
International Series in
Operations Research & Management Science

Michel Gendreau · Jean-Yves Potvin
 Editors

Handbook of
Metaheuristics
 Third Edition

International Series in Operations Research
& Management Science

Volume 272

Series Editor

Camille C. Price
Stephen F. Austin State University, TX, USA

Associate Series Editor

Joe Zhu
Worcester Polytechnic Institute, MA, USA

Founding Series Editor

Frederick S. Hillier
Stanford University, CA, USA

More information about this series at http://www.springer.com/series/6161

http://www.springer.com/series/6161

Michel Gendreau • Jean-Yves Potvin
Editors

Handbook of Metaheuristics

Third Edition

123

Editors
Michel Gendreau
Department of Mathematics
and Industrial Engineering
Polytechnique Montréal
Montreal, QC, Canada

Jean-Yves Potvin
Département d’informatique et de
recherche opérationnelle
Université de Montréal
Montreal, QC, Canada

ISSN 0884-8289 ISSN 2214-7934 (electronic)
International Series in Operations Research & Management Science
ISBN 978-3-319-91085-7 ISBN 978-3-319-91086-4 (eBook)
https://doi.org/10.1007/978-3-319-91086-4

Library of Congress Control Number: 2018953159

2nd edition: © Springer Science+Business Media LLC 2010
3rd edition: © Springer International Publishing AG, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-91086-4

À nos épouses Johanne et Lynne et à nos
enfants Catherine, Laurent, Gabrielle,
Stéphanie et Simon.

Preface to the Third Edition

The first edition of the Handbook of Metaheuristics was published in 2003 under
the editorship of Fred Glover and Gary A. Kochenberger. In 2010, given numerous
developments observed in the field of metaheuristics since 2003, it was felt that the
time was ripe for a second edition of the Handbook. At that time, Fred and Gary
were unable to accept Springer’s invitation to prepare this second edition and they
suggested that we should take over the editorship responsibility of the Handbook.
We still feel deeply honored and grateful for their trust.

The field of metaheuristics has continued to evolve since the publication of the
second edition of the Handbook. It is thus time to take a fresh look at the most
important topics in the area.

As stated in the first edition, metaheuristics are “solution methods that orchestrate
an interaction between local improvement procedures and higher level strategies to
create a process capable of escaping from local optima and performing a robust
search of a solution space”. Although this broad characterization still holds today,
many new and exciting developments and extensions have been observed in the last
15 years. We think in particular to hybrids, which take advantage of the strengths
of each of their individual metaheuristic components to better explore the solution
space. Hybrids of metaheuristics with other optimization techniques, like branch
and bound or mathematical programming have also proved quite successful. On the
front of applications, metaheuristics are now used to find high-quality solutions to
an ever-growing number of complex, ill-defined real-world problems, in particular
combinatorial ones.

This third edition of the Handbook of Metaheuristics, through its 18 chapters, is
designed to provide a broad coverage of the concepts, implementations and applica-
tions in this important field of optimization. We were glad to get a positive response
from renowned experts for each chapter. They either accepted to revise and update
their chapter from the second edition or to write brand new ones. The Handbook
now includes updated chapters on the best known metaheuristics, including sim-
ulated annealing, tabu search, variable neighborhood search, large neighborhood
search, iterated local search, greedy randomized adaptive search procedure, multi-

vii

viii Preface to the Third Edition

start methods, genetic algorithms, memetic algorithms, ant colony optimization, hy-
brid metaheuristics, parallel metaheuristics and hyper-heuristics. It also contains a
new chapter on swarm intelligence methods. The last four chapters are devoted to
more general issues related to the field of metaheuristics, namely reactive search,
stochastic search, automated design of metaheuristics and computational compari-
son of metaheuristics. A few chapters from the second edition were discarded, as
they appear to be less relevant.

We think that this Handbook will be a great reference for researchers and grad-
uate students, as well as practitioners. Each presentation, although exhibiting in-
evitable stylistic differences, adheres to some common principles which results in
stand-alone chapters that can be read individually.

We are grateful to all authors for taking the time to write the chapters that appear
in this Handbook. We are also very grateful to Matthew Amboy and Faith Su of
Springer for their encouragements, support and patience at the different stages of
production of this book.

Montreal, QC, Canada Michel Gendreau
Montreal, QC, Canada Jean-Yves Potvin
March 2018

Preface to the Second Edition

The first edition of the Handbook of Metaheuristics was published in 2003 under
the editorship of Fred Glover and Gary A. Kochenberger. Given the numerous de-
velopments observed in the field of metaheuristics in recent years, it appeared that
the time was ripe for a second edition of the Handbook. For different reasons, Fred
and Gary were unable to accept Springer’s invitation to prepare this second edi-
tion, and they suggested that we should take over the editorship responsibility of the
Handbook. We are deeply honored and grateful for their trust.

As stated in the first edition, metaheuristics are “solution methods that orches-
trate an interaction between local improvement procedures and higher level strate-
gies to create a process capable of escaping from local optima and performing a
robust search of a solution space.” Although this broad characterization still holds
today, many new and exciting developments and extensions have been observed in
the last few years. We think in particular to hybrids, which take advantage of the
strengths of each of their individual metaheuristic components to better explore the
solution space. Hybrids of metaheuristics with other optimization techniques, like
branch and bound, mathematical programming, or constraint programming, are also
increasingly popular. On the front of applications, metaheuristics are now used to
find high-quality solutions to an ever-growing number of complex, ill-defined real-
world problems, in particular combinatorial ones.

This second edition of the Handbook of Metaheuristics, through its 21 chapters,
is designed to provide a broad coverage of the concepts, implementations, and ap-
plications in this important field of optimization. We were glad to get a positive re-
sponse from renowned experts for each chapter. They either accepted to revise and
update their chapter from the first edition or to write brand new ones. The Hand-
book now includes updated chapters on the best known metaheuristics, including
simulated annealing, tabu search, variable neighborhood search, scatter search and
path relinking, genetic algorithms, memetic algorithms, genetic programming, ant
colony optimization, multi-start methods, greedy randomized adaptive search proce-
dure, guided local search, hyper-heuristics, and parallel metaheuristics. It also con-
tains three new chapters on large neighborhood search, artificial immune systems,

ix

x Preface to the Second Edition

and hybrid metaheuristics. The last four chapters are devoted to more general issues
related to the field of metaheuristics, namely, reactive search, stochastic search, fit-
ness landscape analysis, and performance comparison. A few chapters from the first
edition were discarded, as they appear to be less relevant.

We think that this Handbook will be a great reference for researchers and grad-
uate students, as well as practitioners. Each presentation, although exhibiting in-
evitable stylistic differences, adheres to some common principles which results in
stand-alone chapters that can be read individually.

We are grateful to all authors for taking the time to write the chapters that ap-
pear in this Handbook. We are also very grateful to Fred Hillier, Neil Levine, and
Matthew Amboy of Springer for their encouragements, support, and patience at the
different stages of production of this book.

Montreal, QC, Canada Michel Gendreau
Montreal, QC, Canada Jean-Yves Potvin
March 2010

Preface to the First Edition

Metaheuristics, in their original definition, are solution methods that orchestrate an
interaction between local improvement procedures and higher level strategies to cre-
ate a process capable of escaping from local optima and performing a robust search
of a solution space. Over time, these methods have also come to include any proce-
dures that employ strategies for overcoming the trap of local optimality in complex
solution spaces, especially those procedures that utilize one or more neighborhood
structures as a means of defining admissible moves to transition from one solution
to another, or to build or destroy solutions in constructive and destructive processes.

The degree to which neighborhoods are exploited varies according to the type
of procedure. In the case of certain population-based procedures, such as genetic
algorithms, neighborhoods are implicitly (and somewhat restrictively) defined by
reference to replacing components of one solution with those of another, by vari-
ously chosen rules of exchange popularly given the name of “crossover.” In other
population-based methods, based on the notion of path relinking, neighborhood
structures are used in their full generality, including constructive and destructive
neighborhoods as well as those for transitioning between (complete) solutions. Cer-
tain hybrids of classical evolutionary approaches, which link them with local search,
also use neighborhood structures more fully, though apart from the combination
process itself. Meanwhile, “single thread” solution approaches, which do not un-
dertake to manipulate multiple solutions simultaneously, run a wide gamut that not
only manipulate diverse neighborhoods but incorporate numerous forms of strate-
gies ranging from thoroughly randomized to thoroughly deterministic, depending on
the elements such as the phase of search or (in the case of memory-based methods)
the history of the solution process.1

1 Methods based on incorporating collections of memory-based strategies, invoking forms of mem-
ory more flexible and varied than those used in approaches such as tree search and branch and
bound, are sometimes grouped under the name adaptive memory programming. This term, which
originated in the tabu search literature where such adaptive memory strategies were first introduced
and continue to be the primary focus, is also sometimes used to encompass other methods that have
more recently adopted memory-based elements.

xi

xii Preface to the First Edition

A number of the tools and mechanisms that have emerged from the creation
of metaheuristic methods have proved to be remarkably effective, so much so that
metaheuristics have moved into the spotlight in recent years as the preferred line
of attack for solving many types of complex problems, particularly those of a com-
binatorial nature. While metaheuristics are not able to certify the optimality of the
solutions they find, exact procedures (which theoretically can provide such a cer-
tification, if allowed to run long enough)2 have often proved incapable of finding
solutions whose quality is close to that obtained by the leading metaheuristics—
particularly for real-world problems, which often attain notably high levels of com-
plexity. In addition, some of the more successful applications of exact methods
have come about by incorporating metaheuristic strategies within them. These out-
comes have motivated additional research and application of new and improved
metaheuristic methodologies.

This handbook is designed to provide the reader with a broad coverage of the
concepts, themes, and instrumentalities of this important and evolving area of opti-
mization. In doing so, we hope to encourage an even wider adoption of metaheuristic
methods for assisting in problem-solving and to stimulate research that may lead to
additional innovations in metaheuristic procedures.

This handbook consists of 19 chapters. Topics covered include scatter search,
tabu search, genetic algorithms, genetic programming, memetic algorithms, variable
neighborhood search, guided local search, GRASP, ant colony optimization, simu-
lated annealing, iterated local search, multi-start methods, constraint programming,
constraint satisfaction, neural network methods for optimization, hyper-heuristics,
parallel strategies for metaheuristics, metaheuristic class libraries, and A-teams.
This family of metaheuristic chapters, while not exhaustive of the many approaches
that have sprung into existence in recent years, encompasses the critical strategic
elements and their underlying ideas that represent the state of the art of modern
metaheuristics.

This book is intended to provide the communities of both researchers and prac-
titioners with a broadly applicable, up-to-date coverage of metaheuristic method-
ologies that have proven to be successful in a wide variety of problem settings and
that hold particular promise for success in the future. The various chapters serve as
stand-alone presentations giving both the necessary underpinnings as well as prac-
tical guides for implementation. The nature of metaheuristics invites an analyst to
modify basic methods in response to problem characteristics, past experiences, and
personal preferences, and the chapters in this handbook are designed to facilitate
this process as well.

2 Some types of problems seem quite amenable to exact methods, particularly to some of the
methods embodied in the leading commercial software packages for mixed integer programming.
Yet even by these approaches, the “length of time” required to solve many problems exactly appears
to exceed all reasonable measure, including in some cases measures of astronomical scale. It has
been conjectured that metaheuristics succeed where exact methods fail because of their ability to
use strategies of greater flexibility than permitted to assure that convergence will inevitably be
obtained.

Preface to the First Edition xiii

The authors who have contributed to this volume represent leading figures from
the metaheuristic community and are responsible for pioneering contributions to the
fields they write about. Their collective work has significantly enriched the field of
optimization in general and combinatorial optimization in particular. We are espe-
cially grateful to them for agreeing to provide the first-rate chapters that appear in
this handbook. We would also like to thank our graduate students, Gyung Yung and
Rahul Patil, for their assistance. Finally, we would like to thank Gary Folven and
Carolyn Ford of the Kluwer Academic Publishers for their unwavering support and
patience throughout this project.

Boulder, CO, U.S.A. Fred Glover
Denver, CO, U.S.A. Gary A. Kochenberger

Contents

1 Simulated Annealing: From Basics to Applications 1
Daniel Delahaye, Supatcha Chaimatanan, and Marcel Mongeau

2 Tabu Search . 37
Michel Gendreau and Jean-Yves Potvin

3 Variable Neighborhood Search . 57
Pierre Hansen, Nenad Mladenović, Jack Brimberg,
and José A. Moreno Pérez

4 Large Neighborhood Search . 99
David Pisinger and Stefan Ropke

5 Iterated Local Search: Framework and Applications 129
Helena Ramalhinho Lourenço, Olivier C. Martin, and Thomas Stützle

6 Greedy Randomized Adaptive Search Procedures: Advances
and Extensions . 169
Mauricio G. C. Resende and Celso C. Ribeiro

7 Intelligent Multi-Start Methods . 221
Rafael Martí, Ricardo Aceves, Maria Teresa León,
Jose M. Moreno-Vega, and Abraham Duarte

8 Next Generation Genetic Algorithms: A User’s
Guide and Tutorial . 245
Darrell Whitley

9 An Accelerated Introduction to Memetic Algorithms 275
Pablo Moscato and Carlos Cotta

10 Ant Colony Optimization: Overview and Recent Advances 311
Marco Dorigo and Thomas Stützle

xv

xvi Contents

11 Swarm Intelligence . 353
Xiaodong Li and Maurice Clerc

12 Metaheuristic Hybrids . 385
Günther R. Raidl, Jakob Puchinger, and Christian Blum

13 Parallel Metaheuristics and Cooperative Search 419
Teodor Gabriel Crainic

14 A Classification of Hyper-Heuristic Approaches: Revisited 453
Edmund K. Burke, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa,
Ender Özcan, and John R. Woodward

15 Reactive Search Optimization: Learning While Optimizing 479
Roberto Battiti, Mauro Brunato, and Andrea Mariello

16 Stochastic Search in Metaheuristics . 513
Walter J. Gutjahr and Roberto Montemanni

17 Automated Design of Metaheuristic Algorithms 541
Thomas Stützle and Manuel López-Ibáñez

18 Computational Comparison of Metaheuristics 581
John Silberholz, Bruce Golden, Swati Gupta, and Xingyin Wang

Contributors

Ricardo Aceves
Universidad Nacional Autónoma de México, Mexico City, Mexico

Roberto Battiti
University of Trento, Trento, Italy

Christian Blum
Artificial Intelligence Research Institute, Bellaterra, Spain

Jack Brimberg
Royal Military College of Canada, Kingston, ON, Canada

Mauro Brunato
University of Trento, Trento, Italy

Edmund K. Burke
University of Leicester, Leicester, UK

Supatcha Chaimatanan
Geo-Informatics and Space Technology Development Agency, Siracha, Thailand

Maurice Clerc
Independent Consultant, Groisy, France

Carlos Cotta
Universidad de Málaga, Málaga, Spain

Teodor Gabriel Crainic
École des Sciences de la Gestion, Université du Québec à Montréal, Montréal, QC,
Canada

CIRRELT, Montréal, QC, Canada

xvii

xviii Contributors

Daniel Delahaye
École Nationale de l’Aviation Civile, Toulouse, France

Marco Dorigo
Université Libre de Bruxelles, Brussels, Belgium

Abraham Duarte
Universidad Rey Juan Carlos, Madrid, Spain

Michel Gendreau
Polytechnique Montréal, Montréal, QC, Canada

CIRRELT, Montréal, QC, Canada

Bruce Golden
R.H. Smith School of Business, University of Maryland, College Park, MD, USA

Swati Gupta
Simons Institute for the Theory of Computing, University of California, Berkeley,
CA, USA

Walter J. Gutjahr
University of Vienna, Vienna, Austria

Pierre Hansen
École des Hautes Études Commerciales, Montréal, QC, Canada

GERAD, Montréal, QC, Canada

Matthew R. Hyde
University of Nottingham, Nottingham, UK

Graham Kendall
University of Nottingham Malaysia Campus, Semenyih, Malaysia

Maria Teresa León
Universidad de Valencia, Valencia, Spain

Xiaodong Li
RMIT University, Melbourne, VIC, Australia

Manuel López-Ibáñez
Alliance Manchester Business School, University of Manchester, Manchester, UK

Helena Ramalhinho Lourenço
Universitat Pompeu Fabra, Barcelona, Spain

Andrea Mariello
University of Trento, Trento, Italy

Rafael Martí
Universidad de Valencia, Valencia, Spain

Olivier C. Martin
Université Paris-Sud, Orsay, France

Contributors xix

Nenad Mladenović
Mathematical Institute, SANU, Belgrade, Serbia

Marcel Mongeau
École Nationale de l’Aviation Civile, Toulouse, France

Roberto Montemanni
Dalle Molle Institute for Artificial Intelligence, University of Applied Sciences of
Southern Switzerland, Manno, Switzerland

Jose M. Moreno-Vega
Universidad de La Laguna, San Cristóbal de La Laguna, Spain

Pablo Moscato
The University of Newcastle, Newcastle, NSW, Australia

Gabriela Ochoa
University of Stirling, Stirling, UK

Ender Özcan
University of Nottingham, Nottingham, UK

José A. Moreno Pérez
Universidad de La Laguna, San Cristóbal de La Laguna, Spain

David Pisinger
Technical University of Denmark, Lyngby, Denmark

Jean-Yves Potvin
Université de Montréal, Montréal, QC, Canada

CIRRELT, Montréal, QC, Canada

Jakob Puchinger
CentraleSupélec, Gif-sur-Yvette, France

Günther R. Raidl
Institute of Logic and Computation, TU Wien, Vienna, Austria

Mauricio G. C. Resende
Amazon.com, Seattle, WA, USA

University of Washington, Seattle, WA, USA

Celso C. Ribeiro
Universidade Federal Fluminense, Niterói, Brazil

Stefan Ropke
Technical University of Denmark, Lyngby, Denmark

John Silberholz
Ross School of Business, University of Michigan, Ann Arbor, MI, USA

Thomas Stützle
Université Libre de Bruxelles, Brussels, Belgium

xx Contributors

Xingyin Wang
Singapore University of Technology and Design, Singapore, Singapore

Darrell Whitley
Colorado State University, Fort Collins, CO, USA

John R. Woodward
Queen Mary University of London, London, UK

Chapter 1
Simulated Annealing: From Basics
to Applications

Daniel Delahaye, Supatcha Chaimatanan, and Marcel Mongeau

Abstract Simulated Annealing (SA) is one of the simplest and best-known meta-
heuristic method for addressing difficult black box global optimization problems
whose objective function is not explicitly given and can only be evaluated via some
costly computer simulation. It is massively used in real-life applications. The main
advantage of SA is its simplicity. SA is based on an analogy with the physical an-
nealing of materials that avoids the drawback of the Monte-Carlo approach (which
can be trapped in local minima), thanks to an efficient Metropolis acceptance cri-
terion. When the evaluation of the objective-function results from complex simula-
tion processes that manipulate a large-dimension state space involving much mem-
ory, population-based algorithms are not applicable and SA is the right answer to
address such issues. This chapter is an introduction to the subject. It presents the
principles of local search optimization algorithms, of which simulated annealing is
an extension, and the Metropolis algorithm, a basic component of SA. The basic
SA algorithm for optimization is described together with two theoretical properties
that are fundamental to SA: statistical equilibrium (inspired from elementary sta-
tistical physics) and asymptotic convergence (based on Markov chain theory). The
chapter surveys the following practical issues of interest to the user who wishes to
implement the SA algorithm for its particular application: finite-time approxima-
tion of the theoretical SA, polynomial-time cooling, Markov-chain length, stopping
criteria, and simulation-based evaluations. To illustrate these concepts, this chapter
presents the straightforward application of SA to two classical and simple classi-
cal NP-hard combinatorial optimization problems: the knapsack problem and the

D. Delahaye (�) · M. Mongeau
École Nationale de l’Aviation Civile, Toulouse, France
e-mail: daniel.delahaye@enac.fr; marcel.mongeau@enac.fr

S. Chaimatanan
Geo-Informatics and Space Technology Development Agency, Siracha, Thailand
e-mail: supatcha@gistda.or.th

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_1&domain=pdf
mailto:daniel.delahaye@enac.fr
mailto:supatcha@gistda.or.th
https://doi.org/10.1007/978-3-319-91086-4_1
mailto:marcel.mongeau@enac.fr

2 D. Delahaye et al.

traveling salesman problem. The overall SA methodology is then deployed in detail
on a real-life application: a large-scale aircraft trajectory planning problem involv-
ing nearly 30,000 flights at the European continental scale. This exemplifies how to
tackle nowadays complex problems using the simple scheme of SA by exploiting
particular features of the problem, by integrating astute computer implementation
within the algorithm, and by setting user-defined parameters empirically, inspired
by the SA basic theory presented in this chapter.

1.1 Introduction

Simulated Annealing (SA) is one of the simplest and best-known metaheuristic
methods for addressing difficult black box global optimization problems, whose ob-
jective function is not explicitly given and can only be evaluated via some costly
computer simulation. It is massively used in real-life applications. The expression
“simulated annealing” yields over one million hits when searching through the
Google Scholar web search engine dedicated to the scholarly literature.

This chapter is an introduction to the subject. It is organized as follows. The first
section introduces the reader to the basics of the simulated annealing algorithm.
Section 1.2 deals with two theoretical properties of SA: statistical equilibrium and
asymptotic convergence. Practical issues of interest when implementing SA are dis-
cussed in Sect. 1.3 : finite-time approximation, polynomial-time cooling, Markov-
chain length, stopping criteria and simulation-based evaluations. Section 1.4 illus-
trates the application of SA to two classical NP-hard combinatorial optimization
problems: the knapsack problem and the traveling salesman problem. A real-life
application, large-scale aircraft trajectory planning problem, is finally tackled in
Sect. 1.5 in order to illustrate how the particular knowledge of an application and
astute computer implementation must be integrated within SA in order to tackle
nowadays complex problems using the simple scheme of SA.

1.2 Basics

In the early 1980s three IBM researchers, Kirkpatrick et al. [11], introduced the
concepts of annealing in combinatorial optimization. These concepts are based on a
strong analogy with the physical annealing of materials. This process involves bring-
ing a solid to a low energy state after raising its temperature. It can be summarized
by the following two steps (see Fig. 1.1) :

• Bring the solid to a very high temperature until “melting” of the structure;
• Cool the solid according to a very particular temperature decreasing scheme in

order to reach a solid state of minimum energy.

1 Simulated Annealing: From Basics to Applications 3

In the liquid phase, the particles are distributed randomly. It is shown that the
minimum-energy state is reached provided that the initial temperature is sufficiently
high and the cooling time is sufficiently long. If this is not the case, the solid will be
found in a metastable state with non-minimal energy; this is referred to as hardening,
which consists in the sudden cooling of a solid.

T

t

T

t

Liquid State

Liquid State

Hardening

Solid State : Metastable

Solid State : Crystal

Minimum Energy

Fig. 1.1 When the temperature is high, the material is in a liquid state (left). For a hardening
process, the material reaches a solid state with non-minimal energy (metastable state; top right). In
this case, the structure of the atoms has no symmetry. During a slow annealing process, the material
reaches also a solid state but for which atoms are organized with symmetry (crystal; bottom right)

Before describing the simulated annealing algorithm for optimization, we need to
introduce the principles of local search optimization algorithms, of which simulated
annealing is an extension.

1.2.1 Local Search (or Monte Carlo) Algorithms

These algorithms optimize the cost function by exploring the neighborhood of the
current point in the solution space.

In the next definitions, we consider (S, f) an instantiation of a combinatorial
optimization problem (S: set of feasible solutions, f : objective function to be mini-
mized).

Definition 1 Let N be an application that defines for each solution i ∈ S a subset
Si ⊂ S of solutions “close” (to be defined by the user according to the problem of
interest) to the solution i. The subset Si is called the neighborhood of solution i.

In the next definitions, we consider that N is a neighborhood structure associ-
ated with (S, f).

Definition 2 A generating mechanism is a mean for selecting a solution j in any
neighborhood Si of a given solution i.

4 D. Delahaye et al.

A local search algorithm is an iterative algorithm that begins its search from a fea-
sible point, randomly drawn in the state space. A generation mechanism is then
successively applied in order to find a better solution (in terms of the objective func-
tion value), by exploring the neighborhood of the current solution. If such a solution
is found, it becomes the current solution. The algorithm ends when no improvement
can be found, and the current solution is considered as the approximate solution
of the optimization problem. One can summarize the algorithm by the following
pseudo-code for a minimization problem:

Local Search

1. Draw an initial solution i;
2. Generate a solution j from the neighborhood Si of the current solution i;
3. If f (j)< f (i) then j becomes the current solution;
4. If f (j)≥ f (i) for all j ∈ Si then END;
5. Go to step 2;

Definition 3 A solution i∗ ∈ S is called a local optimum with respect to N for (S, f)
if f (i∗)≤ f (j) for all j ∈ Si∗ .

Definition 4 The neighborhood structure N is said to be exact if, for every local
optimum with respect to N , i∗ ∈ S, i∗ is also a global optimum of (S, f).

Thus, by definition, local search algorithms converge to local optima unless one
has an exact neighborhood structure. This notion of exact neighborhood is theoreti-
cal because it generally leads, in practice, to resort to a complete enumeration of the
search space.

Intuitively, if the current solution “falls” in a subdomain over which the objective
function is convex, the algorithm remains trapped in this subdomain, unless the
neighborhood structure associated with the generation mechanism can reach points
outside this subdomain.

In order to avoid being trapped in local minima, it is then necessary to define a
process likely to accept current state transitions that momentarily reduce the perfor-
mance (in terms of objective) of the current solution: this is the main principle of
simulated annealing.

Before describing this algorithm, it is necessary to introduce the Metropolis al-
gorithm [15] which is a basic component of SA.

1.2.2 Metropolis Algorithm

In 1953, three American researchers [15] developed an algorithm to simulate the
physical annealing process, as described in Sect. 1.2. Their aim was to reproduce
faithfully the evolution of the physical structure of a material undergoing annealing.

1 Simulated Annealing: From Basics to Applications 5

This algorithm is based on Monte Carlo techniques which consist in generating a
sequence of states of the solid in the following way.

Starting from an initial state i of energy Ei, a new state j of energy E j is generated
by modifying the position of one particle.

If the energy difference, Ei − E j, is positive (the new state features lower en-
ergy), the state j becomes the new current state. If the energy difference is less than
or equal to zero, then the probability that the state j becomes the current state is
given by:

Pr{Current state = j}= e

(
Ei−E j
kb .T

)
,

where T represents the temperature of the solid and kB is the Boltzmann constant
(kB = 1.38×10−23 J/K).

The acceptance criterion of the new state is called the Metropolis criterion. If the
cooling is carried out sufficiently slowly, the solid reaches a state of equilibrium at
each given temperature T . In the Metropolis algorithm, this equilibrium is achieved
by generating a large number of transitions at each temperature. The thermal equi-
librium is characterized by the Boltzmann statistical distribution. This distribution
gives the probability that the solid is in the state i of energy Ei at the temperature T :

Pr{X = i}= 1
Z(T)

e
−
(

Ei
kbT

)
,

where X is a random variable associated with the current state of the solid and Z(T)
is a normalization coefficient, defined as:

Z(T) = ∑
j∈S

e
−
(

E j
kbT

)
.

1.2.3 Simulated Annealing (SA) Algorithm

In the SA algorithm, the Metropolis algorithm is applied to generate a sequence of
solutions in the state space S. To do this, an analogy is made between a multi-particle
system and our optimization problem by using the following equivalences:

• The state-space points (solutions) represent the possible states of the solid;
• The function to be minimized represents the energy of the solid.

A control parameter c, acting as a temperature, is then introduced. This parameter
is expressed with the same units as the objective that is optimized.

It is also assumed that the user provides for each point of the state space, a neigh-
borhood and a mechanism for generating a solution in this neighborhood. We then
define the acceptance principle :

6 D. Delahaye et al.

Definition 5 Let (S, f) be an instantiation of a combinatorial minimization prob-
lem, and i, j two points of the state space. The acceptance criterion for accepting
solution j from the current solution i is given by the following probability :

Pr{ accept j}=
{

1 if f (j)< f (i)

e

(
f (i)− f (j)

c

)
else.

By analogy, the principle of generation of a neighbor corresponds to the per-
turbation mechanism of the Metropolis algorithm, and the principle of acceptance
represents the Metropolis criterion.

Definition 6 A transition represents the replacement of the current solution by a
neighboring solution. This operation is carried out in two stages: generation and
acceptance.

In the sequel, let ck be the value of the temperature parameter, and Lk be the
number of transitions generated at some iteration k. The principle of SA can be
summarized as follows:

Simulated Annealing

1. Initialization (i := istart , k := 0, ck = c0, Lk := L0);
2. Repeat
3. For l = 0 to Lk do

• Generate a solution j from the neighborhood Si of the current solution
i;

• If f (j)< f (i) then i := j (j becomes the current solution);

• Else, j becomes the current solution with probability e

(
f (i)− f (j)

ck

)
;

4. k := k+1;
5. Compute(Lk,ck);
6. Until ck � 0.

One of the main features of simulated annealing is its ability to accept transitions
that degrade the objective function.

At the beginning of the process, the value of the temperature ck is high, which
makes it possible to accept transitions with high objective degradation, and thereby
to explore the state space thoroughly. As ck decreases, only the transitions improving
the objective, or with a low objective deterioration, are accepted. Finally, when ck

tends to zero, no deterioration of the objective is accepted, and the SA algorithm
behaves like a Monte Carlo algorithm.

1 Simulated Annealing: From Basics to Applications 7

1.3 Theory

This section addresses two theoretical properties that are fundamental to SA: statis-
tical equilibrium and asymptotic convergence. More details and proofs of the theo-
rems cited in this section can be found in the books [1, 13].

1.3.1 Statistical Equilibrium

Based on the ergodicity hypothesis that a particle system can be considered as a
set having observable statistical properties, a number of useful quantities can be
deduced from the equilibrium statistical system: mean energy, energy distribution,
entropy. Moreover, if this particle set is stationary, which is the case when the statis-
tical equilibrium is reached, the probability density associated with the states in the
equilibrium phase depends on the energy of the system. Indeed, in the equilibrium
phase, the probability that the system is in a given state i with an energy Ei is given
by the Boltzmann law:

Theorem 1 After a sufficient number of transitions with a fixed control parameter
c and using the following probability of acceptance:

Pc{accept j|Si}=
{

1 if f (j)< f (i)

e

(
f (i)− f (j)

c

)
else,

the simulated annealing algorithm will find a given solution i ∈ S with the
probability:

Pc{X = i}= qi(c) =
1

N0(c)
e

(
− f (i)

c

)
,

where X is the random variable representing the current state of the annealing algo-
rithm, and N0(c) is the normalization coefficient:

N0(c) = ∑
j∈S

e

(
− f (j)

c

)
.

Definition 7 Let A and B be two sets such that B ⊂ A. We define the characteristic
function of B, noted κ(B), to be the function such that:

κ(B)(a) =

{
1 if a ∈ B
0 else.

Corollary 1 For any given solution i, we have:

lim
c→0+

Pc{X = i}= lim
c→0+

qi(c) = q∗i =
1

|Sopt |κ(Sopt)(i),

where Sopt represents the set of global optima.

8 D. Delahaye et al.

This result guarantees the asymptotic convergence of the simulated annealing al-
gorithm towards an element of the set of global optima, provided that the stationary
distribution qi(c), i ∈ S, is reached at each value of c. For a discrete state space, such
distributions are discrete and one can compute the probability to reach one particular
point xi in the state space with an objective value yi:

qi(c) =
e

(
− yc

i
c

)

∑
j∈S

e

(
− yc

j
c

) .

The expected value of the function f to optimize at equilibrium for any positive
value of c is denoted 〈 f 〉c and the variance is denoted 〈 f 2〉c.

At a very high temperature c, the SA algorithm moves randomly in the state
space. With each point xi generated by this process, is associated an objective value
yi by the mapping yc

i = f (xi). If we consider this process for a long period, it is
possible to build the distribution of the objective function values yc

i ,(i = 1,2, . . . ,N)
generated by the SA process. This distribution depends on the temperature c and
will be denoted q(c). For large values of c, this distribution is equal to the objective
distribution. Figure 1.2 gives an example of such a distribution. The figure shows
a one-dimensional objective function for which the circles represent the samples of
the SA algorithm at some high temperature c1. The dashed horizontal line shows
the mean of this distribution (< f (c1) >), and on the left-hand side the associated
distribution is represented by the dashed graph (q(c1)). For a lower temperature c2,
some transitions in the SA process are not accepted, meaning that the associated
distribution q(c2) is shifted to the lower levels (squares in the objective function on
the right and solid graph on the left) with a lower expected value.

Definition 8 The entropy at equilibrium is

Hc = ∑
i∈S

qi(c)ln(qi(c)).

Corollary 2 One has:
∂ 〈 f 〉c

∂c = σ2
c

c2

∂Hc
∂c = σ2

c
c3 .

These last two expressions play an important role in statistical mechanics. We
also deduce the following expressions:

1 Simulated Annealing: From Basics to Applications 9

y=f(x)

x

<f(c1)>

<f(c2)>q(
c2

) q(
c1

) c2<c1

Fig. 1.2 Distribution of the objective function values at some high temperature c1 and at a lower
temperature c2

Corollary 3

limc→∞〈 f 〉c = 〈 f 〉∞ = 1
|S| ∑i∈S f (i) limc→0〈 f 〉c = 〈 f 〉0 = fOpt ,

limc→∞ σ2
c = σ2

∞ = 1
|S| ∑i∈S(f (i)−〈 f 〉∞)

2 limc→0 σ2
c = σ2

0 = 0,

limc→∞ Hc = H∞ = ln(|S|) limc→0 Hc = H0 = ln(|SOpt |),
where fOpt denotes the optimal value of f . This last formula represents the third law
in thermodynamics (assuming that there is only one state of minimum energy, we
then obtain: S0 = ln(1) = 0).

In physics, the entropy measures the level of disorder associated with the sys-
tem: a high entropy value indicates a chaotic structure, while a low value reflects
organization.

In the context of optimization, the entropy is related to a measure of the degree of
optimality achieved. During the successive SA iterations, the mathematical expec-
tation of the objective function value and of the entropy only decrease and converge
respectively towards fOpt and ln(|SOpt |).

The derivative of the distribution qi(c) with the temperature c is given by the
following expression:

∂qi(c)
∂c

=
qi(c)

c2 [〈 f 〉c − f (i)] .

Since 〈 f 〉c ≤ 〈 f 〉∞, one can exhibit three regimes in the simulated annealing pro-
cess. More precisely, one can show the following:

Corollary 4 Let (S, f) be an instantiation of a combinatorial optimization prob-
lem with SOpt �= S , and let qi(c) be the stationary distribution associated with the
annealing process. We then have:

10 D. Delahaye et al.

(i) ∀i ∈ SOpt
∂qi(c)

∂c < 0;

(ii) ∀i �∈ SOpt such that f (i)≥ 〈 f 〉∞ : ∂qi(c)
∂c > 0;

(iii) ∀i �∈ SOpt such that f (i)< 〈 f 〉∞,∃c̃i > 0 satisfying:

⎧⎪⎨
⎪⎩

∂qi(c)
∂c > 0 if c < c̃i

∂qi(c)
∂c = 0 if c = c̃i

∂qi(c)
∂c < 0 if c > c̃i.

This corollary indicates that the probability of finding an optimal solution in-
creases monotonically when c decreases. Moreover, for any non-optimal solution,
there exists a positive value c̃i such that for c < c̃i, the probability of finding this
solution decreases as c decreases.

Definition 9 The acceptance rate associated with the simulated annealing algo-
rithm is defined by:

χ(c) =
Number of accepted transitions
Number of proposed transitions

.

As a general rule, when c has a high value, all transitions are accepted and χ(c)
is close to 1. Then, when c decreases, χ(c) decreases slowly until reaching 0, indi-
cating that no transitions are accepted.

By observing the evolution of 〈 f 〉c and σ2
c as a function of c, we note that there

exists a critical value called the transition threshold (denoted ct), that delimits two
distinct regions of the distribution at equilibrium. This threshold is the value ct such
that

〈 f 〉ct ≈
1
2
(< f∞ >+ fOpt) ,

and
σ2

c ≈ σ2
∞ if c ≥ ct ,

< σ2
∞ if c < ct .

For any given value of c, the search space S can therefore be partitioned into two
regions:

1. Region R1: where σ2
c remains roughly constant (close to σ2

∞) when c decreases.
2. Region R2: where σ2

c decreases when c decreases.

When c approaches the value of ct , the acceptance rate is about 0.5 (i.e., χ(ct)≈
0.5). Furthermore, one can show:

• In R1, for large values of c, 〈 f 〉c is linear in c−1, and σ2
c is roughly constant.

• In R2, for small values of c, 〈 f 〉c is proportional to c, and σ2
c is proportional to

c2.

1 Simulated Annealing: From Basics to Applications 11

One can then propose the following approximation models for 〈 f 〉c and σ2
c :

⎧⎪⎨
⎪⎩

〈 f 〉c
∼= f< = fOpt +Nt

(
〈 f 〉∞ − fOpt − σ2

∞
c

)
c

1−γc if c ≤ ct

〈 f 〉c
∼= f> = 〈 f 〉∞ − σ2

∞
c if c > ct

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
c = σ2

< = N2
t σ2

∞

(
c

1−γc

)
if c ≤ ct

σ2
c = σ2

> = σ2
∞ if c > ct

with

ct =
2σ2

∞
〈 f 〉∞− fOpt

and Nt =
1−γct

ct
,

where, roughly speaking, γ is the first-order approximation of 〈 f 〉c. Finally, let us
introduce the specific heat, noted H(c) which is given by the following formula:

H(c) =
d〈 f 〉c

dc
=

〈 f 〉2
c −〈 f 〉2

c

kbc2

A large value of H(c) indicates that the material starts to become solid: in this case,
the decreasing rate of the temperature has to be reduced.

1.3.2 Asymptotic Convergence

The simulated annealing algorithm possesses the property of stochastic convergence
towards a global optimum as long as it provides an infinitely-long temperature decay
diagram with infinitely-small decay steps. This decay scheme is purely theoretical
and one will try in practice to get closer to this ideal while remaining within reason-
able times of execution.

Definition 10 A Markov chain is a sequence of states, where the probability of
reaching a given state depends only on the previous state. Let X(k) be the state
reached at the kth iteration. Then, the probability of transition at the kth iteration
for each state pair i, j is given by Pi j(k) = Pr{X(k) = j|X(k−1) = i}. The associ-
ated matrix [Pi j(k)] is called the transition matrix.

12 D. Delahaye et al.

In the simulated annealing context, a Markov-chain transition corresponds to a
move in the state space (generation plus acceptance).

Definition 11 The transition probabilities of the SA algorithm are given by:

∀i, j ∈ S Pi j(k) = Pi j(ck) =

{
Gi j(ck)Ai j(ck) if i �= j
1−∑l �=i Pil(ck) if i = j,

(1.1)

where Gi j(ck) denotes the probability of generating state j from state i; and Ai j(ck)
is the probability of accepting the state j generated from the state i. For all i, j ∈ S,
Ai j(ck) is given by:

Ai j(ck) = e

(
− (f (j)− f (i))+

ck

)

with a+ =

{
a if a > 0
0 else .

Theorem 2 Let the transition probability associated with the SA algorithm be de-
fined by (1). Suppose that the following condition is satisfied:

∀i, j ∈ S ∃p ≥ 1,∃l0, l1, . . . , lp ∈ S,

with l0 = i, lp = j, and Glk,lk+1 > 0,k = 0,1, . . . , p−1.
Then, the Markov chain has a stationary distribution, denoted q(c) which is the

distribution of the solutions visited by the SA algorithm at temperature c, whose
components are given by:

qi(c) =
1

N0(c)
e

(
− f (i)

c

)
, ∀i ∈ S

where N0(c) is the normalization coefficient.

Furthermore,
lim
c→0

q(c) = q ∗,

with q ∗ = 1
|Sopt |κ(Sopt)(i) , i ∈ S.

Finally,
lim
c→0

lim
k→∞

Pr{Xc
k = i}q(c) = q ∗,

and
lim
c→0

lim
k→∞

Pr{Xc
k ∈ Sopt}= 1,

where Xc
k denotes the kth iterate obtained at temperature c. This result indicates the

convergence of the simulated annealing algorithm to one of the optimal solutions.

1 Simulated Annealing: From Basics to Applications 13

Generalization:

Theorem 3 Assume that the probabilities of generation and acceptance satisfy the
following assumptions:

(G1) ∀ck > 0, ∀i, j ∈ S ∃p ≥ 1, ∃ l0, l1, . . . , lp ∈ S :
l0 = i lp = j and Glklk+1(ck)> 0 k = 0,1, .., p−1;

(G2) ∀ck > 0, ∀i, j ∈ S : Gi j(ck) = G ji(ck);

(A1) ∀ck > 0, ∀i, j,k ∈ S :

{
Ai j(ck) = 1, if f (i)≥ f (j)

Ai j(ck) ∈]0,1[, if f (i)< f (j)

(A2) ∀ck > 0, ∀i, j,k ∈ S with f (i)≤ f (j)≤ f (k), Aik(ck) = Ai j(ck)A jk(ck)

(A3) ∀i, j ∈ S with f (i)< f (j), limck→0+ Ai j(ck) = 0

Then, at any iteration k there exists a stationary distribution q(ck) whose compo-
nents are given by:

qi(ck) =
AiOpt i(ck)

∑ j∈S AiOpt j(ck)
∀ i ∈ S and iOpt ∈ SOpt .

Moreover, for any iOpt ∈ SOpt , we have:

lim
ck→0+

qi(ck) =
1

|SOpt |κ(SOpt)(i).

In practice, it is very hard to find acceptance distributions, other than exponential
distributions, that satisfy A1,A2,A3.

The theoretical results presented above are not directly applicable to a practical
SA algorithm since they assume an infinite number of iterations for each value of
ck, which moreover decreases continuously towards zero.

In the case where the number of iterations at each temperature step is finite, the
simulated annealing can be modeled using a Markovian inhomogeneous model for
which similar results can be established.

The simulated annealing algorithm converges towards an optimal solution of the
optimization problem but it reaches this optimum only for an infinite number of
transitions. The approximation of the asymptotic behavior requires a number of iter-
ations whose order of magnitude is equal to the cardinality of the state space, which
is unrealistic in the context of NP-hard problems. It is therefore necessary to see the
annealing as a mechanism for approaching the global solution of a combinatorial
optimization problem, to which it will be necessary to add a local search method
allowing an optimum to be reached exactly. In other words, the simulated annealing
makes it possible to move in the right attraction basin, and a local method com-

14 D. Delahaye et al.

pletes the optimization process by determining a local optimum within this basin of
attraction corresponding to a global optimum of the problem.

1.4 Practical Issues

This section surveys the following practical issues of interest to the user who
wishes to implement the SA algorithm for its particular application: finite-time ap-
proximation, polynomial-time cooling, Markov-chain length, stopping criteria, and
simulatation-based evaluations.

1.4.1 Finite-Time Approximation

In practice, the convergence conditions will be approximated by choosing, at every
iteration k, relatively small steps of decay of the parameter ck and a sufficiently large
number, Lk, of transitions at this temperature. Intuitively, the greater the decrement,
the greater the length of the stabilization steps to achieve a quasi-equilibrium (de-
fined below). There is therefore a trade-off to find between “large decrement” and
“length” Lk.

A finite-time implementation of a simulated annealing algorithm can be achieved
by generating homogeneous Markov chains of finite length for a finite decreasing
sequence of values of the control parameter c.

Definition 12 A cooling process is defined by:

1. A finite sequence of values of the control parameter c, that is to say:

• An initial value c0;
• A decay function of parameter c;
• A final value for c.

2. A finite number of transitions for each value of the control parameter, i.e. a finite
length of the associated Markov chain.

Definition 13 Let ε be a sufficiently small positive value, k a given iteration num-
ber, Lk the length of the kth Markov chain and ck the value of the control parameter.
We say that we have a quasi-equilibrium if the probability distribution of the solu-
tions after Lk iterations of the Markov chain (distribution denoted by a(Lk,ck)) is
sufficiently close to the stationary distribution q(ck):

qi(ck) =
1

N0(ck)
e
− f (i)

ck ∀ i ∈ S,

N0(ck) = ∑
j∈S

e
− f (j)

ck .

1 Simulated Annealing: From Basics to Applications 15

That is:
||a(Lk,ck)−q(ck)||< ε .

The cooling process using the quasi-equilibrium principle is based on the fol-
lowing observation. When the parameter ck tends to ∞, the stationary distribution is
given by a uniform law on the set of possible solutions S:

lim
ck→∞

q(ck) =
1
|S|1,

where 1 is the vector of dimension |S| whose components are all one.
Thus, for ck sufficiently large, each point of the search space is visited with the

same probability and a state of quasi-equilibrium is directly reached whatever the
value of Lk. Then, the cooling process consists in determining the value (Lk,ck) that
will lead to a quasi-equilibrium at the end of each Markov chain.

There are many possible cooling processes but the two most common ones are
the geometric process proposed by Kirkpatrick [11, 12] and the polynomial-time
cooling proposed by Aarts and Van Laarhoven [2, 3].

1.4.2 Geometric Cooling

• Initial temperature c0: A prior heating is performed so that we can find a value
of c0 large enough so that nearly all transitions are accepted at the first iterations.
In order to find such a value, one starts with a small value c0. Then, this value
is progressively multiplied by a number greater than 1 until the acceptance rate
χ(c0) is close to 1.

• Decay of the control parameter: ck+1 := αck where typically 0.8 < α < 0.99.
• Stopping criterion: One decides that the algorithm is terminated when the cur-

rent solution does not change any longer from one iteration to the next during a
sufficiently large number of iterations.

• Length of the chain: In theory, it is necessary to allow each chain to reach a state
of quasi-equilibrium. To this end, a sufficient number of acceptable transitions
must be performed, which generally depends on the problem. Since the number
of accepted transitions decrease over time with respect to the number of proposed
transitions Lk, the latter must be lower bounded.

1.4.3 Cooling in Polynomial Time

Let us explain how the initial value of the temperature parameter can be set and how
it should then be iteratively decreased.

16 D. Delahaye et al.

1.4.3.1 Initial Temperature c0

Let m1 be the total number of transitions proposed that improves strictly the value
of objective function, and let m2 be the number of other (increasing) proposed tran-

sitions. Moreover, let Δ̄ f
(+) be the average of the cost differences over all the in-

creasing transitions. Then, the acceptance rate can be approximated by:

χ(c)� m1 +m2e
−
(

Δ̄ f
(+)

c

)

m1 +m2
,

which yields

c � Δ̄ f
(+)

ln
(

m2
m2.χ(c)−m1.(1−χ(c))

) . (1.2)

The proposed initial value of c0 is then defined as follows:
Initially c0 is set to zero. Thereafter, a sequence of m0 transitions is generated

for which the values of m1 and m2 are computed. The initial value of c0 is then
calculated from Eq. (1.2), where the value of the acceptance rate, χ(c), is defined by
the user. The final value of c0 is then taken as the initial value in the cooling process.

1.4.3.2 Decay of the Control Parameter

The quasi-equilibrium condition is replaced by:

∀k ≥ 0 ||q(k)−q(k+1)||< ε ,

Thus, for two successive values ck and ck+1 of the control parameter, it is desired
for the stationary distributions to be close. This can be quantified by the following
formula:

∀i ∈ S
1

1+δ
<

qi(ck)

qi(ck+1)
< 1+δ , (1.3)

where δ is some small positive number a priori given. The following theorem pro-
vides a necessary condition for satisfying Eq. (1.3).

Theorem 4 Let q(ck) be the stationary distribution of the Markov chain associated
with the simulated annealing process at iteration k, and let ck and ck+1 be two
successive values of the control parameter with ck+1 < ck, then (1.3) is satisfied if:

∀i ∈ S e
Δi

(
1

ck+1
− 1

ck

)
< 1+δ , (1.4)

where Δi = f (i)− fOpt .

1 Simulated Annealing: From Basics to Applications 17

The necessary condition (1.4) can be rewritten as:

∀i ∈ S ck+1 >
ck

1+ ck.ln(1+δ)
f (i)− fOpt

. (1.5)

One can show that the latter condition (1.5) can be approximated by:

∀i ∈ S ck+1 >
ck

1+ ckln(1+δ)
3σck

, (1.6)

where σck is the standard deviation of q(ck) at temperature ck.
The decrement of the temperature parameter c is then determined by the user-

defined parameter δ . A large value of δ induces large decrements of c, and small
value of δ produces small decrements.

1.4.3.3 Length of Markov Chains

In the SA cooling process, the length of the Markov chains must allow a signifi-
cant percentage of the neighborhood Si of a given solution i ∈ S to be visited. The
following theorem is used to quantify this percentage:

Theorem 5 Let S be a set of cardinality |S|. Then, the average number of elements
of S visited during a random walk with N iterations is given by:

|S|.
[
1− e

− N
|S|
]

for large N and large |S|.
Thus, if no transition is accepted and if N = |Si|, the percentage of solutions

visited in the neighborhood Si of a solution i is : 1− e−1 � 2/3.
A good choice for the number of iterations of the inner loop (at temperature ck)

at iteration k is given by Lk = |Si| where, obviously, |Si| is problem dependent and
has to be designed by the user.

1.4.3.4 Stopping Criterion

Let Δ〈 f 〉ck = 〈 f 〉ck − fOpt . Then, the execution of the algorithm should terminate
when Δ〈 f 〉ck is “sufficiently” small with respect to 〈 f 〉c0 . For sufficiently high val-
ues of c0, we have < fc0 >� 〈 f 〉∞

Moreover, for ck << 1:

Δ〈 f 〉ck � ck
∂ 〈 f 〉ck

∂ck
.

18 D. Delahaye et al.

The end of the algorithm is then fixed by the following condition:

ck

〈 f 〉∞

∂ 〈 f 〉ck

∂ck
< εs for ck << 1

with some small tolerance εs to be set by the user.

1.4.3.5 Summary

The cooling process in polynomial time is thus parameterized by:

• The initial rate of acceptance: χ(c0)
• The distance between successive stationary distributions controlled by the pa-

rameter δ
• The stopping criterion, controlled by the parameter εs

The number of iterations of this cooling process is bounded and can be charac-
terized by the following theorem:

Theorem 6 Let the decrement function be given by:

ck+1 =
ck

1+αkck
,

where

αk =
ln(1+δ)

3σck

,

and let K be the first integer for which the stopping criterion is satisfied. Then, we
have K = O(ln(|S|)).

Consequently, if ln(|S|) is polynomial on the size of the problem (which is the
case for many combinatorial optimization problems), then this type of cooling in-
duces a polynomial execution of the algorithm.

