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Abstract. In this paper we consider a well-known NP-hard resource constrained project
scheduling problem. We develop an algorithm based on the new type of greedy heuris-
tics. The heuristic supposes the solving of an auxiliary bottleneck problem forming the
probabilistic strategy based on the optimal solution of the auxiliary problem. We use a
forward-backward technique to improve the schedule. The algorithm contains the local de-
scent phase. Two neighborhood structures are used in the standard local descent procedure.
Computational results for the Patterson and PSPLib benchmark instances are presented.
The results show that the new algorithm outperforms many existing methods for solving
the resource constrained project scheduling problem.

Key Words. Project Scheduling, Sampling Methods, Bottleneck problem.

1 Introduction

In the resource-constrained project schedul-
ing problem (RCPSP) we consider a single
project which consists of m activities with non-
preemptable duration. The activities are interre-
lated by precedence and resource constraints. All
resources are renewable. The first (last) activ-
ity j = 1 (j = m) is defined to be the unique
dummy source (sink). The objective is to sched-
ule the activities such the precedence and resource
constraints are obeyed and the makespan of the
project is minimized.

We use the following notations [8]:

J = {1, . . . , m}: the set of activities,

R: the set of resources,

dj : processing time of activity j,

Kr: the total amount available of the resource r
for each time period,

kjr: the amount of the resource r for activity j
per-period usage,

Pj : the set of the activity j immediate predeces-
sors,

Tmax: time horizon of the project.

Problem variables:

FTj : the finish time of the activity j ∈ J ,

At: a set of of activities which are in progress at
the time t:

At = {j ∈ J | FTj − dj ≤ t < FTj}.
We present below the problem statement:

Minimize max
j∈J

FTj ,

s.t. FTi ≤ FTj − dj , i ∈ Pj , j ∈ J,∑
j∈At

kjr ≤ Kr, ∀r ∈ R, t = 0, . . . , Tmax,



The RCPSP as generalization of the well-known
job-shop problem is NP-hard. Moreover, there is
no polynomial-time approximation algorithm with
a performance guarantee of m1−ε for any ε > 0
unless NP=ZPP [12].

There are either exact or heuristic approaches for
solving the problem. Exact methods proposed are
dynamic programming and branch and bound pro-
cedures [3, 11]. However, the algorithms are able
to find an optimal solution for instances with up to
30 activities in a suitable computational time. The
first heuristics proposed were priority-rule based
scheduling methods. The heuristics have the ad-
vantage to be robust, intuitive and fast from the
point of view the computational effort.

The most part of heuristics consist of two compo-
nents, a schedule generation scheme (SGS) and a
priority rule. Single-pass methods construct one
deterministic schedule using one SGS and one pri-
ority rule. There are many possibilities to com-
bine SGS and the priority rules to a multi-pass
method. The most common ones are multi pri-
ority rule methods, forward-backward scheduling
methods and sampling methods [9].

The greedy randomized adaptive search procedure
(GRASP) [4] presented in this paper blends to-
gether two last classes and uses the optimal solu-
tion of the auxiliary bottleneck problem to gen-
erate a feasible schedule. The algorithm consists
of three phases. At the first phase a sampling of
feasible schedules is generated. We use the paral-
lel method to construct the schedule. At the sec-
ond phase each schedule from the sampling is im-
proved by the forward-backward technique. The
third phase is a local descent.

GRASP method

For i = 1, . . . ,MaxIter do

1 Construct a heuristic solution

2 Apply forward-backward procedure

3 Apply local descent procedure

4 Update best found solution.

The paper is organized in the following manner.
In the Section 2 we present the basis of the paral-
lel scheduling method. In Section 3 we discuss the
schedule construction using the auxiliary bottle-
neck problem. Section 4 is devoted to the forward-
backward phase. Local descent phase is presented

2 The parallel method

The parallel method is one of the famous fast
heuristic for the RCPSP [6]. It consists of at most
m stages. At the stage n, we have a schedule time
tn and three sets of activities:

complete set Cn = {j ∈ J | FTj ≤ tn},

active set An = {j ∈ J | FTj − dj ≤ tn < FTj},

decision set Dn = {j ∈ J \ (Cn ∪ An) | Pj ⊆
Cn, kjr ≤ Kr −

∑
i∈An

kir, ∀r ∈ R}.

