
Complexity of local search for the p-median problem ∗

Ekaterina Alekseeva, Yuri Kochetov, Alexander Plyasunov

Sobolev Institute of Mathematics, Novosibirsk
{ekaterina2, jkochet, apljas}@math.nsc.ru

Abstract

For the p-median problem we study complexity of finding a local minimum in the worst and the

average cases. We introduce several neighborhoods and show that the corresponding local search

problems are PLS-complete. In the average case we note that standard local descent algorithm is

polynomial. A relationship between local optima and 0–1 local saddle points is presented.
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1 Introduction

In the p-median problem we are given a set I = {1, . . . , n} of potential locations for p facilities, a

set J = {1, . . . , m} of customers, and a matrix (gij), i ∈ I, j ∈ J of transportation costs to serve the

customers from the facilities. The goal is to find a subset S ⊂ I, |S| = p such that to minimize the

objective function

F (S) =
∑

j∈J

min
i∈S

gij .

It is well-known combinatorial problem [5] which is NP-hard in the strong sense.

In this paper we study complexity of finding a local minimum for polynomially searchable neigh-

borhoods. We present a sufficient condition when this local search problem is PLS-complete. Several

polynomial neighborhoods are introduced and it is shown that in the worst case the standard local

descent algorithm takes exponential number of steps with each neighborhood regardless of the tie-

breaking and pivoting rules used. But in the average case this algorithm is probably polynomial.
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We consider some pivoting rules and present computational results for random test instances. We

note that the number of steps for the algorithm grows as a linear function for the pivoting rules Best

improvement and First improvement and grows like a quadratic function for the Worst improvement

rule. Some theoretical explanations of this phenomenon are discussed.

The paper is organized as follows. In Section 2 we define some neighborhoods. In Section 3

the PLS-completeness of the p-median problem with these neighborhoods is established. We define

approximate local optima and study corresponding local search problems. In Section 4 a relationship

between Swap local optima and 0–1 local saddle points is presented. We rewrite the p-median

problem as a minimization problem for pseudo-Boolean function and show that Swap local optima

are 0–1 vectors satisfied the Karush–Kuhn–Tucker conditions and vice versa. In Section 5 we study

the running time of the local descent algorithms in the average case. Pivoting rules are introduced

in Section 6. Computational results and further research directions are discussed in Sections 7, 8.

2 Neighborhoods

The Swap neighborhood is one of the effective and efficient neighborhoods for the p-median problem

[7]. It contains all subsets S′ ⊂ I, |S′| = p, with the Hamming distance from S′ to S at most 2.

Similarly, the k-Swap neighborhood is the set of all feasible solutions with Hamming distance from

S′ to S at most k. Finding the best element in this neighborhood is time consuming for large k. So,

this neighborhood is interesting for theoretical study only.

The Lin-Kernighan neighborhood (LK) is a subset of the k-Swap neighborhood. It consists of k

elements, k ≤ n− p, and can be described by the following steps [4].

Step 1. Choose two facilities iins ∈ I \S and irem ∈ S such that F (S∪{iins}\{irem}) is minimal

even if it greater that F (S).

Step 2. Perform exchange of irem and iins.

Step 3. Repeat k times the steps 1,2 so that a facility can not be chosen to be inserted in S if

it has been removed from it in one of the previous iterations of step 1 and step 2.

The sequence {(iτins, i
τ
rem)}τ≤k defines k neighborhoods Sτ for solution S. We say that S is a

local minimum with respect to LK-neighborhood if F (S) ≤ F (Sτ ) for all τ ≤ k. Let us define

the neighborhood LK1(S) as a subset of LK(S) which contains one element only, Sτ , τ = 1. By
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definition, LK1(S) ⊂ Swap(S).

The Fiduccia-Mattheyses neighborhood (FM) is defined as the LK-neighborhood with a another

rule for the choice of facilities iins and irem at the step 1 [2]. Now, this step consists of two stages.

At the first stage we select irem ∈ S such that F (S \{irem}) is minimal. At the second stage we find

iins ∈ I \S such that F (S∩{iins}\{irem}) is minimal. It defines the sequence Sτ , τ ≤ k of neighbors

for the solution S. Neighborhood FM1(S) contains only the first element from this sequence.

We say that neighborhood N1 is stronger than neighborhood N2 (N2 ¹ N1) if every N1-local

minimum is N2-local minimum. It is early to verify that

FM1 ¹ Swap ¹ LK1 ¹ LK,

LK1 ¹ Swap ¹ k − Swap,

FM1 ¹ FM.

For a given constant k > 0 all neighborhoods are polynomial. Hence, the p-median problem with

every of these neighborhoods belongs to the class PLS [9].