There is an optimal annealing scheme for each problem and it is up to the user
to define which one is the most suitable for his application. When one has no prior
information about the optimal annealing scheme, which is generally the case, one
should rely on a standard geometrical scheme for which the parameter ck evolves
as follows: ck+1 := αkck, and tune empirically the parameters αk and Lk on some
representative instances of the class of problem of interest.

This geometric approach is not optimal for all problems but has the advantage
of being robust and ensures convergence towards an approximate solution, even
though it requires more time to converge than it would do with an optimal annealing
scheme.

1 Simulated Annealing: From Basics to Applications 19

1.4.4 Simulation-Based Evaluation

In many optimization applications, the objective function is evaluated thanks to a
computer simulation process which requires a simulation environment. In such a
case, the optimization algorithm controls the vector of decision variables, X , which
are used by the simulation process in order to compute the performance (quality), y,
of such decisions, as shown in Fig. 1.3.

Optimization

Simulation
Environment

Data

yX

Fig. 1.3 Objective function evaluation based on a simulation process

In this situation, population-based algorithms may not be adapted to address such
problems, mainly when the simulation environment requires huge amount of mem-
ory space as is often the case in nowadays real-life complex systems. As a matter
of fact, in the case of a population-based approach, the simulation environment has
to be duplicated for each individual of the population of solutions, which may re-
quire an excessive amount of memory. In order to avoid this drawback, one may
think about having only one simulation environment which could be used each time
a point in the population has to be evaluated. One first consider the first individ-
ual for which the simulation environment is initiated and the simulation associated
with this first individual is run. The associated performance is then transferred to the
optimization algorithm. After that, the second individual is evaluated, but the simu-
lation environment must first be cleared from the events of the first simulation. The
simulation is then run for the second individual, and so on until the last individual of
the population is evaluated. In this case the memory space is not an issue anymore,
but the evaluation time may be excessive and the overall process too slow, due to
the fact that the simulation environment is reset at each evaluation.

In the standard simulated annealing algorithm, a copy of a state space point is
requested for each proposed transition. In fact, a point X j is generated from the
current point Xi through a copy in the memory of the computer. In the case of state
spaces of large dimension, the simple process of implementing such a copy may
be inefficient and may reduce drastically the performance of simulated annealing.

20 D. Delahaye et al.

In such a case, it is much more efficient to consider a come back operator, which
cancels the effect of a generation. Let G be the generation operator which transforms
a point from Xi to X j:

G
Xi → X j

The comeback operator is the inverse G−1 of the generation operator.
Usually, such a generation modifies only one component of the current solution.

In this case, the vector Xi can be modified without being duplicated. Depending on
the value obtained when evaluating this new point, two options may be considered:

1. the new solution is accepted and, in this case, only the current objective function
value is updated.

2. else, the come back operator G−1 is applied to the new position in order to come
back to the previous solution, again without any duplication in the memory.

This process is summarized in Fig. 1.4.

d2 d3 d41 di dNd

GENERATION

d2 d3 d41 di dNd

COME BACK

d2 d3 d41 dNd j
~
di

Fig. 1.4 Optimization of the generation process. In this figure, the state space is built with a de-
cision vector for which the generation process consist of changing only one decision (di) in the
current solution. If this modification is not accepted, this component of the solution recovers its
former value. The only information to be stored is the integer i and the real number di.

The come back operator has to be used carefully because it can easily generate
undesired distortions in the way the algorithm searches the state space. For example,
if some secondary evaluation variables are used and modified for computing the
overall evaluation, such variables must also recover their initial value, and the come
back operator must therefore ensure the coherence of the state space.

1.5 Illustrative Applications

In this section, we will see how simulated annealing can be applied to two classi-
cal NP-hard combinatorial optimization problems: the knapsack problem and the
traveling salesman problem.

1 Simulated Annealing: From Basics to Applications 21

1.5.1 Knapsack Problem

The knapsack problem can be defined as follows. Given a set of n item types, each
with a weight and a value, and given a weight limit, determine the number of each
item to include in a collection so that the associated total weight is less than or equal
to the weight limit, and so that the total value is as large as possible. The knapsack
problem derives its name from the problem faced by someone who is constrained
by a fixed-size knapsack and must fill it with the most valuable items.

This problem often arises as a subproblem in resource allocation applications
where there are financial constraints, such as:

• Cargo loading (truck, boat, cargo aircraft)
• Satellite channel assignment
• Portfolio optimization

In the following, we will consider the binary version of the problem, where there
is only one item of each type. Thus, we have n items, each with value vi and weight
wi , i = 1, . . . ,n. We must decide whether each item should be put (or not) in a
knapsack of weight limit P, so as to maximize its total value. Before presenting the
application of simulated annealing to such a problem, we first present a mathemati-
cal model for this optimization problem.

1.5.1.1 Mathematical Modeling

As for any real optimization problem to be solved, the modeling step is critical and
has to be done carefully. It models the state space by defining the decision variables,
and it expresses the objective function and the constraint functions in terms of the
decision variables and the given data.

In the binary knapsack problem, we have a vector of binary decision variables
x = (x1,x2, . . . ,xn)

T , where xi = 0 if item i is left out of the knapsack and xi = 1
if item i is put in the knapsack. For a given vector x, the objective function value,
which represents the total value of the items in the knapsack, is:

f (x) =
n

∑
i=1

vixi.

We want this value to be maximized. If there was no weight limit, there would be no
optimization problem in the sense that all items would fit in the knapsack (i.e., the
optimal decision vector would be x = (1,1, . . .1)T). Thus, the weight limit makes
the problem combinatorial. This weight limit is the main constraint of this problem
and is modeled by the following inequality:

n

∑
i=1

wi.xi.≤ P.

22 D. Delahaye et al.

Then, one must add the binary constraints:

xi ∈ {0,1}, for i = 1,2, . . . ,n.

The overall model is then

max f (x) =
n

∑
i=1

vixi

s.t.
n

∑
i=1

pixi ≤ P

xi ∈ {0,1}, i = 1,2, . . . ,n.

This problem is easy to formulate but hard to solve due to the associated com-
binatorics. For n items, the number of potential solutions to consider is 2n which
grows very rapidly with n:

n 2n

10 1.024×103

20 1.048×106

30 1.073×109

40 1.099×1012

50 1.125×1015

60 1.152×1018

70 1.180×1021

80 1.208×1024

90 1.237×1027

100 1.267×1030

For large instances of the knapsack problem, one can consider applying meta-
heuristics like simulated annealing.

1.5.1.2 Simulated Annealing Implementation

For the knapsack problem, each solution is encoded as a binary vector X . From a
point Xi, we generate a neighbor Xj by randomly flipping one component of Xi, as
shown in Fig. 1.5 where the kth component is chosen.

In the unconstrained optimization context of SA, a classical relaxation can be
considered to take into account the weight limit constraint. Basically, a term is added
in the objective function to penalize the violation of this constraint. Here, we com-
pute the weight excess Δ when the weight of the items in the knapsack exceeds its
weight limit:

Δ = min(0,(
n

∑
i=1

wixi)−P).

1 Simulated Annealing: From Basics to Applications 23

and the objective function value is then penalized by subtracting from it μ Δ
P , where

μ is a penalty parameter to be set by the user.

X i1 1 1 0 0 0 0111

1 1 1 0 0 0111 1

k

X j

Fig. 1.5 In this example, with n = 10, the sixth position has been randomly selected in order to
include the sixth object in the bag

In order to test the simulated annealing algorithm on this problem, we first build
an instance of the problem by randomly generating 100 items for which the weights
have also been selected randomly between 1 and 100 with a uniform probability
density function. For this instance, the weight limit of the bag is set to P = 2000.
We choose μ = 1 for the penalty parameter and we apply the basic SA algorithm
with the initial temperature set to a value of c0 such that χ(c) = 0.8, a geometric
cooling schedule with α = 0.995, and Lk = 1000 for every iteration k. The algorithm
is stopped when the temperature reaches co

1000 .
We propose as initial solution a uniformly-distributed random binary vector. The

evolution of the penalized objective function with the number of iterations is shown
in Fig. 1.6, and the associated evolution of the total weight and the value of the
knapsack is shown in Fig. 1.7. At the beginning of the optimization process, the
SA explores the solution space by accepting solutions that yield low value of the
penalized objective function. This leads to high excess weight and high total value.
The value of the penalized objective function increases as the algorithm converges to
the optimal solution. Since the excess weight is high at the beginning, the solution is
improved mainly by removing weight from the knapsack, therefore the total weight
and total value decrease. As the excess weight reaches zero (feasible solution) the
solution must be improved by increasing the value (while keeping the weight under
the weight limit). Therefore, the total value increases until it reaches the maximum
value.

1.5.2 Traveling Salesman Problem

The traveling salesman problem (TSP) asks the following question: “Given a list of
n cities, among which an origin city, and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once and returns to
the origin city?” This is again an important NP-hard combinatorial optimization

24 D. Delahaye et al.

problem, particularly in the fields of operations research and theoretical computer
science. The problem was first formulated in 1930 and is one of the most intensively-
studied problems in discrete optimization.

-180000

-160000

-140000

-120000

-100000

-80000

-60000

-40000

-20000

0

20000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

y

iterations

Penalized objective function

Penelized objective

Fig. 1.6 Evolution of the penalized objective function with iterations

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
ei

gh
t a

nd
 V

al
ue

iterations

Weight and Value Evolution

Weight
Value

Fig. 1.7 Evolution of the total weight and value with iterations

As for the knapsack problem, we first present the mathematical modeling.

1 Simulated Annealing: From Basics to Applications 25

1.5.2.1 Mathematical Modeling

Let us consider a set of n cities where each city i has coordinates (xi,yi), i =
1,2, . . . ,n. In this case, each point X of the state space, has to represent a poten-
tial permutation in the order we visit the n cities. For simplicity, we consider the
following initial solution using the lexicographic order:

X0 = 1 2 3 4 . . . n

The objective function evaluation consists in computing the length f of the tour
corresponding to any vector X :

f (X) =
n−1

∑
i=1

d(Xi,Xi+1)+d(XN ,X1),

where, Xi is the ith element of X . If Xi = k and Xi+1 = l, the inter-city distance is:

d(Xi,Xi+1) =
√

(xl − xk)2 +(yl − yk)2.

Note that the last term, d(XN ,X1), in the above definition of f represents the last
segment of the tour to come back to the origin city.

The complexity associated with the traveling salesman problem is known to be
much higher than that of the knapsack problem. For a problem with n cities, the
number of potential tours to be considered is n!, which grows with n much faster
than 2n:

n 2n n!
10 1.024×103 3.628×106

20 1.048×106 2.432×1018

30 1.073×109 2.652×1032

40 1.099×1012 8.159×1047

50 1.125×1015 3.041×1064

60 1.152×1018 8.320×1081

70 1.180×1021 1.197×10100

80 1.208×1024 7.156×10118

90 1.237×1027 1.485×10138

100 1.267×1030 9.332×10157

Just to give an idea of the complexity of the problem, if one evaluation of the
objective function requests 10−9 s, then a naive enumeration algorithm evaluating
every possible solution would require the following CPU time:

26 D. Delahaye et al.

n 2n n! ratio n!
2n

10 1 μs 3.6 ms 3.6×103

20 1 ms 77 years 2.3×1012

30 1 s 8.4 ×1015 years 2.47×1023

40 18 min 2.5 ×1031 years 7.4×1035

50 13 days 9.6 ×1047 years 2.7×1049

60 36 years 2.6 ×1047 years 7.2×1063

70 37 ×103 years 3.8 ×1083 years 1×1079

80 38 ×106 years 2.2 ×10102 years 5.9×1094

90 39 ×109 years 4.7 ×10121 years 1.2×10111

100 40 ×1012 years 2.9 ×10141 years 7.3×10127

Even if the computer power is likely to double in the next 18 months, no need to say
that it would not make such a naive algorithm practical.

1.5.2.2 Simulated Annealing Implementation

One of the simplest neighborhood operator for this problem consists of randomly
exchanging two positions in the current solution vector X (see Fig. 1.8). This way of
manipulating points of the state space ensures that the produced neighbor remains
a permutation i.e. a tour of the n cities. Implementing such an operator within the
SA algorithm yields acceptable results, but the performance of the SA can really be
improved by using a neighborhood operator that exchanges all the positions between
two randomly chosen indices (m,n), as shown in Fig. 1.9.

X i1

X j

2 3 4 5 6 7 8 109

1 2 4 5 6 8 9 10

m n

7 3

Fig. 1.8 A first neighborhood operator: randomly swapping two positions

Let us consider an instance with n = 1000 cities randomly generated in a square
subset of the plane. The straightforward SA algorithm is implemented, again, with
initial temperature c0 such that χ(X) = 0.8, a geometric cooling schedule with
α = 0.995, and Lk = 1000 for every iteration. The algorithm is stopped when the
temperature reaches co

1000 , and based on the second neighborhood operator (Fig. 1.9).
The initial solution considered is the tour of total distance 1.16857164×108 shown
in Fig. 1.10.

1 Simulated Annealing: From Basics to Applications 27

X i1

X j

2 3 4 5 6 7 8 109

1 2 5 8 9 10

m n

7 346

Fig. 1.9 A second neighborhood operator: swapping all positions between two randomly chosen
positions (m,n)

Fig. 1.10 Initial tour of the TSP with n = 1000 cities

After application of the simulated annealing algorithm on this problem, one ob-
tains the tour displayed in Fig. 1.11. One minute of computation on a Unix platform
with a 2.4 GHz processor and 8 GB of RAM was needed to get the final tour of total
distance 360,482.

This is clearly not an optimal solution for this instance (there are some subop-
timal crossings) but this solution is very easily obtained via a direct application of
SA.

Simulated annealing has also been applied to many combinatorial problems com-
ing from the industry and real-world operations. To mention just a few:

• Airline Crew Scheduling [8]
• Railway Crew Scheduling [9]
• Traveling Salesman Problem [4]
• Vehicle Routing Problem [14]
• Layout-Routing of Electronic Circuits [17]

28 D. Delahaye et al.

Fig. 1.11 Final tour of the TSP with n = 1000 cities

• Large Scale Aircraft Trajectory Planning [5, 10]
• Complex portfolio problem [7]
• Graph coloring problem [6]
• High-dimensionality minimization problems [16]

1.6 Large-Scale Aircraft Trajectory Planning

In this section, we present a methodology using SA to address a strategic planning of
aircraft trajectories at the European continental scale, which involves nearly 30,000
flights per day. The goal is to separate the given set of 4D aircraft trajectories (three-
dimension space plus time) by allocating an alternative route in the three-dimension
space and an alternative departure time to each flight.

1.6.1 Mathematical Modeling

Our strategic trajectory planning problem considers a set of flight plans (origin,
destination, departure time) for a given day. We rely on route or departure-time allo-
cation to separate aircraft trajectories. In other words, for each flight, we can delay
departure and/or impose an alternative route instead of the initially-planned direct
route between the origin and the destination. This can be formulated as an optimiza-
tion problem aimed at minimizing the number of interactions between trajectories,

1 Simulated Annealing: From Basics to Applications 29

where we count one interaction whenever two flights are in conflict i.e., separated at
some point by less than 5 NM (nautical miles) horizontally or 1000 feet vertically.

Given Data. A problem instance is given by:

• A set of N initial (nominal) discretized 4D (direct-route) trajectories;
• For each flight i, for i = 1,2, . . . ,N:

– The initial planned departure time: ti,0;
– The maximum allowed advance departure time shift: δ i

a < 0;
– The maximum allowed delay departure time shift: δ i

d > 0;
– The maximum allowed route length extension coefficient: 0 ≤ di ≤ 1.
– M: the number of allowed virtual waypoints to modify the route.

Decision Variables. In the time domain, one can use a departure-time shift, δi,
associated with each flight i (i = 1,2, . . . ,N). Therefore, the resulting departure time
of flight i is given by ti = ti,0 + δi, In the 3D space, one can rely on a vector, wi, of
virtual waypoint locations through which flight i must go (using straight-line seg-
ments), wi := (w1

i ,w
2
i , . . . ,w

M
i), i = 1, . . . ,N. Let us set the compact vector notation:

δ := (δ1,δ2, . . . ,δN), and w := (w1,w2, . . . ,wN). Therefore, the decision variables
of our route / departure-time allocation problem can be represented by the vector:
u := (δ ,w).

Constraints. The above optimization variables must satisfy the following con-
straints:

• Allowed departure time shift. Since it is not reasonable to delay or to advance
departure times for too long, the departure time shift, δi, is limited to lie in the
interval [δ i

a,δ i
d]. Common practice in airports led us to discretize this time inter-

val. Given the (user-defined) time-shift step size δs, this yields Ni
a := |δ i

a|
δs

possible

advance slots, and Ni
d :=

δ i
d

δs
possible delay slots for flight i. Therefore, we define

the discrete set, Δi, of all possible departure time shifts for flight i by

Δi := {−Ni
a.δs,−(Ni

a −1).δs, . . . ,−δs,0,δs, . . . ,(N
i
d −1).δs,N

i
d .δs}. (1.7)

• Maximal route length extension. The alternative trajectory to be chosen in-
creases the route length, which leads to an increase in fuel consumption and
flight time. Therefore, the alternative choice should be limited for the new trajec-
tory if it is to be accepted by the airline. Consequently, the alternative trajectory
for flight i must satisfy:

Li(wi)≤ (1+di), (1.8)

where Li(wi) denotes the normalized length (i.e., assuming that the direct-flight
path length is 1) of the alternative trajectory determined by the waypoint vector
wi.

• Allowed waypoint locations. To reduce the search space, prevent undesirable
sharp turns, and restrain the route length extension, we bound the possible lo-
cation of each virtual waypoint. Let W m

ix and W m
iy be the 2D sets of all possi-

ble normalized longitudinal and lateral locations, respectively, of the mth virtual

30 D. Delahaye et al.

waypoint for trajectory i. The (normalized) longitudinal component, wm
ix, must lie

in the interval:

W m
ix :=

[(
m

1+M
−bi

)
,

(
m

1+M
+bi

)]
,m = 1,2, . . . ,M, (1.9)

where 0 ≤ bi ≤ 1 is a (user-defined) model parameter. The normalized lateral
component, wm

iy, is restricted to lie in the interval:

W m
iy := [−ai,ai], (1.10)

where 0 ≤ ai ≤ 1 is a (user-defined) model parameter chosen a priori so as to
satisfy (1.8). This yields a rectangular shape for the possible locations of the
virtual waypoint wm

i (see Figure 1.12).

Fig. 1.12 Rectangular-shape sets of the possible locations of M = 2 virtual waypoints, for
trajectory i

Objective Function
The objective is to minimize the number of interactions between trajectories,

which correspond, roughly speaking, to situations that occur in the flight planning
phase, when more than one trajectory compete for the same space at the same period
of time. Consider for example the trajectories A, B and C in Fig. 1.13.

We define an interaction at a trajectory point Pi,k(ui) to be the sum of all the
conflicts associated with point Pi,k(ui), where ui the ith component of u. We further
define the interaction, Φi, associated with trajectory i, as: Φi(u) := ∑Ki

k=1 Φi,k(u)
where Ki is the number of trajectory points obtained through some discretization of
the trajectory of the ith flight. Figure 1.13 illustrates the case of trajectory i = B at
the trajectory point PB,4. Finally, interaction between trajectories, Φtot , for a whole
traffic situation is simply defined as:

1 Simulated Annealing: From Basics to Applications 31

Fig. 1.13 Interactions, ΦB,4, at sampling point PB,4 of trajectory B

Φtot(u) :=
N

∑
i=1

Φi(u) =
N

∑
i=1

Ki

∑
k=1

Φi,k(u). (1.11)

The interaction minimization problem can be formulated as a mixed-integer op-
timization problem, as follows:

min
u=(δ ,w)

Φtot(u)

subject to

δi ∈ Δi, for all i = 1,2, . . . ,N

wm
ix ∈W m

ix , for all i = 1,2, . . . ,N,m = 1,2, . . . ,M

wm
iy ∈W m

iy , for all i = 1,2, . . . ,N,m = 1,2, . . . ,M,

(P1)

where the set Δi is defined in (1.7), and W m
ix and W m

iy are defined in (1.9) and (1.10),
respectively.

In order to evaluate the objective function of a candidate solution, (w,δ), one
needs to compute the interaction, Φtot , between the N aircraft trajectories. To
avoid the N(N−1)

2 time-consuming pair-wise comparisons, which is prohibitive in
our large-scale application context, we propose a 4D grid-based conflict detection
scheme as illustrated in Fig. 1.14 (see [5, 10] for further details). First, we define a
four-dimensional (3D space + time) grid (see Fig. 1.14). The size of each cell in the
x,y, and z directions is defined by the minimum separation requirements, Nh = 5 NM
and Nv = 1000 ft. The size of the cell in the time domain is set according to some
given discretization step size, ts. To detect conflicts, the idea is to successively put
each trajectory in this grid, and then check for conflicts only in the cells surrounding
the current trajectory.

In the SA optimization process, the computation of the objective function,
Φtot(u), is repeated many times. Therefore it must be computed as efficiently as
possible. To avoid checking interactions over all the N trajectories even when only a
subset of trajectories are modified in a new proposed solution, the interaction count
is updated in a differential manner. More precisely, we proceed as follows. First,
the 4D grid is initialized with every cell empty. Then, the initial N trajectories, cor-
responding to the initial value of the decision vector, u (with all its components at
zero, i.e., direct flight), are placed in the 4D grid and the current interaction, ΦiC , as-
sociated with each trajectory, i, and the current total interaction between trajectories,
ΦtotC , are computed.

32 D. Delahaye et al.

Fig. 1.14 Four dimension (space-time) grid

We assume now that during the optimization process, the decision variables of l
flights are to be modified. Let Imodi f be a list of length l containing the flight indices
of the l flights. To update the value of total interaction, we first remove all the l cor-
responding trajectories from the 4D grid. Therefore, the interaction associated with
each trajectory in Imodi f is set to an intermediate value Φi,inter(u) = 0, ∀i ∈ Imodi f .
It should be noted that the interaction measurement is symmetrical: if Φ i j(u) de-
notes the contribution of trajectory i to the interaction associated with trajectory
j, then Φ i j(u) = Φ ji(u). Let Ni be a set of trajectories currently interacting with
trajectory i. The interaction associated with trajectory j ∈ Ni over all trajectories
i ∈ Imodi f , is set to an intermediate value Φ j,inter(u) = Φ j(u)− ∑i∈Imodi f

Φ i j(u).
Thereafter, the modified trajectories corresponding to the new decision variable val-
ues, ui, i∈ Imodi f , are placed in the 4D grid and the interaction detection procedure is
performed over all trajectories i ∈ Imodi f . Then, the interaction, Φi, associated with
each trajectory i ∈ Imodi f , is computed. Again, the interaction associated with each
trajectory, j, interacting with the set of modified trajectories is updated as follows:
Φ j(u) = Φ j,inter(u)+∑i∈Imodi f

Φ i j(u). Finally, the total interaction between trajec-

tories is simply computed as Φtot(u) = ∑N
i=1 Φi(u). This interaction computation

method allows us to update the value of the objective function when some trajec-
tories are modified within a very short computation time, since we do not need to
compute the change of interaction for decisions that are not modified at the current
optimization iteration.

1.6.2 Computational Experiments with SA

The proposed methodology is tested with a continent-size air traffic instance for
a full day of air-traffic over the European airspace, consisting of N = 29,852 en-
route trajectories. The trajectories are sampled with a discretization step of ts =
20 s. The initial trajectory set involves Φtot = 142,144 total interactions between
trajectories. Figure 1.15 illustrates the initial trajectory points (blue dots), and the
locations where the initial interactions occur (red dots).

1 Simulated Annealing: From Basics to Applications 33

3

2

1

0

-1

-2

-3
-4 -3 -2 -1 0 1 2 3 4

× 106

× 106

Fig. 1.15 Initial (direct-route) trajectory set involving 1-day en-route air traffic over the European
airspace (29,852 flights) sampled with ts = 20 s with initial location of interactions displayed as red
color dots

The initial temperature is computed by first generating 100 deteriorating trans-
formations at random and then by evaluating the average variations, ΔΦavg, of the
objective function values. The initial temperature, c0, is then deduced from the re-

lation: c0 = e
ΔΦavg

T0 , where τ0 is the initial acceptance rate of degrading solutions
(which will be empirically set). In order to reach an equilibrium, a sufficient num-
ber of iterations, denoted Lk, have to be performed at each temperature step k. In
our case, we assume for simplicity purposes that the number of iterations, Lk, is
constant and empirically set. The temperature is decreased following the geometri-
cal law, ck+1 = αck, where 0 ≤ α ≤ 1 is a pre-defined constant value.

To generate a solution in the neighborhood, we set a user-defined threshold value
of interaction, denoted Φτ , such that the trajectory of a randomly chosen flight i will
be modified only if Φi(u)≥ Φτ , where u is the current solution. Then, for a chosen
flight, i, we introduce another user-defined parameter, Pw ≤ 1, to control the proba-
bility of modifying the value of the ith trajectory waypoint location decision vector,
wi. The probability to modify instead the departure time is thus 1−Pw. The algo-
rithm terminates when the final temperature, c f , is reached, or when an interaction-
free solution is found. The parameter values chosen to specify the instance consid-
ered, and the empirically set parameters defining the overall SA problem-solving
methodology are given in Table 1.1.

The SA adapted to solve the strategic trajectory planning problem is implemented
in Java. We address this problem instance with an AMD Opteron 2 GHz processor
with 128 Gb RAM. Numerical results obtained from the simulation are reported
in Table 1.2. This SA implementation yields an interaction-free solution for this
continent-scale problem instance after around 76 min of computation time. This is
compatible with strategic (several days in advance) planning application require-
ments in the setting of regular airline schedules.

34 D. Delahaye et al.

Table 1.1 Chosen (user-defined) parameter values defining the problem and the empirically-set
(user-defined) parameter values of the resolution methodology

Parameters defining the Parameters defining the
problem SA

Parameter Value Parameter Value
−δ i

a = δ i
d 60 min Lk 3500

δs 20 s τ0 0.3
di 0.12 (12%) β 0.99
M 2 Tf (1/500).T0
ai 0.126 Pw 0.5
bi 0.067 Φτ 0.5 Φavg

Table 1.2 Numerical results for continent-size problem instance solved by SA (averages are com-
puted over 10 runs)

Numerical results Value
Number of iterations 497,000
Avg. computation time (minutes) 76.19
Avg. proportion of delayed/advanced flights 71.29%
Avg. proportion of extended flights 46.23%
Avg. departure time shifts (minutes) 30.14
Avg. route length extensions 1.95%

1.7 Conclusion

This chapter introduced the reader to simulated annealing (SA), a global optimiza-
tion metaheuristic. The main advantage of SA is its simplicity. SA is based on
an analogy with the physical annealing of materials that avoids the drawback of
the Monte-Carlo approach (which can be trapped in local minima), thanks to an
efficient Metropolis acceptance criterion. When the objective function evaluations
require a lot of memory space, for example when it results from complex simula-
tion processes that manipulate large-dimension state space involving much memory,
population-based algorithms are not applicable and simulated annealing is the right
answer to address such issues. An illustration was provided in section 1.6 where
a large-scale complex aircraft trajectory planning problem involving nearly 30,000
flights over Europe was addressed by exploiting particular features of the problem
and, in particular, by integrating clever implementation techniques within the al-
gorithm, and by setting user-defined parameters empirically, along the lines of the
basic SA theory.

1 Simulated Annealing: From Basics to Applications 35

References

1. E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to
Combinatorial Optimization and Neural Computing (Wiley, New York, 1989)

2. E. Aarts, P. Van Laarhoven, A new polynomial time cooling schedule, in Proceedings of the
IEEE International Conference on Computer-Aided Design, Santa Clara (1985), pp. 206–208

3. E. Aarts, P. Van Laarhoven, Statistical cooling: a general approach to combinatorial problems.
Philips J. Res. 40, 193–226 (1985)

4. H. Bayram, R. Sahin, A new simulated annealing approach for travelling salesman problem.
Math. Comput. Appl. 18(3), 313–322 (2013)

5. S. Chaimatanan, D. Delahaye, M. Mongeau, A hybrid metaheuristic optimization algorithm
for strategic planning of 4D aircraft trajectories at the continental scale. IEEE Comput. Intell.
Mag. 9(4), 46–61 (2014)

6. M. Chams, A. Hertz, D. de Werra, Some experiments with simulated annealing for coloring
graphs. Eur. J. Oper. Res. 32(2), 260–266 (1987)

7. Y. Crama, M. Schyns, Simulated annealing for complex portfolio selection problems. Eur. J.
Oper. Res. 150(3), 546–571 (2003)

8. T. Emden-Weiner, M. Proksch, Best practice simulated annealing for the airline crew schedul-
ing problem. J. Heuristics 5(4), 419–436 (1999)

9. R. Hanafi, E. Kozan, A hybrid constructive heuristic and simulated annealing for railway crew
scheduling. Comput. Ind. Eng. 70, 11–19 (2014)

10. A. Islami, S. Chaimatanan, D. Delahaye, Large-scale 4D trajectory planning, in Air Traffic
Management and Systems II, ed. by Electronic Navigation Research Institute. Lecture Notes
in Electrical Engineering, vol. 420 (Springer, Tokyo, 2017), pp. 27–47

11. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. IBM Research
Report RC 9355, Acts of PTRC Summer Annual Meeting (1982)

12. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science
220(4598), 671 (1983)

13. P. Laarhoven, E. Aarts (eds.), Simulated Annealing: Theory and Applications (Kluwer,
Norwell, 1987)

14. W.F. Mahmudy, Improved simulated annealing for optimization of vehicle routing problem
with time windows (VRPTW). Kursor J. 7(3), 109–116 (2014)

15. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calcula-
tion by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

16. P. Siarry, G. Berthiau, F. Durdin, J. Haussy, Enhanced simulated annealing for globally min-
imizing functions of many continuous variables. ACM Trans. Math. Softw. 23(2), 209–228
(1997)

17. D.F. Wong, H.W. Leong, C.L. Liu, Simulated Annealing for VLSI Design (Kluwer Academic,
Boston, 1988)

Chapter 2
Tabu Search

Michel Gendreau and Jean-Yves Potvin

Abstract This chapter presents the fundamental concepts of Tabu Search (TS) in a
tutorial fashion. Special emphasis is put on showing the relationships with classical
local search methods and on the basic elements of any TS heuristic, namely, the
definition of the search space, the neighborhood structure, and the search memory.
Other sections cover other important concepts such as search intensification and
diversification and provide references to significant work on TS. Recent advances
in TS are also briefly discussed.

2.1 Introduction

Over the last 30 years, hundreds of papers presenting applications of Tabu Search
(TS), a heuristic method originally proposed by Glover in 1986 [30], to various
combinatorial problems have appeared in the operations research literature. In sev-
eral cases, the methods described provide solutions very close to optimality and are

M. Gendreau
Département de mathématiques et de génie industriel, Polytechnique Montréal, Montreal, QC,
Canada

Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport,
Montreal, QC, Canada
e-mail: michel.gendreau@cirrelt.net

J.-Y. Potvin (�)
Département d’informatique et de recherche opérationnelle, Université de Montréal, Montreal, QC,
Canada

Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport,
Montreal, QC, Canada
e-mail: potvin@iro.umontreal.ca

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_2

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_2&domain=pdf
mailto:michel.gendreau@cirrelt.net
mailto:potvin@iro.umontreal.ca
https://doi.org/10.1007/978-3-319-91086-4_2

38 M. Gendreau and J.-Y. Potvin

among the most effective, if not the best, to tackle the difficult problems at hand.
These successes have made TS extremely popular among those interested in finding
good solutions to the large combinatorial problems encountered in many practical
settings. Several papers, book chapters, special issues and books have surveyed the
rich TS literature (a list of some of the most important references is provided in a
later section). In spite of this abundant literature, there still seem to be many re-
searchers who, while they are eager to apply TS to new problem settings, find it
difficult to properly grasp the fundamental concepts of the method, its strengths
and its limitations, and to come up with effective implementations. The purpose
of this chapter is to address this situation by providing an introduction in the form
of a tutorial focusing on the fundamental concepts of TS. Throughout the chap-
ter, a relatively straightforward, yet challenging and relevant, problem will be used
to illustrate these concepts: the Classical Vehicle Routing Problem (CVRP). This
problem will be introduced in the following section. The remainder of the chapter
is organized as follows. The basic concepts of TS, like the search space, neighbor-
hood structure, and short-term tabu lists, are described and illustrated in Sect. 2.3.
Intermediate, yet critical, concepts, such as intensification and diversification, are
described in Sect. 2.4. This is followed in Sect. 2.5 by a brief discussion of ad-
vanced topics in TS, and in Sect. 2.6 by a short list of key references on TS and
its applications. Section 2.7 provides practical tips for newcomers struggling with
unforeseen problems as they first try to apply TS to their favorite problem. Sec-
tion 2.8 concludes the chapter with some general advice on the application of TS to
combinatorial problems.

2.2 The Classical Vehicle Routing Problem

Vehicle Routing Problems have very important applications in the area of distribu-
tion management. As a consequence, they have become some of the most studied
problems in the combinatorial optimization literature and a large number of papers
and books (see [65], for example) deal with the numerous procedures that have been
proposed to solve them. These include several TS implementations that currently
rank among the most effective. The Classical Vehicle Routing Problem (CVRP) is
the basic variant in that class of problems. It can formally be defined as follows.
Let G = (V , A) be a graph where V is the vertex set and A is the arc set. One of the
vertices represents the depot at which a fleet of m identical vehicles of capacity Q
is based, and the other vertices represent customers that need to be serviced. With
each customer vertex vi are associated a demand qi and a service time ti. With each
arc (vi,v j) of A are associated a cost ci j and a travel time ti j. The CVRP consists in
finding a set of routes such that:

• Each route begins and ends at the depot;
• Each customer is visited exactly once by exactly one route;
• The total demand of the customers assigned to each route does not exceed Q;

2 Tabu Search 39

• The total duration of each route (including travel and service times) does not
exceed a specified value L;

• The total cost of the routes is minimized.

A feasible solution for the problem thus consists in a partition of the customers
into m groups, each of total demand no larger than Q, that are sequenced to yield
routes (starting and ending at the depot) of duration no larger than L. This problem
will be used in the following to illustrate how various TS concepts can be applied in
practice.

2.3 Basic Concepts

Before introducing the basic concepts of TS, the next subsection first goes back
in time to try to better understand the genesis of the method and how it relates to
previous work.

2.3.1 Historical Background

Heuristics, i.e., approximate solution techniques, have been used since the begin-
nings of operations research to tackle difficult combinatorial problems. With the
development of complexity theory in the early 70s, it became clear that, since most
of these problems were NP-hard, there was little hope of ever finding efficient exact
solution procedures for them. This realization emphasized the role of heuristics for
solving the combinatorial problems that were encountered in real-life applications
and that needed to be tackled, whether or not they were NP-hard. While many dif-
ferent approaches were proposed and experimented with, the most popular one was
based on Local Search (LS) improvement techniques. LS can be roughly summa-
rized as an iterative search procedure that, starting from an initial feasible solution,
progressively improves it by applying a series of local modifications (or moves).
At each iteration, the search moves to an improving feasible solution that differs
only slightly from the current one (in fact, the difference between the previous and
the new solutions amounts to one of the local modifications mentioned above). The
search terminates when it encounters a local optimum with respect to the trans-
formations that it considers, an important limitation of the method: unless one is
extremely lucky, this local optimum is often a fairly mediocre solution. In LS, the
quality of the solution obtained and computing times are usually highly dependent
upon the richness of the set of transformations (moves) considered at each iteration
of the heuristic.

In 1983, the world of combinatorial optimization was shattered by the appearance
of a paper [82] where it was shown that a new heuristic approach called Simulated
Annealing (SA) could converge to an optimal solution of a combinatorial problem,
albeit in infinite computing time. Based on an analogy with statistical mechanics, SA

40 M. Gendreau and J.-Y. Potvin

can be interpreted as a form of controlled random walk in the space of feasible so-
lutions. The emergence of SA indicated that one could look for other ways to tackle
combinatorial optimization problems and spurred the interest of the research com-
munity. In the following years, many other new approaches were proposed, mostly
based on analogies with natural phenomena (like TS, Ant Colony Optimization, Par-
ticle Swarm Optimization, Artificial Immune Systems) which, together with some
older ones, such as Genetic Algorithms [38], gained an increasing popularity. Now
collectively known under the name of metaheuristics (a term originally coined by
Glover in [30]), these methods have become over the last 20 years the leading edge
of heuristic approaches for solving combinatorial optimization problems.

2.3.2 Tabu Search

Building upon some of his previous work, Fred Glover proposed a new approach,
which he called Tabu Search, to allow local search methods to overcome local op-
tima [30]. In fact, many elements of this first TS proposal, and some elements of
later TS elaborations, were introduced in [29], including short term memory to pre-
vent the reversal of recent moves, and longer term frequency memory to reinforce
attractive components. The basic principle of TS is to pursue LS whenever it en-
counters a local optimum by allowing non-improving moves; cycling back to pre-
viously visited solutions is prevented by the use of memories, called tabu lists, that
record the recent history of the search, a key idea that can be linked to artificial
intelligence concepts. It is also important to remark that Glover did not see TS as
a proper heuristic, but rather as a metaheuristic, i.e., a general strategy for guiding
and controlling inner heuristics specifically tailored to the problems at hand.

2.3.3 Search Space and Neighborhood Structure

As we just mentioned, TS is an extension of classical LS methods. In fact, a basic TS
can be seen as simply the combination of LS with short-term memories. It follows
that the two first basic elements of any TS heuristic are the definition of its search
space and its neighborhood structure.

The search space of an LS or TS heuristic is simply the space of all possible so-
lutions that can be considered (visited) during the search. For instance, in the CVRP
example described in Sect. 2.2, the search space could simply be the set of feasi-
ble solutions to the problem, where each point in the search space corresponds to a
set of vehicles routes satisfying all the specified constraints. While in that case the
definition of the search space seems quite natural, it is not always so. In the Capaci-
tated Plant Location Problem (CPLP), for instance, customers must be served from
plants located in a subset of potential sites. In this context, one could use the full
feasible search space made of binary location variables (a site is open or closed) and

2 Tabu Search 41

continuous flow variables. A more attractive search space, though, is obtained by re-
stricting the search space to the binary location variables, from which the complete
solution can be obtained by solving the associated transportation problem to get the
optimal flow variables. One could also decide to search for the extreme points of the
set of feasible flow variable vectors, retrieving the associated location variables by
noting that a plant must be open whenever some flow is allocated to it [17]. It is also
important to note that it is not always a good idea to restrict the search space to fea-
sible solutions; in many cases, allowing the search to move to infeasible solutions is
desirable, and sometimes necessary (see Sect. 2.4.3 for further details).

Closely linked to the definition of the search space is that of the neighborhood
structure. At each iteration of LS or TS, the local transformations that can be ap-
plied to the current solution, denoted S, define a set of neighboring solutions in
the search space, denoted N(S) (the neighborhood of S). Formally, N(S) is a sub-
set of the search space made of all solutions obtained by applying a single local
transformation to S. In general, for any specific problem at hand, there are many
more possible (and even, attractive) neighborhood structures than search space defi-
nitions. This follows from the fact that there may be several plausible neighborhood
structures for a given definition of the search space. This is easily illustrated on our
CVRP example that has been the object of several TS implementations. To simplify
the discussion, we suppose in the following that the search space is the feasible
space. Simple neighborhood structures for the CVRP involve moving at each itera-
tion a single customer from its current route; the selected customer is inserted in the
same route or in another route with sufficient residual capacity. An important fea-
ture of these neighborhood structures is the way in which insertions are performed:
one could use random insertion or insertion at the best position in the target route;
alternately, one could use more complex insertion schemes that involve a partial re-
optimization of the target route, such as GENI insertions [25]. Before proceeding
any further it is important to stress that while we say that these neighborhood struc-
tures involve moving a single customer, the neighborhoods they define contain all
the feasible route configurations that can be obtained from the current solution by
moving any customer and inserting it in the stated fashion. Examining the neighbor-
hood can thus be fairly demanding.

More complex neighborhood structures for the CVRP, such as the λ -interchange
[50], are obtained by allowing simultaneously the movement of customers to dif-
ferent routes and the swapping of customers between routes. In [54], moves are de-
fined by ejection chains that are sequences of coordinated movements of customers
from one route to another; for instance, an ejection chain of length 3 would involve
moving a customer v1 from route R1 to route R2, a customer v2 from R2 to route
R3 and a customer v3 from R3 to route R4. Other neighborhood structures involve
the swapping of sequences of several customers between routes, as in the Cross-
exchange [63]. These types of neighborhoods have seldom been used for the CVRP,
but are common in TS heuristics for its time-windows extension, where customers
must be visited within a pre-specified time interval. We refer the interested reader
to [9, 27] for a more detailed discussion of TS implementations for the CVRP and
the Vehicle Routing Problem with Time Windows.

42 M. Gendreau and J.-Y. Potvin

When different definitions of the search space are considered for a given prob-
lem, neighborhood structures will inevitably differ to a considerable degree. In the
case of the CPLP, alluded to above, if the search space corresponds to the location
variables only, one could use operators to change the status of these variables (from
open to closed and conversely). If, however, the search space is made of the extreme
points of the set of feasible flow variable vectors, one could instead consider moves
defined by the application of pivots to the linear programming formulation of the
transportation problem to move the current solution to an adjacent extreme point.
Thus, choosing a search space and a neighborhood structure is by far the most crit-
ical step in the design of any TS heuristic. It is at this step that one must make the
best use of the understanding and knowledge he/she has of the problem at hand.

2.3.4 Tabus

Tabus are one of the distinctive elements of TS when compared to LS. As we already
mentioned, tabus are used to prevent cycling when moving away from local optima
through non-improving moves. The key realization here is that when this situation
occurs, something needs to be done to prevent the search from tracing back its steps
to where it came from. This is achieved by declaring tabu (disallowing) moves that
reverse the effect of recent moves. For instance, in the CVRP example, if customer
v1 has just been moved from route R1 to route R2, one could declare tabu moving
back v1 from R2 to R1 for some number of iterations (this number is called the
tabu tenure of the move). Tabus are also useful to help the search move away from
previously visited portions of the search space and thus perform more extensive
exploration.

Tabus are stored in a short-term memory of the search (the tabu list) and usually
only a fixed and fairly limited quantity of information is recorded. In any given
context, there are several possibilities regarding the specific information that is
recorded. One could record complete solutions, but this requires a lot of storage
and makes it expensive to check whether a potential move is tabu or not; it is there-
fore seldom used. The most commonly used tabus involve recording the last few
transformations performed on the current solution and prohibiting reverse transfor-
mations (as in the example above); others are based on key characteristics of the
solutions themselves or of the moves.

To better understand how tabus work, let us go back to our reference problem. In
the CVRP, one could define tabus in several ways. To continue our example where
customer v1 has just been moved from route R1 to route R2, one could declare tabu
specifically moving back v1 from R2 to R1 and record this in the short-term memory
as the triplet (v1,R2,R1). Note that this type of tabu will not constrain the search
much and that cycling may occur if v1 is then moved to another route R3 and then
from R3 to R1. A stronger tabu would involve prohibiting moving back v1 to R1,
without consideration for its current route, and be recorded as (v1,R1). An even

2 Tabu Search 43

stronger tabu would be to disallow moving v1 to any other route and would simply
be noted as (v1).

Multiple tabu lists can be used simultaneously and are sometimes advisable. For
example, when different types of moves are used to generate the neighborhood,
it might be a good idea to keep a separate tabu list for each type. Standard tabu
lists are usually implemented as circular lists of fixed length. It has been shown,
however, that fixed-length tabus cannot always prevent cycling, and some authors
have proposed varying the tabu list length during the search [31, 32, 58, 60, 61].
Another solution is to randomly generate the tabu tenure of each move within some
specified interval; using this approach requires a somewhat different scheme for
recording tabus that are then usually stored as tags in an array (the entries in this
array will usually record the iteration number until which a move is tabu; see [25],
for more details).

2.3.5 Aspiration Criteria

While central to TS, tabus are sometimes too powerful: they may prohibit attrac-
tive moves, even when there is no danger of cycling, or they may lead to an overall
stagnation of the searching process. It is thus necessary to use algorithmic devices
that will allow one to revoke (cancel) tabus. These are called aspiration criteria. The
simplest and most commonly used aspiration criterion, which is found in almost all
TS implementations, consists in allowing a move, even if it is tabu, if it results in
a solution with an objective value better than that of the current best-known solu-
tion (since the new solution has obviously not been previously visited). Much more
complicated aspiration criteria have been proposed and successfully implemented
(see, for instance [19, 37]), but they are rarely used. The key rule in this respect is
that if cycling cannot occur, tabus can be disregarded.

2.3.6 A Template for Simple Tabu Search

We are now in the position to give a general template for TS, integrating the elements
we have seen so far. We suppose that we are trying to minimize a function f (S) over
some domain and we apply the so-called best improvement version of TS, i.e., the
version in which one chooses at each iteration the best available move (this is the
most commonly used version of TS).

Notation

• S, the current solution,
• S∗, the best-known solution,

44 M. Gendreau and J.-Y. Potvin

• f ∗, the value of S∗,
• N(S), the neighborhood of S,
• Ñ(S), the admissible subset of N(S) (i.e., non-tabu or allowed by aspiration),
• T , the tabu list.

Initialization

Choose (construct) an initial solution S0.
Set S ← S0, f ∗ ← f (S0), S∗ ← S0, T ← /0.

Search

While termination criterion not satisfied do:

select S in argminS′∈Ñ(S)[f (S
′)];

if f (S)< f ∗, then set f ∗ ← f (S), S∗ ← S;
record tabu for the current move in T (delete oldest entry if necessary).

2.3.7 Termination Criteria

One may have noticed that we have not specified in our template above a termination
criterion. In theory, the search could go on forever, unless the optimal value of the
problem at hand is known beforehand. In practice, obviously, the search has to be
stopped at some point. The most commonly used stopping criteria in TS are:

• after a fixed number of iterations (or a fixed amount of CPU time);
• after some number of iterations without an improvement in the objective function

value (the criterion used in most implementations);
• when the objective reaches a pre-specified threshold value.

In complex tabu schemes, the search is usually stopped after completing a se-
quence of phases, the duration of each phase being determined by one of the above
criteria.

2.3.8 Probabilistic TS and Candidate Lists

In regular TS, one must evaluate the objective for every element of the neighborhood
N(S) of the current solution. This can prove extremely expensive from the computa-
tional standpoint. An alternative is to instead consider only a random sample N′(S)
of N(S), thus reducing significantly the computational burden. Another attractive

2 Tabu Search 45

feature of this alternative is that the added randomness can act as an anti-cycling
mechanism; this allows one to use shorter tabu lists than would be necessary if a
full exploration of the neighborhood was performed. On the negative side, it must
be noted that, in that case, one may miss excellent solutions (more on this topic in
Sect. 2.7.3). Probabilities may also be applied to activating tabu criteria.

Another way to control the number of moves examined is by means of candi-
date list strategies, which provide more strategic ways of generating a useful subset
N′(S) of N(S) (the probabilistic approach can be considered to be one instance of a
candidate list strategy, and may also be used to modify such a strategy). Failure to
adequately address the issues involved in creating effective candidate lists is one of
the more conspicuous shortcomings that differentiates a naive TS implementation
from one that is more solidly grounded. Relevant designs for candidate list strate-
gies are discussed in [35]. We also discuss a useful type of candidate generation
approach in Sect. 2.4.4. Another interesting approach for the CVRP is the granular
TS [66], where only arcs that are likely to be found in good solutions (i.e., short
ones) are considered, thus reducing the size of the underlying graph.

2.4 Intermediate Concepts

Simple TS as described above can sometimes successfully solve difficult problems,
but in most cases, additional elements have to be included in the search strategy to
make it fully effective. We now briefly review the most important of these.

2.4.1 Intensification

The idea behind the concept of search intensification is that, as an intelligent human
being would probably do, one should explore more thoroughly the portions of the
search space that seem promising to make sure that the best solutions in these ar-
eas are indeed found. From time to time, one would thus stop the normal searching
process to perform an intensification phase. In general, intensification is based on
some intermediate-term memory, such as a recency memory, in which one records
the number of consecutive iterations that various solution components have been
present in the current solution without interruption. For instance, in a CVRP ap-
plication, one could record how long an arc has been used. A typical approach to
intensification is to restart the search from the best currently known solution and to
fix the components that seem more attractive. To continue the CVRP example, one
could fix the arcs that have been used for the largest number of iterations and per-
form a restricted search on the remaining arcs. Another technique that is often used
consists in changing the neighborhood structure to one allowing more powerful or

46 M. Gendreau and J.-Y. Potvin

more diverse moves. In the CVRP example, one could therefore allow more com-
plex insertion moves or switch to an ejection chain neighborhood structure [33]. In
probabilistic TS, one could increase the sample size or switch to searching without
sampling.

Intensification is used in many TS implementations, but it is not always neces-
sary. This is because there are many situations where the search performed by the
normal process is thorough enough. There is thus no need to spend time exploring
more carefully the portions of the search space that have already been visited, and
this time can be used more effectively as we shall see right now.

2.4.2 Diversification

One of the main problems of all methods based on local search approaches, and
this includes TS in spite of the beneficial impact of tabus, is that they tend to be
too local (as their name implies), i.e., they tend to spend most, if not all, of their
time in a restricted portion of the search space. The negative consequence of this
fact is that, although good solutions may be obtained, one may fail to explore the
most interesting parts of the search space and thus end up with solutions that are
still pretty far from the optimal ones. Diversification is an algorithmic mechanism
that tries to alleviate this problem by forcing the search into previously unexplored
areas of the search space. It is usually based on some form of long-term memory of
the search, such as a frequency memory, in which one records the total number of
iterations (since the beginning of the search) that various solution components have
been present in the current solution or have been involved in the selected moves. For
instance, in the CVRP application, one could note how many times each customer
has been moved from its current route. In cases where it is possible to identify
useful regions of the search space, the frequency memory can be refined to track the
number of iterations spent in these different regions.

There are two major diversification techniques. The first, called restart diversifi-
cation, involves forcing a few rarely used components in the current solution (or the
best known solution) and restarting the search from this point. In a CVRP heuristic,
customers that have not yet been moved frequently could be forced into new routes.
The second diversification method, continuous diversification, integrates diversifi-
cation considerations directly into the regular searching process. This is achieved
by biasing the evaluation of possible moves by adding to the objective a small term
related to component frequencies (see [59] for an extensive discussion on these two
techniques). A third way of achieving diversification is strategic oscillation as we
will see in the next subsection.

Before closing this subsection, we would like to stress that ensuring proper search
diversification is possibly the most critical issue in the design of TS heuristics. It
should be addressed with extreme care fairly early in the design phase and revisited
if the results obtained are not up to expectations.