The complete set Cn comprises all activities which
have been completed up to time tn. The active set
An comprises all activities which are in progress at
time tn. The decision set Dn comprises all activ-
ities which are sequence feasible at time tn. Our
aim is to select a subset D′ ⊆ Dn of activities which
will start at the time tn.

Parallel method

1. Put n := 0, tn := 0, Cn := ∅, An :=
{1}, FT1 := 0.

2. While |Cn + An| < m do

2.1 n := n + 1, tn := min{FTj | j ∈ An−1}.

2.2 Compute Cn, An, Dn.

2.3 K̃r(tn) := Kr −
∑

j∈An
kjr, ∀r ∈ R.

2.4 Select a subset D′ ⊆ Dn such that
∑

j∈D′ kjr ≤
K̃r(tn), ∀r ∈ R

2.6 Put FTj := tn + dj , ∀j ∈ D′.

Step 2.4 is the most important part of the
method. To select the subset D′ ⊆ Dn we propose
a probabilistic strategy based on an optimal
solution of an bottleneck problem.

3 Auxiliary bottleneck prob-
lem

Suppose that we know the optimal solution of
RCPSP and for each activity j ∈ Dn we may com-



aj : the lateness of activity j if it starts at the time
moment tn,

bj : the lateness of activity j if it starts at the ear-
liest time moment t > tn.

For a given schedule time tn and a partial schedule
{FTj | j ∈ Cn ∪ An} we need to select a subset
D′ ⊆ Dn. It can be done by solving the following
bottleneck problem:

Minimize {max
j∈Dn

(ajxj + bj(1 − xj))}

s.t.
∑

j∈Dn

kjrxj ≤ K̃r(tn), r ∈ R

xj ∈ {0, 1}, j ∈ Dn.

The objective function evaluates a lateness of the
project. Variables xj , j ∈ Dn allow us to get de-
sirable set D′ = {j ∈ Dn | xj = 1}.

Proposition. The bottleneck problem is polyno-
mial solvable.

In order to define the parameters of the bottleneck
problem we need to analyse the schedule at the
time tn. Suppose that the set D′ is given. We as-
sume that D′ is complete in the sense that there is
no activity j ∈ Dn\D′ which could be added to the
set D′ without violating of the resource constraints
at time tn. Consider an activity j ∈ Dn\D′ and de-
fine its earliest resource-feasible starting time tak-
ing into account the set D′. The desirable time
t′j is a minimal time among finish times of activi-
ties from the set An ∪ D′ such that the available
capacity of resources is enough for the activity j:

t′j = min γ, γ ∈ {tn + di | i ∈ An ∪ D′}

s.t. kjr ≤ Kr −
∑

i∈An∪D′, tn+di>γ

kir,∀r ∈ R.

The value t′j is calculated with time complexity
O(|An ∪ D′| · |R|).

Note that the value t′j depends on the set D′. Let
t̃j be a maximum among all values t′j correspond-
ing to all possible sets D′. Unfortunately, it’s im-
possible to compute it in polynomial time. So, we
use the upper bound tj ≥ t̃j which is a pessimistic
value for the earliest resource-feasible starting time
of the activity j for any set D′. We define it by the
following way:

tj = min{γ = tn + di, i ∈ An ∪ Dn \ {j}}

Let LFj be the latest finish time of the activity
j as determined by backward recursion omitting
resource constraints when T is used as the criti-
cal path method based lower bound of the opti-
mal solution. The differences tn − (LFj − dj) and
tn − (LFj − dj) characterize the project delay de-
pending on the activity j finish time. So, we can
define the parameters of the bottleneck problem
as:

aj = tn − (LFj − dj), bj = tn − (LFj − dj).

It is known that probabilistic multi-pass methods
show better results than deterministic single-pass
methods [8]. If a one pass is not time-consuming,
we may decrease the relative error by increasing
the number of trials.

Let x∗
j be an optimal solution of the bottleneck

problem. Followed by the probabilistic multi-pass
strategy, we select a random subset of the set
D1 = {j ∈ Dn | x∗

j = 1}. Afterward, we add sev-
eral activities from the set D0 = {j ∈ Dn | x∗

j = 0}
subject to the resource constraints. For this pur-
pose consider a probability p. Sort the activities
in D1 and D0 according to the resource utilization
ratio, (1/|R|)∑

r∈R kjr/Kr. Consider the first ac-
tivity from the D1 according to the order prede-
fined and insert it into the set D′ with probability
p or cancel in and consider the next activity with
probability 1−p and so on. When the set D1 is ex-
hausted repeat the same operation with the set D0

while the resource constraints are fulfilled. If the
the value p is too small the set D′ may be empty.
In this case we fill the set D′ randomly taking into
account the resource constraints. As a result, we
have a random subset D′ at the step 2.4 of the
parallel method. So, we obtain a random sched-
ule. In order to improve the makespan we apply
the forward-backward strategy [9] to the schedule.