3 The worst case complexity

There are the most difficult local search problems in the class PLS. They are called PLS-complete

problems [3]. One of them is the graph bipartition problem with FM1 neighborhood [9]. We claim

that the p-median problem with FM1 neighborhood is the most difficult local search problem as

well.

Theorem 1. The p-median problem with FM1 neighborhood is PLS–complete.

Theorem 2. Suppose that the neighborhood N is stronger than neighborhood FM1 and the p-

median local search problem with neighborhood N belongs to the class PLS. Then it is PLS-complete.

The standard local descent algorithm starts from an initial solution and moves to a better

neighboring solution until terminates at a local minimum.

Theorem 3. The standard local descent algorithm takes exponential time in the worst case for

the Swap, LK,LK1, FM, FM1 neighborhoods regardless of the tie–breaking and pivoting rules used.

The standard local minimum problem is the following. We are given an instance of the p-median

problem, a neighborhood, and an initial solution. The goal is to find a local minimum with respect
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to the neighborhood that would be produced by the standard local descent algorithm starting from

the initial solution.

Theorem 4. Standard local minimum problem for the Swap, LK,LK1, FM, FM1 neighborhoods

is PSPACE-complete.

For ε > 0 solution Sε is called a (ε,N)-local minimum if F (Sε) ≤ (1+ ε)F (S) for all S ∈ N(Sε).

Theorem 5. If the neighborhood N is polynomially searchable then a (ε,N) local minimum for

the p-median problem can be founded in polynomial time both in the problem size and 1/ε.

Theorem 6. If FM1 ¹ N and there is a polynomial time algorithm to find a feasible solution

S0 for the p-median problem such that F (S0) ≤ F (S) + ε for all S ∈ N(S0) and a constant ε > 0

then we can find a local optimum in polynomial time for all problems in the class PLS.

4 Local saddle points

In this section we show that there is a strong connection between Swap-local minimum and the local

saddle points for the Lagrange function. Let us rewrite the p-median problem as the minimization

problem for a pseudo–Boolean function [1]:

P (y) =
∑

j∈J ′
aj

∏

i∈Ij

yi → min

s.t.
∑

i∈I

yi = n− p, yi ∈ {0, 1}, i ∈ I,

where aj ≥ 0, Ij ⊂ I, j ∈ J ′ = {1, . . . , n ×m}. For feasible solution S of the p-median problem we

have i ∈ S ⇔ yi = 0. Moreover, F (S) = P (y). The Lagrange function with multipliers λ, µi ≥
0, σi ≥ 0, i ∈ I and continuous variables 0 ≤ yi ≤ 1, i ∈ I is the following

L(y, λ, µ, σ) = P (y) + λ(
∑

i∈I

yi − n + p) +
∑

i∈I

σi(yi − 1)−
∑

i∈I

µiyi.

The vector (y∗, λ∗, µ∗, σ∗) is called the saddle point with respect to Swap neighborhood if

L(y∗, λ, µ, σ) ≤ L(y∗, λ∗, µ∗, σ∗) ≤ L(y, λ∗, µ∗, σ∗)

for all λ, µ ≥ 0, σ ≥ 0 and y ∈ Swap(y∗).

Theorem 7. Boolean vector y∗ = (y∗1, . . . , y∗n) such that
∑

i∈I y∗i = n − p, is a Swap local

minimum if and only if there are multipliers λ∗, µ∗i ≥ 0, σ∗i ≥ 0, i ∈ I such that vector (y∗, λ∗, µ∗, σ∗)

is the saddle point of function L with respect to the Swap neighborhood.
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Using the Karush–Kuhn–Tucker conditions we can rewrite this statement as follows.

Theorem 8. Boolean vector y∗ = (y∗1, . . . , y∗m) is a Swap local minimum if and only if there are

multipliers λ∗, µ∗i ≥ 0, σ∗i ≥ 0, i ∈ I such that vector y∗ is an optimal solution of the problem:

L(y, λ∗, µ∗, σ∗) −→ min
y∈Swap(y∗)

s.t. (
∑

i∈I

yi − n + p)λ∗ = 0,

σ∗i (yi − 1) = 0, µ∗i yi = 0, i ∈ I,

∑

i∈I

yi = n− p.

5 The average case complexity

In section 3 we have shown that in the worst case the standard local descent algorithm takes expo-

nential number of steps to reach local minimum. Now we study the behavior of the algorithm in the

average case. Let us assume that we can rank all feasible solutions from the worst solution to the

best one. Following [8] we consider the distribution of problem structure rather than the distribution

of problem data.

Theorem 9. Let F (S) be a random function and all rankings of feasible solutions are equally

likely to occur. If p is a constant, then the expected number of steps for the standard local descent

algorithm with Swap neighborhood is less than 1.5en regardless of the tie-breaking and pivoting rules

used.