2 Tabu Search 47

2.4.3 Allowing Infeasible Solutions

Accounting for all problem constraints in the definition of the search space often
restricts the searching process too much and can lead to mediocre solutions. This
occurs, for example, in CVRP instances where the route capacity or duration con-
straints are too tight to allow moving customers effectively between routes. In such
cases, constraint relaxation is an attractive strategy, since it creates a larger search
space that can be explored with simpler neighborhood structures. Constraint relax-
ation is easily implemented by dropping selected constraints from the search space
definition and adding to the objective weighted penalties for constraint violations.
This, however, raises the issue of finding correct weights for constraint violations.
An interesting way of circumventing this problem is to use self-adjusting penalties,
i.e., weights are adjusted dynamically on the basis of the recent history of the search:
weights are increased if only infeasible solutions were encountered in the last few
iterations, and decreased if all recent solutions were feasible (see, for instance, [25]
for further details). Penalty weights can also be modified systematically to drive the
search to cross the feasibility boundary of the search space and thus induce diversi-
fication. This technique, known as strategic oscillation, was introduced as early as
1977 in [29] and used since in several successful TS procedures (an important early
variant oscillates among different types of moves, hence neighborhood structures,
while another oscillates around a selected value for a critical function).

2.4.4 Surrogate and Auxiliary Objectives

There are many problems for which the true objective function is quite costly to
evaluate. When this occurs, the evaluation of moves may become prohibitive, even if
sampling is used. An effective approach to handle this issue is to evaluate neighbors
using a surrogate objective, i.e., a function that is correlated to the true objective, but
is less computationally demanding, in order to identify a (small) set of promising
candidates (potential solutions achieving the best values for the surrogate). The true
objective is then computed for this small set of candidate moves and the best one
selected to become the new current solution; an example of this approach is found
in [16].

Another frequently encountered difficulty is that the objective function may not
provide enough information to effectively drive the search to more interesting areas
of the search space. A typical illustration of this situation is the variant of the CVRP
in which the fleet size is not fixed, but is rather the primary objective (i.e., one is
looking for the minimal fleet size allowing a feasible solution). In this problem,
except for solutions where a route has only one or a few customers assigned to it,
most neighborhood structures will lead to the situation where all elements in the
neighborhood score equally with respect to the primary objective (i.e., all allowable
moves produce solutions with the same number of vehicles). In such a case, it is
absolutely necessary to define an auxiliary objective function to orient the search.

48 M. Gendreau and J.-Y. Potvin

Such a function must measure in some way the desirable attributes of solutions. In
our example, one could, for instance, use a function that would favor solutions with
routes having just a few customers, thus increasing the likelihood that a route can be
totally emptied in a subsequent iteration. It should be noted that coming up with an
effective auxiliary objective is not always easy and may require a lengthy trial and
error process. In some other cases, fortunately, the auxiliary objective is obvious for
anyone familiar with the problem at hand (see [24], for an illustration).

2.5 Advanced Concepts

The concepts and techniques described in the previous sections are sufficient to de-
sign effective TS heuristics for many combinatorial problems. Early TS implementa-
tions, several of which were extremely successful, relied indeed almost exclusively
on these algorithmic components. Modern TS implementations, however, exploit
more advanced concepts and techniques. While it is clearly beyond the scope of an
introductory tutorial, such as this one, to review this type of advanced material, we
would like to give readers some insight into it (readers who wish to learn more about
this topic should consider the key references provided in the next section).

Various techniques have been devised for making the search more effective.
These include methods for exploiting better the information that becomes available
during search and creating better starting points, as well as more powerful neigh-
borhood operators and parallel search strategies (on this last topic, see the advances
reported in [3] and the chapter on parallel metaheuristics in this Handbook; for spe-
cific implementation examples of TS on CPU-based parallel platforms, see [13, 42],
and for GPU-based platforms, see [46, 67]). The numerous techniques for making
better use of the information are of particular significance since they can lead to
dramatic performance improvements. Many of these rely on elite solutions (the best
solutions previously encountered) or on parts of these to create new solutions, the
rationale being that fragments or elements of excellent solutions are often identi-
fied quite early in the searching process, but that the challenge is to complete these
fragments or to recombine them [33, 35, 39, 53, 55, 64]. Other methods, such as
the Reactive TS [6, 48], attempt to find ways of making the search move away from
local optima that have already been visited. An important issue is the general ap-
proach for exploiting the search framework provided by TS. Some favor simplicity,
that is, a search strategy with only a few parameters and based on simple neigh-
borhood operators, as illustrated by the Unified TS [14, 15, 22]. Others propose
complex neighborhood operators, thus leading to large or very large neighborhood
searches [1, 2].

Another important research area in TS (this is, in fact, pervasive in the whole
metaheuristics field) is hybridization, i.e., using TS in conjunction with other so-
lution approaches such as adaptive large neighborhood search [69], genetic algo-
rithms [41, 45, 47, 49], constraint programming [8, 10, 18, 52] or integer program-
ming techniques (there is a whole chapter on this topic in [35]).

2 Tabu Search 49

TS has also been successful in domains outside its traditional ones (graph the-
ory problems, scheduling, vehicle routing), for example: continuous optimization [7,
11, 12, 21, 40, 68], multi-criteria optimization [36, 40], stochastic programming [5],
mixed integer programming [51, 57], dynamic decision problems [26, 28, 56], etc.
These domains confront researchers with challenges that ask for innovative exten-
sions of the method.

2.6 Key References

Readers who wish to read other introductory papers on TS can choose among sev-
eral ones [23, 31, 34, 37, 62]. The book by Glover and Laguna [35] is the ultimate
reference on TS: apart from the fundamental concepts of the method, it presents
a considerable amount of advanced material, as well as a variety of applications.
It is interesting to note that this book contains several ideas applicable to TS that
yet remain to be fully exploited. Also valuable are the books and special issues
made up from selected papers presented at the recent Metaheuristics International
Conferences (MIC) in 2011 [20], 2013 [44] and 2015 [4]. The last MIC confer-
ence was held in Barcelona in 2017 and the conference web site can be accessed at
mic2017.upf.edu.

2.7 Tricks of the Trade

Newcomers to TS trying to apply the method to a problem that they wish to solve
are often confused about what they need to do to come up with a successful imple-
mentation. This section is aimed at providing some help in this regard.

2.7.1 Getting Started

The following step-by-step procedure should provide a useful framework for getting
started.
A step-by-step procedure

1. Read one or two good introductory papers to gain some knowledge of the con-
cepts and of the vocabulary.

2. Read several papers describing in detail applications in various areas to see how
the concepts have been actually implemented by other researchers.

3. Think a lot about the problem at hand, focusing on the definition of the search
space and the neighborhood structure.

4. Implement a simple version based on this search space definition and this neigh-
borhood structure.

50 M. Gendreau and J.-Y. Potvin

5. Collect statistics on the performance of this simple heuristic. It is usually useful
at this point to introduce a variety of memories, such as frequency and recency
memories, to really track down what the heuristic does.

6. Analyze results and adjust the procedure accordingly. It is at this point that
one should eventually introduce mechanisms for search intensification and di-
versification or other intermediate features. Special attention should be paid to
diversification, since this is often where simple TS procedures fail.

2.7.2 More Tips

It is not unusual that, in spite of following carefully the preceding procedure, one
ends up with a heuristic that nonetheless produces mediocre results. If this occurs,
the following tips may prove useful:

1. If there are constraints, consider penalizing them. Letting the search move to
infeasible solutions is often necessary in highly constrained problems to allow
for a meaningful exploration of the search space (see Sect. 2.4).

2. Reconsider the neighborhood structure and change it if necessary. Many TS
implementations fail because the neighborhood structure is too simple. In par-
ticular, one should make sure that the chosen neighborhood structure allows for
a purposeful evaluation of possible moves (i.e., the moves that seem intuitively
to move the search in the right direction should be the ones that are likely to
be selected); it might also be a good idea to introduce a surrogate objective to
achieve this (see Sect. 2.4).

3. Collect more statistics.
4. Follow the execution of the algorithm step-by-step on some reasonably sized

instances.
5. Reconsider diversification. As mentioned earlier, this is a critical feature in most

TS implementations.
6. Experiment with parameter settings. Many TS procedures are extremely sensi-

tive to parameter settings; it is not unusual to see the performance of a procedure
dramatically improve after changing the value of one or two key parameters (un-
fortunately, it is not always obvious to determine which parameters are the key
ones in a given procedure).

2.7.3 Additional Tips for Probabilistic TS

While it is an effective way of tackling many problems, probabilistic TS creates
problems of its own that need to be carefully addressed. The most important of these
is the fact that, more often than not, the best solutions returned by probabilistic TS
will not be local optima with respect to the neighborhood structure being used. This

2 Tabu Search 51

is particularly annoying since, in that case, better solutions can be easily obtained,
sometimes even manually. An easy way to come around this is to simply perform
a local improvement phase (using the same neighborhood operator) from the best
found solution at the end of the TS itself. One could alternately switch to TS without
sampling (again from the best found solution) for a short duration before completing
the algorithm. A possibly more effective technique is to add throughout the search
an intensification step without sampling; in this fashion, the best solutions available
in the various regions of the search space explored by the method will be found and
recorded (similar special aspiration criteria for allowing the search to reach local
optima at useful junctures are proposed in [34]).

2.7.4 Parameter Calibration and Computational Testing

Parameter calibration and computational experiments are key steps in the develop-
ment of any algorithm. This is particularly true in the case of TS, since the number
of parameters required by most implementations is fairly large and since the perfor-
mance of a given procedure can vary quite significantly when parameter values are
modified. The first step in any serious computational experimentation is to select a
good set of benchmark instances (either by obtaining them from other researchers
or by constructing them), preferably with some reasonable measure of their diffi-
culty and with a wide range of size and difficulty. This set should be split into two
subsets, the first one being used at the algorithmic design and parameter calibration
steps, and the second reserved for performing the final computational tests that will
be reported in the paper(s) describing the heuristic under development. The reason
for doing so is quite simple: when calibrating parameters, one always run the risk of
overfitting, i.e., finding parameter values that are excellent for the instances at hand,
but poor in general, because these values provide too good a fit (from the algorith-
mic standpoint) to these instances. Methods with several parameters should thus be
calibrated on much larger sets of instances than ones with few parameters to ensure
a reasonable degree of robustness. The calibration process itself should proceed in
several stages:

1. Perform exploratory testing to find good ranges of parameters. This can be done
by running the heuristic with a variety of parameter settings.

2. Fix the value of parameters that appear to be robust, i.e., which do not seem to
have a significant impact on the performance of the procedure.

3. Perform systematic testing for the other parameters. It is usually more efficient
to test values for only a single parameter at a time, the others being fixed at what
appear to be reasonable values. One must be careful, however, for cross effects
between parameters. Where such effects exist, it can be important to jointly test
pairs or triplets of parameters, which can be an extremely time-consuming task.

The work in [16] provides a detailed description of the calibration process for a
fairly complex TS procedure and can be used as a guideline for this purpose.

52 M. Gendreau and J.-Y. Potvin

2.8 Conclusion

Tabu Search is a powerful algorithmic approach that has been applied with great
success to many difficult combinatorial problems. A particularly nice feature of TS
is that, like all approaches based on local search, it can quite easily handle compli-
cating constraints that are typically found in real-life applications. It is thus a really
practical approach. It is not, however, a panacea: every reviewer or editor of a scien-
tific journal has seen more than his/her share of failed TS heuristics. These failures
stem from two major causes: an insufficient understanding of fundamental concepts
of the method (and we hope that this tutorial will help in alleviating this shortcom-
ing), but also, more often than not, a crippling lack of understanding of the problem
at hand. One cannot develop a good TS heuristic for a problem that he/she does not
know well! This is because significant problem knowledge is absolutely required to
perform the most basic steps of the development of any TS procedure, namely the
choice of a search space and of an effective neighborhood structure. If the search
space and/or the neighborhood structure are inadequate, no amount of TS expertise
will be sufficient to save the day. A last word of caution: to be successful, all meta-
heuristics need to achieve both depth and breadth in their searching process; depth
is usually not a problem for TS, which is quite aggressive in this respect (TS heuris-
tics generally find pretty good solutions very early in the search), but breadth can
be a critical issue. To handle this, it is extremely important to develop an effective
diversification scheme.

References

1. S. Abdullah, S. Ahmadi, E.K. Burke, B. Dror, A. McCollum, Tabu-based large neighbourhood
search methodology for the capacitated examination timetabling problem. J. Oper. Res. Soc.
58, 1494–1502 (2007)

2. R.K. Ahuja, O. Ergun, J.B. Orlin, A.P. Punnen, A survey of very large-scale neighborhood
search techniques. Discrete Appl. Math. 123, 75–102 (2002)

3. E. Alba, G. Luque, S. Nesmachnow, Parallel metaheuristics: recent advances and new trends.
Int. Trans. Oper. Res. 20, 1–48 (2013)

4. L. Amodeo, E.-G., Talbi, F. Yalaoui (eds.), Recent Developments in Metaheuristics (Springer
International Publishing, Cham, 2018)

5. R. Aringhieri, Solving chance-constrained programs combining tabu search and simulation.
Lect. Notes Comput. Sci. 3059, 30–41 (2004)

6. R. Battiti, G. Tecchiolli, The reactive tabu search. ORSA J. Comput. 6, 126–140 (1994)
7. R. Battiti, G. Tecchiolli, The continuous reactive tabu search: blending combinatorial opti-

mization and stochastic search for global optimization. Ann. Oper. Res. 63, 151–188 (1996)
8. G. Berbeglia, J.-F. Cordeau, G. Laporte, A hybrid tabu search and constraint programming

algorithm for the dynamic dial-a-ride problem. INFORMS J. Comput. 24, 343–355 (2012)
9. O. Bräysy, M. Gendreau, Tabu search heuristics for the vehicle routing problem with time

windows. TOP 10, 211–237 (2002)
10. Y. Caseau, F. Laburthe, C. Le Pape, B. Rottembourg, Combining local and global search in a

constraint programming environment. Knowl. Eng. Rev. 16, 41–68 (2001)
11. R. Chelouah, P. Siarry, Tabu Search applied to global optimization. Eur. J. Oper. Res. 123,

256–270 (2000)

2 Tabu Search 53

12. R. Chelouah, P. Siarry, A hybrid method combining continuous tabu search and Nelder-Mead
simplex algorithms for the global optimization of multiminima functions. Eur. J. Oper. Res.
161, 636–654 (2005)

13. J.-F. Cordeau, M. Maischberger, A parallel iterated tabu search heuristic for vehicle routing
problems. Comput. Oper. Res. 39, 2033–2050 (2012)

14. J.-F. Cordeau, M. Gendreau, G. Laporte, A tabu search heuristic for periodic and multi-depot
vehicle routing problems. Networks 30, 105–119 (1997)

15. J.-F. Cordeau, G. Laporte, A. Mercier, A unified tabu search heuristic for vehicle routing
problems with time windows. J. Oper. Res. Soc. 52, 928–936 (2001)

16. T.G. Crainic, M. Gendreau, P. Soriano, M. Toulouse, A tabu search procedure for multicom-
modity location/allocation with balancing requirements. Ann. Oper. Res. 41, 359–383 (1993)

17. T.G. Crainic, M. Gendreau, J.M. Farvolden, Simplex-based tabu search for the multicom-
modity capacitated fixed charge network design problem. INFORMS J. Comput. 12, 223–236
(2000)

18. B. de Backer, V. Furnon, P. Shaw, P. Kilby, P. Prosser, Solving vehicle routing problems using
constraint programming and metaheuristics. J. Heuristics 6, 501–523 (2000)

19. D. de Werra, A. Hertz, Tabu search techniques: a tutorial and an application to neural networks.
OR Spektrum 11, 131–141 (1989)

20. L. Di Gaspero, A. Schaerf, T. Stützle (eds.), Advances in Metaheuristics (Springer, New York,
2013)

21. A. Duarte, R. Martí, F. Glover, F. Gortazar, Hybrid scatter tabu search for unconstrained global
optimization. Ann. Oper. Res. 183, 95–123 (2011)

22. Z. Fu, R. Eglese, L.Y.O. Li, A unified tabu search algorithm for vehicle routing problems with
soft time windows. J. Oper. Res. Soc. 59, 663–673 (2008)

23. M. Gendreau, J.-Y. Potvin, Tabu search, in Search Methodologies - Introductory Tutorials in
Optimization and Decision Support Techniques, ed. by E.K. Burke, G. Kendall (Springer, New
York, 2014), pp. 243–263

24. M. Gendreau, P. Soriano, L. Salvail, Solving the maximum clique problem using a tabu search
approach. Ann. Oper. Res. 41, 385–403 (1993)

25. M. Gendreau, A. Hertz, G. Laporte, A tabu search heuristic for the vehicle routing problem.
Manag. Sci. 40, 1276–1290 (1994)

26. M. Gendreau, F. Guertin, J.-Y. Potvin, É.D. Taillard, Parallel tabu search for real-time vehicle
routing and dispatching. Transp. Sci. 33, 381–390 (1999)

27. M. Gendreau, G. Laporte, J.-Y. Potvin, Metaheuristics for the capacitated VRP, in The Vehicle
Routing Problem, ed. by P. Toth, D. Vigo. SIAM Monographs on Discrete Mathematics and
Applications (SIAM, Philadelphia, 2002), pp. 129–154

28. M. Gendreau, F. Guertin, J.-Y. Potvin, R. Séguin, Neighborhood search heuristics for a dy-
namic vehicle dispatching problem with pick-ups and deliveries. Transp. Res. C Emerg. Tech-
nol. 14, 157–174 (2006)

29. F. Glover, Heuristics for integer programming using surrogate constraints. Decis. Sci. 8, 156–
166 (1977)

30. F. Glover, Future paths for integer programming and links to artificial intelligence. Comput.
Oper. Res. 13, 533–549 (1986)

31. F. Glover, Tabu search - Part I. ORSA J. Comput. 1, 190–206 (1989)
32. F. Glover, Tabu search - Part II. ORSA J. Comput. 2, 4–32 (1990)
33. F. Glover, Ejection chains, reference structures and alternating path methods for traveling

salesman problems. Discrete Appl. Math. 65, 223–253 (1996)
34. F. Glover, M. Laguna, Tabu search, in Modern Heuristic Techniques for Combinatorial Prob-

lems, ed. by C.R. Reeves (Blackwell Scientific, Oxford, 1993), pp. 70–150
35. F. Glover, M. Laguna, Tabu Search (Kluwer Academic, Boston, 1997)
36. M.P. Hansen, Tabu search in multiobjective optimisation: MOTS, in Proceedings of the 13th

International Conference on Multiple Criteria Decision Making, Cape Town (1997), pp. 574–
586

37. A. Hertz, D. de Werra, The tabu search metaheuristic: how we used it. Ann. Math. Artif. Intell.
1, 111–121 (1991)

54 M. Gendreau and J.-Y. Potvin

38. J.H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan Press,
Ann Arbor, 1975)

39. L.M. Hvattum, A. Lokketangen, F. Glover, Comparisons of commercial MIP solvers and an
adaptive memory (tabu search) procedure for a class of 0-1 integer programming problems.
Algorithm. Oper. Res. 7, 13–20 (2012)

40. D.M. Jaeggi, G.T. Parks, T. Kipouros, P.J. Clarkson, The development of a multi-objective
tabu search algorithm for continuous optimisation problems. Eur. J. Oper. Res. 185, 1192–
1212 (2008)

41. S.N. Jat, S. Yang, A hybrid genetic algorithm and tabu search approach for post enrolment
course timetabling. J. Sched. 14, 617–637 (2011)

42. J. Jin, T.G. Crainic, A. Lokketangen, A parallel multi-neighborhood cooperative tabu search
for capacitated vehicle routing problems. Eur. J. Oper. Res. 222, 441–451 (2012)

43. S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science
220, 671–680 (1983)

44. H.C. Lau, G.R. Raidl, P. Van Hentenryck (eds.), New developments in metaheuristics and their
applications. Special issue. J. Heuristics 22(4), 359–664 (2016)

45. X. Li, L. Gao, An effective hybrid genetic algorithm and tabu search for flexible job shop
scheduling problem. Int. J. Prod. Econ. 174, 93–110 (2016)

46. T.V. Luong, L. Loukil, N. Melab, E.-G. Talbi, A GPU-based iterated tabu search for solv-
ing the quadratic 3-dimensional assignment problem, in ACS/IEEE International Conference
on Computer Systems and Applications, Hammamet (2010). https://doi.org/10.1109/AICCSA.
2010.5587019

47. T. Lust, J. Teghem, MEMOTS: a memetic algorithm integrating tabu search for combinatorial
multiobjective optimization. RAIRO—Oper. Res. 42, 3–33 (2008)

48. F. Mascia, P. Pellegrini, M. Birattari, T. Stützle, An analysis of parameter adaptation in reactive
tabu search. Int. Trans. Oper. Res. 21, 127–152 (2014)

49. S. Meeran, M.S. Morshed, A hybrid genetic tabu search algorithm for solving job shop
scheduling problems: a case study. J. Intell. Manuf. 23, 1063–1078 (2012)

50. I.H. Osman, Metastrategy simulated annealing and tabu search algorithms for the vehicle rout-
ing problem. Ann. Oper. Res. 41, 421–451 (1993)

51. J.P. Pedroso, Tabu search for mixed integer programming, in Metaheuristic Optimization
via Memory and Evolution, ed. by C. Rego, B. Alidaee (Kluwer Academic, Boston, 2005),
pp. 247–261

52. G. Pesant, M. Gendreau, A constraint programming framework for local search methods. J.
Heuristics 5, 255–280 (1999)

53. C. Rego, B. Alidaee (eds.), Metaheuristic Optimization via Memory and Evolution: Tabu
Search and Scatter Search (Kluwer Academic, Boston, 2005)

54. C. Rego, C. Roucairol, A parallel tabu search algorithm using ejection chains for the vehicle
routing problem, in Meta-Heuristics: Theory and Applications, ed. by I.H. Osman, J.P. Kelly
(Kluwer Academic, Boston, 1996), pp. 661–675

55. Y. Rochat, É.D. Taillard, Probabilistic diversification and intensification in local search for
vehicle routing. J. Heuristics 1, 147–167 (1995)

56. A.G. Roesener, J.W. Barnes, An advanced tabu search approach to the dynamic airlift loading
problem. Log. Res. 9, 12:1–12:18 (2016)

57. L.H. Sacchi, V.A. Armentano, A computational study of parametric tabu search for 0-1 mixed
integer program. Comput. Oper. Res. 38, 464–473 (2011)

58. J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem. ORSA J. Comput.
2, 33–45 (1990)

59. P. Soriano, M. Gendreau, Diversification strategies in tabu search algorithms for the maximum
clique problem. Ann. Oper. Res. 63, 189–207 (1996)

60. É.D. Taillard, Some efficient heuristic methods for the flow shop sequencing problem. Eur. J.
Oper. Res. 47, 65–74 (1990)

61. É.D. Taillard, Robust taboo search for the quadratic assignment problem. Parallel Comput. 17,
443–455 (1991)

https://doi.org/10.1109/AICCSA.2010.5587019
https://doi.org/10.1109/AICCSA.2010.5587019

2 Tabu Search 55

62. E. Taillard, Tabu search, in Metaheuristics, ed. by P. Siarry (Springer International Publishing,
Cham, 2016), pp. 51–76

63. É.D. Taillard, P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, A tabu search heuristic for the
vehicle routing problem with soft time windows. Transp. Sci. 31, 170–186 (1997)

64. C.D. Tarantilis, C.T. Kiranoudis, BoneRoute - an adaptive memory-based method for effective
fleet management. Ann. Oper. Res. 115, 227–241 (2002)

65. P. Toth, D. Vigo (eds.), The Vehicle Routing Problem. SIAM Monographs on Discrete Mathe-
matics and Applications (SIAM, Philadelphia, 2002)

66. P. Toth, D. Vigo, The granular tabu search and its application to the vehicle routing problem.
INFORMS J. Comput. 15, 333–346 (2003)

67. C. Tsotskas, T. Kipouros, A.M. Savill, The design and implementation of a GPU-enabled
multi-objective tabu-search intended for real world and high-dimensional applications. Proce-
dia Comput. Sci. 29, 2152–2161 (2014)

68. G. Waligóra, Simulated annealing and tabu search for discrete-continuous project scheduling
with discounted cash flows. RAIRO—Oper. Res. 48, 1–24 (2014)

69. I. Žulj, S. Kramer, M. Schneider, A hybrid of adaptive large neighborhood search and tabu
search for the order-batching problem. Eur. J. Oper. Res. 264, 653–664 (2018)

Chapter 3
Variable Neighborhood Search

Pierre Hansen, Nenad Mladenović, Jack Brimberg, and José A. Moreno Pérez

Abstract Variable neighborhood search (VNS) is a metaheuristic for solving
combinatorial and global optimization problems whose basic idea is a system-
atic change of neighborhood both within a descent phase to find a local optimum
and in a perturbation phase to get out of the corresponding valley. In this chapter
we present the basic schemes of VNS and some of its extensions. We then describe
recent developments, i.e., formulation space search and variable formulation search.
We then present some families of applications in which VNS has proven to be very
successful: (1) exact solution of large scale location problems by primal-dual VNS;
(2) generation of solutions to large mixed integer linear programs, by hybridization
of VNS and local branching; (3) generation of solutions to very large mixed inte-
ger programs using VNS decomposition and exact solvers (4) generation of good

P. Hansen
École des Hautes Études Commerciales, Montréal, QC, Canada

GERAD, Montréal, QC, Canada
e-mail: pierre.hansen@gerad.ca

N. Mladenović (�)
Mathematical Institute, SANU, Belgrade, Serbia
e-mail: nenad@mi.sanu.ac.rs

J. Brimberg
Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston,
ON, Canada
e-mail: jack.brimberg@rmc.ca

J. A. M. Pérez
IUDR and Department of Informatics and Systems Engineering, Universidad de La Laguna,
Tenerife, Spain
e-mail: jamoreno@ull.es

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_3

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_3&domain=pdf
mailto:pierre.hansen@gerad.ca
mailto:nenad@mi.sanu.ac.rs
mailto:jack.brimberg@rmc.ca
mailto:jamoreno@ull.es
https://doi.org/10.1007/978-3-319-91086-4_3

58 P. Hansen et al.

feasible solutions to continuous nonlinear programs; (5) adaptation of VNS for
solving automatic programming problems from the Artificial Intelligence field and
(6) exploration of graph theory to find conjectures, refutations and proofs or ideas
of proofs.

3.1 Introduction

Optimization tools have greatly improved during the last two decades. This is due to
several factors: (1) progress in mathematical programming theory and algorithmic
design; (2) rapid improvement in computer performances; (3) better communica-
tion of new ideas and integration in widely used complex softwares. Consequently,
many problems long viewed as out of reach are currently solved, sometimes in very
moderate computing times. This success, however, has led researchers and prac-
titioners to address much larger instances and more difficult classes of problems.
Many of these may again only be solved heuristically. Therefore thousands of pa-
pers describing, evaluating and comparing new heuristics appear each year. Keeping
abreast of such a large literature is a challenge. Metaheuristics, or general frame-
works for building heuristics, are therefore needed in order to organize the study of
heuristics. As evidenced by the Handbook, there are many of them. Some desirable
properties of metaheuristics [58, 59, 68] are listed in the concluding section of this
chapter.

Variable neighborhood search (VNS) is a metaheuristic proposed by some of the
present authors some 20 years ago [80]. Earlier work that motivated this approach
can be found in [25, 36, 44, 78]. It is based upon the idea of a systematic change of
neighborhood both in a descent phase to find a local optimum and in a perturbation
phase to get out of the corresponding valley. Originally designed for approximate
solution of combinatorial optimization problems, it was extended to address mixed
integer programs, nonlinear programs, and recently mixed integer nonlinear pro-
grams. In addition VNS has been used as a tool for automated or computer assisted
graph theory. This led to the discovery of over 1500 conjectures in that field and the
automated proof of more than half of them. This is to be compared with the unas-
sisted proof of about 400 of these conjectures by many different mathematicians.

Applications are rapidly increasing in number and pertain to many fields: loca-
tion theory, cluster analysis, scheduling, vehicle routing, network design, lot-sizing,
artificial intelligence, engineering, pooling problems, biology, phylogeny, reliabil-
ity, geometry, telecommunication design, etc. References are too numerous to be
listed here, but many of them can be found in [69] and special issues of IMA Jour-
nal of Management Mathematics [76], European Journal of Operational Research
[68] and Journal of Heuristics [87] that are devoted to VNS.

This chapter is organized as follows. In the next section we present the ba-
sic schemes of VNS, i.e., variable neighborhood descent (VND), reduced VNS
(RVNS), basic VNS (BVNS) and general VNS (GVNS). Two important extensions
are presented in Sect. 3.3: Skewed VNS and Variable neighborhood decomposition

3 Variable Neighborhood Search 59

search (VNDS). A further recent development called Formulation Space Search
(FSS) is discussed in Sect. 3.4. The remainder of the paper describes applications
of VNS to several classes of large scale and complex optimization problems for
which it has proven to be particularly successful. Section 3.5 is devoted to primal
dual VNS (PD-VNS) and its application to location and clustering problems. Find-
ing feasible solutions to large mixed integer linear programs with VNS is discussed
in Sect. 3.6. Section 3.7 addresses ways to apply VNS in continuous global opti-
mization. The more difficult case of solving mixed integer nonlinear programming
by VNS is considered in Sect. 3.8. Applying VNS to graph theory per se (and not
just to particular optimization problems defined on graphs) is discussed in Sect. 3.9.
Brief conclusions are drawn in Sect. 3.10.

3.2 Basic Schemes

A deterministic optimization problem may be formulated as

min{ f (x)|x ∈ X ,X ⊆S }, (3.1)

where S ,X ,x and f denote the solution space, the feasible set, a feasible solution
and a real-valued objective function, respectively. If S is a finite but large set, a
combinatorial optimization problem is defined. If S = R

n, we refer to continuous
optimization. A solution x∗ ∈ X is optimal if

f (x∗)≤ f (x), ∀x ∈ X .

An exact algorithm for problem (3.1), if one exists, finds an optimal solution x∗,
together with the proof of its optimality, or shows that there is no feasible solution,
i.e., X = /0, or the solution is unbounded. Moreover, in practice, the time needed to do
so should be finite (and not too long). For continuous optimization, it is reasonable
to allow for some degree of tolerance, i.e., to stop when sufficient convergence is
detected.

Let us denote Nk, (k = 1, . . . ,kmax), a finite set of pre-selected neighborhood
structures, and Nk(x) the set of solutions in the kth neighborhood of x. Most local
search heuristics use only one neighborhood structure, i.e., kmax = 1. Often succes-
sive neighborhoods Nk are nested and may be induced from one or more metric
(or quasi-metric) functions introduced into a solution space S . An optimal solution
xopt (or global minimum) is a feasible solution where a minimum is reached. We
call x′ ∈ X a local minimum of (3.1) with respect to Nk (w.r.t. Nk for short), if there
is no solution x ∈Nk(x′)⊆ X such that f (x)< f (x′). Metaheuristics (based on local
search procedures) try to continue the search by other means after finding the first
local minimum. VNS is based on three simple facts:
Fact 1 A local minimum w.r.t. one neighborhood structure is not necessarily so for
another;

60 P. Hansen et al.

Fact 2 A global minimum is a local minimum w.r.t. all possible neighborhood struc-
tures;
Fact 3 For many problems, local minima w.r.t. one or several Nk are relatively
close to each other.

This last observation, which is empirical, implies that a local optimum often pro-
vides some information about the global one. For instance, there may be several
variables sharing the same values in both solutions. Since these variables usually
cannot be identified in advance, one should conduct an organized study of the neigh-
borhoods of a local optimum until a better solution is found.

In order to solve (1) by using several neighborhoods, facts 1–3 can be used in
three different ways: (1) deterministic; (2) stochastic; (3) both deterministic and
stochastic.

We first examine in Algorithm 1 the solution move and neighborhood change
function that will be used within a VNS framework. Function Neighborhood-
Change() compares the incumbent value f (x) with the new value f (x′) obtained
from the kth neighborhood (line 1). If an improvement is obtained, the incumbent
is updated (line 2) and k is returned to its initial value (line 3). Otherwise, the next
neighborhood is considered (line 4).

Function NeighborhoodChange (x,x′,k)
if f (x′)< f (x) then1

x ← x′ // Make a move2
k ← 1 // Initial neighborhood3

else
k ← k+1 // Next neighborhood4

return x,k

Algorithm 1: Neighborhood change

Below we discuss Variable Neighborhood Descent and Reduced Variable Neigh-
borhood Search and then build upon this to construct the framework for Basic and
General Variable Neighborhood Search.
(i) The Variable Neighborhood Descent (VND) method (Algorithm 2) performs a
change of neighborhoods in a deterministic way. These neighborhoods are denoted
as Nk,k = 1, . . . ,kmax.

Most local search heuristics use one or sometimes two neighborhoods for im-
proving the current solution (i.e., kmax ≤ 2). Note that the final solution should be
a local minimum w.r.t. all kmax neighborhoods, and thus, a global optimum is more
likely to be reached than with a single structure. Beside this sequential order of
neighborhood structures in VND, one can develop a nested strategy. Assume, for
example, that kmax = 3; then a possible nested strategy is: perform VND with Algo-
rithm 2 for the first two neighborhoods from each point x′ that belongs to the third
one (x′ ∈ N3(x)). Such an approach is successfully applied in [22, 26, 57].

3 Variable Neighborhood Search 61

Function VND (x,kmax)
k ← 11
repeat2

x′ ← argminy∈Nk(x) f (y) // Find the best neighbor in Nk(x)3

x,k ← NeighborhoodChange (x,x′,k) // Change neighborhood4

until k = kmax
return x

Algorithm 2: Variable neighborhood descent

(ii) The Reduced VNS (RVNS) method is obtained when a random point is selected
from Nk(x) and no descent is attempted from this point. Rather, the value of the new
point is compared with that of the incumbent and an update takes place in the case
of improvement. We also assume that a stopping condition has been chosen such as
the maximum CPU time allowed tmax, or the maximum number of iterations between
two improvements. To simplify the description of the algorithms, we always use tmax

below. Therefore, RVNS (Algorithm 3) uses two parameters: tmax and kmax.

Function RVNS(x,kmax, tmax)
repeat1

k ← 12
repeat3

x′ ← Shake(x,k)4
x,k ← NeighborhoodChange (x,x′,k)5

until k = kmax

t ← CpuTime()6

until t > tmax
return x

Algorithm 3: Reduced VNS

The function Shake in line 4 generates a point x′ at random from the kth neigh-
borhood of x, i.e., x′ ∈ Nk(x). It is given in Algorithm 4, where it is assumed that
the points from Nk(x) are numbered as {x1, . . . ,x|Nk(x)|}. Note that a different nota-
tion is used for the neighborhood structures in the shake operation, since these are
generally different than the ones used in VND.

Function Shake(x,k)
w ← �1+Rand(0,1)×|Nk(x)|�1
x′ ← xw2

return x′

Algorithm 4: Shaking function

RVNS is useful for very large instances for which local search is costly. It can be
used as well for finding initial solutions for large problems before decomposition.

62 P. Hansen et al.

It has been observed that the best value for the parameter kmax is often 2 or 3. In
addition, a maximum number of iterations between two improvements is typically
used as the stopping condition. RVNS is akin to a Monte-Carlo method, but is more
systematic (see, e.g., [81] where results obtained by RVNS were 30% better than
those of the Monte-Carlo method in solving a continuous min-max problem). When
applied to the p-Median problem, RVNS gave equally good solutions as the Fast
Interchange heuristic of [102] while being 20 to 40 times faster [63].
(iii) The Basic VNS (BVNS) method [80] combines deterministic and stochastic
changes of neighborhood. The deterministic part is represented by a local search
heuristic. It consists in (1) choosing an initial solution x, (2) finding a direction
of descent from x (within a neighborhood N(x)) and (3) moving to the minimum of
f (x) within N(x) along that direction. If there is no direction of descent, the heuristic
stops; otherwise it is iterated. Usually the steepest descent direction, also referred to
as best improvement, is used. Also see Algorithm 2, where the best improvement is
used in each neighborhood of the VND. This is summarized in Algorithm 5, where
we assume that an initial solution x is given. The output consists of a local minimum,
also denoted by x, and its value.

Function BestImprovement(x)
repeat1

x′ ← x2
x ← argminy∈N(x′) f (y)3

until (f (x)≥ f (x′))
return x

Algorithm 5: Best improvement (steepest descent) heuristic

As Steepest descent may be time-consuming, an alternative is to use a first de-
scent (or first improvement) heuristic. Points xi ∈ N(x) are then enumerated sys-
tematically and a move is made as soon as a direction for descent is found. This is
summarized in Algorithm 6.

Function FirstImprovement(x)
repeat1

x′ ← x; i ← 02
repeat3

i ← i+14

x ← argmin{ f (x), f (xi)}, xi ∈ N(x)5

until (f (x)< f (x′) or i = |N(x)|)
until (f (x)≥ f (x′))

return x
Algorithm 6: First improvement (first descent) heuristic

The stochastic phase of BVNS (see Algorithm 7) is represented by the random
selection of a point x′ from the kth neighborhood of the shake operation. Note that

3 Variable Neighborhood Search 63

point x′ is generated at random in Step 5 in order to avoid cycling, which might
occur with a deterministic rule.

Function BVNS(x,kmax, tmax)
t ← 01
while t < tmax do2

k ← 13
repeat4

x′ ← Shake(x,k) // Shaking5
x′′ ← BestImprovement(x′) // Local search6
x,k ← NeighborhoodChange(x,x′′,k) // Change neighborhood7

until k = kmax

t ← CpuTime()8

return x
Algorithm 7: Basic VNS

Example. We illustrate the basic steps on a minimum k-cardinality tree instance
taken from [72], see Fig. 3.1. The minimum k-cardinality tree problem on graph G
(k-card for short) consists of finding a subtree of G with exactly k edges whose sum
of weights is minimum.

26
2

1 4

17

17
8

9

9

9

9

9

12
23

10

11

20
18

5

16

16

16 16

25 24

8

15

6

6

6

7

1

3

Fig. 3.1 4-Cardinality tree problem

The steps of BVNS for solving the 4-card problem are illustrated in Fig. 3.2. In
Step 0 the objective function value, i.e., the sum of edge weights, is equal to 40;
it is indicated in the right bottom corner of the figure. That first solution is a local
minimum with respect to the edge-exchange neighborhood structure (one edge in,
one out). After shaking, the objective function is 60, and after another local search,
we are back to the same solution. Then, in Step 3, we take out 2 edges and add
another 2 at random, and after a local search, an improved solution is obtained with
a value of 39. Continuing in that way, the optimal solution with an objective function
value equal to 36 is obtained in Step 8.

64 P. Hansen et al.

1

1 2

1 1

25 25 25

26

8

88

8

8 36

8 86

6

9 9

76 39 43

9

9
9

9

9

96

6 6

17

16

16 16

18

16 169 9

3 4 547 39 49

6

40 60 40

LS

LS

LS

LS

LS

Shake-1

Shake-2

Shake-2

Shake-1

0

Fig. 3.2 Steps of the Basic VNS for solving 4-card tree problem

(iv) General VNS. Note that the local search step (line 6 in BVNS, Algorithm 7)
may also be replaced by VND (Algorithm 2). This General VNS (VNS/VND) ap-
proach has led to some of the most successful applications reported in the literature
(see, e.g., [1, 26–29, 31, 32, 39, 57, 66, 92, 93]). General VNS (GVNS) is outlined
in Algorithm 8 below. Note that neighborhoods N1, . . . ,Nlmax are used in the VND
step, while a different series of neighborhoods N1, . . . ,Nkmax apply to the Shake step.

Function GVNS (x, �max,kmax, tmax)
repeat1

k ← 12
repeat3

x′ ← Shake(x,k)4
x′′ ← VND(x′, �max)5
x,k ← NeighborhoodChange(x,x′′,k)6

until k = kmax

t ← CpuTime()7

until t > tmax
return x

Algorithm 8: General VNS

3 Variable Neighborhood Search 65

3.3 Some Extensions

(i) The Skewed VNS (SVNS) method [62] addresses the problem of exploring val-
leys far from the incumbent solution. Indeed, once the best solution in a large region
has been found it is necessary to go quite far to obtain an improved one. Solutions
drawn at random in far-away neighborhoods may differ substantially from the in-
cumbent, and VNS may then degenerate, to some extent, into a Multistart heuristic
(where descents are made iteratively from solutions generated at random, and which
is known to be inefficient). So some compensation for distance from the incum-
bent must be made, and a scheme called Skewed VNS (SVNS) is proposed for that
purpose. Its steps are presented in Algorithms 9, 10 and 11. The KeepBest(x,x′)
function (Algorithm 9) in SVNS simply keeps the best of solutions x and x′ The
NeighborhoodChangeS function (Algorithm 10) performs the move and neigh-
borhood change for the SVNS.

Function KeepBest(x,x′)
if f (x′)< f (x) then1

x ← x′2

return x
Algorithm 9: Keep best solution

Function NeighborhoodChangeS(x,x′,k,α)
if f (x′)−αρ(x,x′)< f (x) then1

x ← x′; k ← 12

else
k ← k+13

return x,k

Algorithm 10: Neighborhood change for Skewed VNS

SVNS makes use of a function ρ(x,x′′) to measure the distance between the cur-
rent solution x and the local optimum x′′. The distance function used to define Nk

could also be used for this purpose. The parameter α must be chosen to allow move-
ment to valleys far away from x when f (x′′) is larger than f (x) but not too much
larger (otherwise one will always leave x). A good value for α is found experimen-
tally in each case. Moreover, in order to avoid frequent moves from x to a close
solution, one may take a smaller value for α when ρ(x,x′′) is small. More sophis-
ticated choices for selecting a function of αρ(x,x′′) could be made through some
learning process.

66 P. Hansen et al.

Function SVNS (x,kmax, tmax,α)
xbest ← x1
repeat2

k ← 13
repeat4

x′ ← Shake(x,k)5
x′′ ← FirstImprovement(x′)6
x,k ← NeighborhoodChangeS(x,x′′,k,α)7
xbest ← KeepBest (xbest ,x)8

until k = kmax

x ← xbest9
t ← CpuTime()10

until t > tmax
return x

Algorithm 11: Skewed VNS

(ii) The Variable neighborhood decomposition search (VNDS) method [63] ex-
tends the basic VNS into a two-level VNS scheme based upon decomposition of
the problem. It is presented in Algorithm 12, where td is an additional parameter
that represents the running time allowed for solving decomposed (smaller-sized)
problems by Basic VNS (line 5).

Function VNDS (x,kmax1, tmax, td)
repeat1

k ← 12
repeat3

x′ ← Shake (x,k); y ← x′ \ x4
y′ ← BVNS(y,kmax2, td); x′′ = (x′ \ y)∪ y′5
x′′′ ← FirstImprovement(x′′)6
x,k ← NeighborhoodChange(x,x′′′,k)7

until k = kmax1

until t > tmax
return x

Algorithm 12: Variable neighborhood decomposition search

For ease of presentation, but without loss of generality, we assume that the so-
lution x represents a set of attributes. In Step 4 we denote by y a set of k solution
attributes present in x′ but not in x (y = x′ \ x). In Step 5 we find the local optimum
y′ in the space of y; then we denote with x′′ the corresponding solution in the whole
space X (x′′ = (x′ \y)∪y′). We notice that exploiting some boundary effects in a new
solution can significantly improve solution quality. That is why, in Step 6, the local
optimum x′′′ is found in the whole space X using x′′ as an initial solution. If this is
time consuming, then at least a few local search iterations should be performed.

VNDS can be viewed as embedding the classical successive approximation
scheme (which has been used in combinatorial optimization at least since the six-
ties, see, e.g., [48]) in the VNS framework. Let us mention here a few applications

3 Variable Neighborhood Search 67

of VNDS: p-median problem [63]; simple plant location problem [67]; k-cardinality
tree problem [100]; 0-1 mixed integer programming problem [51, 74]; design of
MBA student teams [37], etc.

3.4 Changing Formulation Within VNS

A traditional approach to tackle an optimization problem is to consider a given for-
mulation and search in some way through its feasible set X . Given that the same
problem can often be formulated in different ways, it is possible to extend search
paradigms to include jumps from one formulation to another. Each formulation
should lend itself to some traditional search method, its ‘local search’ that works
totally within this formulation, and yields a final solution when started from some
initial solution. Any solution found in one formulation should easily be translat-
able to its equivalent solution in any other formulation. We may then move from
one formulation to another by using the solution resulting from the local search of
the former as an initial solution for the local search of the latter. Such a strategy
will of course only be useful when local searches in different formulations behave
differently. Here we discuss two such possibilities.

3.4.1 Variable Neighborhood-Based Formulation Space Search

The idea of changing the formulation of a problem was investigated in [82, 83] us-
ing an approach that systematically alternates between different formulations for
solving various Circle Packing Problems (CPP). It is shown there that a stationary
point for a nonlinear programming formulation of CPP in Cartesian coordinates is
not necessarily a stationary point in polar coordinates. A method called Reformu-
lation Descent (RD) that alternates between these two formulations until the final
solution is stationary with respect to both formulations is suggested. Results ob-
tained were comparable with the best known values, but were achieved about 150
times faster than with an alternative single formulation approach. In this paper, the
idea suggested above of Formulation Space Search (FSS) is also introduced, using
more than two formulations. Some research in that direction has also been reported
in [70, 79, 90]. One methodology that uses the variable neighborhood idea when
searching through the formulation space is given in Algorithms 13 and 14. Here φ
(φ ′) denotes a formulation from a given space F , x (x′) denotes a solution in the
feasible set defined with that formulation, and �≤ �max is the formulation neighbor-
hood index. Note that Algorithm 14 uses a reduced VNS strategy in the formulation
space F . Note also that the ShakeFormulation() function must provide a
search through the solution space S ′ (associated with formulation φ ′) in order to
get a new solution x′. Any appropriate method can be used for this purpose.

68 P. Hansen et al.

Function FormulationChange(x,x′,φ ,φ ′, �)
if f (φ ′,x′)< f (φ ,x) then1

φ ← φ ′2
x ← x′3
�← 14

else
�← �+15

return x,φ , �6

Algorithm 13: Formulation change

Function VNFSS(x,φ , �max)
repeat1

�← 1 // Initialize formulation in F2
while �≤ �max do3

x′,φ ′, �← ShakeFormulation(x,x′,φ ,φ ′,�) // (φ ′,x′)∈(N�(φ),N (x)) random4
x,φ , �← FormulationChange(x,x′,φ ,φ ′,�) // Change formulation5

until some stopping condition is met
return x6

Algorithm 14: Reduced variable neighborhood FSS

3.4.2 Variable Formulation Search

Many optimization problems in the literature, e.g., min-max problems, demonstrate
a flat landscape. It means that, given a formulation of the problem, many neighbors
of a solution have the same objective function value. When this happens, it is dif-
ficult to determine which neighborhood solution is more promising to continue the
search. To address this drawback, the use of alternative formulations of the problem
within VNS is proposed in [85, 86, 89]. In [89] it is named Variable Formulation
Search (VFS). It combines a change of neighborhood within the VNS framework,
with the use of alternative formulations.

Let us assume that, beside the original formulation and the corresponding objec-
tive function f0(x), there are p other formulations denoted as f1(x), .., fp(x),x ∈ X .
Note that two formulations are defined as equivalent if the optimal solution of one
is the optimal solution of the other, and vice versa. For simplification purposes, we
will denote different formulations as different objectives fi(x), i = 1, .., p. The idea
of VFS is to add the procedure Accept(x,x′, p), given in Algorithm 15, in all three
basic steps of BVNS: Shaking, LocalSearch and NeighborhoodChange.
Clearly, if a better solution is not obtained by any of the p+ 1 formulations, the
move is rejected. The next iteration in the loop of Algorithm 15 will take place only
if the objective function values according to all previous formulations are equal.

3 Variable Neighborhood Search 69

Logical Function Accept (x,x′, p)
for i = 0 to p do1

if (fi(x′)< fi(x)) then return TRUE2
if (fi(x′)> fi(x)) then return FALSE3

return FALSE4

Algorithm 15: Accept procedure with p secondary formulations

If Accept (x,x′, p) is included in the LocalSearch subroutine of BVNS,
then it will not stop the first time a non improved solution is found. In order to
stop LocalSearch and thus claim that x′ is a local minimum, x′ should not be im-
proved by any among the p different formulations. Thus, for any particular problem,
one needs to design different formulations of the problem considered and decide the
order in which they will be used in the Accept subroutine. Answers to those two
questions are problem specific and sometimes not easy. The Accept (x,x′, p) sub-
routine can obviously be added to the NeighborhoodChange and Shaking
steps of BVNS from Algorithm 7 as well.

In [85], three evaluation functions, or acceptance criteria, within the Neighborhood
Change step are used in solving the Bandwidth Minimization Problem. This min-
max problem consists of finding permutations of rows and columns of a given
square matrix to minimize the maximal distance of the nonzero elements from
the main diagonal in the corresponding rows. Solution x may be represented as a
labeling of a graph and the move from x to x′ as x → x′. Three criteria are used:

1. the bandwidth length f0(x) (f0(x′)< f0(x));
2. the total number of critical vertices f1(x) (f1(x′)< f1(x)), if f0(x′) = f0(x);
3. f3(x,x′) = ρ(x,x′)− α , if f0(x′) = f0(x) and f1(x′) = f1(x). Here, we want

f3(x,x′) > 0, because we assume that x and x′ are sufficiently far from one
another when ρ(x,x′) > α , where α is an additional parameter. The idea for a
move to an even worse solution, if it is very far, is used within Skewed VNS.
However, a move to a solution with the same value is only performed in [85] if
its Hamming distance from the incumbent is greater than α .

In [86] a different mathematical programming formulation of the original prob-
lem is used as a secondary objective within the Neighborhood Change func-
tion of VNS. There, two combinatorial optimization problems on a graph are consid-
ered: the Metric Dimension Problem and Minimal Doubly Resolving Set Problem.

A more general VFS approach is given in [89], where the Cutwidth Graph Min-
imization Problem (CWP) is considered. CWP also belongs to the min-max prob-
lem family. For a given graph, one needs to find a sequence of nodes such that the
maximum cutwidth is minimum. The cutwidth of a graph should be clear from the
example provided in Fig. 3.3 for the graph with six vertices and nine edges shown
in (a).

70 P. Hansen et al.

Fig. 3.3 Cutwidth minimization example as in [89]

Figure 3.3b shows an ordering x of the vertices of the graph in (a) with the
corresponding cutwidth CW values of each vertex. It is clear that the CW repre-
sents the number of cut edges between two consecutive nodes in the solution x.
The cutwidth value f0(x) =CW (x) of the ordering x = (A,B,C,D,E,F) is equal to
f0(x) = max{4,5,6,4,2}= 6. Thus, one needs to find an order x that minimizes the
maximum cut-width value over all vertices.

