b t c t k K l t T
H b t c t k K l t T

H
t T

< ∈ ∈⎧
⎪ = ∈ ∈⎪= ⎨− ∉⎪
⎪⎩

 

where H is large number. Now, the assignment problem for the time period t T∈  is the 
following:  
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max t
kl kl

k K l L
H z

∈ ∈
∑ ∑  

s.t. 1, ,kl
l L

z k K
∈

≤ ∈∑  

1, ,kl
k K

z l L
∈

≤ ∈∑  

{0,1}, , .klz l L k K∈ ∈ ∈  
 

Let *
klz  be the optimal solution of the problem. Define  

*

0 *

1, if ,

, if 1, , ( ),

min{ | ( ) 0}, if ( ) ( ), 0 and ,

0 for all other cases.

l

kl l
lt

kl l l kl lk K

t T

k z t T k K l
S

k k h t b t c t z t T∈

− ∉⎧
⎪

= ∈ ∈⎪
= ⎨

= > = = ∈⎪
⎪
⎩

∑
 

In order to get a semi feasible solution of type b we should define a subject j for 
each positive entry of the matrix ( )ltS . By definition of the parameters t

klH , the set of 
appropriated subjects is not empty. We select one of them at random.  

5. NEIGHBORHOODS  

Now we introduce four families of neighborhoods:  
– ( ), 1a

iN S i ≥ , denote swap neighborhoods of a semi feasible solution aS , 

– ( ), 1b
iN S i ≥ , denote swap neighborhoods of a semi feasible solution bS , 

– ( ), 1a
iKL S i > , denote Kernighan–Lin neighborhoods of aS , 

– ( ), 1b
iKL S i > , denote Kernighan–Lin neighborhoods of bS . 

 

The neighborhood 1( )aN S  consists of neighboring solutions which are obtained 

from aS  by swapping two different values of a given row in the matrix ( )a
ktS . Each 

element in this neighborhood is associated with a triplet , ,k t t′ ′′< > , where t′  and t′′  are 
the time periods, k is the class, and a

ktS ′  and a
ktS ′′  are the interchanged subjects. For i > 1, 

( )a
iN S  are formed of solutions which are obtained by the sequence of interchanges with 

triplets { , , } ,j j j ik t t k K≤′ ′′< > ∈  is fixed. Families ( )b
iN S  are defined in a similar way. 

Moreover, only non-negative values of the matrix ( )b
ltS  can be interchanged. We note 

that arbitrary feasible solution can be reached with the use of an appropriate sequence of 
neighboring solutions for the neighborhoods 1( )aN S  or 1( )bN S .  
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A Kernighan–Lin neighborhood ( )a
iKL S  consists of i elements and can be 

described by the following steps [5].  
1.  Choose a triplet , ,k t t′ ′′< >

 
such that the corresponding neighboring solution 

1( )aS N S′∈  is the best even if it is worse than aS .  

2.  Put :aS S′= . 
3.  Repeat steps 1, 2   i times; if a triplet was used at steps 1 or 2 of previous 

iterations, it can not be used any more.  
 

The sequence of triplets { , , }j j j ik t t ≤′ ′′< >  defines i neighbors jS  of the solution 
aS . We say that aS  is a local minimum with respect to the iKL –neighborhood if 

( ) ( )a
jF S F S≤  for all j i≤ . A local minimum with respect to the iKL – neighborhood is a 

local minimum with respect to 1N  and is not necessary a local minimum with respect to 

, 1iN i > . Family ( )b
iKL S  is defined similarly.  

 

 

Figure 3: Typical PTSR behavior, p = 0.5  

 

6. PROBABILISTIC TABU SEARCH  

The Tabu Search method [2] is one of the powerful approaches for solving 
difficult combinatorial problems. We develop a probabilistic variant of this method 
where the solution representations are systematically changed during the search (PTSR 
for short). Let pN  denote a random part of the neighborhood 1N . Each element of the 

1N  is included into the pN  with probability p > 0 independently from other elements. 

We use this randomized neighborhood on each iteration of the PTSR. If 0pN = /  for an 
iteration of the algorithm we omit it. The tabu list consists of the triplets , ,k t t′ ′′< >  or 

, ,l t t′ ′′< >  according to the solution representations. We change the solution 
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representation for diversification of the search if the best found solution *S  is not 
updated for a long time. The framework of the PTSR is the following:  
PTSR Algorithm  

1. Compute a starting solution S, put * :S S=  and create empty tabu list.  
2. Repeat the following sequence until the stopping condition is met:  

(a) Find the best nontabu neighbor ( )pS N S′∈ .  
(b) Put :S S′= , and update the tabu list. 
If *( ) ( )F S F S<  then * :S S= . 
If ( ) 0F S =  then goto 3. 
(c) Change representation of the current solution and put *:S S=  if *S  is not updated 
during prescribed number of iterations.  

3. Return *S .  
 

Figure 3 shows the typical behavior of the PTSR. By small square we indicate 
the iterations when the incumbent solution *S  is updated. It is easy to identify the 
iteration 3000 when the solution representation is changed. We return to the best found 
solution (step 2(c) *:S S= ) and get a new type of curve. As a result, new incumbent 
solutions founded.  