Theorem 10. Let F (S) be a random function and all rankings of feasible solution are equally

likely to occur. If p = dαne for given 0 < α < 1 then the expected number of steps for the standard

local descent algorithm with Swap neighborhood is less than 1.5en2 regardless of the tie-breaking and

pivoting rules used.

Below we consider several pivoting rules for the Swap neighborhood and present the number of

steps for the standard local descent algorithm as a function of n.
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6 Pivoting rules

Let Swap∗(S) = {S′ ∈ Swap(S) | F (S′) < F (S)} be a subset of neighbors for S with better value

of the objective function. Pivoting rule selects a neighbor for current solution at each step of the

local descent. This choice may affect the complexity of the algorithm drastically. We consider six

pivoting rules and analysis their influence on the number of steps and relative errors of the local

optima obtained. Some of these rules are well known and used in metaheuristics. Other ones are

new and help us to understand the landscape of the p-median problem better.

The Best improvement rule selects a solution in Swap∗(S) with the smallest value of the objective

function. It seems this rule is the most popular in the local search methods.

The Worst improvement rule selects a solution in Swap∗(S) with the largest value of the objective

function. According to this rule we use the most flat direction for descent. So, we guess that this

rule produces more steps and the final local minimum may be better than for the previous case.

The Random improvement rule picks a neighbor for S in Swap∗(S) at random. It is one of the

fastest pivoting rule and can lead to different local optima from the same starting solution.

The First improvement rule is one of the famous pivoting rule. It prescribe to use an element

from Swap∗(S) which is found in Swap(S) at first. We test the neighbors of S in lexicographical

order and terminate when the first better neighbor is discovered.

The Circular rule is closely related to the previous one. It differs from it in one point only. The

First improvement rule begins the search at every step from the same starting position, for example,

from the lexicographical minimal position. The Circular rule begins from the position where the

previous step terminates [6]. An idea of this rule deals with the following observation. In many cases

the unprofitable movings for the current solution will be unprofitable for the neighboring solutions.

So, it is better to continue the exploring instead of starting from the initial position. However, this

property should be checked for each problem particularly.

Finally, the Maximal Freedom rule selects a neighbor S′ in Swap∗(S) with maximal cardinality

of the set Swap∗(S′). This rule is more time consuming but it gives us a neighbor with maximal

number of directions for further improvement. Number of elements in Swap∗(S) we call the freedom

of the solution S. An idea of maximal freedom was to find a rule which generates the maximal

number of steps for the local descent algorithm. As we will see later, it is not the case.
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7 Computational experiments

We test the local descent algorithm with described pivoting rules on random instances. For all

instances we put n = m. The values gij are taken from interval [0, 1000] at random with uniform

distribution. We study two cases p = 15 and p = dn/10e. The goal of our experiments is to check

the conclusions of Theorems 7 and 8 for random matrices (gij). Note that we know nothing about

the rankings of the feasible solutions.

Figures 2 and 3 show the average number of steps from random starting solution to a Swap

local optimum. Pivoting rules Freedom is presented at the both Figures. For all rules except the

Worst, the number of steps grows as a linear function. For the Worst rule we see nonlinear function.

Number of steps for local descent grow rapidly and the difference between the Worst and the Best

rules is extremely high for n > 100. So, pivoting rules are important from the viewpoint of running

time. Figure 1 confirms the conclusion for relative error as well. The Best rule has large average

deviation from the best found solution. The Freedom rule show the smallest deviation. Note that it

is the most time consuming rule. The same behavior of the local descent algorithm we observe for

Euclidean instances when the elements gij are Euclidean distances for randomly chosen points on

two dimensional plane.

Figures 5, 6 illustrate the average number of steps for the algorithm in case p = 15. All rules

show the linear functions for average number of steps. The Worst rule has the largest number of

steps but its relative error is close to the rules First, Circular, and Random. The Best rule leads to

the local minima with large relative errors (see Figure 4).

8 Conclusions

For the p-median problem we show that standard local descent algorithm takes exponential number

of steps in the worst case and polynomial number of steps in the average case. We introduce

several neighborhoods and prove that the corresponding local search problems are PLS-complete.

We illustrate the relationship between Swap local optima and the classical Karush–Kuhn–Tuker

conditions and 0–1 local saddle points. For further research it is interesting to study the distribution

of local optima in the feasible domain, to check the big valley conjecture, and properties of the basin

of attraction for the global optimum.
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Figure 3: The average number of  steps for the  Worst and 
                the Freedom rules, p=n/10

Figure 2: The average number of steps without  the  Worst rule, 
                p=n/10
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Figure 6: The average  number of steps for the  Worst and the 
               Freedom rules, p=15

Figure 5: The average number of steps without the  Worst rule, p=15
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