Beside minimizing the bandwidth f0, two additional formulations, denoted f1

and f2 , are used in [89], and implemented within a VND local search. Results are
compared among themselves (Table 3.1) and with a few heuristics from the literature
(Table 3.1), using the following usual data set:

• “Grid”: This data set consists of 81 matrices constructed as the Cartesian prod-
uct of two paths. They were originally introduced by Rolim et al. [94]. For this
set of instances, the vertices are arranged on a grid of dimension width × height
where width and height are selected from the set {3, 6, 9, 12, 15, 18, 21, 24,
27}.

• “Harwell-Boeing” (HB): This data set is a subset of the public-domain Ma-
trix Market library.1 This collection consists of a set of standard test matrices
M = (Mi j) arising from problems in linear systems, least squares, and eigen-
value calculations from a wide variety of scientific and engineering disciplines.
Graphs were derived from these matrices by considering an edge (i, j) for ev-
ery element Mi j �= 0. The data set is formed by the selection of the 87 instances
were n ≤ 700. Their number of vertices ranges from 30 to 700 and the number
of edges from 46 to 41,686.

1 Available at http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/.

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/

3 Variable Neighborhood Search 71

Table 3.1 presents the results obtained with four different VFS variants, after
executing them for 30 s over each instance. The column ‘BVNS’ of Table 3.1 repre-
sents a heuristic based on BVNS which makes use only of the original formulation
f0 of the CWP. VFS1 denotes a BVNS heuristic that uses only one secondary crite-
rion, i.e., f0 and f1. VFS2 is equivalent to the previous one with the difference that
now f2 is considered (instead of f1). Finally, the fourth column of the table, denoted
as VFS3, combines the original formulation of the CWP with the two alternative
ones, in the way presented in Algorithm 15. All algorithms were configured with
kmax = 0.1n and start from the same random solution.

Table 3.1 Comparison of alternative formulations within 30 s for each test, by average objective
values and % deviation from the best known solution

BVNS VFS1 VFS2 VFS3

Avg. 137.31 93.56 91.56 90.75
Dev. (%) 192.44 60.40 49.23 48.22

Test are performed on “Grid” and “HB” data sets that contain 81 and 86 instances, respectively

It appears that significant improvements in solution quality are obtained when at
least one secondary formulation is used in case of ties (compare e.g., 192.44% and
60.40% deviations from the best known solutions obtained by BVNS and VFS1,
respectively). An additional improvement is obtained when all three formulations
are used in VFS3.

Comparison of VFS3 and state-of-the-art heuristics are given in Table 3.2. There,
the stopping condition is increased from 30 s to 300 and 600 s for the first and the
second set of instances, respectively. Besides average values and % deviation, the
methods are compared based on the number of wins (the third row) and the total
cpu time in seconds. Overall, the best quality results are obtained by VFS in less
computing time.

Table 3.2 Comparison of VFS with the state-of-the-art heuristics over the “Grid” and “HB” data
sets, within 300 and 600 s respectively

81 ‘grid’ test instances 86 HB instances
GPR [2] SA [34] SS [88] VFS [89] GPR [2] SA [34] SS [88] VFS [89]

Avg. 38.44 16.14 13.00 12.23 364.83 346.21 315.22 314.39
Dev. (%) 201.81 25.42 7.76 3.25 95.13 53.30 3.40 1.77
#Opt. 2 37 44 59 2 8 47 61
CPU t (s) 235.16 216.14 210.07 90.34 557.49 435.40 430.57 128.12

3.5 Primal-Dual VNS

For most modern heuristics, the difference in value between the optimal solution
and the obtained approximate solution is not precisely known. Guaranteed perfor-
mance of the primal heuristic may be determined if a lower bound on the objective

72 P. Hansen et al.

function value can be found. To this end, the standard approach is to relax the in-
tegrality condition on the primal variables, based on a mathematical programming
formulation of the problem. However, when the dimension of the problem is large,
even the relaxed problem may be impossible to solve exactly by standard commer-
cial solvers. Therefore, it seems to be a good idea to solve dual relaxed problems
heuristically as well. In this way we get guaranteed bounds on the primal heuristic
performance. The next difficulty arises if we want to get an exact solution within
a branch-and-bound framework since having the approximate value of the relaxed
dual does not allow us to branch in an easy way, for example by exploiting com-
plementary slackness conditions. Thus, the exact value of the dual is necessary. A
general approach to get both guaranteed bounds and an exact solution is proposed
in [67], and referred as Primal-Dual VNS (PD-VNS). It is given in Algorithm 16.

Function PD-VNS (x,kmax, tmax)
BVNS (x,kmax, tmax) // Solve primal by VNS1
DualFeasible(x,y) // Find (infeasible) dual such that fP = fD2
DualVNS(y) // Use VNS do decrease infeasibility3
DualExact(y) // Find exact (relaxed) dual4
BandB(x,y) // Apply branch-and-bound method5

Algorithm 16: Basic PD-VNS

In the first stage, a heuristic procedure based on VNS is used to obtain a near op-
timal solution. In [67] it is shown that VNS with decomposition is a very powerful
technique for large-scale simple plant location problems (SPLP) with up to 15,000
facilities and 15,000 users. In the second phase, the objective is to find an exact so-
lution of the relaxed dual problem. Solving the relaxed dual is accomplished in three
stages: (1) find an initial dual solution (generally infeasible) using the primal heuris-
tic solution and complementary slackness conditions; (2) find a feasible solution by
applying VNS to the unconstrained nonlinear form of the dual; (3) solve the dual
exactly starting with the found initial feasible solution using a customized “sliding
simplex” algorithm that applies “windows” on the dual variables, thus substantially
reducing the problem size. On all problems tested, including instances much larger
than those previously reported in the literature, the procedure was able to find the ex-
act dual solution in reasonable computing time. In the third and final phase, armed
with tight upper and lower bounds obtained from the heuristic primal solution in
phase one and the exact dual solution in phase two, respectively, a standard branch-
and-bound algorithm is applied to find an optimal solution of the original problem.
The lower bounds are updated with the dual sliding simplex method and the upper
bounds whenever new integer solutions are obtained at the nodes of the branching
tree. In this way it was possible to solve exactly problem instances of sizes up to
7000 facilities ×7000 users, for uniform fixed costs, and 15,000 facilities ×15,000
users, otherwise.

3 Variable Neighborhood Search 73

3.6 VNS for Mixed Integer Linear Programming

The Mixed Integer Linear Programming (MILP) problem consists of maximizing
or minimizing a linear function, subject to equality or inequality constraints and
integrality restrictions on some of the variables. The mixed integer programming
problem (MILP) can be expressed as:

(MILP)

⎡
⎢⎢⎢⎢⎣

min ∑n
j=1 c jx j

s.t. ∑n
j=1 ai jx j ≥ bi ∀i ∈ M = {1,2, . . . ,m}

x j ∈ {0,1} ∀ j ∈B
x j ≥ 0,integer ∀ j ∈ G
x j ≥ 0 ∀ j ∈ C

where the set of indices N = {1,2, . . . ,n} is partitioned into three subsets B,G and
C , corresponding to binary, general integer and continuous variables, respectively.

Numerous combinatorial optimization problems, including a wide range of prac-
tical problems in business, engineering and science, can be modeled as MILPs. Sev-
eral special cases, such as knapsack, set packing, cutting and packing, network de-
sign, protein alignment, traveling salesman and other routing problems, are known
to be NP-hard [46].

Many commercial solvers such as CPLEX [71] are available for solving MILPs.
Methods included in such software packages are usually of the branch-and-bound
(B&B) or of branch-and-cut (B&C) types. Basically, those methods enumerate all
possible integer values in some order, and prune the search space for the cases where
such enumeration cannot improve the current best solution.

3.6.1 Variable Neighborhood Branching

The connection between local search based heuristics and exact solvers may be
established by introducing the so called local branching constraints [43]. By adding
just one constraint into (MILP), as explained below, the kth neighborhood of (MILP)
is defined. This allows the use of all local search based metaheuristics, such as Tabu
search, Simulating annealing, VNS etc. More precisely, given two solutions x and y
of (MILP), the distance between x and y is defined as:

δ (x,y) = ∑
j∈B

| x j − y j |.

74 P. Hansen et al.

Let X be the solution space of (MILP). The neighborhood structures {Nk | k =
1, . . . ,kmax} can be defined, knowing the distance δ (x,y) between any two solutions
x,y ∈ X . The set of all solutions in the kth neighborhood of y ∈ X is denoted as
Nk(y) where

Nk(y) = {x ∈ X | δ (x,y) ≤ k}.
For the pure 0-1 MILP given above (i.e., (MILP) with G = /0), δ (., .) represents the
Hamming distance and Nk(y) may be expressed by the following local branching
constraint

δ (x,y) = ∑
j∈S

(1− x j)+ ∑
j∈B\S

x j ≤ k, (3.2)

where S = { j ∈B | y j = 1}.
In [66] a general VNS procedure for solving 0-1 MILPs is presented (see Algo-

rithm 17). An exact MILP solver (MIPSOLVE() within CPLEX) is used as a black
box for finding the best solution in the neighborhood, based on the given formula-
tion (MILP) plus the added local branching constraints. Shaking is performed using
the Hamming distance defined above. A detailed description of this VNS branch-
ing method is provided in Algorithm 17. The variables and constants used in the
algorithm are defined as follows [66]:

• UB—input variable for the CPLEX solver which represents the current upper
bound.

• f irst—logical input variable for CPLEX solver which is true if the first so-
lution lower than UB is asked for in the output; if f irst = false, CPLEX
returns the best solution found so far.

• TL—maximum time allowed for running CPLEX.
• rhs—right hand side of the local branching constraint; it defines the size of the

neighborhood within the inner or VND loop.
• cont—logical variable which indicates if the inner loop continues (true) or

not (false).
• x_opt and f _opt—incumbent solution and corresponding objective function

value.
• x_cur, f _cur, k_cur—current solution, objective function value and neighbor-

hood from where the VND local search starts (lines 6–20).
• x_next and f _next—solution and corresponding objective function value ob-

tained by CPLEX in the inner loop.

3 Variable Neighborhood Search 75

Function VnsBra(total_time_limit, node_time_limit, k_step,
x_opt)
TL := total_time_limit; UB := ∞; first := true1

stat := MIPSOLVE(TL, UB, first, x_opt, f _opt)2

x_cur:=x_opt; f_cur:=f_opt3

while (elapsedtime < total_time_limit) do4

cont := true; rhs := 1; first := false5

while (cont or elapsedtime < total_time_limit) do6

TL = min(node_time_limit, total_time_limit-7

elapsedtime)
add local br. constr. δ (x,x_cur)≤ rhs; UB := f_cur8

stat := MIPSOLVE(TL, UB, first, x_next, f_next)9

switch stat do10

case "opt_sol_found":11

reverse last local br. const. into δ (x,x_cur)≥ rhs+112

x_cur := x_next; f_cur := f_next; rhs := 1;13

case "feasible_sol_found":14

reverse last local br. constr. into δ (x,x_cur)≥ 115

x_cur := x_next; f_cur := f_next; rhs := 1;16

case "proven_infeasible":17

remove last local br. constr.; rhs := rhs+1;18

case "no_feasible_sol_found":19

cont := false20

if f _cur < f _opt then21

x_opt := x_cur; f _opt := f_cur; k_cur := k_step;22

else
k_cur := k_cur+k_step;23

remove all added constraints; cont := true24

while cont and (elapsedtime < total_time_limit) do25

add constraints k_cur ≤ δ (x,x_opt) and26

δ (x,x_opt)< k_cur+k_step
TL := total_time_limit-elapsedtime; UB := ∞; first := true27

stat := MIPSOLVE(TL, UB, first, x_cur, f_cur)28

remove last two added constraints; cont =false29

if stat = "proven_infeasible" or30

"no_feasible_sol_found" then
cont :=true; k_cur := k_cur+k_step31

Algorithm 17: VNS branching

In line 2, a commercial MIP solver is run to get an initial feasible solution, i.e.,
logical variable ‘first’ is set to value true. The outer loop starts from line 4. VND
based local search is performed in the inner loop that starts from line 6 and finishes

76 P. Hansen et al.

at line 24. There are four different outputs from subroutine MIPSOLVE provided
by variable stat. They are coded in lines 11–20. The shaking step also uses the MIP
solver. It is presented in the loop that starts at line 25.

3.6.2 VNDS Based Heuristics for MILP

It is well known that heuristics and relaxations are useful for providing upper and
lower bounds on the optimal value of large and difficult optimization problems. A
hybrid approach for solving 0-1 MILPs is presented in this section. A more detailed
description may be found in [51]. It combines variable neighborhood decomposition
search (VNDS) [63] and a generic MILP solver for upper bounding purposes, and
a generic linear programming solver for lower bounding. VNDS is used to define
a variable fixing scheme for generating a sequence of smaller subproblems, which
are normally easier to solve than the original problem. Different heuristics are de-
rived by choosing different strategies for updating lower and upper bounds, and thus
defining different schemes for generating a series of subproblems. We also present
in this section a two-level decomposition scheme, in which subproblems created
according to the VNDS rules are further divided into smaller subproblems using
another criterion, derived from the mathematical formulation of the problem.

3.6.2.1 VNDS for 0-1 MILPs with Pseudo-Cuts

Variable neighborhood decomposition search is a two-level variable neighborhood
search scheme for solving optimization problems, based upon the decomposition of
the problem (see Algorithm 12). We discuss here an algorithm which solves exactly
a sequence of reduced problems obtained from a sequence of linear programming
relaxations. The set of reduced problems for each LP relaxation is generated by
fixing a certain number of variables according to VNDS rules. That way, two se-
quences of upper and lower bounds are generated, until an optimal solution of the
problem is obtained. Also, after each reduced problem is solved, a pseudo-cut is
added to guarantee that this subproblem is not revisited. Furthermore, whenever an
improvement in the objective function value occurs, a local search procedure is ap-
plied in the whole solution space to attempt a further improvement (the so-called
boundary effect within VNDS). This procedure is referred to as VNDS-PC, since it
employs VNDS to solve 0-1 MILPs, while incorporating pseudo-cuts to reduce the
search space [51].

If J ⊆ B, we define the partial distance between x and y, relative to J, as
δ (J,x,y) = ∑ j∈J | x j − y j |. Obviously we have δ (B,x,y) = δ (x,y)). More gener-
ally, let x̄ be an optimal solution of LP(P), the LP relaxation of the problem P
considered (not necessarily MIP feasible), and J ⊆ B(x̄) = { j ∈ N | x̄ j ∈ {0,1}}
an arbitrary subset of indices. The partial distance δ (J,x,x) can be linearized as
follows:

δ (J,x,x) = ∑
j∈J

[x j(1− x j)+ x j(1− x j)].

Let X be the solution space of problem P. The neighborhood structures {Nk | k =
kmin, . . . ,kmax}, 1 ≤ kmin ≤ kmax ≤ p, can be defined knowing the distance δ (B,x,y)

3 Variable Neighborhood Search 77

between any two solutions x,y ∈ X . The set of all solutions in the kth neighborhood
of x ∈ X is denoted as Nk(x), where

Nk(x) = {y ∈ X | δ (B,x,y) ≤ k}.

From the definition of Nk(x), it follows that Nk(x) ⊂ Nk+1(x), for any
k ∈ {kmin,kmin +1, . . . ,kmax −1}, since δ (B,x,y) ≤ k implies δ (B,x,y) ≤ k+1.
It is trivial that, if we completely explore neighborhood Nk+1(x), it is not necessary
to explore neighborhood Nk(x).
Ordering variables w.r.t LP–relaxation. The first variant of VNDS-PC, denoted
as VNDS-PC1, is considered here for the maximization case. See Algorithm 18 for
the pseudo-code of this algorithm which can be easily adjusted for minimization
problems. Input parameters for the algorithm are an instance P of the 0-1 MIP prob-
lem, a parameter d which defines the number of variables to be released in each
iteration and an initial feasible solution x∗ of P. The algorithm returns the best solu-
tion found until the stopping criterion defined by the variable proceed1 is met.

Function VNDS-PC1(P,d,x∗)
Choose stopping criteria (set proceed1 = proceed2 = true)1
Add objective cut: LB = cTx∗; P = (P | cTx > LB)2
while proceed1 do3

Find an optimal solution x of LP(P)4
set UB = cTx5
if B(x) =B then6

break
Set δ j =| x∗j − x j |, j ∈B7

Index x j so that δ j ≤ δ j+1, j = 1, . . . , p−1, p = |B|8
Set q =| { j ∈B | δ j �= 0} |9
Set kmin = p−q, kstep = �q/d�, kmax = p− kstep, k = kmax10
while proceed2 and k ≥ 0 do11

Jk = {1, . . . ,k}; x′ = MIPSOLVE(P(x∗,Jk),x∗)12
P = (P | δ (Jk,x∗,x)≥ 1)13
if (cTx′ > cTx∗) then14

x∗ = LocalSearch(P,x′); LB = cTx∗15
Update objective cut: P = (P | cTx > LB); break16

else
if (k− kstep < kmin) then17

kstep = max{�k/2�,1}
Set k = k− kstep18

Update proceed219

Update proceed120

return LB, UB, x∗.

Algorithm 18: VNDS for MIPs with pseudo-cuts

78 P. Hansen et al.

This variant of VNDS-PC is based on the following choices. Variables are or-
dered according to their distances from the corresponding LP relaxation solution
values (see lines 4, 6 and 7 in Algorithm 18). More precisely, we compute distances
δ j =| x j −x j | for j ∈B, where x j is a variable value of the current incumbent (fea-
sible) solution and x j a variable value of the LP-relaxation. We then index variables
x j, j ∈B, so that δ1 ≤ δ2 ≤ . . .≤ δp, p =|B |. Parameters kmin, kstep and kmax (see
line 9 in Algorithm 18) are determined in the following way. Let q be the number
of binary variables which have different values in the LP relaxation solution and in
the incumbent solution (q =| { j ∈ B | δ j �= 0} |), and let d be a given parameter
(whose value is experimentally found) which controls the neighborhood size. Then
we set kmin = p−q, kstep = �q/d� and kmax = p−kstep. We also allow the value of k
to be less then kmin (see lines 17 and 18 in Algorithm 18). In other words, we allow
the variables which have the same integer value in the incumbent and LP-relaxation
solutions to be freed anyway. When k < kmin, kstep is set to (approximately) half the
number of the remaining fixed variables. Note that the maximum value of parameter
k (which is kmax) indicates the maximum possible number of fixed variables, which
implies the minimum number of free variables and therefore the minimum possible
neighborhood size in the VNDS scheme.

If an improvement occurs after solving the subproblem P(x∗,Jk), where x∗ is the
current incumbent solution (see line 12 in Algorithm 18), we perform a local search
on the complete solution, starting from x′ (see line 14 in Algorithm 18). The local
search applied at this stage is the variable neighborhood descent for 0-1 MILPs, as
described in [66]. Note that, in Algorithm 18 and in the pseudo-codes that follow,
the statement y = MILPSOLVE(P,x) denotes a call to a generic MILP solver, for
a given 0-1 MILP problem P, starting from a given solution x and returning a new
solution y (if P is infeasible, then the value of y remains the same as the one before
the call to the MILP solver).

In practice, when used as a heuristic with a time limit as the stopping criterion,
VNDS-PC1 has a good performance. One can observe that, if pseudo-cuts (line 13 in
Algorithm 18) and objective cuts (lines 2 and 16) are not added, the algorithm from
[74] is obtained, which is a special case of VNDS-PC with a fixed LP relaxation
reference solution.
Ordering variables w.r.t. the minimum and maximum distances from the
incumbent solution.
In the VNDS variant above, the variables in the incumbent integer solution are or-
dered according to the distances of their values to the values of the current lin-
ear relaxation solution. However, it is possible to employ different ordering strate-
gies. For example, in the case of maximization of cT x, consider the following two
problems:

3 Variable Neighborhood Search 79

(LP−
x∗)

⎡
⎢⎢⎢⎢⎣

minδ (x∗,x)
s.t.: Ax ≤ b

cTx ≥ LB+1
x j ∈ [0,1] , j ∈B
x j ≥ 0, j ∈ N

(LP+
x∗)

⎡
⎢⎢⎢⎢⎣

maxδ (x∗,x)
s.t.: Ax ≤ b

cTx ≥ LB+1
x j ∈ [0,1] , j ∈B
x j ≥ 0, j ∈ N

where x∗ is the best known integer feasible solution and LB is the best lower bound
found so far (i.e., LB = cTx∗). Of course, in case of solving mincT x, the inequality
cT x ≥ LB+1 from models (LP−

x∗) and (LP+
x∗), should be replaced with cT x ≤UB−1,

where the upper bound UB = cT x∗. If x− and x+ are optimal solutions of the LP-
relaxation problems LP−

x∗ and LP+
x∗ , respectively, then components of x∗ could be

ordered in ascending order of values |x−j − x+j |, j ∈B. Since both solution vectors
x− and x+ are real-valued (i.e., from R

n), this ordering technique is expected to be
more sensitive than the standard one, i.e., the number of pairs (j, j′), j, j′ ∈ N, j �=
j′ for which |x−j − x+j | �= |x−j′ − x+j′ | is expected to be greater than the number of
pairs (h,h′), h,h′ ∈ N,h �= h′ for which |x∗h − xh| �= |x∗h′ − xh′ |, where x is an optimal
solution of the LP relaxation LP(P).

Also, according to the definition of x− and x+, it is intuitively more likely for
the variables x j, j ∈ N, for which x−j = x+j , to have that same value x−j in the final
solution, than it is for variables x j, j ∈ N, for which x∗j = x j (and x−j �= x+j), to
have the final value x∗j . In practice, if x−j = x+j , j ∈ N, then usually x∗j = x−j , which
justifies the ordering of components of x∗ in the described way. However, if we want
to keep the number of iterations in one pass of VNDS approximately the same as in
the standard ordering, i.e., if we want to use the same value for parameter d, then
the subproblems examined will be larger than with the standard ordering, since the
value of q will be smaller (see line 8 in Algorithm 19). The pseudo-code of this
variant of VNDS-PC, denoted as VNDS-PC2, is provided in Algorithm 19.

3.6.2.2 A Double Decomposition Scheme

In this section we propose the use of a second level decomposition scheme within
VNDS for the 0-1 MILP. The 0-1 MILP is tackled by decomposing the problem into
several subproblems, where the number of binary variables with value 1 is fixed
at a given integer value. Fixing the number of variables with value 1 to a given
value h ∈ N∪{0} can be achieved by adding the constraint x1 + x2 + . . .+ xp = h,
or, equivalently, eTx = h, where e is the vector of ones. Solving the 0-1 MILP by
tackling separately each of the subproblems Ph for h∈N appears to be an interesting
approach for the case of the multidimensional knapsack problem [101], especially
because the additional constraint eTx = h provides tighter upper bounds than the
classical LP-relaxation.

80 P. Hansen et al.

Function VNDS-PC2(P,d,x∗)
Choose stopping criteria (set proceed1=proceed2=true)1
Add objective cut: LB = cTx∗; P = (P | cTx > LB)2
while proceed1 do3

Find an optimal solution x of LP(P); set UB = cTx4
if (B(x) =B) then5

break
Find optimal solutions x− of LP−

x∗ and x+ of LP+
x∗6

δ j =| x−j − x+j |, j = 1, ..., p ; index x j so that δ j ≤ δ j+1, j = 1, ..., p−17

Set q =| { j ∈B | δ j �= 0} |, kstep = �q/d�, k = p− kstep8
while proceed2 and k ≥ 0 do9

Jk = {1, . . . ,k}; x′ = MIPSOLVE(P(x∗,Jk),x∗);10
if (cTx′ > cTx∗) then11

Update objective cut: LB = cTx′; P = (P | cTx > LB);12
x∗ = LocalSearch(P,x′); LB = cTx∗; break13

else
if (k− kstep > p−q) then14

kstep = max{�k/2�,1}
Set k = k− kstep15

Update proceed216

x′ = MIPSOLVE(P(x,B(x)),x∗); LB = max{LB,cTx′};17
Add pseudo-cut to P : P = (P | δ (B(x),x,x)≥ 1);18
x′ = MIPSOLVE(P(x−,B(x−)),x∗); LB = max{LB,cTx′};19
Add pseudo-cut to P : P = (P | δ (B(x−),x,x−)≥ 1);20
x′ = MIPSOLVE(P(x+,B(x+)),x∗); LB = max{LB,cTx′};21
Add pseudo-cut to P : P = (P | δ (B(x+),x,x+)≥ 1);22
Update proceed1;23

return LB, UB, x∗.24

Algorithm 19: VNDS for MIPs with pseudo-cuts and another ordering strategy

Formally, let Ph be the subproblem obtained from the original problem by adding
the hyperplane constraint eTx = h for h ∈ N, and enriched by an objective cut:

(Ph)

⎡
⎢⎢⎢⎢⎣

max cTx
s.t.: Ax ≤ b

cTx ≥ LB+1
eTx = h
x ∈ {0,1}p ×R

n−p
+

Let hmin and hmax denote lower and upper bounds on the number of variables
with value 1 in an optimal solution of the problem. Then it is obvious that ν(P) =
max{ν(Ph) | hmin ≤ h ≤ hmax}. Bounds hmin =

⌈
ν(LP−

0)
⌉

and hmax =
⌊
ν(LP+

0)
⌋

can
be computed by solving the following two problems:

3 Variable Neighborhood Search 81

(LP−
0)

⎡
⎢⎢⎣

min eTx
s.t.: Ax ≤ b

cTx ≥ LB+1
x ∈ [0,1]p ×R

n−p
+

(LP+
0)

⎡
⎢⎢⎣

max eTx
s.t.: Ax ≤ b

cTx ≥ LB+1
x ∈ [0,1]p ×R

n−p
+

We define the order of the hyperplanes at the beginning of the algorithm, and
then we explore them one by one, in that order. The ordering can be done ac-
cording to the objective values of the linear programming relaxations LP(Ph),
h ∈ H = {hmin, . . . ,hmax}. In each hyperplane, VNDS-PC1 is applied and if there
is no improvement, the next hyperplane is explored. We refer to this method as
VNDDS (short for Variable Neighborhood Double Decomposition Search), which
corresponds to the pseudo-code in Algorithm 20. This idea is inspired by the ap-
proach proposed in [91], where the ordering of the neighborhood structures in Vari-
able Neighborhood Descent is determined dynamically, by solving relaxations of
the problems. Problems differ in one constraint that defines the Hamming distance
h (h ∈ H = {hmin, ..,hmax}).

Function VNDDS(P,x∗,d)
Solve the LP-relaxation problems LP−

0 and LP+
0 ;1

Set hmin =
⌈
ν(LP−

0)
⌉

and hmax =
⌊
ν(LP+

0)
⌋
;

Sort the set of subproblems {Phmin , . . . ,Phmax} so that2
ν(LP(Ph))≤ ν(LP(Ph+1)), hmin ≤ h < hmax;
Find initial integer feasible solution x∗;3
for (h = hmin;h ≤ hmax;h++) do4

x′ = VNDS-PC1(Ph,d,x∗)5
if (cTx′ > cTx∗) then6

x∗ = x′

return x∗.
Algorithm 20: Two levels of decomposition with hyperplanes ordering

It is important to note that the exact variant of VNDDS, i.e., without any limita-
tions regarding the running time or the number of iterations, converges to an optimal
solution in a finite number of steps [51].

3.6.2.3 Comparison

For comparison purposes, five algorithms are ranked according to their objective
values for the MIP benchmark instances in MIPLIB [77] and the benchmark in-
stances for the Maximum Knapsack Problem (MKP) in [21]. Tables 3.3 and 3.4
report the average differences between the ranks of every pair of algorithms for the
MIPLIP and MKP test sets, respectively.

82 P. Hansen et al.

Table 3.3 Objective value average rank differences on the MIPLIB set

ALGORITHM
(average rank)

CPLEX
(2.14)

VNDS-MIP
(1.95)

VNDS-PC1
(2.64)

VNDS-PC2
(3.64)

VNDDS
(4.64)

CPLEX (2.14) 0.00 0.18 −0.50 −1.50 −2.50
VNDS-MIP
(1.95)

−0.18 0.00 −0.68 −1.68 −2.68

VNDS-PC1
(2.64)

0.50 0.68 0.00 −1.00 −2.00

VNDS-PC2
(3.64)

1.50 1.68 1.00 0.00 −1.00

VNDDS (4.64) 2.50 2.68 2.00 1.00 0.00

Table 3.4 Objective value average rank differences on the MKP set

ALGORITHM
(average rank)

CPLEX
(2.86)

VNDS-MIP
(3.09)

VNDS-PC1
(2.09)

VNDS-PC2
(3.23)

VNDDS
(3.72)

CPLEX (2.86) 0.00 −0.23 0.77 −0.36 −0.86
VNDS-MIP
(3.09)

0.23 0.00 1.00 −0.14 −0.64

VNDS-PC1
(2.09)

−0.77 −1.00 0.00 −1.14 −1.64

VNDS-PC2
(3.23)

0.36 0.14 1.14 0.00 −0.50

VNDDS (3.72) 0.86 0.64 1.64 0.50 0.00

It appears that VNDS-MIP outperforms the other four methods on MIPLIB
instances, while for the MKP set, the best performance is obtained with the
VNDS-PC1 heuristic.

3.7 Variable Neighborhood Search for Continuous Global
Optimization

The general form of the continuous constrained nonlinear global optimization prob-
lem (GOP) is given as follows:

(GOP)

⎡
⎢⎢⎣

min f (x)
s.t. gi(x)≤ 0 ∀i ∈ {1,2, . . . ,m}

hi(x) = 0 ∀i ∈ {1,2, . . . ,r}
a j ≤ x j ≤ b j ∀ j ∈ {1,2, . . . ,n}

where x ∈ Rn, f : Rn → R, gi : Rn → R, i = 1,2, . . . ,m, and hi : Rn → R, i = 1,2, . . . ,r,
are possibly nonlinear continuous functions, and a,b∈Rn are the variable bounds. A
box constraint GOP is defined when only the variable bound constraints are present
in the model.

3 Variable Neighborhood Search 83

GOPs naturally arise in many applications, e.g. in advanced engineering design,
data analysis, financial planning, risk management, scientific modeling, etc. Most
cases of practical interest are characterized by multiple local optima and, therefore,
a search effort of global scope is needed to find the globally optimal solution.

If the feasible set X is convex and objective function f is convex, then (GOP)
is relatively easy to solve, i.e., the Karush-Kuhn-Tucker conditions can be applied.
However, if X is not a convex set or f is not a convex function, we can have many lo-
cal optima and the problem may not be solved with classical techniques. For solving
(GOP), VNS has been used in two different ways: (1) with neighborhoods induced
by using a �p norm; (2) without using a �p norm.
(i) VNS with �p norm neighborhoods [40, 75, 81, 84]. A natural approach in ap-
plying VNS for solving GOPs is to induce neighborhood structures Nk(x) from the
�p metric given as:

ρ(x,y) =

(
n

∑
i=1

|xi − yi|p
)1/p

, p ∈ [1,∞) (3.3)

and
ρ(x,y) = max

1≤i≤n
|xi − yi|, p → ∞. (3.4)

The neighborhood Nk(x) denotes the set of solutions in the k-th neighborhood of x
based on the metric ρ . It is defined as

Nk(x) = {y ∈ X | ρ(x,y)≤ ρk}, (3.5)

or
Nk(x) = {y ∈ X | ρk−1 < ρ(x,y)≤ ρk}, (3.6)

where ρk, known as the radius of Nk(x), is monotonically increasing with k (k ≥ 2).
For solving box constraint GOPs, both [40] and [75] use the neighborhoods as

defined in (3.6). The basic differences between the two algorithms reported there
are as follows: (1) in the procedure suggested in [75] the �∞ norm is used, while
in [40] the choice of metric is either left to the analyst, or changed automatically
in some predefined order; (2) the commercial solver SNOPT [47] is used as a local
search procedure within VNS in [75], while in [40], the analyst may choose one out
of six different convex minimizers. A VNS based heuristic for solving the generally
constrained GOP is suggested in [84]. There, the problem is first transformed into a
sequence of box constrained problems within the well known exterior point method:

min
a≤x≤b

Fμ ,q(x) = f (x)+
1
μ

m

∑
i=1

(max{0,gi(x)})q +
r

∑
i=1

|hi(x)|q, (3.7)

where μ and q ≥ 1 are a positive penalty parameter and penalty exponent, respec-
tively. Algorithm 21 outlines the steps for solving the box constraint subproblem as
proposed in [84].

84 P. Hansen et al.

Function Glob-VNS (x∗,kmax, tmax)
Select the set of neighborhood structures Nk, k = 1, . . . ,kmax1
Select the array of random distributions types and an initial point x∗ ∈ X2
x ← x∗, f ∗ ← f (x), t ← 03
while t < tmax do4

k ← 15
repeat6

for all distribution types do7
y ← Shake(x∗,k) // Get y ∈Nk(x∗) at random8
y′ ← BestImprovment(y) // Apply LS to obtain a local minimum y′9
if f (y′)< f ∗ then10

x∗ ← y′, f ∗ ← f (y′), go to line 511

k ← k+112

until k = kmax
t ← CpuTime()13

Algorithm 21: VNS using a �p norm

The Glob-VNS procedure from Algorithm 21 contains the following parameters
in addition to kmax and tmax: (1) Values of radii ρk, k = 1, . . . ,kmax, which may be
defined by the user or calculated automatically in the minimizing process; (2) Geom-
etry of neighborhood structures Nk, defined by the choice of metric. Usual choices
are the �1, �2, and �∞ norms; (3) Distribution types used for obtaining random points
y from Nk in the Shaking step. A uniform distribution in Nk is the obvious choice,
but other distributions may lead to much better performance on some problems.
Different choices of neighborhood structures and random point distributions lead to
different VNS-based heuristics.
(ii) VNS without using �p norm neighborhoods. Two different neighborhoods,
N1(x) and N2(x), are used in the VNS based heuristic suggested in [99]. In N1(x),
r (a parameter) random directions from the current point x are generated and a one
dimensional search along each direction is performed. The best point (out of r)
is selected as a new starting solution for the next iteration, if it is better than the
current one. If not, as in VND, the search is continued within the next neighborhood
N2(x). The new point in N2(x) is obtained as follows. The current solution is moved
for each x j (j = 1, . . . ,n) by a value Δ j, taken at random from the interval (−α,α);

i.e., x(new)
j = x j +Δ j or x(new)

j = x j −Δ j. Points obtained by the plus or minus sign
for each variable define the neighborhood N2(x). If a relative increase of 1% in the

value of x(new)
j produces a better solution than x(new), the + sign is chosen; otherwise

the − sign is chosen.
Neighborhoods N1(x) and N2(x) are used for designing two algorithms. The first,

called VND, iterates over these neighborhoods until there is no improvement in the
solution value. In the second variant, a local search is performed with N2 and kmax

is set to 2 for the shaking step.

3 Variable Neighborhood Search 85

It is interesting to note that computational results reported by all VNS based
heuristics were very promising. They usually outperformed other recent approaches
from the literature.

3.8 Variable Neighborhood Programming (VNP): VNS for
Automatic Programming

Building an intelligent machine is an old dream that, thanks to computers, begins to
take shape. Automatic programming is an efficient technique that has led to impor-
tant developments in the field of artificial intelligence. Genetic programming (GP)
[73], inspired by the genetic algorithm (GA), is among the few evolutionary algo-
rithms used to evolve a population of programs. The main difference between GP
and GA is the representation of a solution. An individual in GA can be a string,
while in GP, the individuals are programs. A tree is the usual way to represent a
program in GP. For example, assume that the current solution of a problem is the
following function:

f (x1, . . . ,x5) =
x1

x2 + x3
+ x4 − x5.

Then the code (tree) that calculates f using GP may be represented as in Fig. 3.4a.
Elleuch et al. [41, 42] recently adapted VNS rules for solving automatic pro-

gramming problems. They first suggested an extended solution representation by
adding coefficients to variables. Each terminal node was attached to its own param-
eter value. These parameters give a weight for each terminal node, with values from
the interval [0, 1]. This type of representation allows VNP to examine parameter val-
ues and the tree structure in the same iteration, increasing the probability for finding
a good solution faster. Let G = {α1,α2, . . . ,αn} denote a parameter set. In Fig. 3.4b
an example of a solution representation in VNP is illustrated.
(i) Neighborhood structures. Nine different neighborhood structures are proposed
in [42] based on a tree representation. To save space, we will just mention some of
them:

• N1(T)—Changing a node value operator. This neighborhood preserves the
tree structure and changes only the values of a functional or a terminal node.
Each node has a set of allowed values from which one can be chosen. Let xi be
the current solution; then a neighbor xi+1 differs from xi by just a single node.
A move within this neighborhood is shown in Fig. 3.5.

86 P. Hansen et al.

Fig. 3.4 Current solution representation in automatic programming problem: (a) x1
x2+x3

+ x4 − x5;

(b) α1x1
α2x2+α3x3

+α4x4 −α5x5

Fig. 3.5 Neighborhood N1: changing a node value

• N2(T)-Swap operator. Here, a subtree from the current tree is randomly se-
lected and a new random subtree is generated as shown in Fig. 3.6a1 and a2.
Then the new subtree replaces the current one (see Fig. 3.6b). In this move, any
constraint related to the maximum tree size should be respected.

3 Variable Neighborhood Search 87

Fig. 3.6 Neighborhood N2: swap operator. (a1) The current solution. (a2) New generated subtree.
(b) The new solution

• N3(T)—Changing parameter values. In the two previous neighborhoods, the
tree structure and the node values were considered. In the N3(T) neighborhood,
attention is paid to the parameters. So, the position and value of nodes are kept
in order to search the neighbors in the parameter space. Figure 3.7 illustrates
the procedure where the change from one value to another is performed at
random.

Fig. 3.7 Neighborhood N3: change parameters

These neighborhoods may be used in both the local search step (N�, � ∈ [1, �max])
and in the shaking step (Nk,k ∈ [1,kmax]) of the VNP.
(ii) VNP shaking. The shaking step allows diversification in the search space. The
proposed VNP algorithm does not use exactly the same neighborhood structures N�

than the local search. Thus, we denote the neighborhoods used in the shaking phase
as Nk(T),k = 1, . . . ,kmax. Nk(T) may be constructed by repeating k times one or
more moves from the set {N�(T), |�= 1, . . . , �max}. Consider, for example, the swap

88 P. Hansen et al.

operator N2(T). Let m denote the maximum number of nodes in the tree represen-
tation of the solution. We can get a solution from the kth neighborhood of T using
the swap operator, where k represents the number of nodes of the new generated
sub-tree. If n denotes the number of nodes in the original tree after deleting the old
sub-tree, than n+ k ≤ m. The objective of the shaking phase is to provide a good
starting point for the local search.
(iii) VNP objective function. The evaluation consists of defining a fitness (or ob-
jective) function to assess a solution. This function depends on the problem consid-
ered. After running each solution (program) on a training data set, the fitness may
be measured by counting the training cases where the returned solution is correct or
close to the exact solution.
(iv) An example: Time series forecasting (TSF) problem. Two widely used
benchmark data sets of the TSF problem are considered in [42] to study the VNP
capabilities: the Mackey-Glass series and the Box-Jenkins set. The parameters for
the VNP implementation that were chosen after some preliminary testing are given
in Table 3.5.

Table 3.5 VNP parameters adjustment for the forecasting problem

Parameters Values

The functional set F = {+,∗, , pow}
The terminal sets {(xi,c), i ∈ [1, . . . ,m],m = number of inputs, c ∈ R}
Neighborhood structures {N1,N2,N3}
Minimum tree length 20 nodes
Maximum tree length 200 nodes
Maximum number of iterations 50,000

The root mean square error (RMSE) is used as the fitness function, as it is nor-
mally done in the literature:

f (T) =

√
1
n

n

∑
j=1

(y j
t − y j

out)
2

where n is the total number of samples, and y j
out and y j

t are the output of the VNP
model and the desired output for sample j, respectively. Next we illustrate with a
comparison on a single Box-Jenkins instance.

The gas furnace data for this instance were collected from a combustion process
of a methane air mixture [20]. This time series has found a widespread application
as a benchmark example for testing prediction algorithms. The data set contains
296 pairs of input-output values. The input u(t) corresponds to the gas flow, and the
output y(t) is the CO2 concentration in the outlet gas. The inputs are u(t − 4), and
y(t − 1), and the output is y(t). In this work, 200 samples are used in the training
phase and the remaining samples are used for the testing phase. The performance
of the evolved VNP model is evaluated by comparing it with existing approaches.

3 Variable Neighborhood Search 89

The RMSE achieved by the VNP output model is (0.00038), which is better than
the RMSE obtained by other approaches, as shown in Table 3.6.

Table 3.6 Comparison of testing error on Box-Jenkins dataset

Method Prediction error RMSE
ODE [98] 0.5132
HHMDDE [38] 0.3745
FBBFNT [24] 0.0047
VNP [42] 0.0038

3.9 Discovery Science

In all the above applications, VNS is used as an optimization tool. It can also lead
to results in “discovery science”, i.e., for the development of new theories. This has
been done for graph theory in a long series of papers with the common title “Vari-
able neighborhood search for extremal graphs” that report on the development and
applications of the AutoGraphiX (AGX) system [10, 28, 29]. This system addresses
the following problems:

• Find a graph satisfying given constraints.
• Find optimal or near optimal graphs for an invariant subject to constraints.
• Refute a conjecture.
• Suggest a conjecture (or repair or sharpen one).
• Provide a proof (in simple cases) or suggest an idea of proof.

A basic idea then is to address all of these problems as parametric combinatorial
optimization problems on the infinite set of all graphs (or in practice some smaller
subset) using a generic heuristic to explore the solution space. This is being accom-
plished using VNS to find extremal graphs with a given number n of vertices (and
possibly also a given number of edges). Extremal graphs may be viewed as a family
of graphs that maximize some invariant such as the independence number or chro-
matic number, possibly subject to constraints. We may also be interested in finding
lower and upper bounds on some invariant for a given family of graphs. Once an
extremal graph is obtained, VND with many neighborhoods may be used to build
other such graphs. Those neighborhoods are defined by modifications of the graphs
such as the removal or addition of an edge, rotation of an edge, and so forth. Once
a set of extremal graphs, parameterized by their order, is found, their properties are
explored with various data mining techniques, leading to conjectures, refutations
and simple proofs or ideas of proof.

90 P. Hansen et al.

More recent applications include [31, 32, 45, 50, 55] in chemistry, [8, 29] for
finding conjectures, [16, 35] for largest eigenvalues, [23, 56, 64] for extremal values
in graphs, independence [17, 18], specialty indexes [11, 15, 19, 61] and others [13,
60, 95, 96]. See [9] for a survey with many further references.

The current list of references in the series “VNS for extremal graphs” corre-
sponds to [3, 8, 10–19, 23, 28, 29, 31, 32, 35, 45, 50, 55, 56, 60, 61, 64, 95, 96]. An-
other list of papers, not included in this series, is [4–7, 9, 30, 33, 49, 52–54, 65, 97].
Papers in these two lists cover a variety of topics:

1. Principles of the approach [28, 29] and its implementation [10];
2. Applications to spectral graph theory, e.g., bounds on the index for

various families of graphs, graphs maximizing the index subject to some
conditions [16, 19, 23, 35, 65];

3. Studies of classical graph parameters, e.g., independence, chromatic
number, clique number, average distance [3, 9, 12, 17, 18, 95, 96];

4. Studies of little known or new parameters of graphs, e.g., irregular-
ity, proximity and remoteness [4, 56];

5. New families of graphs discovered by AGX, e.g., bags, which are ob-
tained from complete graphs by replacing an edge by a path, and bugs,
which are obtained by cutting the paths of a bag [14, 60];

6. Applications to mathematical chemistry, e.g., study of chemical graph
energy, and of the Randić index [11, 15, 32, 45, 49, 50, 52, 53, 55];

7. Results of a systematic study of 20 graph invariants, which led to al-
most 1500 new conjectures, more than half of which were proved by
AGX and over 300 by various mathematicians [13];

8. Refutation or strengthening of conjectures from the literature [8, 30,
53];

9. Surveys and discussions about various discovery systems in graph
theory, assessment of the state-of-the-art and the forms of interesting
conjectures together with proposals for the design of more powerful
systems [33, 54].

3.10 Conclusions

The general schemes of variable neighborhood search have been presented and dis-
cussed. In order to evaluate research development related to VNS, one needs a list
of the desirable properties of metaheuristics.

1. Simplicity: the metaheuristic should be based on a simple and clear prin-
ciple, which should be widely applicable;

3 Variable Neighborhood Search 91

2. Precision: the steps of the metaheuristic should be formulated in pre-
cise mathematical terms, independent of possible physical or biological
analogies which may have been the initial source of inspiration;

3. Coherence: all steps of heuristics developed for solving a particular prob-
lem should follow naturally from the metaheuristic principles;

4. Effectiveness: heuristics for particular problems should provide optimal
or near-optimal solutions for all known or at least the most realistic in-
stances. Preferably, they should find optimal solutions for most bench-
mark problems for which such solutions are known;

5. Efficiency: heuristics for particular problems should take a moderate
computing time to provide optimal or near-optimal solutions, or com-
parable or better solutions than the state-of-the-art;

6. Robustness: the performance of the metaheuristic should be consistent
over a variety of instances, i.e., not merely fine-tuned to some training
set and not so good elsewhere;

7. User-friendliness: the metaheuristic should be clearly expressed, easy to
understand and, most importantly, easy to use. This implies it should have
as few parameters as possible, ideally none;

8. Innovation: the principle of the metaheuristic and/or the efficiency and
effectiveness of the heuristics derived from it should lead to new types of
application.

9. Generality: the metaheuristic should lead to good results for a wide vari-
ety of problems;

10. Interactivity: the metaheuristic should allow the user to incorporate his
knowledge to improve the resolution process;

11. Multiplicity: the metaheuristic should be able to produce several near op-
timal solutions from which the user can choose.

We have tried to show here that VNS possesses to a great extent, all of the above
properties. This framework has led to heuristics which are among the very best ones
for many problems. Interest in VNS is growing quickly. This is evidenced by the
increasing number of papers published each year on this topic. 20 years ago, only a
few; 15 years ago, about a dozen; 10 years ago, about 50, and more than 250 papers
in 2016.

Figure 3.8 shows the parallel increase of the number of papers on VNS and on the
other best known metaheuristics. Data are obtained by using the Scopus search tool,
looking for the terms “Variable Neighborhood Search” (VNS) and “Metaheuristics”
(MH). Figure 3.8 shows the number of times the terms appeared in the abstract of
papers in this database. The years used are from 2000 to 2017 but in 2017 only the
first 6 months (from January to June) are included. For comparison purposes, the
number of papers with MH is divided by 4.

92 P. Hansen et al.

0

50

100

150

200

250

300

350

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

VNS

MH/4

Fig. 3.8 VNS versus MH

Figure 3.9 shows the parallel increase of number of papers on VNS and on other
most known Metaheuristics. Data are collected again from the Scopus search tool to
look for the terms Variable Neighborhood Search (VNS), Tabu Search (TS), Genetic
Algorithms (GA) and Simulated Annealing (SA). For better illustration, the number
of appearances of TS, GA and SA are divided by 3, 50 and 10, respectively.

From the last figure, one can easily see that the relative increase in the number of
papers with VNS is larger than the one of other major metaheuristics, especially in
the last 5 years.

In addition, the 18th EURO Mini conference held in Tenerife in November 2005
was entirely devoted to VNS. It led to special issues of the IMA Journal of Man-
agement Mathematics in 2007 [76], European Journal of Operational Research
[68] and Journal of Heuristics [87] in 2008. After that, VNS conferences took
place in Herceg Novi—Montenegro (2012), Djerba—Tunis (2014), Málaga—Spain
(2016) and in Ouro Preto—Brazil (2017). Each meeting was covered with before-
conference Proceedings (in Electronic notes of Discrete Mathematics) and with at
least one post-conference special issue in leading OR journals: Computers and OR,
Journal of Global Optimization, IMA JMM, International Transactions of OR.

3 Variable Neighborhood Search 93

0

50

100

150

200

250

300

VNS

GA/50

SA/10

TS/3

Fig. 3.9 VNS versus other main MHs

Acknowledgements The work of Nenad Mladenović was conducted at the National Research
University Higher School of Economics, Nizhni Novgorod, Russia, and supported by RSF grant
14-41-00039. The fourth author is partially funded by Ministerio de Economía y Competitividad
(Spanish Government) with FEDER funds, grant TIN2015-70226-R, and by Fundación Cajaca-
narias, grant 2016TUR19.