7. VARIABLE NEIGHBORHOOD SEARCH  

We adjust the framework of the Variable Neighborhood Search (VNS) meta-
heuristic [3] for our problem and change not only the neighborhoods but solution 
representations as well.  

 
VNSR Algorithm  

1. Compute a starting solution S and sizes of neighborhood max max,i j .  
2. Repeat the following sequence until the stopping condition is met:  

(a) Set i := 1; if F(S) = 0 then goto 3.  
(b) Repeat the following steps until maxi i= :  

i)  Shaking. Generate a solution S′  at random from the ( )iN S .  
ii) Local search. Apply the local descent algorithm with respect to 1N  
 neighborhood.  
iii)  Large neighborhood search. Apply the local descent algorithm with respect to 
 

maxjKL  neighborhood. Denote the obtained local minimum as S′′ .  

iv)  Move or not. If ( ) ( )F S F S′′ <  then :S S′′=  and go to 2(a); otherwise, set 
 1i i← + .  

(c) Change the solution representation and go to 2(a).  
3. Return S.  
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Figure 4 shows the typical behavior of the VNSR. The generation of random 
solution at the step Shaking is shown by dotted lines. One can observe large peaks which 
correspond to random jumps by maxi i≤  triplets. The continuous lines show the local 
descent under the 1N  neighborhood. The small dotted lines correspond to the local search 
under the KL–neighborhood. Note that the current solution S in this algorithm is actually 
the incumbent solution. So, additional intensification actions are not required.  

8. COMPUTATIONAL RESULTS  

The developed software are tested on random benchmarks with real dimensions 
for the School: K = 44, L = 120, 6 3 18= × =T  and 44 18 792= × =J .  

 

Figure 4: Typical VNSR behavior, max max5, 30i j= =  

Each teacher has T/2 available time periods and 20% of them are inconvenient. 
Each class has T lessons. The penalty coefficients are defined as follows: 1α α′= + , 

3β β′= + , 5γ γ ′= + , 10λ λ′= + , 10μ μ′= + , where , , , ,α β γ λ μ′ ′ ′ ′ ′  are random noise, 
0 , , , , 1α β γ λ μ′ ′ ′ ′ ′< . This rule removes plateaus and improves the landscape for local 
search methods. The running time of the algorithms is limited by 5 minutes of IBM PC 
Pentium 1.8MgG.  

 
Table 1: Computational results for the first class of benchmarks  

PTSR VNS VNSR 
N 

%Opt Aver Worst %Opt Aver Worst %Opt Aver Worst 
Opt 

1 97 92.05 95.0 96 92.04 94.0 93 92.07 93.0 92 
2 89 78.16 80.0 81 78.44 83.0 87 78.32 81.0 78 
3 100 137.0 137.0 93 137.09 140.0 93 137.11 140.0 137 
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4 36 97.96 101.0 38 97.9 101.0 52 97.69 103.0 97 
5 90 97.16 99.0 83 97.31 100.0 87 97.28 103.0 97 

 
Table 1 shows the optimal values (Opt) for 5 instances and frequency (%Opt) of 

finding this values by metaheuristics. We solve each instance 100 times and present the 
average values of the best found solutions (Aver) and the worst values (Worst). Note that 
the difference between these columns is quite small. So, we have robust local search 
methods. For all instances we find the optimal solutions by CPLEX software in about 1.5 
hours. The metaheuristics discover these solutions in 1.5 min in average. For comparing, 
we present the result for VNS algorithm without changing representations. For easy 
instances (all except 4) the both variants VNS and VNSR show the same results. But for 
the difficult instance 4, where the frequency of finding the optimal solution is small, we 
observe some advantages of VNSR against VNS. The same effect we can see for another 
class of test instances. We test the algorithms for benchmarks with the same dimensions 
but now each teacher has 30% of available time periods and 20% of them are 
inconvenient for teaching. In other words, the teachers are busier.  

 
Table 2: Computational results for the second class of benchmarks  

PTSR VNS VNSR N %Opt Aver Worst %Opt Aver Worst %Opt Aver Worst Opt 

1 18 82.3 86.0 62 80.48 83.0 58 80.54 83 80 
2 24 112.38 118 58 110.9 113.0 76 110.56 113.0 110 
3 16 139.56 145.0 50 137.7 141.0 40 137.8 140.0 137 
4 0 137.16 155.0 0 137.84 153.0 6 132.5 144.0 124 
5 28 121.02 125.0 42 121.04 130.0 48 120.58 130.0 119 

 
 
Table 2 shows the computational results for this case. Sure, it is more difficult 

class. The frequency of finding the optimal solutions is not so optimistic as for previous 
case but the difference between Average values and Optimal values is small again. So, 
we may conclude that the local search methods are efficient and effective. Change of the 
solution representation is a useful idea for both methods. We hope it may be successfully 
applied for other approaches as well.  

 
 

9. CONCLUSIONS  

In this paper we consider the teacher/class timetabling problem and develop 
local search heuristics based on idea of FSS approach. Two types of solution 
representations are used in the heuristics and systematically alternate during the search 
process. We show by computational experiments that idea of two equivalent but not 
identical solution representations is useful for this timetable problem. We believe that the 
FSS approach can improve the local search heuristics for other NP-hard problems.  
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