4 Forward-backward phase

Consider a schedule S0. Following the forward-
backward procedure we consequently transform
the left-active schedule into the right-active sched-
ule an vice-versa. Consider list L = (j1, . . . , jm).
Serial method construct an active schedule for the
list L.

Serial method(L)



2. Calculate the earliest precedence- and resource-
feasible starting time t for the activity jn.

3. Put FTjn
= t + djn

.

4. Put n := n + 1;

5. If n ≤ m then goto 2.

In the same manner we can construct the right-
active schedule considering the activities in reverse
order.

Inverse Serial method(L, T )

1. Put n := m, t := T, FTjn
:= t.

2. Calculate the latest precedence- and resource-
feasible finish time t for the activity jn.

3. Put FTjn
= t.

4. Put n := n − 1;

5. If n ≥ 1 then goto 2.

Let T = T (S0) is a schedule S0 makespan. Con-
struct a list L1 of activities in non-decreasing or-
der of its finish times: FTjn

≤ FTjn+1 , n =
1, . . . ,m − 1. Apply to the list L1 the serial de-
coder in reverse manner. As result we obtain a
right-active schedule S1. Construct a list L2 of ac-
tivities in non-decreasing order of its start times:
FTjn

− djn
≤ FTjn+1 − djn+1 , n = 1, . . . ,m − 1.

Apply to the list L2 the serial decoder. Obtain an
active schedule S2. If T > T (S2) then repeat the
previous actions.

Below we present the formal statement of the
Forward-Backward phase.

Forward-Backward method

1. Put T := maxj∈J FTj for the schedule S0.

2. Construct the list L1 = (j1, . . . , jm), such that
FTjn

≤ FTjn+1 , n = 1, . . . ,m − 1.

3. Construct a right-active schedule S1 by Inverse
Serial(L1).

4. Construct the list L2 = (j1, . . . , jm), such that
FTjn

− djn
≤ FTjn+1 − djn+1 , n = 1, . . . , m − 1.

5. Construct an active schedule S2 by Serial(L2).

6. If T > maxj∈J FTj then put S0 := S2 and goto
1.

of returns to the step 1 could be quite large. Un-
fortunately we cannot evaluate it by polynomial
function of initial data. On the other hand, com-
putational results show small number of returns to
the step 1. As a matter of fact, the number is much
less than m.

5 Local descent

We apply standard local descent procedure to the
schedule obtained at the previous stage. We con-
sider two neighborhoods of linear cardinality.

5.1 Neighborhood N1

The neighborhood N1 was proposed by Brucker et
al. [1] for tabu search algorithm. It is based on
critical arcs in a special digraph. Consider a list
of activities L and correspondent active schedule
S. Let G = (V,E) be a digraph where V = J and
E = {(i, j) | FTi = FTj −dj}. The longest path in
G is called the critical path. The arc (i, j) is called
the critical arc if it belongs to a critical path and
i /∈ Pj . Define three move operators for a critical
arc (i, j).

Let activity i is listed before than activity j in the
list L. Operator Shiftij(L) moves the activity i
immediately after than activity j together with all
its successors listed before than activity j.

Shiftij(L) :

(. . . i . . . t . . . j . . .) → (. . . j i t . . .).

Let activity i is listed after than activity j in the
list L. Operator BShiftij(L) moves the first ac-
tivity l which is not a successor of the activity i
immediately before than activity i.

BShiftij(L) :

(. . . j . . . i . . . l . . . u . . .) → (. . . j . . . l i . . . u . . .).

Symmetrically, Operator FShiftij(L) moves the
last activity l which is not a predecessor of the
activity j immediately after than activity j.

FShiftij(L) :

(. . . u . . . l . . . j . . . i . . .) → (. . . u . . . j l . . . i . . .).