References

1. D.J. Aloise, D. Aloise, C.T.M. Rocha, C.C. Ribeiro, J.C. Ribeiro, L.S.S. Moura, Scheduling
work-over rigs for onshore oil production. Discrete Appl. Math. 154, 695–702 (2006)

2. D.V. Andrade, M.G.C. Resende, GRASP with path-relinking for network migration schedul-
ing, in Proceedings of International Network Optimization Conference (INOC) (2007)

3. M. Aouchiche, P. Hansen, Recherche à voisinage variable de graphes extrèmes 13. À propos
de la maille (French). RAIRO Oper. Res. 39, 275–293 (2005)

4. M. Aouchiche, P. Hansen, Automated results and conjectures on average distance in graphs, in
Graph Theory in Paris, ed. by A. Bondy, J. Fonlupt, J.L. Fouquet, J.C. Fournier, J.L. Ramírez
Alfonsń. Trends in Mathematics (Birkhäuser, Basel, 2006), pp. 21–36

5. M. Aouchiche, P. Hansen, On a conjecture about the Randic index. Discrete Math. 307, 262–
265 (2007)

6. M. Aouchiche, P. Hansen, Bounding average distance using minimum degree. Graph Theory
Notes N. Y. 56, 21–29 (2009)

7. M. Aouchiche, P. Hansen, Nordhaus-Gaddum relations for proximity and remoteness in
graphs. Comput. Math. Appl. 59, 2827–2835 (2010)

94 P. Hansen et al.

8. M. Aouchiche, G. Caporossi, D. Cvetković, Variable neighborhood search for extremal
graphs 8. Variations on Graffiti 105. Congressus Numerantium 148, 129–144 (2001)

9. M. Aouchiche, G. Caporossi, P. Hansen, M. Laffay, AutoGraphiX: a survey. Electron Notes
Discrete Math. 22, 515–520 (2005)

10. M. Aouchiche, J.M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J.
Lacheré, A. Monhait, Variable neighborhood search for extremal graphs 14. The Auto-
GraphiX 2 system, in Global Optimization: From Theory to Implementation, ed. by L. Liberti,
N. Maculan (Springer, Berlin, 2005), pp. 281–309

11. M. Aouchiche, P. Hansen, M. Zheng, Variable neighborhood search for extremal graphs 18.
Conjectures and results about the Randic index. MATCH. Commun. Math. Comput. Chem.
56, 541–550 (2006)

12. M. Aouchiche, O. Favaron, P. Hansen, Recherche à voisinage variable de graphes extrèmes
26. Nouveaux résultats sur la maille (French). Les Cahiers du GERAD, G-2007-55, 2007

13. M. Aouchiche, G. Caporossi, P. Hansen, Variable Neighborhood search for extremal graphs
20. Automated comparison of graph invariants. MATCH. Commun. Math. Comput. Chem.
58, 365–384 (2007)

14. M. Aouchiche, G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs
27. Families of extremal graphs. Les Cahiers du GERAD, G-2007-87, 2007

15. M. Aouchiche, P. Hansen, M. Zheng, Variable neighborhood search for extremal graphs 19.
Further conjectures and results about the Randic index. MATCH. Commun. Math. Comput.
Chem. 58, 83–102 (2007)

16. M. Aouchiche, F.K. Bell, D. Cvetković, P. Hansen, P. Rowlinson, S.K. Simić, D. Stevanović,
Variable neighborhood search for extremal graphs 16. Some conjectures related to the largest
eigenvalue of a graph. Eur. J. Oper. Res. 191, 661–676 (2008)

17. M. Aouchiche, G. Brinkmann, P. Hansen, Variable neighborhood search for extremal graphs
21. Conjectures and results about the independence number. Discrete Appl. Math. 156, 2530–
2542 (2009)

18. M. Aouchiche, O. Favaron, P. Hansen, Variable neighborhood search for extremal graphs 22.
Extending bounds for independence to upper irredundance. Discrete Appl. Math. 157, 3497–
3510 (2009)

19. M. Aouchiche, P. Hansen, D. Stevanović, Variable neighborhood search for extremal graphs
17. Further conjectures and results about the index. Discussiones Mathematicae: Graph The-
ory 29, 15–37 (2009)

20. C. Audet, V. Bachard, S. Le Digabel, Nonsmooth optimization through mesh adaptive direct
search and variable neighborhood search. J. Glob. Optim. 41, 299–318 (2008)

21. J. Beasley, OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc.
41(11), 1069–1072 (1990)

22. N. Belacel, P. Hansen, N. Mladenović, Fuzzy J-means: a new heuristic for fuzzy clustering.
Pattern Recognit. 35, 2193–2200 (2002)

23. S. Belhaiza, de, N. Abreu, HanP. sen, C. Oliveira, Variable neighborhood search for extremal
graphs 11. Bounds on algebraic connectivity, in Graph Theory and Combinatorial Optimiza-
tion, ed. by D. Avis, A. Hertz, O. Marcotte (2007), pp. 1–16

24. S. Bouaziz, H. Dhahri, A.M. Alimi, A. Abraham, A hybrid learning algorithm for evolving
flexible beta basis function neural tree model. Neurocomputing 117, 107–117 (2013)

25. J. Brimberg, N. Mladenović, A variable neighborhood algorithm for solving the continuous
location-allocation problem. Stud. Locat. Anal. 10, 1–12 (1996)

26. J. Brimberg, P. Hansen, N. Mladenović, É. Taillard, Improvements and comparison of heuris-
tics for solving the multisource Weber problem. Oper. Res. 48, 444–460 (2000)

27. S. Canuto, M. Resende, C. Ribeiro, Local search with perturbations for the prize-collecting
Steiner tree problem in graphs. Networks 31, 201–206 (2001)

28. G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs 1. The Auto-
GraphiX system. Discrete Math. 212, 29–44 (2000)

29. G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs 5. Three ways to
automate finding conjectures. Discrete Math. 276, 81–94 (2004)

3 Variable Neighborhood Search 95

30. G. Caporossi, A.A. Dobrynin, I. Gutman, P. Hansen, Trees with palindromic Hosoya polyno-
mials. Graph Theory Notes N. Y. 37, 10–16 (1999)

31. G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for extremal
graphs 2. Finding graphs with extremal energy. J. Chem. Inform. Comput. Sci. 39, 984–996
(1999)

32. G. Caporossi, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs 4.
Chemical trees with extremal connectivity index. Comput. Chem. 23, 469–477 (1999)

33. G. Caporossi, I. Gutman, P. Hansen, L. Pavlović, Graphs with maximum connectivity index.
Comput. Biol. Chem. 27, 85–90 (2003)

34. J. Cohoon, S. Sahni, Heuristics for backplane ordering. J. VLSI Comput. Syst. 2, 37–61
(1987)

35. D. Cvetkovic, S. Simic, G. Caporossi, P. Hansen, Variable neighborhood search for extremal
graphs 3. On the largest eigenvalue of color-constrained trees. Linear Multilinear Algebra 49,
143–160 (2001)

36. W.C. Davidon, Variable metric algorithm for minimization. Argonne National Laboratory
Report ANL-5990 (1959)

37. J. Desrosiers, N. Mladenović, D. Villeneuve, Design of balanced MBA student teams. J. Oper.
Res. Soc. 56, 60–66 (2005)

38. H. Dhahri, A.M. Alimi, A. Abraham, Hierarchical multi-dimensional differential evolution
for the design of beta basis function neural network. Neurocomputing 97, 131–140 (2012)

39. A. Djenic, N. Radojicic, M. Maric, N. Mladenović, Parallel VNS for bus terminal location
problem. Appl. Soft Comput. 42, 448–458 (2016)

40. M. Dražić, V. Kovacevic-Vujcić, M. Cangalović, N. Mladenović, GLOB - a new VNS-based
software for global optimization, in Global Optimization: From Theory to Implementation,
ed. by L. Liberti, N. Maculan (Springer, Berlin, 2006), pp. 135–144

41. S. Elleuch, B. Jarboui, N. Mladenović, Reduced variable neighborhood programming for
the preventive maintenance planning of railway infrastructure. GERAD Technical report, G-
2016-92, Montreal (2016)

42. S. Elleuch, B. Jarboui, N. Mladenović, Variable neighborhood programming - A new auto-
matic programming method in artificial intelligence. GERAD Technical report, G-2016-21,
Montreal (2016)

43. M. Fischetti, A. Lodi, Local branching. Math. Program. 98, 23–47 (2003)
44. R. Fletcher, M.J.D. Powell, Rapidly convergent descent method for minimization. Comput. J.

6, 163–168 (1963)
45. P.W. Fowler, P. Hansen, G. Caporossi, A. Soncini, Variable neighborhood search for extremal

graphs 7. Polyenes with maximum HOMO-LUMO gap. Chem. Phys. Lett. 49, 143–146
(2001)

46. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness (Freeman, New York, 1978)

47. P. Gill, W. Murray, M.A. Saunders, SNOPT: an SQP algorithms for largescale constrained
optimization. SIAM J. Optim. 12, 979–1006 (2002)

48. R.E. Griffith, R.A. Stewart, A nonlinear programming technique for the optimization of con-
tinuous processing systems. Manag. Sci. 7, 379–392 (1961)

49. I. Gutman, O. Miljković, G. Caporossi, P. Hansen, Alkanes with small and large Randić con-
nectivity indices. Chem. Phys. Lett. 306, 366–372 (1999)

50. I. Gutman, P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs 10. Com-
parison of irregularity indices for chemical trees. J. Chem. Inform. Model. 45, 222–230 (2005)

51. S. Hanafi, J. Lazić, N. Mladenović, C. Wilbaut, I. Crévits, New variable neighborhood search
based 0-1 MIP heuristic. Yugoslav J. Oper. Res. 25, 343–360 (2015)

52. P. Hansen, Computers in graph theory. Graph Theory Notes N. Y. XLIII, 20–39 (2002)
53. P. Hansen, How far is, should and could be conjecture-making in graph theory an automated

process? in Graph and Discovery. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol.69 (American Mathematical Society, Providence, 2005), pp. 189–229

54. P. Hansen, H. Mélot, Computers and discovery in algebraic graph theory. Linear Algebra
Appl. 356, 211–230 (2002)

96 P. Hansen et al.

55. P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs 6. Analyzing bounds
for the connectivity index. J. Chem. Inform. Comput. Sci. 43, 1–14 (2003)

56. P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs 9. Bounding the ir-
regularity of a graph. Graphs Discov. 69, 253–264 (2005)

57. P. Hansen, N. Mladenović, J-Means: a new local search heuristic for minimum sum-of-
squares clustering. Pattern Recognit. 34, 405–413 (2001)

58. P. Hansen, N. Mladenović, Variable neighborhood search: principles and applications. Eur. J.
Oper. Res. 130, 449–467 (2001)

59. P. Hansen, N. Mladenović, Variable neighborhood search, in Handbook of Metaheuristics, ed.
by F. Glover, G. Kochenberger (Kluwer, Boston, 2003), pp. 145–184

60. P. Hansen, D. Stevanović, Variable neighborhood search for extremal graphs 15. On bags and
bugs. Discrete Appl. Math. 156, 986–997 (2005)

61. P. Hansen, D. Vukičević, Variable neighborhood search for extremal graphs 23. On the Randic
index and the chromatic number. Discrete Math. 309, 4228–4234 (2009)

62. P. Hansen, B. Jaumard, N. Mladenović, A. Parreira, Variable neighborhood search for
weighted maximum satisfiability problem. Les Cahiers du GERAD, G-2000-62, 2000

63. P. Hansen, N. Mladenović, D. Pérez-Brito, Variable neighborhood decomposition search. J.
Heuristics 7, 335–350 (2001)

64. P. Hansen, H. Mélot, I. Gutman, Variable neighborhood search for extremal graphs 12. A note
on the variance of bounded degrees in graphs. MATCH Commun. Math. Comput. Chem. 54,
221–232 (2005)

65. P. Hansen, M. Aouchiche, G. Caporossi, H. Mélot, D. Stevanović, What forms do interest-
ing conjectures have in graph theory? in Graph and Discovery. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 69 (American Mathematical Society,
Providence, 2005), pp. 231–251

66. P. Hansen, N. Mladenović, D. Urošević, Variable neighborhood search and local branching.
Comput. Oper. Res. 33, 3034–3045 (2006)

67. P. Hansen, J. Brimberg, D. Urošević, N. Mladenović, Primal-dual variable neighborhood
search for the simple plant location problem. INFORMS J. Comput. 19, 552–564 (2007)

68. P. Hansen, N. Mladenović, J.A. Moreno Pérez, Variable neighborhood search. Eur. J. Oper.
Res. 191, 593–595 (2008)

69. P. Hansen, N. Mladenović, J.A. Moreno Pérez, Variable neighborhood search: methods and
applications. 4OR. Q. J. Oper. Res. 6, 319–360 (2008)

70. A. Hertz, M. Plumettaz, N. Zufferey, Variable space search for graph coloring. Discrete Appl.
Math. 156, 2551–2560 (2008)

71. ILOG CPLEX 10.1. User’s Manual (2006)
72. K. Jornsten, A. Lokketangen, Tabu search for weighted k-cardinality trees. Asia-Pacific J.

Oper. Res. 14, 9–26 (1997)
73. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural

Selection (MIT, Cambridge, 1992)
74. J. Lazić, S. Hanafi, N. Mladenović, D. Urošević, Variable neighbourhood decomposition

search for 0–1 mixed integer programs. Comput. Oper. Res. 37, 1055–1067 (2010)
75. L. Liberti, M. Dražić, Variable neighbourhood search for the global optimization of con-

strained NLPs, in Proceedings of GO Workshop, Almeria, 2005
76. B. Melián, N. Mladenović, Editorial. IMA J. Manag. Math. 18, 99–100 (2007)
77. MIPLIB http://miplib.zib.de/miplib2003/
78. N. Mladenović, A variable neighborhood algorithm – a new metaheuristic for combinatorial

optimization. Abstracts of papers presented at Optimization Days, Montréal (1995), p. 112
79. N. Mladenović, Formulation space search – a new approach to optimization (plenary talk), in

Proceedings of XXXII SYMOPIS’05, ed. by J. Vuleta (Vrnjacka Banja, Serbia, 2005)
80. N. Mladenović, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100

(1997)
81. N. Mladenović, J. Petrović, V. Kovačević-Vujčić, M. Čangalović, Solving spread spectrum

radar polyphase code design problem by tabu search and variable neighborhood search. Eur.
J. Oper. Res. 151, 389–399 (2003)

http://miplib.zib.de/miplib2003/

3 Variable Neighborhood Search 97

82. N. Mladenović, F. Plastria, D. Urošević, Reformulation descent applied to circle packing
problems. Comput. Oper. Res. 32, 2419–2434 (2005)

83. N. Mladenović, F. Plastria, D. Urošević, Formulation space search for circle packing prob-
lems. Lect. Notes Comput. Sci. 4638, 212–216 (2007)

84. N. Mladenović, M. Dražić, V. Kovačevic-Vujčić, M. Čangalović, General variable neighbor-
hood search for the continuous optimization. Eur. J. Oper. Res. 191, 753–770 (2008)

85. N. Mladenović, D. Urošević, D. Pérez-Brito, C.G. García-González, Variable neighbourhood
search for bandwidth reduction. Eur. J. Oper. Res. 200, 14–27 (2010)

86. N. Mladenovic, J. Kratica, V. Kovacevic-Vujcic, M. Cangalovic, Variable neighborhood
search for metric dimension and minimal doubly resolving set problems. Eur. J. Oper. Res.
220, 328–337 (2012)

87. J.M. Moreno-Vega, B. Melián, Introduction to the special issue on variable neighborhood
search. J. Heuristics 14, 403–404 (2008)

88. J.J. Pantrigo, R. Marti, A. Duarte, E.G. Pardo, Scatter search for the cutwidth minimization
problem. Ann. Oper. Res. 199, 285–304 (2012)

89. E.G. Pardo, N. Mladenović, J.J. Pantrigo, A. Duarte, Variable formulation search for the cut-
width minimization problem. Appl. Soft Comput. 13, 2242–2252 (2014)

90. F. Plastria, N. Mladenović, D. Urošević, Variable neighborhood formulation space search for
circle packing, in 18th Mini Euro Conference VNS, Tenerife, 2005

91. J. Puchinger, G. Raidl, Bringing order into the neighborhoods: relaxation guided variable
neighborhood search. J. Heuristics 14, 457–472 (2008)

92. C.C. Ribeiro, M.C. de Souza, Variable neighborhood search for the degree-constrained mini-
mum spanning tree problem. Discrete Appl. Math. 118, 43–54 (2002)

93. C.C. Ribeiro, E. Uchoa, R. Werneck, A hybrid GRASP with perturbations for the Steiner
problem in graphs. INFORMS J. Comput. 14, 228–246 (2002)

94. J. Rolim, O. Sýkora, I. Vrt’o, Optimal cutwidths and bisection widths of 2- and 3-dimensional
meshes, in Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Sci-
ence, vol. 1017 (1995), pp. 252–264

95. J. Sedlar, D. Vukicevic, M. Aouchiche, P. Hansen, Variable neighborhood search for extremal
graphs 24. Conjectures and results about the clique number. Les Cahiers du GERAD G-2007-
33, 2007

96. J. Sedlar, D. Vukicevic, M. Aouchiche, P. Hansen, Variable neighborhood search for extremal
graphs 25. Products of connectivity and distance measures. Les Cahiers du GERAD, G-2007-
47, 2007

97. D. Stevanovic, M. Aouchiche, P. Hansen, On the spectral radius of graphs with a given dom-
ination number. Linear Algebra Appl. 428, 1854–1864 (2008)

98. B. Subudhi, D. Jena, A differential evolution based neural network approach to nonlinear
system identification. Appl. Soft Comput. 11, 861–871 (2011)

99. A.D. Toksari, E. Güner, Solving the unconstrained optimization problem by a variable neigh-
borhood search. J. Math. Anal. Appl. 328, 1178–1187 (2007)

100. D. Urošević, J. Brimberg, N. Mladenović, Variable neighborhood decomposition search for
the edge weighted k-cardinality tree problem. Comput. Oper. Res. 31, 1205–1213 (2004)

101. Y. Vimont, S. Boussier, M. Vasquez, Reduced costs propagation in an efficient implicit enu-
meration for the 01 multidimensional knapsack problem. J. Comb. Optim. 15, 165–178 (2008)

102. R. Whitaker, A fast algorithm for the greedy interchange of large-scale clustering and median
location problems. INFOR 21, 95–108 (1983)

Chapter 4
Large Neighborhood Search

David Pisinger and Stefan Ropke

Abstract In the last 15 years, heuristics based on large neighborhood search (LNS)
and the variant adaptive large neighborhood search (ALNS) have become some
of the most successful paradigms for solving various transportation and schedul-
ing problems. Large neighborhood search methods explore a complex neighbor-
hood through the use of heuristics. Using large neighborhoods makes it possible to
find better candidate solutions in each iteration and hence follow a more promis-
ing search path. Starting from the general framework of large neighborhood search,
we study in depth adaptive large neighborhood search, discussing design ideas and
properties of the framework. Application of large neighborhood search methods in
routing and scheduling are discussed. We end the chapter by presenting the related
framework of very large-scale neighborhood search (VLSN) and discuss parallels to
LNS, before drawing some conclusions about algorithms exploiting large neighbor-
hoods.

4.1 Introduction

The topic of this chapter is the metaheuristic Large Neighborhood Search (LNS)
proposed by Shaw [105] and its more recent extension Adaptive Large Neighbor-
hood Search (ALNS) proposed by Ropke and Pisinger [88, 95]. In LNS, an initial
solution is gradually improved by alternately destroying and repairing the solution.
The LNS heuristic belongs to the class of heuristics known as Very Large Scale
Neighborhood search (VLSN) algorithms [4]. All VLSN algorithms are based on

D. Pisinger · S. Ropke (�)
DTU Management Engineering, Technical University of Denmark, Lyngby, Denmark
e-mail: dapi@dtu.dk; ropke@dtu.dk

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_4

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_4&domain=pdf
mailto:dapi@dtu.dk
mailto:ropke@dtu.dk
https://doi.org/10.1007/978-3-319-91086-4_4

100 D. Pisinger and S. Ropke

the observation that searching a large neighborhood results in finding local optima
of high quality, and hence a VLSN algorithm may return better solutions. However,
searching a large neighborhood is time consuming, hence various filtering tech-
niques are used to limit the search. In VLSN algorithms, the neighborhood is typ-
ically restricted to a subset of solutions which can be searched efficiently. In LNS,
the neighborhood is implicitly defined by methods (often heuristics) which are used
to destroy and repair an incumbent solution.

The two similar terms LNS and VLSN may cause confusion. We consistently use
VLSN for the broad class of algorithms that searches very large neighborhoods and
LNS for the particular metaheuristic based on destroy and repair neighborhoods, as
described in Sect. 4.2.

In the rest of the introduction, we first define two example problems and the con-
cept of neighborhood search algorithms. In Sect. 4.2, we describe the LNS meta-
heuristic. Its ALNS extension is described in Sect. 4.3. This is followed in Sect. 4.4
by a discussion of properties of ALNS and a survey of LNS and ALNS applica-
tions. Finally, we present the related VLSN framework and discuss parallels to LNS
in Sect. 4.5. Some conclusions and future research directions are drawn in Sect. 4.6.

4.1.1 Example Problems

Throughout this chapter, we will refer to two example problems: the Traveling
Salesman Problem (TSP) and a generalization, the Capacitated Vehicle Routing
Problem (CVRP). The TSP is probably the most studied and well-known combina-
torial optimization problem. In the TSP, a salesman has to visit a number of cities.
The salesman must perform a tour through all the cities such that the salesman re-
turns to his starting city at the end of the tour. More precisely, we are given an
undirected graph G = (V,E) in which each edge e ∈ E has an associated cost ce.
The goal of the TSP is to find a cyclic tour, such that each vertex is visited exactly
once. The sum of the edge costs used in the tour must be minimized. We recommend
[7] for more information about the TSP.

In the CVRP, one has to serve a set of customers using a fleet of homogeneous
vehicles based at a common depot. Each customer has a certain demand for goods
which are initially located at the depot. The task is to design vehicle routes starting
and ending at the depot such that all customer demands are fulfilled.

The CVRP can be defined more precisely as follows. We are given an undirected
graph G = (V,E) with vertices V = {0, . . . ,n} where vertex 0 is the depot and the
vertices N = {1, . . . ,n} are customers. Each edge e ∈ E has an associated cost ce.
The demand of each customer i ∈ N is given by a positive quantity qi. Moreover, m
homogeneous vehicles are available at the depot and the capacity of each vehicle is
equal to Q. The goal of the CVRP is to find exactly m routes, starting and ending at
the depot, such that each customer is visited exactly once by a vehicle and such that
the sum of demands of the customers on each route is less than or equal to Q. The
sum of the edge costs used in the m routes must be minimized. We recommend [58]

4 Large Neighborhood Search 101

7

2
6

2

3 2

4

321
5

2

3
1

1

3

1
2

3

1
3

Fig. 4.1 Left: a TSP solution. Right: A CVRP solution. In the CVRP, the depot is represented by
a square and each customer i is represented by a node labeled with a demand qi

for further information about the CVRP and vehicle routing problems in general.
An example of a TSP and a CVRP solution are shown in Fig. 4.1.

4.1.2 Neighborhood Search

In this section, we formally introduce the term neighborhood search. We are given
an instance I of a combinatorial optimization problem, where X is the set of feasible
solutions for the instance (we write X(I) when we need to emphasize the connection
between an instance and its solution set) and c : X → R is a function that maps a
solution to its cost. X is assumed to be finite, but is usually an extremely large set.
We assume that the combinatorial optimization problem is a minimization problem,
that is, we want to find a solution x∗ such that c(x∗)≤ c(x)∀x ∈ X .

We define a neighborhood of a solution x ∈ X as N(x)⊆ X . That is, N is a func-
tion that maps a solution to a set of solutions. A solution x is said to be locally opti-
mal or a local optimum with respect to a neighborhood N if c(x)≤ c(x′)∀x′ ∈ N(x).
A neighborhood search algorithm takes an initial solution x as input, and computes
x′ = argminx′′∈N(x){c(x′′)}, that is, it finds the best solution x′ in the neighborhood
of x. If c(x′) < c(x) then the algorithm performs the update x = x′. The neighbor-
hood of the new solution x is searched for an improving solution and this is repeated
until a local optimum x is reached, in which case the algorithm stops. The algorithm
is denoted a best improvement algorithm as it always chooses the best solution in
the neighborhood.

A simple example of a neighborhood for the TSP is the 2-opt neighborhood
which can be traced back to [41]. The neighborhood of a solution x in the 2-opt
neighborhood is the set of solutions that can be reached from x by deleting two
edges in x and adding two other edges in order to reconnect the tour. A simple ex-
ample of a neighborhood for the CVRP is the relocate neighborhood (see e.g. [61]).
In this neighborhood, N(x) is defined as the set of solutions that can be created from
x by relocating a single customer. The customer can be moved to another position
in its current route or to another route.

102 D. Pisinger and S. Ropke

We define the size of the neighborhood N(·) for a particular instance I as
max{|N(x)| : x ∈ X(I)}. Let I (n) be the (possibly infinite) set of all instances of
size n for the problem under study. We can then define the size of a neighborhood
as a function f (n) of the instance size n: f (n) = max{|N(x)| : I ∈I (n),x ∈ X(I)}.
Heuristics based on neighborhoods of size f (n) = O(nk) for low values of k (say
k ≤ 3) are denoted small neighborhood search (SNS) heuristics in the following.

The 2-opt neighborhood for the TSP as well as the relocate neighborhood for the
CVRP have size f (n) = O(n2) where n is the number of cities/customers.

4.2 Large Neighborhood Search

The Large Neighborhood Search (LNS) metaheuristic was proposed by Shaw [105]
and was based on ideas similar to those of the ruin and recreate method by Schrimpf
et al. [102].

Most neighborhood search algorithms explicitly define the neighborhood like the
relocate neighborhood described in Sect. 4.1.2. In the LNS metaheuristic, the neigh-
borhood is implicitly defined by a destroy and a repair method. A destroy method
destructs a part of the current solution while a repair method rebuilds the destroyed
solution. The destroy method typically contains an element of stochasticity, so that
different parts of the solution are destroyed each time the method is invoked. The
neighborhood N(x) of a solution x is then defined as the set of solutions that can be
reached by first applying the destroy method and then the repair method.

To illustrate the destroy and repair concepts, consider the CVRP. A destroy
method for the CVRP could remove, say 15%, of the customers in the current so-
lution, short-cutting the routes where customers have been removed. A very simple
destroy method would select the customers to remove at random. A repair method
could rebuild the solution by inserting removed customers, using a greedy heuristic.
Such a heuristic could simply scan all free customers, insert the one whose insertion
cost is the lowest and repeat the insertion until all customers are done. The destroy
and repair steps are illustrated in Fig. 4.2.

Since the destroy method can destruct a large part of the solution, the neighbor-
hood typically contains a large number of solutions, as indicated by the name of this
heuristic. Consider for example a CVRP instance with 100 customers. There are
C(100,15) = 100!/(15!× 85!) = 2.5× 1017 different ways to select the customers
to be removed if the percentage or degree of destruction of the solution is 15%.
There are many ways to repair the solution for each removal choice, but different
removal choices can of course result in the same solution after the repair.

We now present the LNS heuristic in more details. Pseudocode for the heuristic is
shown in Algorithm 1. Three variables are maintained by the algorithm. The variable
xb is the best solution observed during the search, x is the current solution and xt

is a temporary solution that can be discarded or promoted to the status of current
solution. The function d(·) is the destroy method while r(·) is the repair method.
More specifically, d(x) returns a copy of x that is partly destroyed. Applying r(·)

4 Large Neighborhood Search 103

7

2
6

2

3 2

4

3
21

5

2

3
1

1

3

1
2

3

1

3

7

2
6

2

3 2

4

3
21

5

2

3
1

1

3

1
2

3

1

3

7

2
6

2

3 2

4

3
21

5

2

3
1

1

3

1
2

3

1

3

Fig. 4.2 Destroy and repair example. The top left figure shows a CVRP solution before the destroy
operation. The top right figure shows the solution after a destroy operation that removed six cus-
tomers (now disconnected from the routes). The bottom figure shows the solution obtained after
reinsertion of the customers by the repair operation

to an incomplete solution repairs it, that is, it returns a feasible solution built from
the destroyed one. In line 2, the global best solution is initialized. In line 4, the
heuristic first applies the destroy method and then the repair method to obtain a new
solution xt . In line 5, the new solution is evaluated, and the heuristic determines
whether this solution should become the new current solution (line 6) or whether it
should be rejected. The accept function can be implemented in different ways. The
simplest choice is to only accept improving solutions. Note that more sophisticated
methods are described later in this section. Line 8 checks whether the new solution is
better than the best known solution. Here c(x) denotes the objective value of solution
x. The best solution is updated in line 9, if necessary. In line 11, the termination
condition is checked. It is up to the implementer to choose the termination criterion,
but a limit on the number of iterations or a time limit would be typical choices. In
line 12, the best solution found is returned. It can be observed from the pseudocode
that the LNS metaheuristic does not search the entire neighborhood of a solution,
but merely samples this neighborhood.

The main idea behind the LNS heuristic is that the large neighborhood allows the
heuristic to navigate in the solution space easily, even if the instance is tightly con-
strained. This is to be opposed to small neighborhood search heuristics like those
mentioned in Sect. 4.1.2 which can make it harder to explore distant parts of the so-
lution space. The idea had been proposed prior to the first LNS papers by Shaw, but
it was Shaw [104, 105] who first described the heuristic in general terms and coined

104 D. Pisinger and S. Ropke

Algorithm 1 Large neighborhood search
1: input: a feasible solution x
2: xb = x;
3: repeat
4: xt = r(d(x));
5: if accept(xt ,x) then
6: x = xt ;
7: end if
8: if c(xt)< c(xb) then
9: xb = xt ;

10: end if
11: until stopping criterion is met
12: return xb

the name Large neighborhood search. Shaw [105] refers to the papers by Caseau
and Laburthe [25] and Adams et al. [1] as sources of inspiration. Another earlier
heuristic that clearly contains the destroy/repair idea is a set covering heuristic by
Jacobs and Brusco [59].

In the original LNS paper [105], the accept method only allowed improving so-
lutions (we denote such an accept method a hill-climber). Later papers, like [95]
and [102], have used an acceptance criteria borrowed from simulated annealing.
With such an acceptance criterion, the temporary solution xt is always accepted if
c(xt)≤ c(x), and accepted with probability exp(−(c(xt)− c(x))/T) if c(x)< c(xt).
Here T > 0 is the current temperature. The temperature is initialized at T0 > 0 and
is decreased gradually, for example by performing the update Tnew = αTold at each
iteration, where 0 < α < 1 is a parameter. T is set to a relatively high value initially,
thus allowing deteriorating solutions to be accepted. As the search progresses, T
decreases and only a few or no deteriorating solutions are accepted towards the end
of the search. If such an acceptance criterion is employed, the LNS heuristic can be
viewed as a standard simulated annealing heuristic with a complex neighborhood
definition.

Other acceptance criteria have been tested in recent works, see for example Lei
et al. [71], Hemmati and Hvattum [51] and Santini et al. [99]. The latter references
compare different acceptance criteria across several problem types. The conclu-
sion is that the simulated annealing acceptance criterion works well, but that better
choices may exist for a given application. Other well performing acceptance cri-
teria are record-to-record travel [37] and threshold accepting [38], both of which
are controlled by a parameter T like simulated annealing. Another finding is that
decreasing the parameter T linearly from T0 to 0 over the course of the algorithm
results in comparable performance to decreasing T linearly or exponentially to an
application specific end value Tend. This holds for all three mentioned acceptance
criteria (for simulated annealing, one has to decrease to an ε close to 0 to avoid
division by zero). This observation simplifies parameter tuning since one does not
have to worry about setting an appropriate end temperature.

The destroy method is an important part of the LNS heuristic. The most impor-
tant choice when implementing the destroy method is the degree of destruction: if

4 Large Neighborhood Search 105

only a small part of the solution is destroyed then the heuristic may have trouble
exploring the search space as the effect of a large neighborhood is lost. If a very
large part of the solution is destroyed then the LNS heuristic almost degrades into
repeated re-optimization. This can be time consuming or yield poor quality solu-
tions depending on how the partial solution is repaired. Shaw [105] proposed to
gradually increase the degree of destruction, while Ropke and Pisinger [95] choose
the degree of destruction randomly in each iteration by choosing the degree from a
specific range dependent on the instance size. The destroy method must also allow
the entire search space to be reached, or at least the interesting part of the search
space where the global optimum is expected to be found. Therefore, it cannot focus
on always destroying a particular component of the solution but must make possible
to destroy every part of the solution.

There is a lot of freedom in choosing the repair method of an LNS implemen-
tation. A first decision is whether the repair method should be optimal in the sense
that the best possible complete solution is constructed from the partial solution, or
whether it should be a heuristic, assuming that one is satisfied with a good solution
constructed from the partial solution. An optimal repair operation will be slower
than a heuristic one, but may potentially lead to high quality solutions in a few itera-
tions. However, from a diversification point of view, an optimal repair operation may
not be attractive: only improving or identical-cost solutions will be produced and it
can be difficult to leave valleys in the search space unless a large part of the solution
is destroyed in each iteration. The repair method can be based on a problem-specific
heuristic, an exact method, a general purpose mixed integer programming (MIP), or
a constraint programming solver.

It is worth observing that the LNS heuristic typically alternates between an in-
feasible solution and a feasible solution: the destroy operation creates an infeasi-
ble solution which is brought back into feasible form by the repair heuristic. The
destroy and repair methods can also be viewed as fix/optimize operations: the fix
method (corresponding to the destroy method) fixes part of the solution at its cur-
rent value while the rest remains free; the optimize method (corresponding to the
repair method) attempts to improve the current solution while respecting the fixed
values. Such an interpretation of the heuristic may be more natural if the repair
method is implemented using MIP or constraint programming solvers.

4.3 Adaptive Large Neighborhood Search

The Adaptive Large Neighborhood Search (ALNS) heuristic was proposed in [95]
and extends the LNS heuristic by allowing multiple destroy and repair methods to
be used within the same search process. Each destroy/repair method is assigned a
weight that controls how often that particular method is attempted during the search.
The weights are adjusted dynamically as the search progresses so that the heuristic
adapts to the instance at hand and to the state of the search.

106 D. Pisinger and S. Ropke

Using a neighborhood search terminology, one can say that ALNS extends LNS
by allowing multiple neighborhoods within the same search. The choice of neigh-
borhood to use is controlled dynamically using the recorded performance of the
neighborhoods.

Algorithm 2 Adaptive large neighborhood search
1: input: a feasible solution x
2: xb = x; ρ− = (1, . . . ,1);ρ+ = (1, . . . ,1);
3: repeat
4: select destroy and repair methods d ∈ Ω− and r ∈ Ω+ using ρ− and ρ+;
5: xt = r(d(x));
6: if accept(xt ,x) then
7: x = xt ;
8: end if
9: if c(xt)< c(xb) then

10: xb = xt ;
11: end if
12: update ρ− and ρ+;
13: until stopping criterion is met
14: return xb

A pseudocode for the ALNS heuristic is shown in Algorithm 2. When we com-
pare with the LNS pseudocode in Algorithm 1, we note the following changes. Lines
4 and 12 have been added and line 2 has been modified. The sets of destroy and
repair methods are denoted Ω− and Ω+, respectively. Two new variables are intro-
duced in line 2: ρ− ∈R

|Ω−| and ρ+ ∈R
|Ω+|, to store the weight of each destroy and

repair method, respectively. Initially all methods have the same weight. In line 4, the
weight vectors ρ− and ρ+ are used to select the destroy and repair methods using
a roulette wheel principle. The algorithm calculates the probability φ−

j of choosing
the jth destroy method as follows

φ−
j =

ρ−
j

∑|Ω−|
k=1 ρ−

k

,

and the probabilities for choosing the repair methods are determined in the same
way.

The weights are adjusted dynamically, based on the recorded performance of
each destroy and repair method. This takes place in line 12: when an iteration of the
ALNS heuristic is completed, a score ψ for the destroy and repair methods used in
the last iteration is computed using the formula

ψ = max

⎧⎪⎪⎨
⎪⎪⎩

ω1 if the new solution is a new global best,
ω2 if the new solution is better than the current one,
ω3 if the new solution is accepted,
ω4 if the new solution is rejected,

(4.1)

4 Large Neighborhood Search 107

where ω1,ω2,ω3 and ω4 are parameters. A high ψ value corresponds to a successful
method. We would normally have ω1 ≥ ω2 ≥ ω3 ≥ ω4 ≥ 0.

Let a and b be the indices of the destroy and repair methods that were used in the
last iteration of the algorithm, respectively. The components corresponding to the
selected destroy and repair methods in the ρ− and ρ+ vectors are updated using the
equations

ρ−
a = λρ−

a +(1−λ)ψ, ρ+
b = λρ+

b +(1−λ)ψ, (4.2)

where λ ∈ [0,1] is the decay parameter that controls how sensitive the weights are to
changes in the performance of the destroy and repair methods. Note that the weights
that are not used in the current iteration remain unchanged. The aim of the adaptive
weight adjustment is to select weights that work well for the instance being solved.
We encourage heuristics that bring the search forward, which are the ones rewarded
with the ω1,ω2 and ω3 parameters in (4.1). We discourage heuristics that lead to
many rejected solutions since an iteration resulting in a rejected solution is a wasted
iteration, roughly speaking. This is achieved by assigning a low value to ω4.

In the presentation above, we assigned an individual weight to each destroy and
repair method. This approach may not be appropriate if a particular destroy method
works well together with one repair method and produces non-interesting solutions
when coupled with another repair method. In this case, it can make sense to assign
weight to pairs of (destroy, repair) methods instead of each individual method. An
example of this approach is found in Kovacs et al. [63].

It may also be that the partial solution produced by a destroy operator is incom-
patible with a certain repair method, for example when the repair method makes
certain assumptions about the solution. In this case, one can use coupled neighbor-
hoods. In principle, one may define a subset Ki ⊆ Ω+ of repair neighborhoods that
can be used with each destroy method di. The roulette wheel selection of repair
neighborhoods will then only choose a neighborhood in Ki if di was chosen.

A special case is Ki = /0 when the neighborhood di takes care of both the destroy
and repair steps. One could also use an ordinary local search heuristic to compete
with the other destroy and repair neighborhoods, thus ensuring that a thorough in-
vestigation of the solution space close to the current solution is made from time to
time.

The ALNS heuristic described so far is prone to favor complex repair meth-
ods that more often reach high quality solutions when compared to simpler repair
methods. This is fine if the complex and simple repair methods are equally time-
consuming, but that may not be the case. If some methods are significantly slower
than others, one may normalize the score ψ of a method with a measure of the time
consumption of the corresponding heuristic. This ensures a proper trade-off between
time consumption and solution quality. An example is found in Adulyasak et al. [2].

108 D. Pisinger and S. Ropke

4.3.1 Designing an ALNS Algorithm

The considerations mentioned earlier for selecting destroy and repair methods in the
LNS heuristic also holds for an ALNS heuristic. However, the ALNS framework
gives some extra freedom because multiple destroy/repair methods are allowed. In
the pure LNS heuristic, we have to select a destroy and a repair method that is ex-
pected to work well for a wide range of instances. In an ALNS heuristic, we can
afford to include destroy/repair methods that only are suitable in some cases—the
adaptive weight adjustment will ensure that these heuristics are seldom used on in-
stances where they are ineffective. Therefore, the selection of destroy and repair
methods can be turned into a search for methods that are good at either diversifica-
tion or intensification.

Below, we will discuss some typical destroy and repair methods. In the discus-
sion, we will assume that our solution is represented by a set of decision variables.
The term variables should be understood in a rather abstract way.

Diversification and intensification for the destroy methods can be accomplished
as follows: to diversify the search, one may randomly select the parts of the solution
that should be destroyed (random destroy method). To intensify the search one may
try to remove q “critical” variables, i.e. variables having a large cost or variables
that spoil the current structure of the solution (e.g. edges crossing each other in an
Euclidean TSP). This is known as worst destroy or critical destroy.

One may also choose a number of related variables that are easy to interchange
while maintaining solution feasibility. This related destroy neighborhood was intro-
duced by Shaw [105]. For the CVRP one can define a relatedness measure between
each pair of customers. The measure could simply be the distance between the cus-
tomers and it could include customer demand as well (customers with similar de-
mand are considered related). Thus, a related destroy method would select a set of
customers that have a high mutual relatedness measure. The idea is that it should be
easy to exchange similar customers.

Finally, one may use history based destroy where the q variables are chosen ac-
cording to some historical information, as presented in [88]. The historical infor-
mation could for example count how often the setting of a given variable (or set of
variables) leads to a bad solution. One may then try to remove variables that are
currently assigned to an improper value, based on the historical information.

The repair methods in set Ω+ are often based on specific well-performing heuris-
tics for the given problem. These heuristics can make use of variants of the greedy
paradigm, e.g. performing the locally best choice in each step, or performing the
least bad choice in each step. Traditional improvement algorithms that explore small
neighborhoods, denoted SNS heuristics in Sect. 4.1.2, can be used as part of a repair
method to improve the output of a greedy algorithm.

The repair methods can also be based on approximation algorithms or exact al-
gorithms. Exact algorithms can be relaxed to obtain faster solution times at the cost
of solution quality. Some examples are presented in [13, 105]. Time consuming
and fast repair methods can be mixed by penalizing the time consuming methods
as described earlier. Using a MIP solver for performing the repair step is becom-

4 Large Neighborhood Search 109

x

N1

N2

N3

N4N5

N ∗

ALNS

Fig. 4.3 Illustration of neighborhoods used by ALNS. The current solution is marked with x.
ALNS operates on structurally different neighborhoods N1, . . . ,Nk defined by the corresponding
search heuristics. All neighborhoods N1, . . . ,Nk in ALNS are a subset of the neighborhood N∗
defined by modifying q variables, where q is a measure of the maximum degree of destruction

ing increasingly attractive because these solvers become more and more powerful
with every new released version [15]. The MIP approach has the advantage that
repair methods for complex applications can be implemented quickly. A potential
drawback is that extra care regarding the degree of destruction is necessary as the
repair method otherwise could become extremely slow. Some examples of (A)LNS
heuristics that employ a MIP solver for the repair step are: Belo-Filho et al. [12],
Carrizosa et al. [24], Grangier et al. [48], Muller et al. [81]. It is worth pointing out
that an (A)LNS heuristic with a MIP repair method can be seen as a prototype of a
matheuristic.

Figure 4.3 illustrates, in an abstract way, the many neighborhoods in an ALNS
heuristic. Each neighborhood on the figure can be considered as a unique combina-
tion of a destroy and repair method.

In traditional local search heuristics, diversification is controlled implicitly by the
local search paradigm (accept ratio, tabu list, etc.). (A)LNS heuristics typically con-
trols diversification through the accept criterion, and in many (A)LNS applications
further diversification is applied by using noise or randomization in the destroy and
repair methods. The rationale is to avoid a stagnating search processes where the
destroy and repair methods keep performing the same modifications to a solution.

Several papers have pointed out that diversification in the repair step does not
necessarily lead to better solution quality (see, for example, Kiefer et al. [60]). Hem-
mati and Hvatum [51] go a step further and study the effect of exchanging the ran-
domized components with deterministic alternatives in an ALNS algorithm for a
maritime pickup and delivery problem. Seven randomized components are identi-
fied and for five of them, the performance is about the same when the randomized
and deterministic components are compared. The randomized version produces bet-
ter results in one case while the deterministic version produce better results in the

110 D. Pisinger and S. Ropke

remaining case. It is worth pointing out that the deterministic alternatives are not
necessarily simpler or more intuitive compared to their randomized counterparts.

To conclude on this issue, we believe that the benefits of noise, in particular for
the repair component, is application specific and depend on other choices made in
the design of the ALNS heuristic. It is therefore a component that can be omitted. If
included, it would be wise to test if it has any impact.

For some problems, it may be sufficient to have a number of destroy and re-
pair heuristics that are selected randomly with equal probability, that is, without the
adaptive layer. In [88], such heuristics were coined large multiple-neighborhood
search (LMNS) heuristics. LMNS heuristics share the robustness of the ALNS
heuristics, while having considerably fewer parameters to calibrate. Several heuris-
tics of this type have appeared recently in the literature (see Sect. 4.4).

4.3.2 Properties of the ALNS Framework

The ALNS framework has several advantages. For most optimization problems, we
already know a number of well-performing heuristics which can form the core of
an ALNS algorithm. Due to the large neighborhoods and diversity of the neigh-
borhoods, the ALNS algorithm will explore large parts of the solution space in a
structured way. The resulting algorithm becomes very robust because it can adapt
to various characteristics of the individual instances, and it seldom gets trapped in
local optima.

The calibration of the ALNS algorithm is quite limited since the adaptive layer
automatically adjusts the influence of each neighborhood used. It is still necessary
to calibrate the individual sub-heuristics used for searching the destroy and repair
neighborhoods, but one may calibrate these individually or even use the parameters
of existing algorithms.

In the design of most local search algorithms, the researcher has to choose be-
tween a number of possible neighborhoods. In ALNS, the question is not “either-or”
but rather “both-and”. As a matter of fact, our experience is that the more (rea-
sonable) neighborhoods the ALNS heuristic makes use of, the better it performs
[88, 96].

The ALNS framework is not the only one to make use of several neighborhoods
in a LNS heuristic. Rousseau et al. [97] use two LNS neighborhoods for the Vehicle
Routing Problem with Time Windows (VRPTW): one removing customers and an-
other removing arcs. They propose a Variable Neighborhood Descent (VND) where
one neighborhood is used until one is “sufficiently sure” that the search is trapped
in a local minimum, in which case the search switches to the other neighborhood.
When the second neighborhood runs out of steam, the first neighborhood is used
again and so on.

Perron [85] uses an adaptive technique to select repair methods from a portfolio
by assigning weights to the repair methods based on their performance, like ALNS.
Laborie and Godard [67] propose a framework very similar to ALNS, the difference

4 Large Neighborhood Search 111

being that their framework also dynamically adjusts the parameters of the individual
destroy and repair methods. The ALNS framework described in this section assumes
that those parameters are fixed in advance. Palpant et al. [82] only use one destroy
and repair method but propose a method for dynamically adjusting the scope of
the destroy operation in order to find the neighborhood size that allows the repair
operation to be completed within reasonable time. The authors use complex, time
consuming repair methods.

4.3.3 Relation to Other Metaheuristics

The LNS and ALNS have similarities to the variable neighborhood search (VNS)
metaheuristics presented by Hansen and Mladenović [50], Mladenović and Hansen
[79]. In order to implement a VNS, one needs a set of neighborhood structures
Nk,k = 1, . . . ,kmax. Typically the size of the neighborhood increases with k and it is
common, but not required, that Nk1(x) ⊆Nk2(x) for any solution x when k1 < k2.
Furthermore, one needs a local search method. The local search method can use
a single neighborhood or it can use several different neighborhoods in which case
it is called a variable neighborhood descent. The basic VNS heuristic is depicted in
Algorithm 3. Line 5 is known as the shaking step and the result of the shaking step is
improved using the local search in line 6. Lines 7–11 check if the resulting solution
is better than the incumbent. If it is not, k is increased. In this way, the shaking
becomes more powerful (under the assumption that the size of the neighborhood
grows with k).

The VNS heuristic can be understood in LNS terms as follows: the shaking step
in line 5 corresponds to the destroy method in the LNS while the local search step
in line 6 corresponds to the repair step. In this sense, LNS and ALNS can be seen as
generalizations of VNS. The multiple neighborhoods available to the shaking step is
similar to the multiple neighborhoods in ALNS, but there is no adaptive selection of
neighborhood in the basic VNS (adaptive versions in the spirit of ALNS have been
suggested, see for example Schneider et al. [103]).

Another related concept is that of Hyper Heuristics. Burke et al. [21] describes
hyper-heuristics as heuristics to choose heuristics, that is, algorithms where a master
heuristic is choosing between several sub-ordinate heuristics. Therefore, the ALNS
heuristic can be seen as a hyper-heuristic: the adaptive component is choosing from
the set of destroy and repair methods (which usually are heuristics).

4.3.4 Parallelism

Examples of implementations of the (A)LNS heuristics that takes advantage of par-
allel processing have been proposed in the literature. Perron and Shaw [86] describe
a parallel LNS heuristic for a network design problem, while Ropke [94] describes

112 D. Pisinger and S. Ropke

Algorithm 3 Variable neighborhood search (VNS)
1: input: an initial solution x
2: repeat
3: k = 1
4: repeat
5: select random x’ from Nk(x)
6: x” = localsearch(x’)
7: if f(x”) < f(x) then
8: x = x′′; k = 1
9: else

10: k = k+1
11: end if
12: until k > kmax
13: until stopping criterion is met
14: return x

a framework for implementing parallel ALNS heuristics. The framework was tested
on the CVRP and TSP with pickup and delivery. More recently, Hifi et al. [55] de-
scribe a parallel LNS for a knapsack problem under disjunctive constraints. Also,
there have been publications about the implementation of (A)LNS using graphical
processing units (GPUs). GPUs are massively parallel processing units that theo-
retically can do many more calculations per second compared to ordinary CPUs.
However, new memory models and rules for execution of program parts must be
understood in order to take the full advantage of the GPU. Campeotto et al. [22]
present a GPU implementation of a large neighborhood search applied to constraint
programming, while Bach et al. [10] present in a short abstract a GPU implementa-
tion of the ALNS for solving distance constrained CVRPs.

4.4 Applications of LNS and ALNS

The LNS heuristic was early on primarily used as a heuristic for solving vehicle
routing problems. But, in recent years, there has been a growth in the number of
papers that apply the heuristic to other problem types. In the following sections,
we review some of the of (A)LNS heuristics proposed for both VRP and non-VRP
applications.

4.4.1 Vehicle Routing Applications

LNS was first applied to vehicle routing problems by Shaw [104, 105]. Then, in
the early 2000s, the method was shown to produce high quality solutions for the
vehicle routing problem with time windows (VRPTW) and the pickup and delivery
problem with time windows (PDPTW) by Bent and Van Hentenryck [13, 14]. At

4 Large Neighborhood Search 113

around the same time, the ALNS was introduced and its first applications were the
PDPTW [95], the VRPTW [88] and other VRP variants [96]. From then on, a large
number of LNS and ALNS heuristics have been proposed for a multitude of VRP
variants. Table 4.1 summarizes some of the publications on VRP variants published
from 2010 to 2017. The list is far from complete: we have chosen a sample that
spans different problem types over those years. The two first columns of the table
report the main problem type (VRP type) and the specific problem studied in the
paper. In terms of the main problem types, we consider VRPs where goods are dis-
tributed from a depot to customers or collected from customers and brought back
to the depot, with different objectives and constraints. In multi-layer routing prob-
lems, goods can be transported along several routes. In the VRP with cross-docking,
for example, goods are picked up using one vehicle, transported to the cross-dock
where goods are consolidated and moved to new vehicles that perform the delivery.
In pickup and delivery problems, a transport request consists of a pickup at one lo-
cation and a delivery at a different location, where typically more than one request
can share the vehicle. In inventory routing problems, customers may need a delivery
several times during a given time horizon and routes should be planned to avoid
running out of stock at one or more customers. Production routing integrates the
routing decision with a lot sizing problem and potentially also with inventory con-
siderations at the customer nodes. Arc routing deals with problems where the arcs
of a graph, not the nodes, require service. A typical example is snow removal. In dy-
namic/stochastic routing problems, a part of the input data is considered uncertain,
but information about the stochastic variables may be available through known dis-
tributions. Such problems can be approached in a classical stochastic optimization
sense where one generate an a-priori solution that minimizes the expected cost or
generates solutions that remain feasible in most scenarios. Another approach is to
simply solve the updated problem every time new information becomes available.
The reader is referred to Pillac et al. [87], Psaraftis et al. [90] and Gendreau et al.
[45] for more information on dynamic and stochastic VRPs.

Columns 3–5 in Table 4.1 show the number of destroy and repair methods used,
as well as the number of combined destroy-repair methods. Combined methods oc-
cur in two different situations. First, the VRP type may be such that the removal
of customers can be seen as both a destroy and a repair method, in which case all
methods are combined. It happens, for example, when a part of the problem is to
select which customers to serve or to select on which day(s) the customers should
be served. An example is the inventory routing problem studied by Coelho et al.
[27]. Second, methods may both destroy and repair in the same step. An example is
the swap method defined in Eskandarpour et al. [40]. It is worth mentioning that the
number of destroy/repair methods for a particular method is debatable. Sometimes,
it is possible to create different instances of one method by changing a parameter.
An example is the widely used regret repair method based on a VRP construction
algorithm proposed by Potvin and Rousseau [89]. In this method, an integer param-
eter defines a kind of look-ahead measure and each parameter value can give rise to
a new repair method. Such multiple parameterized versions of the same algorithm
are counted as one method. Column 6 indicates if ALNS (�) or LNS (–) is used.

114 D. Pisinger and S. Ropke

Column 7 indicates if solutions are improved using a small neighborhood search
(SNS) heuristic (see Sect. 4.1.2). A � in the column indicates “yes”. For example,
the routes in a VRP solution may be improved using the 2-opt neighborhood and
the entire solution may be improved using the relocate neighborhood mentioned
in Sect. 4.1.2. Column 8 reports the acceptance criterion used, where SA, HC and
RRT indicates Simulated annealing, hill climbing and record to record travel, re-
spectively. The two first acceptance criteria are explained in Sect. 4.2, while the last
is explained in Dueck [37]. The SA and RRT rely on a parameter T that typically is
decreasing over time. If this parameter is kept fixed, it is indicated with fixed in col-
umn 8. For some publications, the acceptance criterion is listed as ad hoc because
it does not fit the common criteria defined in the literature. Column 9 indicates the
publication year.

We comment further on the table in the following section. For now, we would
like to highlight the heuristic presented by Christiaens and Vanden Berghe [26] for
the CVRP. It is currently among the heuristics that perform best on the large set of
instances proposed by Uchoa et al. [109]. This is quite remarkable since the heuristic
is simple and the CVRP is one of the most studied VRP variants (see, for example,
Laporte et al. [69]). Among non-LNS heuristics that perform well on the CVRP, we
would like to mention the hybrid genetic algorithm by Vidal et al. [111] (which also
provides high quality solutions to many other variants).

4.4.2 Other Applications

As already mentioned, the number of (A)LNS applications outside the VRP domain
has traditionally been small compared to the number of VRP applications. But, in
recent years, the number of non-VRP applications has significantly grown. Table 4.2
highlights some of these applications (although the list is far from complete). The
table is organized in the same way as Table 4.1 and cover publications on different
applications from 2010 to 2017. The first column now specifies the major applica-
tion area (the labels should be self-explanatory). It is interesting to note that most
applications fall into the broad category of transport and logistics. This is perhaps
not surprising considering the popularity of (A)LNS heuristics within the VRP com-
munity.

Some trends become apparent when examining Tables 4.1 and 4.2. However, be-
fore drawing any conclusions, we would like to stress that the publications presented
in the tables are just a sample of the entire population of (A)LNS papers. Therefore,
a bias in the selection of publications can skew the conclusions.

4 Large Neighborhood Search 115

Ta
bl

e
4.

1
V

R
P

ap
pl

ic
at

io
ns

V
R

P
ty

pe
Sp

ec
ifi

c
pr

ob
le

m
#d

es
tr

oy
#r

ep
ai

r
#c

om
bi

ne
d

A
L

N
S

SN
S

A
cc

ep
ta

nc
e

Y
ea

r

V
R

P

Sh
ip

ro
ut

in
g

an
d

sc
he

du
lin

g
w

ith
sp

lit
lo

ad
s

[6
2]

1
1

–
–

�
H

C
20

11

C
um

ul
at

iv
e

ca
pa

ci
ta

te
d

V
R

P
[9

3]
7

3
–

�
–

SA
20

12
W

as
te

co
lle

ct
io

n
V

R
P

[2
0]

6
2

–
�

–
SA

20
12

Po
llu

tio
n

ro
ut

in
g

[3
3]

12
3

–
�

–
SA

20
12

Se
rv

ic
e

te
ch

ni
ci

an
ro

ut
in

g
an

d
sc

he
du

lin
g

pr
ob

le
m

[6
3]

5
3

–
�

–
SA

20
12

C
on

si
st

en
tV

R
P

[6
4]

4
2

–
�

�
SA

20
14

B
i-

ob
je

ct
iv

e
po

llu
tio

n
ro

ut
in

g
[3

4]
12

3
–

�
–

SA
20

14
V

R
P

w
ith

m
ul

tip
le

ro
ut

es
pe

r
ve

hi
cl

e
[9

]
5

2
–

�
–

SA
20

14
C

ap
ac

ita
te

d
V

R
P

[2
6]

1
1

–
–

–
SA

20
16

E
le

ct
ri

c
V

R
P

[5
4]

5
4

–
�

�
H

C
20

16

M
ul

ti-
la

ye
r

ro
ut

in
g

Tw
o-

ec
he

lo
n

V
R

P
[5

3]
8

3
–

�
–

A
d

ho
c

20
12

V
R

P
w

ith
cr

os
s-

do
ck

in
g

[4
8]

4
2

–
�

–
H

C
,S

A
fix

ed
20

17

Pi
ck

up
an

d
de

liv
er

y

Pi
ck

up
an

d
de

liv
er

y
pr

ob
le

m
w

ith
tr

an
s-

fe
rs

[7
5]

7
5

–
�

–
SA

20
13

D
ia

la
ri

de
[8

3]
3

2
–

–
�

A
d

ho
c

20
13

D
ia

la
ri

de
pr

ob
le

m
w

ith
tr

an
sf

er
s

[7
6]

6
5

–
�

–
SA

20
14

Pi
ck

up
an

d
de

liv
er

y
T

SP
w

ith
ha

nd
lin

g
co

st
s

[1
10

]
5

1
–

–
–

SA
20

17

116 D. Pisinger and S. Ropke

Ta
bl

e
4.

1
—

C
on

tin
ue

d
fr

om
pr

ev
io

us
pa

ge

V
R

P
ty

pe
Sp

ec
ifi

c
pr

ob
le

m
#d

es
tr

oy
#r

ep
ai

r
#c

om
bi

ne
d

A
L

N
S

SN
S

A
cc

ep
ta

nc
e

Y
ea

r

In
ve

nt
or

y
ro

ut
in

g

In
ve

nt
or

y-
ro

ut
in

g
pr

ob
le

m
w

ith
tr

an
ss

hi
p-

m
en

t[
27

]
–

–
11

�
�

SA
20

12

Se
le

ct
iv

e
an

d
pe

ri
od

ic
in

ve
nt

or
y

ro
ut

in
g

pr
ob

le
m

[5
]

–
–

11
�

�
SA

20
14

In
ve

nt
or

y
ro

ut
in

g
in

tr
am

p
sh

ip
pi

ng
[5

2]
3

2
–

�
–

SA
20

15
Pr

od
uc

tio
n

ro
ut

in
g

Pr
od

uc
tio

n
ro

ut
in

g
[1

2]
8

1
–

�
–

H
C

20
15

A
rc

R
ou

tin
g

Sy
nc

hr
on

iz
ed

ar
c

ro
ut

in
g

[9
8]

–
–

5
�

–
R

R
T

fix
ed

20
12

D
yn

am
ic

/s
to

ch
as

tic

C
ap

ac
ita

te
d

ar
c

ro
ut

in
g

w
ith

st
oc

ha
st

ic
de

m
an

ds
[6

8]
4

4
–

�
–

R
R

T
20

10

C
ap

ac
ita

te
d

V
R

P
w

ith
st

oc
ha

st
ic

de
m

an
ds

an
d

tim
e

w
in

do
w

s
[7

1]
4

4
–

�
R

R
T

20
11

D
yn

am
ic

V
R

P
w

ith
m

ul
tip

le
de

liv
er

y
ro

ut
es

[8
]

5
2

–
�

–
SA

20
12

D
yn

am
ic

an
d

st
oc

ha
st

ic
in

ve
nt

or
y-

ro
ut

in
g

[2
8]

4
4

–
�

�
SA

20
14

4 Large Neighborhood Search 117

Ta
bl

e
4.

2
N

on
-V

R
P

ap
pl

ic
at

io
ns

D
om

ai
n

Sp
ec

ifi
c

pr
ob

le
m

#d
es

tr
oy

#r
ep

ai
r

#c
om

bi
ne

d
A

L
N

S
SN

S
A

cc
ep

ta
nc

e
Y

ea
r

Pu
bl

ic
tr

an
sp

or
t

Si
m

ul
ta

ne
ou

s
ve

hi
cl

e
sc

he
du

lin
g

an
d

pa
ss

en
ge

r
se

rv
ic

e
pr

ob
le

m
2

1
–

–
–

SA
20

12

R
ou

te
de

si
gn

(n
et

w
or

k
de

si
gn

)
[1

01
]

3
3

–
–

–
A

d
ho

c
20

14
E

le
ct

ri
c

ve
hi

cl
e

sc
he

du
lin

g
[1

12
]

3
1

–
�

–
SA

20
16

R
ai

lw
ay

ra
pi

d
tr

an
si

tn
et

w
or

k
de

si
gn

an
d

lin
e

pl
an

ni
ng

[2
3]

–
–

6
�

�
SA

20
17

N
et

w
or

k
de

si
gn

R
ob

us
tn

et
w

or
k

de
si

gn
fo

r
m

ul
tis

pe
ci

es
co

ns
er

va
tio

n
[7

0]
1

2
–

–
–

H
C

20
13

D
es

ig
n

of
hu

b
ne

tw
or

ks
[3

2]
5

2
–

�
–

SA
20

15
Su

pp
ly

ch
ai

n
ne

tw
or

k
de

si
gn

[4
0]

6
9

2
–

–
SA

20
17

Fa
ci

lit
y

lo
ca

tio
n

Pr
ob

ab
ili

st
ic

m
ax

im
al

co
ve

ri
ng

lo
ca

tio
n–

al
lo

ca
tio

n
pr

ob
-

le
m

[8
4]

4
4

–
�

–
SA

20
15

Se
ap

or
to

pe
ra

tio
ns

B
er

th
al

lo
ca

tio
n

[7
8]

4
3

–
�

–
SA

20
16

B
er

th
al

lo
ca

tio
n

an
d

qu
ay

cr
an

e
as

si
gn

m
en

t[
57

]
4

2
–

�
–

SA
20

17

E
du

ca
tio

na
lt

im
e

ta
bl

in
g

C
on

su
lta

tio
n

tim
et

ab
lin

g
[6

6]
2

2
–

�
–

SA
20

13
E

le
ct

iv
e

co
ur

se
st

ud
en

ts
ec

tio
ni

ng
[6

5]
2

3
–

�
–

SA
20

16
C

ur
ri

cu
lu

m
-b

as
ed

co
ur

se
tim

et
ab

lin
g

pr
ob

le
m

[6
0]

10
3

–
�

–
SA

20
17

H
ig

h
sc

ho
ol

tim
et

ab
lin

g
[3

5]
2

1
–

–
–

H
C

20
17

L
ot

-s
iz

in
g

L
ot

-s
iz

in
g

w
ith

se
tu

p
tim

es
[8

1]
6

2
–

�
–

H
C

20
12

W
ar

eh
ou

se
lo

gi
st

ic
s

Jo
in

t
or

de
r

ba
tc

hi
ng

an
d

ge
ne

ra
liz

ed
as

si
gn

m
en

t
pr

ob
le

m
[7

7]
–

–
5

�
–

SA
20

17

Sc
he

du
lin

g
Sh

if
tm

in
im

iz
at

io
n

pe
rs

on
ne

lt
as

k
sc

he
du

lin
g

pr
ob

le
m

[7
4]

1
1

–
–

–
SA

20
14

Sc
he

du
lin

g
id

en
tic

al
pa

ra
lle

l
m

ac
hi

ne
s

w
ith

to
ol

in
g

co
n-

st
ra

in
ts

[1
1]

9
3

–
�

–
SA

20
17

O
th

er

E
ne

rg
y

aw
ar

e
m

ee
tin

g
sc

he
du

lin
g

in
sm

ar
tb

ui
ld

in
gs

[7
2]

1
1

–
–

H
C

20
15

Pa
rt

iti
on

co
lo

ri
ng

[4
2]

M
an

y
9

–
�

�
A

d
ho

c
20

16
So

ft
w

ar
e

m
od

ul
e

cl
us

te
ri

ng
[8

0]
3

4
–

–
–

H
C

20
17

V
is

ua
liz

in
g

pr
op

or
tio

ns
an

d
di

ss
im

ila
ri

tie
s

by
sp

ac
e-

fil
lin

g
m

ap
s

[2
4]

1
1

–
–

–
H

C
20

17

118 D. Pisinger and S. Ropke

With that word of warning, we wish to indicate the following trends to the reader:
it appears that simulated annealing and hill-climbing are the two most popular
choices for the acceptance criterion. These criteria were used in the early successful
LNS and ALNS implementations, so it is not surprising if they are pervasive in the
literature. However, as reported by Santini et al. [99], it may be worthwhile to con-
sider other acceptance criteria in order to improve the performance slightly. From
the tables, it also appears that the idea of applying small neighborhood search to im-
prove the results from the repair step is more widespread in VRP applications than
in other applications. A possible explanation is that well-performing small neigh-
borhoods are widely known for VRP variants and are therefore an easy addition to
the heuristic.

The idea of using more than one destroy/repair method is widespread and is not
found only within ALNS heuristics. One may use multiple destroy/repair methods
in the large multiple-neighborhood search method described earlier, and other ap-
proaches also exists. Monçores et al. [80], for example, let the search start with one
method and only switches to the next method when no improving solution is found
for a certain number of iterations.

The numerous diverse applications in Table 4.2 illustrate the versatility of the
(A)LNS heuristic. It remains an easy-to-apply heuristic, especially if one relies on
existing solvers (e.g. MIP solvers) to perform the repair step. Looking into the fu-
ture, we therefore believe that the heuristic is going to find new applications and
that the ratio between VRP and non-VRP applications could soon shift toward a
majority of published results for non-VRP applications.

4.5 Very Large-Scale Neighborhood Search

We end this chapter by considering a related class of algorithms based on very large-
scale neighborhood search. LNS belongs to the class of VLSN algorithms since it
searches a very large neighborhood. However, neighborhoods of LNS are typically
implicitly defined from the destroy and repair heuristics, while VLSN algorithms
usually have an explicit definition of the neighborhoods.

According to Altner et al. [6], a search algorithm belongs to the class of VLSN
algorithms if the neighborhood it searches grows exponentially with the instance
size or if the neighborhood is simply too large to be searched explicitly. Clearly,
the class of VLSN algorithms is rather broad. Altner et al. [6] categorize VLSN
into three classes: (1) variable depth methods, (2) network flow-based improvement
methods, (3) other methods based on compound moves or variable fixing.

Searching a very large neighborhood should intuitively lead to higher quality so-
lutions than searching a small neighborhood. However, in practice, small neighbor-
hoods can provide similar or superior quality if they are embedded in a metaheuristic
framework, because they typically can be searched more quickly. Such behavior is
reported in [17, 56], for example. Thus, VLSN algorithms are not “magic bullets”.
But, for the right applications, they provide excellent results.

4 Large Neighborhood Search 119

4.5.1 Variable-Depth Methods

Larger neighborhoods generally lead to local solutions of better quality, but the
search is more time-consuming. Hence, a natural idea is to gradually extend the
size of the neighborhood, each time the search gets trapped in a local minimum.

Variable-Depth Neighborhood Search (VDNS) methods search a parameterized
family of still deeper neighborhoods N1,N2, . . . ,Nk in a heuristic way. A typi-
cal example is the 1-exchange neighborhood N1 where one variable/position is
changed. Similarly, the 2-exchange neighborhood N2 swaps the value of two vari-
ables/positions. In general, the k-exchange neighborhood Nk changes k variables.
Variable-depth search methods are techniques that search the k-exchange neighbor-
hood partially, hence reducing the time used to search the neighborhood.

One of the first applications of variable-depth search was the Lin-Kernighan
heuristic [73] for solving the TSP. Briefly, the idea in the Lin-Kernighan heuristic
is to replace as many as n edges (with n being the number of cities in the instance)
when moving from a tour S to a tour T . In even steps of the algorithm, an edge is
inserted into the Hamiltonian path, while in odd steps, an edge is deleted to restore
a Hamiltonian path. From each Hamiltonian path, a Hamiltonian cycle is implicitly
constructed by joining the two end nodes. The choice for the edge to be added to
the Hamiltonian path is made in a greedy way, maximizing the gain in the objective
function. The Lin-Kernighan algorithm terminates when no improving tour can be
constructed.

The basic idea in a VDNS heuristic is to make a sequence of local moves and
to freeze all combinatorial objects that have been moved to prevent the search from
cycling. VDNS stops when no further local move is possible and returns the best
found solution.

An extension of the Lin-Kernighan heuristic, called ejection chains, was pro-
posed by Glover in [46]. An ejection chain is initiated by selecting a set of elements
that will undergo a state change. The result of this change leads to identifying a
collection of other sets, with the property that the elements of at least one set must
be “ejected from” their current states. State-change steps and ejection steps typi-
cally alternate. In some cases, a cascade of operations may be triggered leading to a
domino effect.

Variable-depth and ejection-chain based algorithms have been applied to several
problems, including the traveling salesman problem [43, 92], the vehicle routing
problem with time windows [106], the generalized assignment problem [113] and
nurse scheduling [36]. Ahuja et al. [4] give an excellent overview of earlier applica-
tions of the VDNS methods.

Frequently, VDNS methods are used in conjunction with other metaheuristic
frameworks, like the filter-and-fan methods in Glover and Rego [47].

120 D. Pisinger and S. Ropke

4.5.2 Network Flow-Based Improvement Algorithms

This family of improvement algorithms use various network-flow algorithms to
search the neighborhood. In general, they can be grouped in the following three,
not necessarily distinct, categories: (1) minimum cost cycle methods, (2) shortest
path based methods, and (3) minimum cost assignment based methods. In the fol-
lowing, we give a short overview of the methods and refer to the survey of Ahuja et
al. [4] for further details.

4.5.2.1 Neighborhoods Defined by Cycles

A cyclic exchange neighborhood consists of a sequence of elements being trans-
ferred among a family of subsets. Thompson [107] showed how to find an improv-
ing neighbor in the cyclic exchange neighborhood by finding a negative cost cycle
in a constructed improvement graph. Finding a negative cost subset-disjoint cycle in
the improvement graph is NP-hard, but effective heuristics for searching the graph
exist.

Thompson and Psarafitis [108] and Gendreau et al. [44] applied the cyclic neigh-
borhood to solve the VRP. Ahuja et al. [3] used cyclic exchanges to solve the capac-
itated minimum spanning tree problem.

4.5.2.2 Neighborhoods Defined by Paths

Path exchanges is a generalization of the swap neighborhood. A large-scale neigh-
borhood can be defined by aggregating an arbitrary number of so-called indepen-
dent swap operations [4]. The best neighbor of a TSP tour for this aggregated swap
neighborhood can be found in O(n2) time by solving a shortest path problem in an
improvement graph constructed for this purpose.

For the one machine batching problem, Hurink [56] applies a special case of the
aggregated swap neighborhood where only adjacent pairs are allowed to switch. An
improving neighbor can be found in O(n2) time by solving a shortest path problem
in the improvement graph.

Considering the single machine scheduling problem, Brueggemann and Hurink
[16] presented an extension of the adjacent pairwise interchange neighborhood
which can be searched in quadratic time by calculating a shortest path in an im-
provement graph.

4 Large Neighborhood Search 121

4.5.2.3 Neighborhoods Defined by Assignments and Matching

The assignment neighborhood was first presented by Sarvanov and Doroshko [100]
for the TSP. It is an exponential neighborhood structure obtained by finding mini-
mum cost assignments in an improvement graph.

For the TSP, the assignment neighborhood is based on the removal of k nodes,
from which a bipartite graph is constructed. In this graph, the nodes on the left-hand
side are the removed nodes, and the nodes on the right-hand side are the remaining
nodes. The cost of each assignment is the cost of inserting a node between two
existing nodes. Sarvanov and Doroshko [100] considered the case where k = n/2
and n is even. Punnen [91] generalized this approach to arbitrary k and n.

Using the same idea, Franceschi et al. [31] obtained promising results for the
distance-constrained CVRP. Brueggemann and Hurink [19] presented a neighbor-
hood of exponential size for the problem of scheduling independent jobs on parallel
machines when the weighted average completion time is minimized.

4.5.3 Other VLSN Algorithms

VLSN algorithms can also be based on aggregating or compounding independent
moves. The idea is to simultaneously execute two or more moves when their impact
on the objective function can be evaluated independently. Ergun et al. [39] and Gen-
dreau et al. [44] aggregate independent moves to solve the VRP, and Brueggemann
et al. [18] apply the concept to a minimum makespan parallel machine scheduling
problem.

Another approach is to solve an induced MIP subproblem by fixing a subset of
the decision variables. The RINS algorithm proposed by Danna et al. [29] solve
an induced MIP subproblem where some variables are fixed to values frequently
attained in previous incumbent solutions. Davenport et al. [30] use constraint pro-
gramming to search a large neighborhood.

4.6 Conclusion

This chapter has given an in-depth description of LNS and ALNS, and has briefly
explained the central concepts of VLSN. Algorithms exploiting large neighborhoods
have shown very promising results during the last decade, and we expect to see more
algorithmic developments as well as new application areas.

One of the key benefits of the LNS heuristic is that a heuristic can be quickly
put together from existing components: An existing construction heuristic or exact
method can be turned into a repair heuristic and a destroy method based on random
selection is easy to implement. Therefore, we see a potential for using simple LNS
heuristics for benchmark purposes when developing more sophisticated methods.

122 D. Pisinger and S. Ropke

Large neighborhoods offer no guarantee of finding better solutions than using
smaller neighborhoods. Increased complexity of the neighborhood search means
that fewer iterations can be performed by a local search algorithm. Gutin and Kara-
petyan [49] experimentally compared a number of small and large neighborhoods
for the multidimensional assignment problem, including various combinations of
them. It was demonstrated that some combinations of both small and large neigh-
borhoods provided the best results. This could indicate that hybrid neighborhoods
may be a promising direction for future research.

Another interesting research topic for the future is to investigate if techniques
from machine learning and artificial intelligence could be used to improve the adap-
tive layer in ALNS. It is likely that a more clever dynamic selection of destroy and
repair methods could improve the heuristic and it may be interesting to let other
parameters in the algorithm adapt to the instance at hand, for example parameters
controlling solution acceptance.

References

1. J. Adams, E. Balas, D. Zawack, The shifting bottleneck procedure for job shop scheduling.
Manag. Sci. 34(3), 391–401 (1988)

2. Y. Adulyasak, J.-F. Cordeau, R. Jans, Optimization-based adaptive large neighborhood search
for the production routing problem. Transp. Sci. 48(1), 20–45 (2012)

3. R.K. Ahuja, J.B. Orlin, D. Sharma, Multi-exchange neighborhood structures for the capaci-
tated minimum spanning tree problem. Math. Program. 91(1), 71–97 (2001)

4. R.K. Ahuja, Ö. Ergun, J.B. Orlin, A.P. Punnen, A survey of very large-scale neighborhood
search techniques. Discret. Appl. Math. 123, 75–102 (2002)

5. D. Aksen, O. Kaya, F.S. Salman, Ö. Tüncel, An adaptive large neighborhood search algo-
rithm for a selective and periodic inventory routing problem. Eur. J. Oper. Res. 239(2), 413–
426 (2014)

6. D.S. Altner, R.K. Ahuja, Ö. Ergun, J.B. Orlin, Very large-scale neighborhood search, in
Search Methodologies: Introductory Tutorials in Optimization and Decision Support Tech-
niques (Springer, Berlin, 2014), pp. 339–367

7. D.L. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The Traveling Salesman Problem: A
Computational Study (Princeton University Press, Princeton, 2006)

8. N. Azi, M. Gendreau, J.-Y. Potvin, A dynamic vehicle routing problem with multiple delivery
routes. Ann. Oper. Res. 199(1), 103–112 (2012)

9. N. Azi, M. Gendreau, J.-Y. Potvin, An adaptive large neighborhood search for a vehicle
routing problem with multiple routes. Comput. Oper. Res. 41, 167–173 (2014)

10. L. Bach, G. Hasle, C. Schulz, GPU parallelization of ALNS for the DCVRP, in VeRoLog
Abstracts, Nantes (2016)

11. A.C. Beezão, J.-F. Cordeau, G. Laporte, H.-H. Yanasse, Scheduling identical parallel ma-
chines with tooling constraints. Eur. J. Oper. Res. 257(3), 834–844 (2017)

12. M.A.F. Belo-Filho, P. Amorim, B. Almada-Lobo, An adaptive large neighbourhood search
for the operational integrated production and distribution problem of perishable products.
Int. J. Prod. Res. 53(20), 6040–6058 (2015)

13. R. Bent, P. Van Hentenryck, A two-stage hybrid local search for the vehicle routing problem
with time windows. Transp. Sci. 38(4), 515–530 (2004)

14. R. Bent, P. Van Hentenryck, A two-stage hybrid algorithm for pickup and delivery vehicle
routing problem with time windows. Comput. Oper. Res. 33(4), 875–893 (2006)

4 Large Neighborhood Search 123

15. R.E. Bixby, A brief history of linear and mixed-integer programming computation. Doc.
Math. Extra Volume: Optimization Stories, 107–121 (2012)

16. T. Brueggemann, J.L. Hurink, Two exponential neighborhoods for single machine schedul-
ing. Technical report Memorandum No. 1776, University of Twente (2005)

17. T. Brueggemann, J. Hurink, Two very large-scale neighborhoods for single machine schedul-
ing. OR Spectr. 29, 513–533 (2007)

18. T. Brueggemann, J.L. Hurink, T. Vredeveld, G.J. Woeginger, Performance of a very large-
scale neighborhood for minimizing makespan on parallel machines. Electron. Notes Discret.
Math. 25, 29–33 (2006)

19. T. Brueggemann, J.L. Hurink, Matching based exponential neighborhoods for parallel ma-
chine scheduling. J. Heuristics 17(6), 637–658 (2011)

20. K. Buhrkal, A. Larsen, S. Ropke, The waste collection vehicle routing problem with time
windows in a city logistics context. Procedia. Soc. Behav. Sci. 39, 241–254 (2012)

21. E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu, Hyper-
heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

22. F. Campeotto, A. Dovier, F. Fioretto, E. Pontelli, A GPU implementation of large neighbor-
hood search for solving constraint optimization problems, in Proceedings of the Twenty-First
European Conference on Artificial Intelligence (IOS Press, Amsterdam, 2014), pp. 189–194

23. D. Canca, A. De-Los-Santos, G. Laporte, J.A. Mesa, An adaptive neighborhood search meta-
heuristic for the integrated railway rapid transit network design and line planning problem.
Comput. Oper. Res. 78, 1–14 (2017)

24. E. Carrizosa, V. Guerrero, D.R. Morales, Visualizing proportions and dissimilarities by
space-filling maps: a large neighborhood search approach. Comput. Oper. Res. 78, 369–380
(2017)

25. Y. Caseau, F. Laburthe, Disjunctive scheduling with task intervals. Technical report LIENS-
95-25, Ecole Normale Superieure, Département de mathématiques et informatique, Paris
(1995)

26. J. Christiaens, G. Vanden Berghe, A fresh ruin & recreate implementation for the capacitated
vehicle routing problem. Technical report, KU Leuven, November 2016

27. L.C. Coelho, J.-F. Cordeau, G. Laporte, The inventory-routing problem with transshipment.
Comput. Oper. Res. 39(11), 2537–2548 (2012)

28. L.C. Coelho, J.-F. Cordeau, G. Laporte, Heuristics for dynamic and stochastic inventory-
routing. Comput. Oper. Res. 52, 55–67 (2014)

29. E. Danna, E. Rothberg, C. Le Pape, Exploring relaxation induced neighborhoods to improve
MIP solutions. Math. Program. 102(1), 71–90 (2005)

30. A. Davenport, J. Kalagnanam, C. Reddy, S. Siegel, J. Hou, An application of constraint pro-
gramming to generating detailed operations schedules for steel manufacturing, in Interna-
tional Conference on Principles and Practice of Constraint Programming (Springer, Berlin,
2007), pp. 64–76

31. R. De Franceschi, M. Fischetti, P. Toth, A new ILP-based refinement heuristic for vehicle
routing problems. Math. Program. 105(2–3), 471–499 (2006)

32. E.M. de Sá, I. Contreras, J.-F. Cordeau, Exact and heuristic algorithms for the design of hub
networks with multiple lines. Eur. J. Oper. Res. 246(1), 186–198 (2015)

33. E. Demir, T. Bektaş, G. Laporte, An adaptive large neighborhood search heuristic for the
pollution-routing problem. Eur. J. Oper. Res. 223(2), 346–359 (2012)

34. E. Demir, T. Bektaş, G. Laporte, The bi-objective pollution-routing problem. Eur. J. Oper.
Res. 232(3), 464–478 (2014)

35. E. Demirović, N. Musliu, MaxSAT-based large neighborhood search for high school
timetabling. Comput. Oper. Res. 78, 172–180 (2017)

36. K.A. Dowsland, Nurse scheduling with tabu search and strategic oscillation. Eur. J. Oper.
Res. 106(2–3), 393–407 (1998)

37. G. Dueck, New optimization heuristics: the great deluge algorithm and the record-to-record
travel. J. Comput. Phys. 104(1), 86–92 (1993)

38. G. Dueck, T. Scheuer, Threshold accepting: a general purpose optimization algorithm ap-
pearing superior to simulated annealing. J. Comput. Phys. 90(1), 161–175 (1990)

124 D. Pisinger and S. Ropke

39. Ö. Ergun, J.B. Orlin, A. Steele-Feldman, Creating very large scale neighborhoods out of
smaller ones by compounding moves. J. Heuristics 12(1), 115–140 (2006)

40. M. Eskandarpour, P. Dejax, O. Péton, A large neighborhood search heuristic for supply chain
network design. Comput. Oper. Res. 80, 23–37 (2017)

41. M.M. Flood, The traveling salesman problem. Oper. Res. 4(1), 61–75 (1956)
42. F. Furini, E. Malaguti, A. Santini, An exact algorithm for the partition coloring problem.

Technical report, Optimization Online (2016)
43. D. Gamboa, C. Osterman, C. Rego, F. Glover, An experimental evaluation of ejection chain

algorithms for the traveling salesman problem. Technical report, School of Business Admin-
istration, University of Mississippi (2006)

44. M. Gendreau, F. Guertin, J.-Y. Potvin, R. Séguin, Neighborhood search heuristics for a dy-
namic vehicle dispatching problem with pick-ups and deliveries. Transp. Res. C: Emerg.
Technol. 14(3), 157–174 (2006)

45. M. Gendreau, O. Jabali, W. Rei, Stochastic vehicle routing problems, in Vehicle Routing:
Problems, Methods, and Applications, ed. by P. Toth, D. Vigo, 2nd edn. (Society for Indus-
trial and Applied Mathematics, Philadelphia, 2014), pp. 213–239

46. F. Glover, Ejection chains, reference structures and alternating path methods for traveling
salesman problems. Discret. Appl. Math. 65(1–3), 223–253 (1996)

47. F. Glover, C. Rego, Ejection chain and filter-and-fan methods in combinatorial optimization.
4OR: Q. J. Oper. Res. 4(4), 263–296 (2006)

48. P. Grangier, M. Gendreau, F. Lehuédé, L.-M. Rousseau, A matheuristic based on large neigh-
borhood search for the vehicle routing problem with cross-docking. Comput. Oper. Res. 84,
116–126 (2017)

49. G. Gutin, D. Karapetyan, Local search heuristics for the multidimensional assignment prob-
lem, in Proceedings of Golumbic Festschrift, vol. 5420 (Springer, Heidelberg, 2009), pp.
100–115

50. P. Hansen, N. Mladenović, Variable neighborhood search: principles and applications. Eur.
J. Oper. Res. 130(3), 449–467 (2001)

51. A. Hemmati, L.M. Hvattum, Evaluating the importance of randomization in adaptive large
neighborhood search. Int. Trans. Oper. Res. 24(5), 929–942 (2017)

52. A. Hemmati, M. Stålhane, L.M. Hvattum, H. Andersson, An effective heuristic for solving
a combined cargo and inventory routing problem in tramp shipping. Comput. Oper. Res. 64,
274–282 (2015)

53. V.C. Hemmelmayr, J.-F. Cordeau, T.G. Crainic, An adaptive large neighborhood search
heuristic for two-echelon vehicle routing problems arising in city logistics. Comput. Oper.
Res. 39(12), 3215–3228 (2012)

54. G. Hiermann, J. Puchinger, S. Ropke, R.F. Hartl, The electric fleet size and mix vehicle
routing problem with time windows and recharging stations. Eur. J. Oper. Res. 252(3), 995–
1018 (2016)

55. M. Hifi, S. Negre, T. Saadi, S. Saleh, L. Wu, A parallel large neighborhood search-based
heuristic for the disjunctively constrained knapsack problem, in Parallel & Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2014 IEEE International (IEEE, Piscataway,
2014), pp. 1547–1551

56. J. Hurink, An exponential neighborhood for a one machine batching problem. OR Spektrum
21(4), 461–476 (1999)

57. C. Iris, D. Pacino, S. Ropke, Improved formulations and an adaptive large neighborhood
search heuristic for the integrated berth allocation and quay crane assignment problem.
Transport. Res E: Log. Transport. Rev. 105, 123–147 (2017)

58. S. Irnich, P. Toth, D. Vigo, The family of vehicle routing problems, in Vehicle Routing:
Problems, Methods and Applications, 2nd edn. (SIAM, Philadelphia, 2014), pp. 1–33

59. L.W. Jacobs, M.J. Brusco, Note: a local-search heuristic for large set-covering problems.
Nav. Res. Logist. 42(7), 1129–1140 (1995)

60. A. Kiefer, R.F. Hartl, A. Schnell, Adaptive large neighborhood search for the curriculum-
based course timetabling problem. Ann. Oper. Res. 252(2), 255–282 (2017)

4 Large Neighborhood Search 125

61. P. Kilby, P. Prosser, P. Shaw, Guided local search for the vehicle routing problem, in Pro-
ceedings of the 2nd International Conference on Metaheuristics, July 1997

62. J.E. Korsvik, K. Fagerholt, G. Laporte, A large neighbourhood search heuristic for ship rout-
ing and scheduling with split loads. Comput. Oper. Res. 38(2), 474–483 (2011)

63. A.A. Kovacs, S.N. Parragh, K.F. Doerner, R.F. Hartl, Adaptive large neighborhood search for
service technician routing and scheduling problems. J. Sched. 15(5), 579–600 (2012)

64. A.A. Kovacs, S.N. Parragh, R.F Hartl, A template-based adaptive large neighborhood search
for the consistent vehicle routing problem. Networks 63(1), 60–81 (2014)

65. S. Kristiansen, T.R. Stidsen, Elective course student sectioning at Danish high schools. Ann.
Oper. Res. 239(1), 99–117 (2016)

66. S. Kristiansen, M. Sørensen, M.B Herold, T.R. Stidsen, The consultation timetabling problem
at Danish high schools. J. Heuristics 19(3), 465–495 (2013)

67. P. Laborie, D. Godard, Self-adapting large neighborhood search: application to single-mode
scheduling problems. Technical report TR-07-001, ILOG (2007)

68. G. Laporte, R. Musmanno, F. Vocaturo, An adaptive large neighbourhood search heuristic
for the capacitated arc-routing problem with stochastic demands. Transp. Sci. 44(1), 125–
135 (2010)

69. G. Laporte, S. Ropke, T. Vidal, Heuristics for the vehicle routing problem, in Vehicle Rout-
ing: Problems, Methods, and Applications, ed. by P. Toth, D. Vigo, 2nd edn. (Society for
Industrial and Applied Mathematics, Philadelphia, 2014), pp. 87–116

70. R. Le Bras, B. Dilkina, Y. Xue, C. Gomes, K. McKelvey, M. Schwartz, C. Montgomery,
Robust network design for multispecies conservation, in Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence (2013)

71. H. Lei, G. Laporte, B. Guo, The capacitated vehicle routing problem with stochastic demands
and time windows. Comput. Oper. Res. 38(12), 1775–1783 (2011)

72. B.P. Lim, M. Van Den Briel, S. Thiébaux, R. Bent, S. Backhaus, Large neighborhood search
for energy aware meeting scheduling in smart buildings, in International Conference on AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
(Springer, Cham, 2015), pp. 240–254

73. S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling salesman problem.
Oper. Res. 21(2), 498–516 (1973)

74. S.-W. Lin, K.-C. Ying, Minimizing shifts for personnel task scheduling problems: a three-
phase algorithm. Eur. J. Oper. Res. 237(1), 323–334 (2014)

75. R. Masson, F. Lehuédé, O. Péton, An adaptive large neighborhood search for the pickup and
delivery problem with transfers. Transp. Sci. 47(3), 344–355 (2013)

76. R. Masson, F. Lehuédé, O. Péton, The dial-a-ride problem with transfers. Comput. Oper. Res.
41, 12–23 (2014)

77. M. Matusiak, R. de Koster, J. Saarinen, Utilizing individual picker skills to improve order
batching in a warehouse. Eur. J. Oper. Res. 263(3), 888–899 (2017)

78. G.R. Mauri, G.M. Ribeiro, L.A.N. Lorena, G. Laporte, An adaptive large neighborhood
search for the discrete and continuous berth allocation problem. Comput. Oper. Res. 70,
140–154 (2016)

79. N. Mladenovic, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–
1100 (1997)

80. M.C. Monçores, A.C.F. Alvim, M.O. Barros, Large neighborhood search applied to the soft-
ware module clustering problem. Comput. Oper. Res. 91, 92–111 (2018)

81. L.F. Muller, S. Spoorendonk, D. Pisinger, A hybrid adaptive large neighborhood search
heuristic for lot-sizing with setup times. Eur. J. Oper. Res. 218(3), 614–623 (2012)

82. M. Palpant, C.C. Artigues, P. Michelon, LSSPER: solving the resource-constrained project
scheduling problem with large neighbourhood search. Ann. Oper. Res. 131, 237–257 (2004)

83. S.N. Parragh, V. Schmid, Hybrid column generation and large neighborhood search for the
dial-a-ride problem. Comput. Oper. Res. 40(1), 490–497 (2013)

84. M.A. Pereira, L.C. Coelho, L.A.N. Lorena, L.C. De Souza, A hybrid method for the proba-
bilistic maximal covering location–allocation problem. Comput. Oper. Res. 57, 51–59 (2015)

126 D. Pisinger and S. Ropke

85. L. Perron, Fast restart policies and large neighborhood search, in Proceedings of CP-AI-
OR’2003 (2003)

86. L. Perron, P. Shaw, Parallel large neighborhood search, in Proceedings of RenPar’15 (2003)
87. V. Pillac, M. Gendreau, C. Guéret, A.L. Medaglia, A review of dynamic vehicle routing

problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)
88. D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems. Comput. Oper. Res.

34(8), 2403–2435 (2007)
89. J.-Y. Potvin, J.-M. Rousseau, A parallel route building algorithm for the vehicle routing and

scheduling problem with time windows. Eur. J. Oper. Res. 66(3), 331–340 (1993)
90. H.N. Psaraftis, M. Wen, C.A. Kontovas, Dynamic vehicle routing problems: three decades

and counting. Networks 67(1), 3–31 (2016)
91. A.P. Punnen, The traveling salesman problem: new polynomial approximation algorithms

and domination analysis. J. Inf. Optim. Sci. 22(1), 191–206 (2001)
92. C. Rego, D. Gamboa, F. Glover, Data structures and ejection chains for solving large scale

traveling salesman problems. Eur. J. Oper. Res. 160(1), 154–171 (2006)
93. G.M. Ribeiro, G. Laporte, An adaptive large neighborhood search heuristic for the cumula-

tive capacitated vehicle routing problem. Comput. Oper. Res. 39(3), 728–735 (2012)
94. S. Ropke, PALNS - a software framework for parallel large neighborhood search, in 8th

Metaheuristic International Conference CDROM (2009)
95. S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)
96. S. Ropke, D. Pisinger, A unified heuristic for a large class of vehicle routing problems with

backhauls. Eur. J. Oper. Res. 171(3), 750–775 (2006)
97. L.-M. Rousseau, M. Gendreau, G. Pesant, Using constraint-based operators to solve the ve-

hicle routing problem with time windows. J. Heuristics 8(1), 43–58 (2002)
98. M.A. Salazar-Aguilar, A. Langevin, G. Laporte, Synchronized arc routing for snow plowing

operations. Comput. Oper. Res. 39(7), 1432–1440 (2012)
99. A. Santini, S. Ropke, L.M. Hvattum, A comparison of acceptance criteria for the adap-

tive large neighbourhood search metaheuristic. J. Heuristics (2018). https://doi.org/10.1007/
s10732-018-9377-x

100. V.I. Sarvanov, N.N. Doroshko, Approximate solution of the traveling salesman problem by
a local algorithm with scanning neighborhoods of factorial cardinality in cubic time. Softw.
Algorithms Progr. Math. Inst. Beloruss. Acad. Sci., Minsk 31, 11–13 (1981)

101. V. Schmid, Hybrid large neighborhood search for the bus rapid transit route design problem.
Eur. J. Oper. Res. 238(2), 427–437 (2014)

102. G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, G. Dueck, Record breaking optimization
results using the ruin and recreate principle. J. Comput. Phys. 159(2), 139–171 (2000)

103. M. Schneider, A. Stenger, J. Hof, An adaptive VNS algorithm for vehicle routing problems
with intermediate stops. OR Spectr. 37(2), 353–387 (2015)

104. P. Shaw, A new local search algorithm providing high quality solutions to vehicle routing
problems. Technical report, APES Group, Department of Computer Science, University of
Strathclyde, Glasgow, July 1997

105. P. Shaw, Using constraint programming and local search methods to solve vehicle routing
problems, in CP-98 (Fourth International Conference on Principles and Practice of Con-
straint Programming). Lecture Notes in Computer Science, vol. 1520, pp. 417–431 (1998)

106. H. Sontrop, P. van der Horn, M. Uetz, Fast ejection chain algorithms for vehicle routing with
time windows. Lect. Notes Comput. Sci. 3636, 78–89 (2005)

107. P.M. Thompson, Local search algorithms for vehicle routing and other combinatorial prob-
lems. Ph.D. thesis, Operations Research Center, MIT, 1988

108. P.M. Thompson, H.N. Psaraftis, Cyclic transfer algorithms for multivehicle routing and
scheduling problems. Oper. Res. 41(5), 935–946 (1993)

109. E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, A. Subramanian, New benchmark in-
stances for the capacitated vehicle routing problem. Eur. J. Oper. Res. 257(3), 845–858
(2017)

https://doi.org/10.1007/s10732-018-9377-x
https://doi.org/10.1007/s10732-018-9377-x

4 Large Neighborhood Search 127

110. M. Veenstra, K.J. Roodbergen, I.F. Vis, L.C. Coelho, The pickup and delivery traveling sales-
man problem with handling costs. Eur. J. Oper. Res. 257(1), 118–132 (2017)

111. T. Vidal, T.G. Crainic, M. Gendreau, C. Prins, A unified solution framework for multi-
attribute vehicle routing problems. Eur. J. Oper. Res. 234(3), 658–673 (2014)

112. M. Wen, E. Linde, S. Ropke, P. Mirchandani, A. Larsen, An adaptive large neighborhood
search heuristic for the electric vehicle scheduling problem. Comput. Oper. Res. 76, 73–83
(2016)

113. M. Yagiura, T. Ibaraki, F. Glover, A path relinking approach with ejection chains for the
generalized assignment problem. Eur. J. Oper. Res. 169(2), 548–569 (2006)

Chapter 5
Iterated Local Search: Framework
and Applications

Helena Ramalhinho Lourenço, Olivier C. Martin, and Thomas Stützle

Abstract The key idea underlying iterated local search is to focus the search not on
the full space of all candidate solutions but on the solutions that are returned by some
underlying algorithm, typically a local search heuristic. The resulting search behav-
ior can be characterized as iteratively building a chain of solutions of this embedded
algorithm. The result is also a conceptually simple metaheuristic that nevertheless
has led to state-of-the-art algorithms for many computationally hard problems. In
fact, very good performance is often already obtained by rather straightforward im-
plementations of the metaheuristic. In addition, the modular architecture of iterated
local search makes it very suitable for an algorithm engineering approach where,
progressively, the algorithm’s performance can be further optimized. Our purpose
here is to give an accessible description of the underlying principles of iterated local
search and a discussion of the main aspects that need to be taken into account for a
successful application of it. In addition, we review the most important applications
of this method and discuss its relationship with other metaheuristics.

H. R. Lourenço
Universitat Pompeu Fabra, Barcelona, Spain
e-mail: helena.ramalhinho@upf.edu

O. C. Martin
INRA, Université Paris-Sud, Orsay, France
e-mail: olivier.c.martin@inra.fr

T. Stützle (�)
Université Libre de Bruxelles (ULB), Brussels, Belgium
e-mail: stuetzle@ulb.ac.be

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_5

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_5&domain=pdf
mailto:helena.ramalhinho@upf.edu
mailto:olivier.c.martin@inra.fr
mailto:stuetzle@ulb.ac.be
https://doi.org/10.1007/978-3-319-91086-4_5

130 H. R. Lourenço et al.

5.1 Introduction

The importance of high performance algorithms for tackling difficult optimization
problems cannot be understated, and in many cases the most effective methods are
metaheuristics. When designing a metaheuristic, simplicity should be favored, both
conceptually and in practice. Naturally, it must also lead to effective algorithms. If
we think of a metaheuristic as simply a construction for guiding (problem-specific)
heuristics, the ideal case is when the metaheuristic can be used without any problem-
dependent knowledge.

As metaheuristics have become more and more sophisticated, this ideal case has
been pushed aside in the quest for greater performance. As a consequence, problem-
specific knowledge (in addition to that built into the heuristic being guided) must
now be incorporated into metaheuristic algorithms in order to reach state-of-the-art
level. Unfortunately, this makes the boundary between heuristics and metaheuristics
fuzzy, and we run the risk of losing both simplicity and generality. To counter this,
we appeal to modularity and try to decompose a metaheuristic algorithm into a few
parts, each with its own specificity. In particular, we would like to have a totally
general-purpose part, so that any problem-specific knowledge built into the meta-
heuristic would be restricted to another part. Finally, to the extent possible, we pre-
fer to leave untouched the embedded heuristic (which is to be “guided”) because
of its potential complexity. One can also consider the case where this heuristic is
only available through an object module, the source code being proprietary; it is
then necessary to be able to treat it as a “black-box” routine. Iterated local search
provides a simple way to satisfy all these requirements.

The essence of iterated local search can be given in a nut-shell: one iteratively
builds a sequence of solutions generated by the embedded heuristic, leading to far
better solutions than if one were to use repeated random trials of that heuristic. This
simple idea [13] has a long history, and its rediscovery by many authors has led
to many different names for iterated local search such as iterated descent [11, 12],
large-step Markov chains [88], iterated Lin-Kernighan [68], chained local optimiza-
tion [87], combinations of these [3] and so on. Readers interested in these historical
developments should consult the review in [69]. For us, there are two main points
that make an algorithm an iterated local search: (1) there must be a single chain that
is being followed (this then excludes population-based algorithms); (2) the search
for better solutions occurs in a reduced space defined by the output of a black-
box heuristic. In practice, local search has been the most frequently used embedded
heuristic, but in fact any optimizer can be used, be it deterministic or not.

The purpose of this review is to give a detailed description of the ideas underly-
ing iterated local search and to show where it stands in terms of performance. So
far, in spite of its conceptual simplicity, it has led to a number of state-of-the-art
results without the use of too much problem-specific knowledge. Perhaps this is be-
cause iterated local search is very malleable, as many implementation choices are
left to the developer and problem-specific knowledge can be incorporated in many
different ways.

5 Iterated Local Search: Framework and Applications 131

We have organized this chapter as follows. First we give a high-level presentation
of iterated local search in Sect. 5.2. Then we discuss the importance of the differ-
ent parts of the metaheuristic in Sect. 5.3, especially the subtleties associated with
perturbing the solutions. In Sect. 5.4 we go over past work aimed at testing iterated
local search in practice, while in Sect. 5.5 we discuss similarities and differences
between iterated local search and other metaheuristics. The chapter closes with a
summary of what has been achieved so far and an outlook on what the near future
may look like.

5.2 Iterating a Local Search

5.2.1 General Framework

We assume we have been given a problem-specific heuristic optimization algorithm
that from now on we shall refer to as a local search (even if in fact it is not a true
local search). This algorithm is implemented via a computer routine that we call
LocalSearch. The question we ask is “Can such an algorithm be improved by the
use of iteration?”. Our answer is “YES”, and in fact the improvements obtained in
practice are usually significant. Only in rather pathological cases where the iteration
method is “incompatible” with the local search will the improvement be minimal.
In the same vein, in order to have the largest possible improvement, it is necessary
to have some understanding of the way the LocalSearch works. However, to keep
this presentation as simple as possible, we shall ignore for the time being these com-
plications; the additional subtleties associated with tuning the iteration to the local
search procedure will be discussed in Sect. 5.3. Furthermore, all issues associated
with the actual speed of the algorithm are omitted in this first section as we wish to
focus solely on the high-level architecture of iterated local search.

Let C be the cost function of our combinatorial optimization problem; C is to be
minimized. We label candidate solutions or simply “solutions” by s, and denote by
S the set of all s (for simplicity S is taken to be finite, but it does not matter much).
Finally, for the purposes of this high-level presentation, we assume that the local
search procedure is deterministic and memoryless1: for a given input s, it always
outputs the same solution s∗ whose cost is less than or equal to C(s). LocalSearch
then defines a many to one mapping from the set S to the smaller set S∗ = {s∗} of
locally optimal solutions. To have a pictorial view of this, we introduce the “basin
of attraction” of a local minimum s∗ as the set of solutions s that are mapped to
s∗ under the local search routine. LocalSearch then takes an s ∈ S as a starting
solution and produces a local optimum s∗ ∈ S∗ at the bottom of the corresponding
basin of attraction.

1 The reader can check that very little of what we say really uses this property, and in practice,
many successful implementations of iterated local search have non-deterministic local searches or
include memory.

132 H. R. Lourenço et al.

cost

pr
ob

ab
il

it
y

de
n

si
ty

s

s*

Fig. 5.1 Probability densities of costs. The curve labeled s indicates the left tail of the cost density
function for all solutions, while the curve labeled s∗ indicates the cost density function for the
solutions that are local optima

Now take an s or an s∗ at random. Typically, the cost distribution has a very
rapidly rising part at the lowest values. In Fig. 5.1 we show the kind of distributions
found in practice for combinatorial optimization problems having a finite solution
space. The distribution of costs is bell-shaped, with a mean and variance that is
significantly smaller for solutions in S∗ than for those in S . As a consequence, it
is much better to use local search than to sample randomly in S if one seeks low
cost solutions. The essential ingredient necessary for local search is a neighborhood
structure. This means that S is a “space” with some topological structure, not just a
set. Having such a space allows one to move from one solution s to a better one in
an intelligent way, something that would not be possible if S were just a set.

Now the question is how to go beyond this use of LocalSearch. More precisely,
given the mapping from S to S∗, how can one further reduce the costs found without
opening up and modifying LocalSearch, leaving it as a “black box” routine?