The neighborhood N1 is a set of lists obtained by
applying three move operators to all critical arcs



5.2 Neighborhood N2

The neighborhood N2 is constructed using a
solution (not necessary optimal) of the multi-
dimensional knapsack problem. Consider a list of
activities L and correspondent active schedule S.
By Block(j) we denote the set of activities which
are overlapped together with the activity j in the
schedule S. We assume that the activities finishing
immediately before and starting immediately after
than the activity j also belong to the set Block(j).
Let Ĝ = (V,E) be a digraph where V = J and
E = {(i, j) | FTi = FTj − dj , i ∈ Pj}. The maxi-
mal connected subgraph of Ĝ with a source in the
vertex j is called outcoming network of the activ-
ity j. Define two positions First and Last. The
First is a minimal position in the list L among all
activities of the Block(j). The Last is a maximal
position in the list L among all activities of the
Block(j) and the outcoming network.

The move operator is defined for any activity j for
which the Block(j) does not contain any prede-
cessor of the activity j. The neighbor schedule S′

is constructed in three steps. At the first step we
construct a partial schedule by serial SGS for the
first (First − 1) activities in the list L. At the
second step we extend the partial schedule by in-
serting the next (Last − First + 1) activities into
the partial schedule. For this purpose we use the
parallel SGS where the selection of the set D′ at
the step 2.5. is done using the greedy solution of
the multi-dimensional knapsack problem. Finally,
we construct the complete schedule by inserting
the remaining activities into the partial schedule
following the serial SGS.

The neighborhood N2 consists of all neighbor
schedules. The cardinality of N2 is O(m).

6 Computational experi-
ments

We test the GRASP algorithm for the Patterson
and PSPLib benchmark instances.

In Table 1 we present a comparison of the new
algorithm without local descent phase against the
ASP algorithm [8] on the Patterson instances [13].
We use the sampling size Z = 1, 10, 100, 500. The

that the new approach allows to decrease relative
error and get optimal solutions quite often. The
running time of the both algorithms is extremely
small.

1 10 100 500
Average ASP 3,7 1,8 0,8 0,4
deviation GRASP 2,3 1,6 0,4 0,1
Standard ASP 4,3 2,4 1,6 1,2
deviation GRASP 3,3 2,7 1,1 0,4
Maximal ASP 16,7 12,1 9,4 6,5
deviation GRASP 13,9 12,9 5,0 2,6
Percent of ASP 38,2 51,8 76,4 85,5
opt. solved GRASP 55,6 62,7 85,5 96,4

Table 1. Comparison of algorithms on the Patter-
son instances.

Algorithm 30 60 120
GRASP 0,28 11,74 34,46
Genetic Algorithm [5] 0,54 12,68 39,37
sampling - LFT [6] 1,40 13,59 39,60
sampling - WCS [7] 1,40 13,66 39,65
CBR-SAR [14] 0,71 13,02 40,08
ASP [8] 0,74 13,51 41,37
Simulated Annealing [2] 0,38 12,75 42,81
Genetic Algorithm [10] 2,08 14,33 42,91

Table 2. Average percent deviation, 1000 itera-
tions, PSPLib instances.

In Table 2 we compare our algorithm with sev-
eral algorithms from the literature. We present
average percent deviation from the optimum for
the PSPLib instances with 30 activities and de-
viation from CPM-based lower bound for the in-
stances with 60 and 120 activities. Computational
results show that new approach has better perfor-
mance for these benchmarks.

Dimension FB N1 N2

30 0,39 0,28 0,30
60 12,11 11,79 11,74
120 36,25 34,68 34,46

Table 3. Local descent effort.

In table 3 we present the average relative error for
the GRASP algorithm with local descent. First
column (FB) corresponds to the GRASP without



to the neighborhoods N1 and N2 respectively. Ta-
ble 3 shows that using of local descent allows us
to decrease the relative error. Note, that the first
neighborhood is better for small instances, while
the second one is better for more hard problems.
The computational time for both neighborhoods
are the same. The depth of the descent not exceed
10 iterations.

7 Conclusions

A GRASP algorithm is presented for the resource
constrained project scheduling problem is consid-
ered. The heuristic solution is constructed us-
ing the optimal solution of an auxiliary bottleneck
problem. To improve the schedule the algorithm
uses a forward-backward technique and standard
local descent procedure. Two neighborhood struc-
tures of linear cardinality are considered. Compu-
tational results show the high performance of the
algorithm.
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