5.2.2 Random Restart

The simplest possibility to improve upon a cost found by LocalSearch is to repeat
the search from another starting point. Every s∗ generated is then independent, and
the use of multiple trials allows one to reach the lower part of the distribution. Al-
though such a “random restart” approach with independent samplings is sometimes
a useful strategy (in particular when all other options fail), it breaks down as the in-
stance size grows because in the limit, the tail of the cost distribution collapses. In-
deed, empirical studies [69] and general arguments [112] indicate that local search
algorithms on large generic instances lead to costs that: (1) have a mean that is a
fixed percentage above the optimum cost; (2) have a distribution that becomes arbi-

5 Iterated Local Search: Framework and Applications 133

trarily peaked around the mean when the instance size goes to infinity. This second
property makes it impossible in practice to find an s∗ whose cost is even a little bit
lower percentage-wise than the typical cost. Note, however, that there do exist many
solutions of significantly lower cost, it is just that random sampling has a lower and
lower probability of finding them as the instance size increases. To reach those con-
figurations, a biased sampling is necessary; this is precisely what is accomplished
by a stochastic search.

5.2.3 Searching in S∗

To overcome the problem just mentioned associated with large instance sizes, re-
consider what local search does: it takes one solution from S where C has a large
mean to a solution in S∗ where C has a smaller mean. It is then natural to invoke
recursion: use local search to go from S∗ to a smaller space S∗∗ where the mean cost
is even lower! That would correspond to an algorithm with one local search nested
inside another. Such a construction could be iterated for as many levels as desired,
leading to a hierarchy of nested local searches. But upon closer scrutiny, we see that
the problem is precisely how to formulate local search beyond the lowest level of
the hierarchy: local search requires a neighborhood structure and this is not a priori
given. The fundamental difficulty is to define neighbors in S∗ so that they can be
enumerated and accessed efficiently. Furthermore, it is desirable for neighbors in S∗
to be relatively close according to the distance metric defined in space S; if this were
not the case, a stochastic search on S∗ would have little chance of being effective.

Upon further thought, it transpires that one can introduce a good neighborhood
structure on S∗ as follows. First, one recalls that a neighborhood structure on set S
directly induces a neighborhood structure on subsets of S: two subsets are neighbors
simply if they contain solutions that are neighbors. Second, take these subsets to be
the basins of attraction of the solutions in S∗; this leads us to associate any s∗ ∈ S∗
with its basin of attraction. Then, this immediately provides the “canonical” notion
of neighborhood on S∗, which can be stated in a simple way: s∗1 and s∗2 are neighbors
in S∗ if their basins of attraction intersect (i.e., they contain neighbor solutions in S).
Unfortunately this definition has the major drawback that one cannot in practice list
the neighbors of s∗ because there is no computationally efficient method for finding
all solutions s in the basin of attraction of s∗. Nevertheless, we can stochastically
generate neighbors as follows. Starting from s∗, create a randomized path in S , s1,
s2, . . . , si, where s j+1 is a neighbor of s j. Determine the first s j in this path that
belongs to a different basin of attraction so that applying local search to s j leads to
s∗′ �= s∗. Then s∗′ is a neighbor of s∗.

Given this procedure, we can in principle perform a local search2 in S∗. Extend-
ing the argument recursively, we see that it would be possible to have an algorithm
implementing nested searches, performing local search on S , S∗, S∗∗, and so on,

2 Note that the local search finds neighbors stochastically; generally there is no efficient way to
ensure that one has tested all the neighbors of any given s∗.

134 H. R. Lourenço et al.

in a hierarchical way. Unfortunately, the implementation of a neighbor search at the
level of S∗ is too costly computationally because of the number of times one has
to execute LocalSearch. Thus we are led to abandon the (stochastic) search for
neighbors in S∗; instead we use a weaker notion of closeness which then allows for
a fast stochastic search in S∗. Our construction leads to a (biased) sampling of S∗.
Such a sampling will be better than a random one if it is possible to find appropri-
ate computational ways to go from one s∗ to another. Finally, one last advantage of
this modified notion of closeness is that it does not require basins of attraction to
be defined; the local search can then incorporate memory or be non-deterministic,
making the method far more general.

5.2.4 Iterated Local Search

We want to explore S∗ using a walk that steps from one s∗ to a “nearby” one, with-
out the constraint of using only neighbors as defined above. Iterated local search
(ILS) achieves this heuristically as follows. Given the current s∗, we first apply a
change or perturbation that leads to an intermediate state s′ (which belongs to S).
Then LocalSearch is applied to s′ and we reach a solution s∗′ in S∗. If s∗′ passes an
acceptance test, it becomes the next element of the walk in S∗; otherwise, we return
to s∗. The resulting walk is a case of a stochastic search in S∗, but where neighbor-
hoods are never explicitly introduced. This iterated local search procedure should
lead to good biased sampling as long as the perturbations are neither too small nor
too large. If they are too small, one will often fall back to s∗ and few new solutions
of S∗ will be explored. If on the contrary the perturbations are too large, s′ will be
random, there will be no bias in the sampling, and we will recover a random restart
type algorithm.

The overall ILS procedure is pictorially illustrated in Fig. 5.2. To be complete, let
us note that generally the iterated local search walk will not be reversible; in partic-
ular one may sometimes be able to step from s∗1 to s∗2 but not from s∗2 to s∗1. However,
this “unfortunate” aspect of the procedure does not prevent ILS from being very
effective in practice.

Since deterministic perturbations may lead to short cycles (for instance of length
two), one should randomize the perturbations or make them adaptive to avoid this
kind of cycling. If the perturbations depend on any of the previous s∗, one has a
walk in S∗ with memory. Now the reader may have noticed that aside from the issue
of perturbations (which use the structure on S), our formalism reduces the problem
to that of a stochastic search on S∗. Then all bells and whistles (diversification,
intensification, tabu, adaptive perturbations and acceptance criteria, etc. . . .) that
are commonly used in that context may be applied here. This leads us to define
iterated local search as a metaheuristic having the high level architecture given by
Algorithm 1.

5 Iterated Local Search: Framework and Applications 135

perturbation

solution space S

co
st

s* s*’

s’

Fig. 5.2 Pictorial representation of iterated local search. Starting with a local minimum s∗, we
apply a perturbation leading to a solution s′. After applying LocalSearch, we find a new local
minimum s∗′ that may be better than s∗

Algorithm 1 Iterated local search
1: s0 = GenerateInitialSolution
2: s∗ = LocalSearch(s0)
3: repeat
4: s′ = Perturbation(s∗,history)
5: s∗′ = LocalSearch(s′)
6: s∗ = AcceptanceCriterion(s∗,s∗′,history)
7: until termination condition met

In practice, much of the potential complexity of ILS is hidden in the history
dependence. If there happens to be no such dependence, the walk has no memory3:
the perturbation and acceptance criterion do not depend on any of the solutions
visited previously during the walk, and one accepts or not s∗′ with a fixed rule. This
leads to random walk dynamics on S∗ that are “Markovian”, i.e., the probability of
making a particular step from s∗1 to s∗2 depends only on s∗1 and s∗2. Most of the work
using ILS has been of this type, though studies show that incorporating memory
enhances performance [115].

Staying within Markovian walks, the most basic acceptance criteria will use only
the difference in the costs of s∗ and s∗′; this type of dynamics for the walk is then
very similar in spirit to what occurs in simulated annealing. A limiting case of this is
to accept only improving moves, as happens in simulated annealing at zero temper-
ature; the algorithm then does stochastic descent in S∗. If we add to such a method

3 Recall that to simplify this section’s presentation, the local search is assumed to have no memory.

136 H. R. Lourenço et al.

a termination criterion, the resulting algorithm pretty much has two nested local
searches; to be precise, it has a local search operating on S embedded in a stochas-
tic search operating on S∗. More generally, one can extend this type of algorithm
to more levels of nesting, having a different stochastic search algorithm for S∗, S∗∗
and so on. Each level would be characterized by its own type of perturbation and
stopping rule; to our knowledge, such a construction has never been attempted.

We can summarize this section by saying that the potential power of iterated lo-
cal search lies in its biased sampling of the set of local optima. The efficiency of this
sampling depends both on the kinds of perturbations and on the acceptance criteria.
Interestingly, even with the most naïve implementations of these components, iter-
ated local search is much better than random restart. But still much better results can
be obtained if the iterated local search modules are optimized. First, the acceptance
criteria can be adjusted empirically as in simulated annealing without knowing any-
thing about the problem being optimized. This kind of optimization will be familiar
to any user of metaheuristics, though the questions of memory may become quite
complex. Second, the perturbation can incorporate as much problem-specific infor-
mation as the developer is willing to put into it. In practice, a rule of thumb can
be used as a guide: “a good perturbation transforms one excellent solution into an
excellent starting point for a local search”. Together, these different aspects show
that iterated local search algorithms can have a wide range of complexity, but com-
plexity may be added progressively and in a modular way. (Recall in particular that
all of the fine-tuning that resides in the embedded local search can be ignored if
one wants, and it does not appear in the metaheuristic per se.) This makes iterated
local search an appealing metaheuristic for both academic and industrial applica-
tions. The cherry on the cake is speed: as we shall see soon, one can perform k local
searches embedded within an iterated local search much faster than if the k local
searches are run with random restart.

5.3 Getting High Performance

Given all these advantages, we hope the reader is now motivated to go on and con-
sider the more nitty-gritty details that arise when developing an ILS algorithm for
a new application. In this section, we will illustrate the main issues that need to be
tackled when optimizing an ILS algorithm in order to achieve high performance.

There are four components to consider: GenerateInitialSolution, LocalSearch,
Perturbation, and AcceptanceCriterion. Before attempting to develop a state-of-
the-art algorithm, it is relatively straightforward to develop a more basic version
of ILS. Indeed, (1) one can start with a random solution or one returned by some
greedy construction heuristic; (2) for most problems a local search algorithm is read-
ily available; (3) for the perturbation, a random move in a neighborhood of higher

5 Iterated Local Search: Framework and Applications 137

order than the one used by the local search algorithm can be surprisingly effective;
and (4) a reasonable first guess for the acceptance criterion is to force the cost to de-
crease, corresponding to a stochastic first-improvement algorithm in S∗. Basic ILS
implementations of this type usually lead to much better performance than random
restart approaches. The developer can then run this basic ILS to build his intuition
and try to improve the overall algorithm performance by improving each of the four
modules. This should be particularly effective if it is possible to take into account
the specificities of the combinatorial optimization problem under consideration. In
practice, this tuning is easier for ILS than for other, less modular metaheuristics.
The reason may be that the complexity of ILS is reduced by its modularity, the func-
tion of each component being relatively easy to understand. Finally, the last task to
consider is the overall optimization of the ILS algorithm; indeed, the different com-
ponents affect one another and so it is necessary to understand their interactions.
However, because these interactions are so problem dependent, we wait till the end
of this section before discussing that kind of “global” optimization.

Perhaps the main message here is that the developer can choose the level of
optimization he wants. In the absence of any optimizations, ILS is a simple, easy
to implement, and quite effective metaheuristic. But with further work on its four
components, ILS can often be turned into a very competitive or even state-of-the-art
algorithm.

5.3.1 Initial Solution

Local search applied to the initial solution s0 gives the starting point s∗0 of the walk
in S∗. Starting with a good s∗0 can be important if high-quality solutions are to be
reached as fast as possible.

Standard choices for s0 are either a random initial solution or a solution returned
by a greedy construction heuristic. A greedy initial solution s0 has two main advan-
tages over random starting solutions: (1) when combined with local search, greedy
initial solutions often result in better quality solutions s∗0; (2) a local search from
greedy solutions takes, on average, less improvement steps and therefore the local
search requires less CPU time.4

4 Note that the best possible greedy initial solution need not be the best choice when combined
with a local search. For example, in [69], it is shown that the combination of the Clarke-Wright
starting tour (one of the best performing TSP construction heuristics) with local search resulted
in worse local optima than starting from random initial solutions when using 3-opt. Additionally,
greedy algorithms which generate very high quality initial solutions can be quite time-consuming.

138 H. R. Lourenço et al.

3880

3900

3920

3940

3960

3980

4000

4020

4040

1 10 100 1000

M
ak

es
pa

n

CPU time [seconds]

NEH start
Random start

3720

3740

3760

3780

3800

3820

3840

3860

3880

1 10 100 1000

M
ak

es
pa

n

CPU time [seconds]

NEH start
Random start

Fig. 5.3 The plots show the average solution cost (makespan on the y-axis) as a function of CPU
time (given on the x-axis) for an ILS algorithm applied to the PFSP on instances ta051 and
ta056

The question of an appropriate initial solution for (random restart) local search
carries over to ILS because of the dependence of the walk in S∗ on s∗0. Indeed, when
starting with a random s0, ILS may take several iterations to catch up in quality with
runs using an s∗0 obtained by a greedy initial solution. Hence, for short computation
times the initial solution is certainly important to achieve the highest possible solu-
tion quality. For larger computation times, the dependence on s0 of the final solution
returned by ILS reflects just how fast, if at all, the memory of the initial solution is
lost when performing the walk in S∗.

Let us illustrate the tradeoffs between random and greedy initial solutions when
using an ILS algorithm for the permutation flow shop problem (PFSP) [114]. That
ILS algorithm uses a straightforward local search implementation, random pertur-
bations, and only accepts better quality solutions in the acceptance test. In Fig. 5.3
we show how the average solution cost (makespan) evolves with the number of it-
erations for two instances. The averages are for 10 independent runs when starting
from random initial solutions or from initial solutions returned by the NEH heuris-
tic [98]. (NEH is one of the best performing constructive heuristics for the PFSP.)
For short runs, the curve for the instance on the right shows that the NEH initial
solutions lead to better average solution cost than random initial solutions. But, for
longer times, the picture is not so clear. Sometimes, random initial solutions lead to
better average results as observed on the instance on the left. This kind of test was
also performed for ILS applied to the TSP [3]. Again it was observed that the initial
solution had a significant influence on quality for short to medium sized runs.

In general, there will not always be a clear-cut answer regarding the best choice
of an initial solution, but greedy initial solutions appear to be recommendable when
one needs low-cost solutions quickly. For much longer runs, the initial solution
seems to be less relevant, so the user can choose the initial solution which is the
easiest to implement. If, however, one has an algorithm where the influence of the
initial solution does persist for long times, the ILS walk is probably having diffi-
culty in exploring S∗ and so other perturbations or acceptance criteria should be
considered.

5 Iterated Local Search: Framework and Applications 139

5.3.2 Perturbation

The main drawback of iterative improvement is that it gets trapped in local optima
that are significantly worse than the global optimum. Much like simulated anneal-
ing, ILS escapes from local optima by applying perturbations to the current local
minimum. We will refer to the strength of a perturbation as the number of solution
components that are modified. For the TSP, for example, it is the number of edges
that are modified in the tour, while in the flow shop problem, it is the number of
jobs which are moved by the perturbation. Generally, the local search should not
be able to undo the perturbation, otherwise one will fall back into the local opti-
mum just visited. Surprisingly, a random move in a neighborhood of higher order
than the one used by the local search algorithm can often achieve this and will lead
to a satisfactory algorithm. Still better results can be obtained if the perturbations
take into account properties of the problem and are well matched to the local search
algorithm.

By how much should the perturbation change the current solution? If the pertur-
bation is too strong, ILS may behave like a random restart, so better solutions will
only be found with a very low probability. On the other hand, if the perturbation
is too small, the local search will often fall back into the local optimum just visited
and the diversification of the search will be very limited. An example of a simple but
effective perturbation for the TSP is the double-bridge move. This perturbation cuts
four edges (and is thus of “strength” four) and introduces four new ones as shown
in Fig. 5.4. Notice that each bridge is a two-change, but neither of the two-changes
individually keeps the tour connected. Nearly all ILS studies of the TSP have incor-
porated this kind of perturbation, and it has been found to be effective for all instance
sizes. This is almost certainly because it changes the topology of the tour and can
operate on quadruples of very distant cities, whereas local search always modifies
the tour among nearby cities. In effect, the double-bridge perturbation cannot be
undone easily, neither by simple local search algorithms such as 2-opt or 3-opt, nor
by most local search algorithms based on the Lin-Kernighan heuristic [80], which
is currently the champion local search algorithm for the TSP. (Only very few local
searches include such double-bridge changes in the search, the best known being
the Lin-Kernighan implementation of Helsgaun [57, 58].) Furthermore, this pertur-
bation does not increase much the tour length, so even if the current solution is very
good, one is almost sure the next one will be good, too. These two properties of
the perturbation—its small strength and its fundamentally different nature from the
changes used in local search—make the TSP the perfect application for ILS.

140 H. R. Lourenço et al.

A

BC

D

Fig. 5.4 Schematic representation of the double-bridge move. The four dotted edges are removed
and the remaining parts A, B, C, D are reconnected by the dashed edges

We will now consider optimizing the perturbation assuming the other modules
to be fixed. In problems like the TSP, one can hope to have a satisfactory ILS when
using perturbations of fixed size (independent of the instance size). On the contrary,
for more difficult problems, fixed-strength perturbations may lead to poor perfor-
mance. Of course, the strength of the perturbations used is not the whole story; their
nature is almost always very important and will also be discussed. Finally we will
close by pointing out that the perturbation strength has an effect on the speed of the
local search: weak perturbations usually lead to faster execution of LocalSearch.
All these different aspects need to be considered when optimizing this module.

5.3.2.1 Perturbation Strength

For some problems, an appropriate perturbation strength is very small and seems
to be rather independent of the instance size. This is the case for both the TSP and
the PFSP, and, interestingly, ILS for these problems is very competitive with to-
day’s best metaheuristic methods. We can also consider other problems where one
is driven instead to large perturbation sizes. Consider the example of an ILS al-
gorithm for the quadratic assignment problem (QAP). We use an embedded 2-opt
local search algorithm, the perturbation is a random exchange of the location of
k items, where k is an adjustable parameter, and the acceptance criterion only ac-
cepts better quality solutions. We applied this ILS algorithm to QAPLIB instances5

from four different classes of QAP instances [120]; computational results are given
in Table 5.1. A first observation is that the best perturbation size is strongly de-
pendent on the particular instance. For two of the instances, the best performance
was achieved when as many as 75% of the solution components were altered by

5 QAPLIB is accessible at http://www.seas.upenn.edu/qaplib.

http://www.seas.upenn.edu/qaplib

5 Iterated Local Search: Framework and Applications 141

Table 5.1 The first column gives the identifier of the QAP instance; the number in the identifier
gives its size n

Instance 3 n/12 n/6 n/4 n/3 n/2 3n/4 n
kra30a 2.51 2.51 2.04 1.06 0.83 0.42 0.0 0.77
sko64 0.65 1.04 0.50 0.37 0.29 0.29 0.82 0.93
tai60a 2.31 2.24 1.91 1.71 1.86 2.94 3.13 3.18
tai60b 2.44 0.97 0.67 0.96 0.82 0.50 0.14 0.43

The successive columns are for perturbation sizes 3, n/12, · · · , n. A perturbation of size n corre-
sponds to random restart. The table shows the average solution cost measured across 10 indepen-
dent runs for each instance. The CPU-time for each trial is 30 s. for kra30a, 60 s. for tai60a
and sko64, and 120 s. for tai60b on a Pentium III 500 MHz PC

the perturbation. Additionally, when the perturbation strength is too small, the ILS
performed worse than random restart (corresponding to the perturbation strength
n). However, the fact that random restart for the QAP may perform—on average—
better than a basic ILS algorithm is a bit misleading: in the next section we will
show that by modifying a bit the acceptance criterion, ILS becomes far better than
random restart. Thus, one should keep in mind that the optimization of an ILS algo-
rithm may require more than the optimization of the individual components.

5.3.2.2 Adaptive Perturbations

The behavior of ILS for the QAP and also for other combinatorial optimization
problems [59, 114, 116] shows that there is no a priori single best size for the per-
turbation. This observation motivates the possibility of modifying the perturbation
strength and adapting it during the run.

To this end, one approach is to exploit the search history. For the development of
such schemes, inspiration can be taken from what is done in the context of reactive
search [9, 10]. In particular, Battiti and Protasi proposed a reactive search algorithm
for MAX-SAT, which fits perfectly into the ILS framework [9]. They perform a
perturbation scheme which is implemented by a tabu search algorithm and after
each perturbation they apply a standard local improvement algorithm. An alternative
is to use feedback from the search process to adapt the choice of the perturbation
operators [19].

Another way of adapting the perturbation is to change its strength during the
search according to an a priori defined scheme. One particular example is employed
in basic variable neighborhood search (basic VNS) [53, 95]; we refer to Sect. 5.5 for
some explanations on VNS. Other examples arise in the context of tabu search [49].
In particular, ideas such as strategic oscillations may be useful to derive more effec-
tive perturbations.

142 H. R. Lourenço et al.

5.3.2.3 More Complex Perturbation Schemes

Perturbations can be more complex than random changes in a higher order neighbor-
hood. One rather general procedure to generate s′ from the current s∗ is as follows.
First, gently modify the definition of the instance, e.g., via the parameters defin-
ing the various costs. Second, for this modified instance, run LocalSearch using
s∗ as input; the output is the perturbed solution s′. Interestingly, this is the method
proposed in the oldest ILS work we are aware of: Baxter tested this approach with
success on a location problem [13]. This idea seems to have been rediscovered later
by Codenotti et al. in the context of the TSP [26]. They first change slightly the
city coordinates. Then they apply the local search to s∗ using the perturbed city lo-
cations, obtaining the new tour s′. Finally, running LocalSearch on s′ using the
unperturbed city coordinates, they obtain the new candidate tour s∗′.

Other sophisticated ways to generate good perturbations consist in optimizing a
sub-part of the problem. Such an approach was proposed by Lourenço [82] in the
context of the job shop scheduling problem (JSP). Her perturbation schemes are
based on defining one- or two-machine sub-problems by fixing a number of vari-
ables in the current solution and solving these sub-problems, either heuristically [83]
or to optimality using for instance Carlier’s exact algorithm [22] or the early-late al-
gorithm [83]. These schemes work well because: (1) local search is unable to undo
the perturbations; (2) after the perturbation, the solutions tend to be very good and
also have “new” parts that are optimized. Even evolutionary algorithms have been
used to generate perturbations for ILS algorithms [85]. The idea in this approach
is to generate a small initial population of solutions by perturbing the best-so-far
solution, to perform a short run of a GA with this population and then to use the
best solution found in this process as a new starting solution for the local search.

5.3.2.4 Speed

In the context of “easy” problems where ILS can work very well with weak (fixed
size) perturbations, there is another reason why that metaheuristic can perform much
better than random restart: Speed. Indeed, LocalSearch will usually execute much
faster on a solution obtained by applying a small perturbation to a local optimum
than on a random solution. As a consequence, iterated local search can run many
more local searches than random restart for the same CPU time. As a qualitative
example, consider again Euclidean TSPs. O(n) local changes have to be applied by
the local search to reach a local optimum from a random starting solution, whereas
empirically a nearly constant number is necessary in ILS when using the s′ obtained
with the double-bridge perturbation. Hence, in a given amount of CPU time, ILS
can sample many more local optima than random restart can. This speed factor can
give ILS a considerable advantage over other restart schemes.

Let us illustrate this speed factor quantitatively. We compared the number of
local searches performed in a given amount of CPU time for the TSP by: (1) ran-
dom restart; (2) ILS using a double-bridge move; (3) ILS using five simultaneous
double-bridge moves. (For both ILS implementations, we used random starting so-

5 Iterated Local Search: Framework and Applications 143

lutions and the routine AcceptanceCriterion accepted only shorter tours.) For our
numerical tests we used a 3-opt implementation with standard speed-up techniques.
In particular, it used a fixed radius nearest neighbor search restricted to candidate
lists with the 40 nearest neighbors of each city and “don’t look” bits [15, 69, 88].
Initially, all don’t look bits were turned off (set to 0). If no improving move was
found for a given node, its don’t look bit was turned on (set to 1) and the node was
not considered as a starting node for finding an improving move in the next iteration.
When an arc incident to a node was changed by a move, the node’s don’t look bit
was turned off again. In addition, after a perturbation we only turned off the don’t
look bits of the 25 cities around each of the four breakpoints in the current tour.
All three algorithms were run for 120 s on a 266 MHz Pentium II processor on a
set of TSPLIB6 instances ranging from 100 up to 5915 cities. Results are given in
Table 5.2. For the smallest instances, we see that iterated local search ran between 2
and 10 times as many local searches as random restart. This advantage of ILS grows
fast with increasing instance size: for the largest instance, the first ILS algorithm ran
approximately 260 times as many local searches as random restart in the available
time. Obviously, this speed advantage of ILS over random restart is strongly depen-
dent on the strength of the applied perturbation. The larger the perturbation size, the
more the solution is modified and generally the longer the subsequent local search
takes. This fact is intuitively obvious and it is confirmed in Table 5.2.

In summary, the optimization of the perturbations depends on many factors, and
problem-specific characteristics play a central role. It is important to keep in mind
that the perturbations interact with the other components of ILS. We will discuss
these interactions in Sect. 5.3.5.

Table 5.2 The first column gives the identifier of the TSP instance, where the number in the iden-
tifier specifies the number of cities

Instance #LSRR #LS1-DB #LS5-DB

kroA100 17,507 56,186 34,451
d198 7715 36,849 16,454
lin318 4271 25,540 9430
pcb442 4394 40,509 12,880
rat783 1340 21,937 4631
pr1002 910 17,894 3345
pcb1173 712 18,999 3229
d1291 835 23,842 4312
fl1577 742 22,438 3915
pr2392 216 15,324 1777
pcb3038 121 13,323 1232
fl3795 134 14,478 1773
rl5915 34 8820 556

The next columns give the number of local searches performed when using: (1) random restart
(#LSRR); (2) ILS with a single double-bridge perturbation (#LS1−DB); (3) ILS with a five double-
bridge perturbation (#LS5−DB). All algorithms were run for 120 s on a PC with a 266 MHz Pentium
processor

6 TSPLIB is accessible at www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.

www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95

144 H. R. Lourenço et al.

5.3.3 Acceptance Criterion

ILS does a randomized walk in S∗, the space of local minima. The perturbation
mechanism together with the local search defines the possible transitions between a
current solution s∗ in S∗ to a “neighboring” solution s∗′ also in S∗. The procedure
AcceptanceCriterion then determines whether s∗′ is accepted or not as the new
current solution. AcceptanceCriterion has a strong influence on the nature and ef-
fectiveness of the walk in S∗. Roughly, it can be used to control the balance between
intensification and diversification of that search. A simple way to illustrate this is to
consider a Markovian acceptance criterion. A very strong intensification is achieved
if only better solutions are accepted. We call this acceptance criterion Better and
it is defined for minimization problems as:

Better(s∗,s∗′,history) =

⎧⎨
⎩

s∗′ if C(s∗′)< C(s∗)

s∗ otherwise.
(5.1)

At the opposite extreme is the random walk acceptance criterion (denoted by RW)
which always applies the perturbation to the most recently visited local optimum,
irrespective of its cost:

RW(s∗,s∗′,history) = s∗′. (5.2)

This criterion clearly favors diversification over intensification.
Many intermediate choices between these two extreme cases are possible. In one

of the first ILS algorithms, the large-step Markov chain (LSMC) algorithm proposed
by Martin et al. [88, 89], a simulated annealing type acceptance criterion was ap-
plied. We call it LSMC(s∗,s∗′,history). In particular, s∗′ is always accepted if it is
better than s∗. Otherwise, if s∗′ is worse than s∗, s∗′ is accepted with probability
exp{(C(s∗)−C(s∗′))/T} where T is a parameter called temperature, which is usu-
ally lowered during the run as in simulated annealing. Note that LSMC approaches
the RW acceptance criterion if T is very high, while at very low temperatures LSMC
is similar to the Better acceptance criterion. An interesting possibility for LSMC
is to allow non-monotonic temperature schedules as proposed for simulated anneal-
ing [63] or tabu thresholding [47]. This can be most effective if it is done using
memory: when further intensification no longer seems useful, increase the temper-
ature to do diversification for a limited time, then resume intensification. Of course,
just as in tabu search, it is desirable to do this in an automated and self-regulating
manner [49].

A very limited usage of memory in the acceptance criterion is to restart the ILS
algorithm when the intensification seems to become ineffective. (Of course, this is
a rather extreme way to switch from intensification to diversification.) For instance
one can restart the ILS algorithm from a new initial solution if no improved solution
has been found for a given number of iterations. The restart of the algorithm can
easily be modeled by the acceptance criterion Restart(s∗,s∗′,history). Let ilast
be the last iteration where a better solution has been found and i be the iteration
counter. Then Restart(s∗,s∗′,history) is defined as

5 Iterated Local Search: Framework and Applications 145

Restart(s∗,s∗′,history) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s∗′ if C(s∗′)< C(s∗)

s if C(s∗′)≥ C(s∗) and i− ilast > ir

s∗ otherwise.

(5.3)

where ir is a parameter that indicates that the algorithm should be restarted if no
improved solution was found for ir iterations. Typically, s can be generated in dif-
ferent ways. The simplest strategy is to generate a new solution randomly or by a
greedy randomized heuristic. Clearly many other ways to incorporate memory may
and should be considered, the overall efficiency of ILS being quite sensitive to the
acceptance criterion applied. We now illustrate this with two examples.

Table 5.3 Influence of the acceptance criterion for various TSP instances

Instance Δavg(RR) Δavg(RW) Δavg(Better)
kroA100 0.0 0.0 0.0
d198 0.003 0.0 0.0
lin318 0.66 0.30 0.12
pcb442 0.83 0.42 0.11
rat783 2.46 1.37 0.12
pr1002 2.72 1.55 0.14
pcb1173 3.12 1.63 0.40
d1291 2.21 0.59 0.28
fl1577 10.3 1.20 0.33
pr2392 4.38 2.29 0.54
pcb3038 4.21 2.62 0.47
fl3795 38.8 1.87 0.58
rl5915 6.90 2.13 0.66

The first column gives the identifier of the TSP instance, where the number in the identifier specifies
the number of cities. The next columns give the average percentage over the optimal tour length
obtained using: random restart (RR), iterated local search with RW, and iterated local search with
Better. The results are averaged over 10 independent runs. All algorithms were run for 120 s on
a PC with a 266 MHz Pentium processor

5.3.3.1 Example 1: TSP

Let us consider the effect of the two acceptance criteria RW and Better. We per-
formed our tests on the TSP as summarized in Table 5.3. We give the average per-
centage over the known optimal solutions when using 10 independent runs on our
set of benchmark instances. In addition, we also give this number for the random
restart 3-opt algorithm. First, we observe that both ILS algorithms lead to a sig-
nificantly better average solution quality than random restart using the same local
search. This is particularly true for the largest instances, confirming the claims made
in Sect. 5.2. Second, given that one expects good solutions for the TSP to cluster (see

146 H. R. Lourenço et al.

Sect. 5.3.5), a good strategy should incorporate intensification. It is thus not surpris-
ing to see that the Better criterion leads to shorter tours than the RW criterion.

The runs given in this example are rather short. For much longer runs, the
Better strategy comes to a point where it no longer finds improved tours. In fact,
an analysis of ILS algorithms based on the run-time distribution methodology [62]
has shown that such stagnation situations effectively occur and that the performance
of the ILS algorithm can be considerably improved by additional diversification
mechanisms [117], an occasional restart of the ILS algorithm being the conceptu-
ally simplest case.

Table 5.4 Further tests on the QAP benchmark instances using the same perturbations and CPU
times than for Table 5.1; given is the average solution cost measured across 10 independent runs
for each instance

Instance Acceptance 3 n/12 n/6 n/4 n/3 n/2 3n/4 n
kra30a Better 2.51 2.51 2.04 1.06 0.83 0.42 0.0 0.77
kra30a RW 0.0 0.0 0.0 0.0 0.0 0.02 0.47 0.77
kra30a Restart 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.77
sko64 Better 0.65 1.04 0.50 0.37 0.29 0.29 0.82 0.93
sko64 RW 0.11 0.14 0.17 0.24 0.44 0.62 0.88 0.93
sko64 Restart 0.37 0.31 0.14 0.14 0.15 0.41 0.79 0.93
tai60a Better 2.31 2.24 1.91 1.71 1.86 2.94 3.13 3.18
tai60a RW 1.36 1.44 2.08 2.63 2.81 3.02 3.14 3.18
tai60a Restart 1.83 1.74 1.45 1.73 2.29 3.01 3.10 3.18
tai60b Better 2.44 0.97 0.67 0.96 0.82 0.50 0.14 0.43
tai60b RW 0.79 0.80 0.52 0.21 0.08 0.14 0.28 0.43
tai60b Restart 0.08 0.08 0.005 0.02 0.03 0.07 0.17 0.43

Here we consider three different choices for the acceptance criterion. Clearly, the inclusion of
diversification significantly lowers the average cost found

5.3.3.2 Example 2: QAP

Let us come back to ILS for the QAP. For this problem we found that the accep-
tance criterion Better together with a poor choice of the perturbation strength
could result in worse performance than random restart. In Table 5.4 we give results
for the same ILS algorithm except that we now also consider the use of the RW and
Restart acceptance criteria. We see that the performance of the ILS algorithms
using these acceptance criteria are much better than random restart, the only ex-
ception being for the ILS algorithm with RW for a small perturbation strength on
tai60b.

This example shows that there are strong interdependencies between the pertur-
bation strength and the acceptance criterion. This dependency is rarely completely
understood. But, as a general rule of thumb, when it is necessary to allow for diver-
sification, we believe it is best to do so by accepting numerous small perturbations
rather than by accepting one large perturbation.

5 Iterated Local Search: Framework and Applications 147

Most of the acceptance criteria applied so far in ILS algorithms are either fully
Markovian or make use of the search history in a very limited way. We expect that
there will be many more ILS applications in the future making strong use of the
search history; in particular, alternating between intensification and diversification
is likely to be an essential feature in these applications.

5.3.4 Local Search

So far we have treated the local search algorithm as a black box, which is called
many times by ILS. Since the behavior and performance of the over-all ILS algo-
rithm is quite sensitive to the choice of the embedded heuristic, one should optimize
this choice whenever possible. In practice, there may be many quite different algo-
rithms that can be used for the embedded heuristic. (As mentioned at the beginning
of the chapter, the heuristic needs not even be a local search.) One might think that
the better the local search, the better the corresponding ILS. Often this is true. For
instance in the context of the TSP, Lin-Kernighan [80] is a better local search than 3-
opt, which itself is better than 2-opt [69]. Using a fixed type of perturbation such as
the double-bridge move, one finds that iterated Lin-Kernighan gives better solutions
than iterated 3-opt which itself gives better solutions than iterated 2-opt [69, 117].
But if we assume that the total computation time is fixed, it might be better to apply
more frequently a faster but less effective local search algorithm than a slower and
more powerful one. Clearly, which choice is best depends on just how much more
time is needed to run the better heuristic. If the speed difference is not large, for ex-
ample if it is independent of the instance size, then it usually worth using the better
heuristic. This is the most frequent case; in the TSP, 3-opt is a bit slower than 2-opt,
but the improvement in quality of the tours is well worth the extra CPU time, be it
using random restart or iterated local search. The same comparison applies to using
Lin-Kernighan rather than 3-opt. However, there are other cases where the increase
in CPU time is so large compared to the improvement in solution quality that it is
best not to use the “better” local search. For example, again in the context of the
TSP, it is known that 4-opt gives slightly better solutions than 3-opt, but in standard
implementations it is O(n) times slower (n being the number of cities). It is then
better not to use 4-opt as the local search embedded in ILS.

There are also other aspects that should be considered when selecting a local
search. Clearly, there is not much point in having an excellent local search if it will
systematically undo the perturbation; however this issue is one of globally optimiz-
ing iterated local search, so it will be postponed till the next subsection. Another
important aspect is whether one can really get the speed-ups that were mentioned in
Sect. 5.3.2. There we saw that a standard speed-up for local search was to introduce
don’t look bits. They give a large gain in speed if the bits can also be reset after the
application of the perturbation. This requires that the developer be able to access the
source code of LocalSearch. A state-of-the-art ILS algorithm will take advantage
of all possible speed-up tricks, and thus the LocalSearch most likely will not be a
true black box.

148 H. R. Lourenço et al.

Finally, there may be some advantages in allowing LocalSearch to sometimes
generate worse solutions. For instance, if we replace the local search heuristic by
tabu search or short simulated annealing runs, the corresponding ILS may perform
better. This seems most promising when standard iterative improvement algorithms
perform poorly. This is indeed the case in the job-shop scheduling problem: the use
of tabu search as the embedded heuristic gives rise to a very effective iterated local
search [84].

5.3.5 Global Optimization of ILS

So far, we have considered representative issues arising when optimizing separately
each of the four components of an iterated local search. In particular, when illustrat-
ing various important characteristics of one component, we kept the other compo-
nents fixed. But clearly the optimization of one component depends on the choices
made for the others; as an example, we made it clear that a good perturbation must
have the property that it cannot be easily undone by the local search. Thus, one
should tackle the global optimization of an ILS. Since at present there is no signif-
icant theory for analyzing a metaheuristic such as iterated local search to support
its configuration, we will first give a rough idea of how such a global optimization
can be done in a manual algorithm engineering process. Over the recent years, the
engineering of effective algorithms has been made increasingly automated through
the usage of automatic algorithm configuration techniques and we will also shortly
discuss the possibilities these offer.

If we reconsider the subsection on the effect of the initial solution, we see that
GenerateInitialSolution is to a large extent irrelevant when the ILS performs well
and rapidly loses the memory of its starting point. Hereafter we assume that this
is the case; then the optimization of GenerateInitialSolution can be ignored and
we are left with the joint optimization of the three other components. Clearly the
best choice of Perturbation depends on the choice of LocalSearch while the best
choice of AcceptanceCriterion depends on the choices of LocalSearch and Per-
turbation. In practice, we can approximate this global optimization problem by
successively optimizing each component, assuming the others are fixed until no
improvements are found for any of the components [36]. Thus the only difference
with what has been presented in the previous sub-sections is that the optimization
has to be iterative. This does not guarantee global optimization of the ILS, but it
should lead to an adequate optimization of the overall algorithm.

Given these approximations, we should be more precise about what we want to
optimize. For most users, it will be the mean (over starting solutions) of the best cost
found during a run of a given length. Then the “best” choice for the different compo-
nents is a well defined problem, though it is intractable without further restrictions.
Furthermore, in general, the detailed instance that will be considered by the user
is not known ahead of time, so it is important that the resulting ILS algorithm be
robust. Thus it is preferable not to optimize it to the point where it is sensitive to the

5 Iterated Local Search: Framework and Applications 149

details of the instance. This robustness seems to be achieved in practice: researchers
implement versions of iterated local search with a reasonable level of global opti-
mization, and then test with some degree of success the performance on standard
benchmarks.

At the risk of repeating ourselves, let us highlight the main dependencies of the
components:

1. The perturbation should not be easily undone by the local search; if the local
search has obvious shortcomings, a good perturbation should compensate for
them.

2. The combination Perturbation–AcceptanceCriterion determines the relative
balance of intensification and diversification; large perturbations are only useful
if they can be accepted, which occurs only if the acceptance criterion is not too
biased towards better solutions.

As a general guideline, LocalSearch should be as powerful as possible as long as it
is not too costly in CPU time. Given such a choice, find a well adapted perturbation
following the discussion in Sect. 5.3.2; to the extent possible, take advantage of the
structure of the problem. Finally, set the AcceptanceCriterion routine so that S∗ is
sampled adequately. With this point of view, the overall optimization of the ILS is
nearly a bottom-up process, but with iteration. Perhaps the core issue is what to put
into Perturbation. In particular, is it possible to consider only weak perturbations?
From a theoretical point of view, the answer to this question depends on whether
the best solutions “cluster” in S∗. In some problems (and the TSP is one of them),
there is a strong correlation between the cost of a solution and its “distance” to the
optimum: in effect, the best solutions cluster together, i.e., have many similar com-
ponents. This has been referred to in many different ways: “Massif Central” phe-
nomenon [44], principle of proximate optimality [49], and replica symmetry [93].
If the problem under consideration has this property, it is not unreasonable to hope
to find the true optimum using a biased sampling of S∗. In particular, it is clear
that it is useful to use intensification to improve the probability of hitting the global
optimum.

There are, however, other types of problems where the clustering is incomplete,
i.e., where very distant solutions can be nearly as good as the optimum. Examples
of combinatorial optimization problems in this category are QAP, graph bi-section,
and MAX-SAT. When the space of solutions has this property, new strategies have
to be used. Clearly, it is still necessary to use intensification to get the best solu-
tion in one’s current neighborhood, but generally this will not lead to the optimum.
After an intensification phase, one must explore other regions of S∗. This can be
attempted by using “large” perturbations whose strength grows with the instance.
Other possibilities are to restart the algorithm from scratch and repeat another in-
tensification phase or by oscillating the acceptance criterion between intensification
and diversification phases. Additional ideas on the tradeoffs between intensification
and diversification are well discussed in the context of tabu search (see, for example,
[49]). Clearly, finding an appropriate balance of intensification vs. diversification is
very important but still a challenging problem.

150 H. R. Lourenço et al.

The steps outlined above are those generally followed in a manual algorithm en-
gineering process. In that case, it is important to carefully understand the main de-
pendencies between the algorithm components and to reduce the algorithm design
space to the most promising part. Over the last few years, however, the availability
of algorithmic techniques that automate the parameter setting and configuration of
optimization algorithms and, in particular, metaheuristic algorithms has increased.
Some early methods include the usage of F-races [16] and CALIBRA [1]. Over the
recent years, a number of powerful general-purpose algorithm configurators have
been proposed such as irace [7, 81], ParamILS [64], gender-based genetic algo-
rithms [2], or SMAC [65]. (Interestingly, one of these configurators, ParamILS, is
actually itself again an ILS algorithm that searches the algorithm parameter space
for high-performing algorithm configurations.) These configurators have shown to
be powerful and for a given algorithm skeleton, they reach often significant im-
provements over default algorithms settings or those obtained in a manual algo-
rithm configuration effort [60, 118]. Maybe more importantly, effective algorithm
configuration techniques have the potential to transform the metaheuristic develop-
ment process and moving it actually towards an automated algorithm design process
[61, 118]. When applying such a process to the design of an ILS algorithm, one
would implement possible ILS algorithm components inside a freely configurable
algorithm framework and then exploit automatic algorithm configuration techniques
to search the design space for high-performing algorithm configurations. For more
details on such a process, we refer to the chapter authored by Stützle and López-
Ibáñez in this Handbook.

5.4 Selected Applications of ILS

ILS algorithms have been applied successfully to a variety of combinatorial opti-
mization problems. In some cases, these algorithms achieve extremely high per-
formance and even constitute the current state-of-the-art algorithms, while in other
cases the ILS approach is merely competitive with other metaheuristics. In this sec-
tion, we give an overview of interesting ILS applications, presenting the core ideas
of these algorithms to illustrate possible uses of ILS. We put a particular emphasis
on the TSP, given its central role in the development of ILS algorithms.

5.4.1 ILS for the TSP

The TSP is probably the best-known combinatorial optimization problem. De facto,
it is a standard test-bed for the development of new algorithmic ideas: a good per-
formance on the TSP is taken as evidence of the value of such ideas. Like many
other metaheuristic algorithms, some of the first ILS algorithms were introduced
and tested on the TSP, the oldest case of this being due to Baum [11, 12]. He coined

5 Iterated Local Search: Framework and Applications 151

his method iterated descent; his tests used 2-opt as the embedded heuristic, ran-
dom 3-changes as the perturbations, and imposed the tour length to decrease (thus
the name of the method). His results were not impressive, in part because some al-
gorithm components were probably not the most appropriate and also because he
tackled non-Euclidean TSPs.

A major improvement in the performance of ILS algorithms came from the large-
step Markov chain algorithm proposed by Martin et al. [88]. They used the LSMC
acceptance criterion (see Sect. 5.3.3) from which the algorithm’s name is derived.
They considered both the application of 3-opt local search and the Lin-Kernighan
heuristic, which is the best performing local search algorithm for the TSP. But
probably the key ingredient of their work is the introduction of the double-bridge
move for the perturbation. This choice made the approach very powerful for the
Euclidean TSP and encouraged much more work along these lines. In particular,
Johnson [68, 69] coined the term “iterated Lin-Kernighan” (ILK) for his implemen-
tation of ILS using Lin-Kernighan as the local search. The main differences with
the LSMC implementation are: (1) double-bridge moves are random rather than bi-
ased; (2) the costs are improving (only better tours are accepted, corresponding to
the choice Better in our notation). Since these initial studies, other ILS variants
have been proposed; Johnson and McGeoch [69] give a summary of the situation
as of 1997 and several additional ILS variants are covered in a 2002 book chapter,
which summarizes early results from the 8th DIMACS implementation challenge
on the TSP [70].

A high performing ILS algorithm is offered as part of the Concorde software
package and it is available for download at http://www.tsp.gatech.edu/concorde/.
This chained Lin-Kernighan code has been developed by Applegate, Bixby, Chvatal,
and Cook and a detailed description of the code is given in their recent book on the
TSP [4]; this book also contains details on an extensive computational study of this
code. Noteworthy is also the experimental study by Applegate et al. [3] who per-
formed tests on very large TSP instances with up to 25 million cities. Recently, a new
ILS variant has been proposed that further illustrates the impressive performance of
ILS algorithms on very large TSP instances. Currently, the iterated Lin-Kernighan
variant of Merz and Huhse [92] appears to be the best performing algorithm for very
large TSP instances with several millions of cities when the computation times are
relatively short (in the range of a few hours on a modern PC as of 2008).

A major leap in TSP solving stems from Helsgaun’s Lin-Kernighan implemen-
tation and its iterated version [57]. The main novelty of Helsgaun’s algorithm lies
on the local search side: the Lin-Kernighan variant developed is based on more
complex basic moves than previous implementations. His iterated version of the
Lin-Kernighan heuristic is not really an ILS algorithm like the ones presented in
this chapter since the generation of new starting solutions is through a solution con-
struction method. However, the constructive mechanism is very strongly biased to-
wards the incumbent solution, which makes this approach somehow similar to an
ILS algorithm. The most recent version of this algorithm, along with an accompa-
nying technical report describing the recent developments, is available for download
at http://www.akira.ruc.dk/~keld/research/LKH/.

http://www.tsp.gatech.edu/concorde/
http://www.akira.ruc.dk/~keld/research/LKH/

152 H. R. Lourenço et al.

There are a number of other ILS algorithms for the TSP that not necessarily offer
the ultimate state-of-the-art performance but that illustrate various ideas that may be
useful in ILS algorithms. One algorithm, which has already been mentioned before,
is the one by Codenotti et al. [26]. It gives an example of a complex perturbation
scheme, which is based on the modification of the instance data. Various pertur-
bation sizes as well as population-based extensions of ILS algorithms for the TSP
have been studied by Hong et al. [59]. The perturbation mechanism is also the fo-
cus of the work by Katayama and Narisha [71]. They introduce a new perturbation
mechanism, which they called genetic transformation. The genetic transformation
mechanism uses two tours, the best found so far, s∗best, and a second, current local
optimum, s∗. First a random 4-opt move is performed on s∗best, resulting in s∗′. Then
the subtours that are shared among s∗′ and s∗ are kept and the resulting parts are
reconnected with a greedy algorithm. Computational experiments with an iterated
Lin-Kernighan algorithm using the genetic transformation method instead of the
standard double-bridge move have shown that the approach is effective.

An analysis of the run-time behavior of various ILS algorithms for the TSP is
done by Stützle and Hoos [115, 117]; this analysis clearly shows that ILS algo-
rithms with the Better acceptance criterion show a type of stagnation behavior
for long run-times. To avoid such stagnation, restarts and a particular acceptance
criterion to diversify the search were proposed. The goal of this latter strategy is to
force the search, once search stagnation is detected, to continue from a high quality
solution that is beyond a certain minimal distance from the current one [117]. As
shown in [62], current state-of-the-art algorithms such as Helsgaun’s iterated Lin-
Kernighan can also suffer from stagnation behavior and, hence, their performance
can be further improved by similar ideas.

Finally, let us mention that ILS algorithms have been used as components of
more complex algorithms. A clear example is the tour merging approach [4, 29].
The central idea is to generate a set G of high quality tours by using ILS and then to
post-process these solutions further. In particular, in tour merging, the optimal tour
(or, if this is not feasible in reasonable computation time, the best possible tour) is
produced from fragments of tours occurring in G.

5.4.2 ILS for Other Routing Problems

Besides the TSP, ILS algorithms have been applied increasingly often to other rout-
ing problems, in particular, vehicle routing problems (VRPs). Among the first ILS
applications to VRPs, we find the prize-collecting VRP [121], time-dependent VRPs
[56], and VRPs with time penalty functions [66]. In the latter article, a dynamic
programming algorithm is used to minimize penalties for violating time windows;
experimental results with up to 1000 customers show that this ILS was able to reach
very high performance and was also efficient. Various other variants of VRPs have
been tackled. Vaz Penna et al. consider a variant where the fleet of vehicles is hetero-
geneous, that is, it consists of vehicles with different characteristics such as different

5 Iterated Local Search: Framework and Applications 153

capacities [124]. Palhazi Cuervo et al. [101] propose an ILS algorithm for a VRP
with backhauls, where apart from the customer deliveries, suppliers may send back
goods to the depot. The proposed ILS algorithm exploits various neighborhoods and
allows to move between feasible and infeasible solutions. A VRP with multiple, in-
compatible commodities and multiple trips per work day is tackled with an effective
ILS algorithm by Cattaruzza et al. [23]: their algorithm is shown to outperform
previous approaches. Integrating a tabu search algorithm into an ILS approach, Sil-
vestrin and Ritt obtain a high-performing algorithm for the multi-compartment VRP,
surpassing the performance of other, existing heuristic algorithms. Melo Silva et al.
[90] tackle VRPs where split deliveries are allowed, that is, a customer demand
may be served by deliveries from various vehicles or tours. Their ILS algorithm
reached very high performance and for a large number of benchmark instances it
could improve the best known solutions. Nguyen et al. [99] consider a two-echelon
location-routing problem, which involves two types of trips. One type serves several
subordinate depots, which have to be located suitably, from a main depot; a second
type of trips delivers goods to customers from the subordinate depots. Laurent and
Hao considered a multiple depot vehicle scheduling problem, which arises in public
transport [77]. Cruz et al. [33] consider the re-positioning of bikes in a bike-sharing
system among various stations using a single vehicle, where each station may be
served in multiple visits. They develop an ILS algorithm for this problem, reaching
very high performance competitive to other methods. Porumbel et al. [104] propose
a matheuristic, in which an ILS algorithm and a column generation approach collab-
orate in parallel and communicate by exchanging routes. The example application
of this approach to arc-routing problems shows very promising results.

5.4.3 ILS for Scheduling Problems

Scheduling is one of the most popular application areas of ILS and much early
progress has been achieved on such problems. In what follows we discuss some
earlier applications in increasing order of complexity of the underlying scheduling
models, starting with single-machine problems, and give some pointers to more re-
cent literature on the topic. Congram at al. have presented an ILS algorithm for
the single machine total weighted tardiness problem (SMTWTP) [28] based on a
dynasearch local search. The perturbation mechanism in their ILS algorithm applies
a series of random interchange moves and additionally exploits specific properties
of the SMTWTP. In the acceptance criterion, they introduced a backtrack step: after
β iterations in which every new local optimum is accepted, the algorithm restarts
from the best solution found so far; the backtrack step is a particular choice for
incorporating history dependence into the acceptance criterion. The performance
of this ILS algorithm was excellent, solving almost all available benchmark in-
stances in a few seconds on the available hardware. A further improvement over
this algorithm, mainly based on an enlarged neighborhood being explored within
the dynasearch local search, was presented by Grosso et al. [52]. This approach out-

154 H. R. Lourenço et al.

performed the first iterated dynasearch algorithm, defining the state-of-the-art for
solving the SMTWTP. Other applications of ILS to the SMTWTP have been re-
ported in [36]. Later, ILS algorithms have been applied with very good results to
variants of the SMTWTP such as those including sequence-dependent setup times
[119, 127].

Brucker et al. [17, 18] applied early on the principles of ILS to a number of one-
machine and parallel-machine scheduling problems. They introduce a local search
method which is based on two types of neighborhoods. At each step one goes from
one feasible solution to a neighboring one with respect to the secondary neighbor-
hood. The main difference with standard local search methods is that this secondary
neighborhood is defined on the set of locally optimal solutions of the first neighbor-
hood. Thus, this is an ILS with two nested neighborhoods; searching in the primary
neighborhood corresponds to our local search phase; searching in the secondary
neighborhood is like our perturbation phase. The authors note that the second neigh-
borhood is problem specific; this is what is observed in ILS where the perturbation
should be adapted to the problem. The search at a higher level reduces the search
space and at the same time leads to better results.

The first application of ILS to the permutation flow-shop scheduling (PFSP) un-
der the makespan objective, which is the most widely studied flow-shop schedul-
ing problem, has been reported by Stützle [114]. This ILS algorithm is based on a
straightforward first-improvement local search using the insert neighborhood while
the perturbation is composed of swap moves, which exchange the positions of two
adjacent jobs, and interchange moves, which have no adjacency constraint. This
ILS algorithm was shown to be the best performing metaheuristic algorithms for
the PFSP in a later review article [109]; an adaptation of this ILS algorithm has
also shown very good performance on the flow-shop problem with flow-time ob-
jective [37]. The ILS algorithm has been extended to an iterated greedy (IG) algo-
rithm [110], a method closely related to ILS; this latter algorithm remained for a
long time the state-of-the-art algorithm for the PFSP and significantly better per-
forming extensions of it have only recently been proposed [40]. ILS has been used
to solve flow-shop problems with other objectives than makespan such as total
flow-time [102] and additional features that make it more difficult to solve. Yang
et al. [129] presented an ILS algorithm for a flow-shop with several stages in se-
ries, where at each stage a number of machines is available for processing the jobs.
Pan et al. have recently applied ILS to the hybrid flow-shop problem with due date
windows and earliness and tardiness objectives, reporting very good results. The
blocking flow-shop problem has been tackled by Ribas et al. [105], who combine,
in the local search as well as in the perturbation, moves in different neighborhoods.
An ILS variation embedding ILS in a biased multi-start approach, called biased-
randomized ILS was applied to the flow-shop problem with failure-risk costs [43].
Urlings et al. proposed ILS algorithms that are interleaved with other techniques to
tackle complex hybrid flexible flowline problems that tightly resemble scheduling
tasks in realistic production shop floors [123].

Also the job-shop scheduling problem has received significant attention by re-
searchers working with ILS. Lourenço [82] and Lourenço and Zwijnenburg [84]

5 Iterated Local Search: Framework and Applications 155

used ILS to tackle the job shop scheduling problem under the makespan criterion.
They performed extensive computational tests, comparing different ways to gen-
erate initial solutions, various local search algorithms, different perturbations, and
three acceptance criteria. While they found that the initial solution had only a very
limited influence, the other components turned out to be very important. Perhaps
the heart of their work is the way they perform the perturbations, which has already
been described in Sect. 5.3.2. Balas and Vazacopoulos [8] presented a variable depth
search heuristic which they called guided local search (GLS). They developed ILS
algorithms by embedding GLS within the shifting bottleneck (SB) procedure and
by replacing the reoptimization cycle of SB with a number of cycles of the GLS
procedure. They call this procedure SB-GLS1. The later SB-GLS2 variant works
as follows. Once all machines have been sequenced, they iteratively remove one
machine and apply GLS to a smaller instance defined by the remaining machines.
Then again GLS is applied on the initial instance containing all machines. Hence,
both heuristics are based on re-optimizing a part of the instance and then reapply-
ing local search to the full one. Kreipl applied ILS to the total weighted tardiness
job-shop scheduling problem [76]. His ILS algorithm uses a RW acceptance crite-
rion and the local search consists of reversing critical arcs and arcs adjacent to them.
One original aspect of this ILS is the perturbation step: Kreipl applies a few steps
of a simulated annealing-like algorithm with constant temperature; in the perturba-
tion phase a smaller neighborhood than the one used in the local search phase is
applied. The number of iterations performed during the perturbation phase depends
on how good the incumbent solution is. In promising regions, only a few steps are
applied to stay near good solutions, otherwise, a “large” perturbation is applied to
escape from a poor region. Computational results with the ILS algorithm on a set of
benchmark instances have shown a very promising performance. In fact, the algo-
rithm performance is roughly similar to a later, more complex algorithm proposed
by Essafi et al. [41]. Interestingly, this latter approach integrates an ILS algorithm as
a local search operator into an evolutionary algorithm, illustrating the fact that ILS
can also be used as an improvement method inside other metaheuristics.

5.4.4 ILS for Other Problems

ILS algorithms have been applied to a large number of other problems, often achiev-
ing excellent performance. The graph bipartitioning problem is among the earli-
est available ILS applications. Martin and Otto [86, 87] introduced an ILS for this
problem following their earlier work on the TSP. For the local search, they used
the Kernighan-Lin variable depth local search algorithm [73] which is the analog
of the Lin-Kernighan algorithm for this problem. When considering possible per-
turbations, they noticed a particular weakness of the Kernighan-Lin local search:
it frequently generates partitions with many “islands”, i.e., the two sets A and B
are typically highly fragmented (disconnected). Thus, they introduced perturbations
that exchanged vertices between these islands rather than between the whole sets A

156 H. R. Lourenço et al.

and B. Finally, for the acceptance criterion, Martin and Otto used the Better ac-
ceptance criterion. The overall algorithm significantly improved over the embedded
local search (random restart of the Kernighan-Lin local search); it also improved
over competing simulated annealing algorithms when the acceptance criterion was
optimized.

Battiti and Protasi presented an application of reactive search to the MAX-SAT
problem [9]. Their algorithm consists of two phases: a local search phase and a di-
versification (perturbation) phase, where a tabu search on the current local minimum
guarantees that the modified solution s′ is sufficiently different from the current so-
lution s∗. As LocalSearch, they use a standard iterative improvement algorithm
appropriate for the MAX-SAT problem. Depending on the distance between s∗′ and
s∗, the tabu list length for the perturbation phase is dynamically adjusted. The next
perturbation phase is then started based on solution s∗′—corresponding to the RW
acceptance criterion. This work illustrates very nicely how one can adjust dynam-
ically the perturbation strength in an ILS run. We conjecture that similar schemes
will be useful to adapt the perturbation size while running an ILS algorithm. In later
work, Smyth et al. [113] have developed an ILS algorithm based on a robust tabu
search algorithm that is used in both the local search phase and the perturbation
phase. The main difference between the two phases is that the length of the tabu
list is strongly increased in the perturbation to drive the search away from the cur-
rent solution. Noteworthy is also the ILS algorithm of Yagiura and Ibaraki, which
is based on large neighborhoods for MAX-SAT that are used in the local search
phase [128]. A number of ILS approaches for coloring graphs have been proposed
[21, 25, 103]; these approaches generally reach very high quality colorings and per-
form particularly well on some structured graphs.

ILS algorithms have also reached remarkable performance on the QAP [116].
Based on the insights gained through an analysis of the run-time behavior of a
basic ILS algorithm with the Better acceptance criterion, a number of differ-
ent ILS algorithms were proposed [116]. Population-based extensions of ILS that
use restart-type criteria and additional criteria for maintaining solution diversity
have been the best performing variants. An extensive experimental campaign has
identified this population-based ILS variant as state-of-the-art for structured QAP
instances. Recently, extension of ILS have been proposed to solve stochastic com-
binatorial optimization problems [51]. This extension, named SimILS, consists in a
simulation-based framework that combines ILS with Monte Carlo Simulation, with
the objective to obtain robust solution in presence of stochasticity.

The application of ILS to continuous optimization problems has been considered
in few articles. Kramer proposed to embed Powell’s direction-set method into an
ILS algorithm for continuous optimization problems and reported promising results
[75]. Liao and Stützle have used an ILS algorithm for continuous optimization as
one component in their competition-based approach for continuous optimization,
which was one of the two winners of the CEC 2013 benchmark competition for
real-parameter optimization [79].

ILS has been applied to a number of other problems and we shortly mention
here some of them without attempting to give an exhaustive enumeration. Very

5 Iterated Local Search: Framework and Applications 157

high performing ILS algorithms have been proposed for problems such as maxi-
mum clique [72], image registration [32], some loop layout problems [14], partial
Latin square extension [55], linear ordering [27, 111], logistic network design prob-
lems [30], generalized quadratic multiple knapsack problem [5], maximum weight
independent set [100], capacitated hub location problem [108], fixed-charge trans-
portation problem [20], mirrored traveling tournament problem [106], car sequenc-
ing [31, 107], placement of irregular polygons in a rectangular surface [67], opti-
mization problems arising in wireless ad-hoc networks [126], Euclidean Steiner tree
problem [78], Bayesian networks structure learning [34], minimum sum-of-squares
clustering [91], design of water distribution networks [35], and many others.

5.4.5 Summary

The examples we have chosen in this section stress several points that have already
been mentioned. First, the choice of the local search algorithm is usually quite crit-
ical if one is to obtain peak performance. In most applications, the best performing
ILS algorithms apply much more sophisticated local search algorithms than simple
best- or first-improvement methods. Second, the other components of an ILS also
need to be optimized if state-of-the-art results are to be achieved. This optimization
should be global and should involve the use of problem-specific properties. Exam-
ples of this last point were given in scheduling applications where good perturba-
tions were not simply random, but rather involved re-optimization of significant
parts of the instance (c.f. the job-shop case).

The final picture is one where (1) ILS is a versatile metaheuristic, which can be
easily adapted to different combinatorial optimization problems; (2) it has shown
to be an effective way to boost the performance of simpler improvement methods;
and (3) sophisticated perturbation schemes and search diversification are essential
ingredients to achieve the best possible ILS performance.

5.5 Relation to Other Metaheuristics

In this section, we highlight the similarities and differences between ILS and other
well-known metaheuristics. We shall distinguish metaheuristics that are essentially
variants of local search and those that generate solutions using a mechanism that is
not necessarily based on an explicit neighborhood structure. Among the first class,
which we call neighborhood-based metaheuristics, are methods like simulated an-
nealing (SA) [24, 74], tabu search (TS) [49] or guided local search (GLS) [125].
The second class comprises metaheuristics such as GRASP [42], ant colony opti-
mization (ACO) [38, 39], evolutionary and memetic algorithms [6, 94, 96], scatter
search [48, 50], variable neighborhood search (VNS) [53, 54, 95] and ILS. Some
metaheuristics of this second class, like evolutionary algorithms and ant colony op-

158 H. R. Lourenço et al.

timization, do not necessarily make use of local search algorithms; however a local
search can be embedded in them, in which case the performance is usually enhanced
[38, 96, 97]. The other metaheuristics in this class explicitly use embedded local
search algorithms as an essential part of their structure. For simplicity, we will as-
sume in what follows that all the metaheuristics of this second class do incorporate
local search algorithms. In this case, such metaheuristics generate iteratively input
solutions that are passed to a local search; they can thus be interpreted as multi-start
algorithms, in the most general meaning of that term. This is why we call them here
multi-start-based metaheuristics.

5.5.1 Neighborhood-Based Metaheuristics

Neighborhood-based metaheuristics are extensions of iterative improvement algo-
rithms. They avoid getting stuck in locally optimal solutions by allowing moves to
worse solutions in the neighborhood of the current solution. Metaheuristics in this
class differ mainly by their move strategies. In the case of SA, the neighborhood
is sampled randomly and worse solutions are accepted with a probability, which
depends on a temperature parameter and the degree of deterioration incurred; better
neighboring solutions are usually accepted while much worse neighboring solutions
are accepted with a low probability. In the case of (simple) TS strategies, the neigh-
borhood is explored in an aggressive way and cycles are avoided by declaring tabu
attributes of visited solutions. Finally, in the case of GLS, the evaluation function
is dynamically modified by penalizing certain solution components. This allows the
search to escape from a solution that is a local optimum of the original objective
function.

Obviously, any of these neighborhood-based metaheuristics can be used as the
local search procedure in ILS. In general, however, these metaheuristics do not halt,
so it is necessary to limit their run time if they are to be embedded in ILS. One par-
ticular advantage of combining neighborhood-based metaheuristics with ILS is that
they often obtain much better solutions than iterative improvement algorithms. But
this advantage usually comes at the cost of larger computation times. Since these
metaheuristics allow one to obtain better solutions at the expense of greater compu-
tation times, we are confronted with the following optimization problem when using
them within an ILS7: “For how long should one run the embedded search in order
to achieve the best tradeoff between computation time and solution quality?” This
is analogous to the question of whether it is best to have a fast but not so effective
local search or a slower but a more powerful one. The answer depends of course on
the total computation time available, and on how the costs improve with time.

A different type of connection between ILS, SA and TS arises from certain sim-
ilarities in the algorithms. For example, SA can be seen as an ILS without a local
search phase (SA samples the original space S and not the reduced space S∗) and

7 This question is not specific to ILS; it arises for all multi-start-based metaheuristics.

5 Iterated Local Search: Framework and Applications 159

where the acceptance criteria is LSMC(s∗,s∗′,history). While SA does not employ
memory, the use of memory is the main feature of TS which makes a strong use of
historical information at multiple levels. Given its effectiveness, we expect that the
integration of memories will become widespread in future ILS applications.8 Fur-
thermore, since TS is a prototype for memory intensive search procedures, it can be
a valuable source of inspiration for deriving ILS variants with a more direct usage
of memory; this can lead to a better balance between intensification and diversifi-
cation in the search.9 Similarly, TS strategies may also be improved by features of
ILS algorithms and by some insights gained from the research on ILS.

5.5.2 Multi-Start-Based Metaheuristics

Multi-start-based metaheuristics can be classified into constructive metaheuristics
and perturbation-based metaheuristics.

Well-known examples of constructive metaheuristics are ACO and GRASP,
which both use a probabilistic solution construction phase. An important difference
between ACO and GRASP is that ACO has an indirect memory of the search pro-
cess, which is used to bias the construction process, whereas GRASP does not use
that kind of memory. An obvious difference between ILS and constructive meta-
heuristics is that ILS does not construct solutions. However, both generate a se-
quence of solutions, and if the constructive metaheuristic uses an embedded local
search, both go from one local minimum to another. So it might be said that the per-
turbation phase of an ILS is replaced by a (memory-dependent) construction phase
in these constructive metaheuristics. But another connection can be made: ILS can
be used instead of the embedded “local search” in ACO or GRASP. (This is exactly
what is done, for example, in [106].) This is one way to generalize ILS, but it is
not specific to these kinds of metaheuristics: whenever one has an embedded local
search, one can try to replace it by an iterated local search.

Perturbation-based metaheuristics differ in the techniques they use to actually
perturb solutions. Before going into details, let us introduce one additional feature
for classifying metaheuristics: we will distinguish between population-based algo-
rithms and those that use a single current solution (a population is of size one). For
example, evolutionary algorithms, memetic algorithms, scatter search, and ACO are
population-based, while ILS uses a single solution at each step. Whether or not a
metaheuristics is population-based is important for the type of perturbation that can
be applied. If no population is used, new solutions are generated by applying per-

8 In early TS publications, proposals similar to the use of perturbations were put forward under
the name random shakeup [45]. These procedures where characterized as a “randomized series of
moves that leads the heuristic (away) from its customary path” [45]. The relationship to perturba-
tions in ILS is obvious.
9 Indeed, in [46], Glover uses “strategic oscillation” whereby one cycles over these procedures: the
simplest moves are used till there is no more improvement, and then progressively more advanced
moves are used.

160 H. R. Lourenço et al.

turbations to single solutions; this is what happens for ILS and VNS. If a population
is present, one can also use the possibility of recombining several solutions into a
new one. Such combinations of solutions are implemented by “crossover” operators
in evolutionary algorithms or in the recombination of multiple solutions in scatter
search.

VNS is the metaheuristic that is probably closest to ILS. VNS begins by observ-
ing that the concept of local optimality is conditional on the neighborhood structure
used in a local search. Then VNS systemizes the idea of changing the neighborhood
during the search to avoid getting stuck in poor quality solutions. Several VNS vari-
ants have been proposed. The most widely used one, basic VNS, can be seen as an
ILS algorithm, which uses the Better acceptance criterion and a systematic way
of varying the perturbation strength. To do so, basic VNS orders neighborhoods as
N1, . . . ,Nm where the order is chosen according to the neighborhood size. Let k be
a counter variable, k = 1,2, . . . ,m, initially set to 1. If the perturbation and the sub-
sequent local search lead to a new best solution, then k is reset to 1, otherwise k is
increased by one. We refer to [53, 54] for a description of other VNS variants.

A major difference between ILS and VNS is the philosophy underlying the two
metaheuristics: ILS has the explicit goal of building a walk in the set of locally
optimal solutions, while VNS algorithms are derived from the idea of systematically
changing neighborhoods during the search.

In general, population-based metaheuristics are more complex to use than those
following a single solution: they require mechanisms to manage a population of
solutions and more importantly it is necessary to find effective operators for the
combination of solutions. Most often, this last task is a real challenge. The com-
plexity of population-based local search methods can be justified if they lead to
better performance than non population-based methods. Therefore, one question of
interest is whether using a population of solutions is really useful. Clearly, for some
problems such as the TSP with high cost-distance correlations, the use of a single el-
ement in the population leads to good results, so the advantage of population-based
methods is small or may become only noticeable if very high computation times are
invested. However, for other problems, the use of a population can be an appealing
way to achieve search diversification. Thus, population-based methods may be de-
sirable if their complexity is not overwhelming. Because of this, population-based
extensions of ILS are promising approaches.

To date, several population-based extensions of ILS have been proposed [59, 115,
116, 122]. The approaches in [59, 115] keep the simplicity of ILS algorithms by
maintaining unchanged the perturbations: one parent is perturbed to give one child.
More complex population-based ILS extensions with mechanisms for maintaining
diversity in the population are considered in [116]. A population of solutions is used
in [122] to restrict the perturbation to explore only parts of solutions where pairs of
solutions differ (similar in spirit to the genetic transformations [71]) and to reduce
the size of the neighborhood in the local search.

Clearly, there are major points in common between most of today’s high perfor-
mance metaheuristics. Is there a way to summarize how ILS differs from the others?
We shall proceed by enumeration as the diversity of today’s metaheuristics seems to
forbid any simpler approach. When compared to ACO and GRASP, we see that ILS

5 Iterated Local Search: Framework and Applications 161

uses perturbations to create new solutions; this is quite different in principle and
in practice from using construction. When compared to evolutionary algorithms,
memetic algorithms, and scatter search, we see that ILS, as we defined it, has a pop-
ulation of size one; therefore no recombination operators need be defined. We could
continue like this, but we cannot expect the boundaries between all metaheuristics
to be clear-cut. Not only are hybrid methods very often the way to go, but most often
one can smoothly go from one metaheuristic to another. In addition, as mentioned
at the beginning of this chapter, the distinction between heuristic and metaheuristic
is rarely unambiguous. So our point of view is not that ILS has essential features
that are absent in other metaheuristics; rather, when considering the basic structure
of ILS, some simple yet powerful ideas transpire, and these can be of use in most
metaheuristics, being close or not in spirit to ILS.

5.6 Conclusions

ILS has many of the desirable features of a metaheuristic: it is simple, easy to im-
plement, robust, and highly effective. The essential idea of ILS lies in focusing the
search not on the full space of solutions but on a smaller subspace defined by the so-
lutions that are locally optimal for a given optimization engine. The success of ILS
lies in the biased sampling of this set of local optima. How effective this approach
turns out to be depends mainly on the choice of the local search, the perturbation,
and the acceptance criterion. Interestingly, even when using the most naive imple-
mentations of these components, ILS can do much better than random restart. But,
with further work to carefully adapt the components to the problem at hand, ILS
can often become a competitive or even state-of-the-art algorithm. This dichotomy
is important because the optimization of the algorithm can be done progressively,
and so ILS can be kept at any desired level of simplicity. This, plus the modular
nature of ILS, leads to short development times and gives ILS an edge over more
complex metaheuristics in the world of industrial applications. As an example of
this, recall that ILS essentially treats the embedded heuristic as a black box; then
upgrading an ILS to take advantage of a new and better local search algorithm is
nearly immediate. In addition, the modular nature of ILS also makes it amenable
as an underlying template for the automated design of metaheuristic algorithms, a
trend that will become more prominent in the future. Because of all these features,
we believe that ILS is a promising and powerful algorithm to solve real complex
problems in industry and services, in areas ranging from finance to production man-
agement and logistics. Finally, let us note that even if this review was presented in
the context of tackling combinatorial optimization problems, in reality much of what
we covered can be extended in a straightforward manner to continuous optimization
problems.

The ideas and results presented in this chapter leave many questions unanswered.
Clearly, more work needs to be done to better understand the interplay between the
ILS modules GenerateInitialSolution, Perturbation, LocalSearch, and Accep-
tanceCriterion. Other directions for improving ILS performance are to consider

162 H. R. Lourenço et al.

the intelligent use of memory, explicit intensification and diversification strategies,
and greater problem-specific tuning. The exploration of these issues will certainly
lead to higher performance iterated local search algorithms.

Acknowledgements Helena Ramalhinho Lourenço acknowledges support from the Spanish Min-
istry of Economy and Competitiveness (TRA2013-48180-C3-P, TRA2015-71883-REDT), and
Thomas Stützle acknowledges support from the F.R.S.-FNRS, of which he is a research director.
This work received support from the COMEX project P7/36 within the Interuniversity Attraction
Poles Programme of the Belgian Science Policy Office.

References

1. B. Adenso-Díaz, M. Laguna, Fine-tuning of algorithms using fractional experimental design
and local search. Oper. Res. 54(1), 99–114 (2006)

2. C. Ansótegui, M. Sellmann, K. Tierney, A gender-based genetic algorithm for the auto-
matic configuration of algorithms, in Principles and Practice of Constraint Programming,
CP 2009, ed. by I.P. Gent. Lecture Notes in Computer Science, vol. 5732 (Springer, Heidel-
berg, 2009), pp. 142–157

3. D. Applegate, W.J. Cook, A. Rohe, Chained Lin-Kernighan for large traveling salesman
problems. INFORMS J. Comput. 15(1), 82–92 (2003)

4. D.L. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The Traveling Salesman Problem: A
Computational Study (Princeton University Press, Princeton, 2006)

5. M. Avci, S. Topaloglu, A multi-start iterated local search algorithm for the generalized
quadratic multiple knapsack problem. Comput. Oper. Res. 83, 54–65 (2017)

6. T. Bäck, Evolutionary Algorithms in Theory and Practice (Oxford University Press, Oxford,
1996)

7. P. Balaprakash, M. Birattari, T. Stützle, Improvement strategies for the F-race algorithm:
sampling design and iterative refinement, in Hybrid Metaheuristics, ed. by T. Bartz-
Beielstein, M.J. Blesa, C. Blum, B. Naujoks, A. Roli, G. Rudolph, M. Sampels. Lecture
Notes in Computer Science, vol. 4771 (Springer, Heidelberg, 2007), pp. 108–122

8. E. Balas, A. Vazacopoulos, Guided local search with shifting bottleneck for job shop schedul-
ing. Manag. Sci. 44(2), 262–275 (1998)

9. R. Battiti, M. Protasi, Reactive search, a history-based heuristic for MAX-SAT. ACM J. Exp.
Algorithmics 2 (1997). https://doi.org/10.1145/264216.264220

10. R. Battiti, G. Tecchiolli, The reactive tabu search. ORSA J. Comput. 6(2), 126–140 (1994)
11. E.B. Baum, Iterated descent: a better algorithm for local search in combinatorial optimization

problems. Technical Report, Caltech, Pasadena, CA, 1986; manuscript
12. E.B. Baum, Towards practical “neural” computation for combinatorial optimization prob-

lems, in Neural Networks for Computing, ed. by J. Denker. AIP Conference Proceedings
(1986), pp. 53–64

13. J. Baxter, Local optima avoidance in depot location. J. Oper. Res. Soc. 32(9), 815–819 (1981)
14. J.A. Bennell, C.N. Potts, J.D. Whitehead, Local search algorithms for the min-max loop

layout problem. J. Oper. Res. Soc. 53(10), 1109–1117 (2002)
15. J.L. Bentley, Fast algorithms for geometric traveling salesman problems. ORSA J. Comput.

4(4), 387–411 (1992)
16. M. Birattari, T. Stützle, L. Paquete, K. Varrentrapp, A racing algorithm for configuring

metaheuristics, in Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2002, ed. by W.B. Langdon et al. (Morgan Kaufmann, San Francisco, 2002),
pp. 11–18

17. P. Brucker, J. Hurink, F. Werner, Improving local search heuristics for some scheduling prob-
lems — part I. Discret. Appl. Math. 65(1–3), 97–122 (1996)

https://doi.org/10.1145/264216.264220

5 Iterated Local Search: Framework and Applications 163

18. P. Brucker, J. Hurink, F. Werner, Improving local search heuristics for some scheduling prob-
lems — part II. Discret. Appl. Math. 72(1–2), 47–69 (1997)

19. E.K. Burke, M. Gendreau, G. Ochoa, J.D. Walker, Adaptive iterated local search for cross-
domain optimisation, in Proceedings of the 13th Annual Genetic and Evolutionary Computa-
tion Conference, ed. by N. Krasnogor, P.L. Lanzi (ACM Press, New York, 2011), pp. 1987–
1994

20. E. Buson, R. Roberti, P. Toth, A reduced-cost iterated local search heuristic for the fixed-
charge transportation problem. Oper. Res. 62(5), 1095–1106 (2014)

21. M. Caramia, P. Dell’Olmo, Coloring graphs by iterated local search traversing feasible and
infeasible solutions. Discret. Appl. Math. 156(2), 201–217 (2008)

22. J. Carlier, The one-machine sequencing problem. Eur. J. Oper. Res. 11(1), 42–47 (1982)
23. D. Cattaruzza, N. Absi, D. Feillet, D. Vigo, An iterated local search for the multi-commodity

multi-trip vehicle routing problem with time windows. Comput. Oper. Res. 51, 257–267
(2014)

24. V. Černý, A thermodynamical approach to the traveling salesman problem: an efficient sim-
ulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)

25. M. Chiarandini, T. Stützle, An application of iterated local search to the graph coloring prob-
lem, in Proceedings of the Computational Symposium on Graph Coloring and Its General-
izations, Ithaca, NY, 2002, ed. by A.M.D.S. Johnson, M. Trick, pp. 112–125 (2002)

26. B. Codenotti, G. Manzini, L. Margara, G. Resta, Perturbation: an efficient technique for the
solution of very large instances of the Euclidean TSP. INFORMS J. Comput. 8(2), 125–133
(1996)

27. R.K. Congram, Polynomially searchable exponential neighbourhoods for sequencing prob-
lems in combinatorial optimization. Ph.D. thesis, Southampton University, Faculty of Math-
ematical Studies, Southampton, 2000

28. R.K. Congram, C.N. Potts, S. van de Velde, An iterated dynasearch algorithm for the single-
machine total weighted tardiness scheduling problem. INFORMS J. Comput. 14(1), 52–67
(2002)

29. W.J. Cook, P. Seymour, Tour merging via branch-decomposition. INFORMS J. Comput.
15(3), 233–248 (2003)

30. J.-F. Cordeau, G. Laporte, F. Pasin, An iterated local search heuristic for the logistics network
design problem with single assignment. Int. J. Prod. Econ. 113(2), 626–640 (2008)

31. J.-F. Cordeau, G. Laporte, F. Pasin, Iterated tabu search for the car sequencing problem. Eur.
J. Oper. Res. 191(3), 945–956 (2008)

32. O. Cordón, S. Damas, Image registration with iterated local search. J. Heuristics 12(1–2),
73–94 (2006)

33. F. Cruz, A. Subramanian, B.P. Bruck, M. Iori, A heuristic algorithm for a single vehicle static
bike sharing rebalancing problem. Comput. Oper. Res. 79, 19–33 (2017)

34. L.M. de Campos, J.M. Fernández-Luna, J. Miguel Puerta, An iterated local search algorithm
for learning Bayesian networks with restarts based on conditional independence tests. Int. J.
Intell. Syst. 18(2), 221–235 (2003)

35. A. De Corte, K. Sörensen, An iterated local search algorithm for water distribution network
design optimization. Networks 67(3), 187–198 (2016)

36. M.L. den Besten, T. Stützle, M. Dorigo, Design of iterated local search algorithms: an ex-
ample application to the single machine total weighted tardiness problem, in Applications
of Evolutionary Computing. Proceedings of EvoWorkshops 2001, ed. by E.J.W. Boers et al.
Lecture Notes in Computer Science, vol. 2037 (Springer, Heidelberg, 2001), pp. 441–452

37. X. Dong, H. Huang, P. Chen, An iterated local search algorithm for the permutation flowshop
problem with total flowtime criterion. Comput. Oper. Res. 36(5), 1664–1669 (2009)

38. M. Dorigo, T. Stützle, Ant Colony Optimization (MIT Press, Cambridge, 2004)
39. M. Dorigo, M. Birattari, T. Stützle, Ant colony optimization: artificial ants as a computational

intelligence technique. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)
40. J. Dubois-Lacoste, F. Pagnozzi, T. Stützle, An iterated greedy algorithm with optimization

of partial solutions for the permutation flowshop problem. Comput. Oper. Res. 81, 160–166
(2017)

164 H. R. Lourenço et al.

41. I. Essafi, Y. Mati, S. Dauzère-Pèréz, A genetic local search algorithm for minimizing total
weighted tardiness in the job-shop scheduling problem. Comput. Oper. Res. 35(8), 2599–
2616 (2008)

42. T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim.
6, 109–133 (1995)

43. A. Ferrer, D. Guimarans, H. Ramalhinho Lourenço, A.A. Juan, A BRILS metaheuristic
for non-smooth flow-shop problems with failure-risk costs. Expert Syst. Appl. 44, 177–186
(2016)

44. C. Fonlupt, D. Robilliard, P. Preux, E.-G. Talbi, Fitness landscape and performance of meta-
heuristics, in Meta-Heuristics: Advances and Trends in Local Search Paradigms for Opti-
mization, ed. by S. Voss, S. Martello, I.H. Osman, and C. Roucairol (Kluwer Academic,
Boston, 1999), pp. 257–268

45. F. Glover, Future paths for integer programming and links to artificial intelligence. Comput.
Oper. Res. 13(5), 533–549 (1986)

46. F. Glover, Tabu search – part I. ORSA J. Comput. 1(3), 190–206 (1989)
47. F. Glover, Tabu thresholding: improved search by nonmonotonic trajectories. ORSA J. Com-

put. 7(4), 426–442 (1995)
48. F. Glover, Scatter search and path relinking, in New Ideas in Optimization, ed. by D. Corne,

M. Dorigo, F. Glover (McGraw Hill, London, 1999), pp. 297–316
49. F. Glover, M. Laguna, Tabu Search (Kluwer Academic, Boston, 1997)
50. F. Glover, M. Laguna, R. Martí, Scatter search and path relinking: advances and applica-

tions, in Handbook of Metaheuristics, ed. by F. Glover, G. Kochenberger (Kluwer Academic,
Norwell, 2002), pp. 1–35

51. A. Grasas, A.A. Juan, H.R. Lourenço. SimILS: a simulation-based extension of the iterated
local search metaheuristic for stochastic combinatorial optimization. J. Simul. 10(1), 69–77
(2016)

52. A. Grosso, F.D. Croce, R. Tadei, An enhanced dynasearch neighborhood for the single-
machine total weighted tardiness scheduling problem. Oper. Res. Lett. 32(1), 68–72 (2004)

53. P. Hansen, N. Mladenović, Variable neighborhood search: principles and applications. Eur.
J. Oper. Res. 130(3), 449–467 (2001)

54. P. Hansen, N. Mladenović, J. Brimberg, J.A. Moreno Pérez, Variable Neighborhood Search,
in Handbook of Metaheuristics, ed. by M. Gendreau, J.-Y. Potvin. International Series in
Operations Research & Management Science, 2nd edn., vol. 146 (Springer, New York, 2010),
pp. 61–86

55. K. Haraguchi, Iterated local search with Trellis-neighborhood for the partial Latin square
extension problem. J. Heuristics 22(5), 727–757 (2016)

56. H. Hashimoto, M. Yagiura, T. Ibaraki, An iterated local search algorithm for the time-
dependent vehicle routing problem with time windows. Discret. Optim. 5(2), 434–456 (2008)

57. K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman heuristic.
Eur. J. Oper. Res. 126(1), 106–130 (2000)

58. K. Helsgaun, General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program.
Comput. 1(2–3), 119–163 (2009)

59. I. Hong, A.B. Kahng, B.R. Moon, Improved large-step Markov chain variants for the sym-
metric TSP. J. Heuristics 3(1), 63–81 (1997)

60. H.H. Hoos, Automated algorithm configuration and parameter tuning, in Autonomous
Search, ed. by Y. Hamadi, E. Monfroy, F. Saubion (Springer, Berlin, 2012), pp. 37–71

61. H.H. Hoos, Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
62. H.H. Hoos, T. Stützle, Stochastic Local Search—Foundations and Applications (Morgan

Kaufmann, San Francisco, 2005)
63. T.C. Hu, A.B. Kahng, C.-W.A. Tsao, Old bachelor acceptance: a new class of non-monotone

threshold accepting methods. ORSA J. Comput. 7(4), 417–425 (1995)
64. F. Hutter, H.H. Hoos, K. Leyton-Brown, T. Stützle, ParamILS: an automatic algorithm con-

figuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

5 Iterated Local Search: Framework and Applications 165

65. F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential model-based optimization for gen-
eral algorithm configuration, in Learning and Intelligent Optimization, ed. by C.A. Coello
Coello. 5th International Conference, LION 5. Lecture Notes in Computer Science, vol. 6683
(Springer, Heidelberg, 2011), pp. 507–523

66. T. Ibaraki, S. Imahori, K. Nonobe, K. Sobue, T. Uno, M. Yagiura, An iterated local search
algorithm for the vehicle routing problem with convex time penalty functions. Discret. Appl.
Math. 156(11), 2050–2069 (2008)

67. T. Imamichi, M. Yagiura, H. Nagamochi, An iterated local search algorithm based on non-
linear programming for the irregular strip packing problem. Discret. Optim. 6(4), 345–361
(2009)

68. D.S. Johnson, Local optimization and the travelling salesman problem, in Proceedings of the
17th Colloquium on Automata, Languages, and Programming. Lecture Notes in Computer
Science, vol. 443 (Springer, Heidelberg, 1990), pp. 446–461

69. D.S. Johnson, L.A. McGeoch, The traveling salesman problem: a case study in local opti-
mization, in Local Search in Combinatorial Optimization, ed. by E.H.L. Aarts, J.K. Lenstra
(Wiley, Chichester, 1997), pp. 215–310

70. D.S. Johnson, L.A. McGeoch, Experimental analysis of heuristics for the STSP, in The Trav-
eling Salesman Problem and Its Variations, ed. by G. Gutin, A. Punnen (Kluwer Academic
Publishers, Dordrecht, 2002), pp. 369–443

71. K. Katayama, H. Narihisa, Iterated local search approach using genetic transformation to
the traveling salesman problem, in Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO-1999), ed. by W. Banzhaf, J. Daida, A.E. Eiben, M.H. Gar-
zon, V. Honavar, M. Jakiela, R.E. Smith, vol. 1 (Morgan Kaufmann, San Francisco, 1999),
pp. 321–328

72. K. Katayama, M. Sadamatsu, H. Narihisa, Iterated k-opt local search for the maximum clique
problem, in Evolutionary Computation in Combinatorial Optimization, ed. by C. Cotta,
J. van Hemert. Lecture Notes in Computer Science, vol. 4446 (Springer, Heidelberg, 2007),
pp. 84–95

73. B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs. Bell Syst.
Tech. J. 49(2), 213–219 (1970)

74. S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science
220, 671–680 (1983)

75. O. Kramer, Iterated local search with Powell’s method: a memetic algorithm for continuous
global optimization. Memet. Comput. 2(1), 69–83 (2010)

76. S. Kreipl, A large step random walk for minimizing total weighted tardiness in a job shop.
J. Sched. 3(3), 125–138 (2000)

77. B. Laurent, J.-K. Hao, Iterated local search for the multiple depot vehicle scheduling prob-
lem. Comput. Ind. Eng. 57(1), 277–286 (2009)

78. V. Leal do Forte, F.M. Tavares Montenegro, J.A. de Moura Brito, N. Maculan, Iterated local
search algorithms for the Euclidean Steiner tree problem in n dimensions. Int. Trans. Oper.
Res. 23(6), 1185–1199 (2016)

79. T. Liao, T. Stützle, Benchmark results for a simple hybrid algorithm on the CEC 2013 bench-
mark set for real-parameter optimization, in Proceedings of the 2013 Congress on Evolution-
ary Computation (CEC 2013) (IEEE Press, Piscataway, 2013), pp. 1938–1944

80. S. Lin, B.W. Kernighan, An effective heuristic algorithm for the traveling salesman problem.
Oper. Res. 21(2), 498–516 (1973)

81. M. López-Ibáñez, J. Dubois-Lacoste, Leslie Pérez Cáceres, T. Stützle, M. Birattari, The irace
package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58
(2016)

82. H.R. Lourenço, Job-shop scheduling: computational study of local search and large-step op-
timization methods. Eur. J. Oper. Res. 83(2), 347–364 (1995)

166 H. R. Lourenço et al.

83. H. Ramalhinho, A polynomial algorithm for a special case of the one–machine schedul-
ing problem with time–lags, in Engineering Optimization 2014, ed. by E.C. Rodrigues, J.
Herskovits, C.M. Mota Soares, J.M. Guedes, A.L. Araújo, J.O. Folgado, F. Moleiro, J.F.A.
Madeira, Chapter 67 (Taylor & Francis Group, London, 2015), pp. 397–401. https://doi.org/
10.1201/b17488-70

84. H.R. Lourenço, M. Zwijnenburg, Combining the large-step optimization with tabu-search:
application to the job-shop scheduling problem, in Meta-Heuristics: Theory & Applications,
ed. by I.H. Osman, J.P. Kelly (Kluwer Academic, Boston, 1996), pp. 219–236

85. M. Lozano, C. García-Martínez, An evolutionary ILS-perturbation technique, in Hybrid
Metaheuristics, ed. by M.J. Blesa, C. Blum, C. Cotta, A.J. Fernández, J.E. Gallardo, A. Roli,
M. Sampels. 5th International Workshop, HM 2008. Lecture Notes in Computer Science,
vol. 5296 (Springer, Heidelberg, 2008), pp. 1–15

86. O. Martin, S.W. Otto, Partitioning of unstructured meshes for load balancing. Concurr. Pract.
Exp. 7(4), 303–314 (1995)

87. O. Martin, S.W. Otto, Combining simulated annealing with local search heuristics. Ann.
Oper. Res. 63, 57–75 (1996)

88. O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling salesman
problem. Complex Syst. 5(3), 299–326 (1991)

89. O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the TSP incorporating local
search heuristics. Oper. Res. Lett. 11(4), 219–224 (1992)

90. M. Melo Silva, A. Subramanian, L.S. Ochi, An iterated local search heuristic for the split
delivery vehicle routing problem. Comput. Oper. Res. 53, 234–249 (2015)

91. P. Merz, An iterated local search approach for minimum sum-of-squares clustering, in
Advances in Intelligent Data Analysis V, IDA 2003, ed. by M.R. Berthold, H.-J. Lenz,
E. Bradley, R. Kruse, C. Borgelt. Lecture Notes in Computer Science, vol. 2810 (Springer,
Heidelberg, 2003), pp. 286–296

92. P. Merz, J. Huhse, An iterated local search approach for finding provably good solutions
for very large TSP instances, in Parallel Problem Solving from Nature–PPSN X, ed. by
G. Rudolph, T. Jansen, S.M. Lucas, C. Poloni, N. Beume. Lecture Notes in Computer Sci-
ence, vol. 5199 (Springer, Heidelberg, 2008), pp. 929–939

93. M. Mézard, G. Parisi, M.A. Virasoro, Spin-Glass Theory and Beyond. Lecture Notes in
Physics, vol. 9 (World Scientific, Singapore, 1987)

94. Z. Michalewicz, D.B. Fogel, How to Solve It: Modern Heuristics (Springer, Berlin, 2000)
95. N. Mladenović, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–

1100 (1997)
96. P. Moscato, C. Cotta, Memetic Algorithms, in Handbook of Approximation Algorithms and

Metaheuristics, ed. by T.F. González. Computer and Information Science Series, chapter 27
(Chapman & Hall/CRC, Boca Raton, 2007)

97. H. Mühlenbein, Evolution in time and space – the parallel genetic algorithm, in Foundations
of Genetic Algorithms (Morgan Kaufmann, San Mateo, 1991), pp. 316–337

98. M. Nawaz, E. Enscore Jr., I. Ham, A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. Omega 11(1), 91–95 (1983)

99. V.-P. Nguyen, C. Prins, C. Prodhon, A multi-start iterated local search with tabu list and path
relinking for the two-echelon location-routing problem. Eng. Appl. Artif. Intell. 25(1), 56–71
(2012)

100. B. Nogueira, R.G.S. Pinheiro, A. Subramanian, A hybrid iterated local search heuristic for
the maximum weight independent set problem. Optim. Lett. 12(3), 567–583 (2018). https://
doi.org/10.1007/s11590-017-1128-7

101. D. Palhazi Cuervo, P. Goos, K. Sörensen, E. Arráiz, An iterated local search algorithm for
the vehicle routing problem with backhauls. Eur. J. Oper. Res. 237(2), 454–464 (2014)

102. Q.-K. Pan, R. Ruiz, Local search methods for the flowshop scheduling problem with flowtime
minimization. Eur. J. Oper. Res. 222(1), 31–43 (2012)

https://doi.org/10.1201/b17488-70
https://doi.org/10.1201/b17488-70
https://doi.org/10.1007/s11590-017-1128-7
https://doi.org/10.1007/s11590-017-1128-7

5 Iterated Local Search: Framework and Applications 167

103. L. Paquete, T. Stützle, An experimental investigation of iterated local search for coloring
graphs, in Applications of Evolutionary Computing, ed. by S. Cagnoni, J. Gottlieb, E. Hart,
M. Middendorf, G. Raidl. Lecture Notes in Computer Science, vol. 2279 (Springer, Heidel-
berg, 2002), pp. 122–131

104. D. Porumbel, G. Goncalves, H. Allaoui, T. Hsu, Iterated local search and column generation
to solve arc-routing as a permutation set-covering problem. Eur. J. Oper. Res. 256(2), 349–
367 (2017)

105. I. Ribas, R. Companys, X. Tort-Martorell, An iterated greedy algorithm for the flowshop
scheduling problem with blocking. Omega 39(3), 293–301 (2011)

106. C.C. Ribeiro, S. Urrutia, Heuristics for the mirrored traveling tournament problem. Eur. J.
Oper. Res. 179(3), 775–787 (2007)

107. C.C. Ribeiro, D. Aloise, T.F. Noronha, C. Rocha, S. Urrutia, A hybrid heuristic for a multi-
objective real-life car sequencing problem with painting and assembly line constraints. Eur.
J. Oper. Res. 191(3), 981–992 (2008)

108. I. Rodríguez-Martín, J.J. Salazar González, Solving a capacitated hub location problem. Eur.
J. Oper. Res. 184(2), 468–479 (2008)

109. R. Ruiz, C. Maroto, A comprehensive review and evaluation of permutation flowshop heuris-
tics. Eur. J. Oper. Res. 165(2), 479–494 (2005)

110. R. Ruiz, T. Stützle, A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)

111. T. Schiavinotto, T. Stützle, The linear ordering problem: Instances, search space analysis and
algorithms. J. Math. Model. Algorithms 3(4), 367–402 (2004)

112. G.R. Schreiber, O.C. Martin, Cut size statistics of graph bisection heuristics. SIAM J. Optim.
10(1), 231–251 (1999)

113. K. Smyth, H.H. Hoos, T. Stützle, Iterated robust tabu search for MAX-SAT, in Advances
in Artificial Intelligence, ed. by Y. Xiang, B. Chaib-Draa. 16th Conference of the Cana-
dian Society for Computational Studies of Intelligence. Lecture Notes in Computer Science,
vol. 2671 (Springer, Heidelberg, 2003), pp. 129–144

114. T. Stützle, Applying iterated local search to the permutation flow shop problem. Technical
Report AIDA–98–04, FG Intellektik, TU Darmstadt, Darmstadt, August 1998

115. T. Stützle, Local Search Algorithms for Combinatorial Problems: Analysis, Improvements,
and New Applications. Dissertations in Artificial Intelligence, vol. 220 (IOS Press, Amster-
dam, 1999)

116. T. Stützle, Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res.
174(3), 1519–1539 (2006)

117. T. Stützle, H.H. Hoos, Analysing the run-time behaviour of iterated local search for the
travelling salesman problem, in Essays and Surveys on Metaheuristics, ed. by P. Hansen,
C. Ribeiro. Operations Research/Computer Science Interfaces Series (Kluwer Academic,
Boston, 2001), pp. 589–611

118. T. Stützle, M. López-Ibáñez, Automatic (offline) configuration of algorithms, in GECCO
(Companion), ed. by J.L. Jiménez Laredo, S. Silva, A.I. Esparcia-Alcázar (ACM Press, New
York, 2015), pp. 681–702

119. A. Subramanian, M. Battarra, C.N. Potts, An iterated local search heuristic for the single
machine total weighted tardiness scheduling problem with sequence-dependent setup times.
Int. J. Prod. Res. 52(9), 2729–2742 (2014)

120. É.D. Taillard, Comparison of iterative searches for the quadratic assignment problem. Locat.
Sci. 3(2), 87–105 (1995)

121. L. Tang, X. Wang, Iterated local search algorithm based on a very large-scale neighborhood
for prize-collecting vehicle routing problem. Int. J. Adv. Manuf. Technol. 29(11–12), 1246–
1258 (2006)

122. D. Thierens, Population-based iterated local search: restricting the neighborhood search
by crossover, in Genetic and Evolutionary Computation–GECCO 2004, Part II, ed. by
K. Deb et al. Lecture Notes in Computer Science, vol. 3102 (Springer, Heidelberg, 2004),
pp. 234–245

168 H. R. Lourenço et al.

123. T. Urlings, R. Ruiz, T. Stützle, Shifting representation search for hybrid flexible flowline
problems. Eur. J. Oper. Res. 207(2), 1086–1095 (2010)

124. P.H. Vaz Penna, A. Subramanian, L.S. Ochi, An iterated local search heuristic for the hetero-
geneous fleet vehicle routing problem. J. Heuristics 19(2), 201–232 (2013)

125. C. Voudouris, E.P.K. Tsang, Guided local search, in Handbook of Metaheuristics, ed. by
F. Glover, G. Kochenberger (Kluwer Academic, Norwell, 2002), pp. 185–218

126. S. Wolf, P. Merz, Iterated local search for minimum power symmetric connectivity in wire-
less networks, in Proceedings of EvoCOP 2009 – 9th European Conference on Evolutionary
Computation in Combinatorial Optimization, ed. by C. Cotta, P. Cowling. Lecture Notes in
Computer Science, vol. 5482 (Springer, Heidelberg, 2009), pp. 192–203

127. H. Xu, Z. Lü, T.C.E. Cheng, Iterated local search for single-machine scheduling with
sequence-dependent setup times to minimize total weighted tardiness. J. Sched. 17(3), 271–
287 (2014)

128. M. Yagiura, T. Ibaraki, Efficient 2 and 3-flip neighborhood search algorithms for the MAX
SAT: experimental evaluation. J. Heuristics 7(5), 423–442 (2001)

129. Y. Yang, S. Kreipl, M. Pinedo, Heuristics for minimizing total weighted tardiness in flexible
flow shops. J. Sched. 3(2), 89–108 (2000)

Chapter 6
Greedy Randomized Adaptive Search
Procedures: Advances and Extensions

Mauricio G. C. Resende and Celso C. Ribeiro

Abstract A greedy randomized adaptive search procedure (GRASP) is a multi-start
metaheuristic for combinatorial optimization problems, in which each iteration con-
sists basically of two phases: construction and local search. The construction phase
builds a feasible solution whose neighborhood is investigated until a local mini-
mum is found during the local search phase. The best overall solution is kept as
the result. In this chapter, we first describe the basic components of GRASP. Suc-
cessful implementation techniques are discussed and illustrated by numerical re-
sults obtained for different applications. Enhanced or alternative solution construc-
tion mechanisms and techniques to speed up the search are also described: Alterna-
tive randomized greedy construction schemes, Reactive GRASP, cost perturbations,
bias functions, memory and learning, Lagrangean constructive heuristics and La-
grangean GRASP, local search on partially constructed solutions, hashing, and fil-
tering. We also discuss implementation strategies of memory-based intensification
and post-optimization techniques using path-relinking. Restart strategies to speedup
the search, hybridizations with other metaheuristics, and applications are also re-
viewed.

M. G. C. Resende (�)
Amazon.com, Seattle, WA, USA
University of Washington, Seattle, WA, USA
e-mail: mgcr@uw.edu

C. C. Ribeiro
Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
e-mail: celso@ic.uff.br

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_6

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_6&domain=pdf
mailto:mgcr@uw.edu
mailto:celso@ic.uff.br
https://doi.org/10.1007/978-3-319-91086-4_6

170 M. G. C. Resende and C. C. Ribeiro

6.1 Introduction

We consider in this chapter a combinatorial optimization problem, defined by a
finite ground set E = {1, . . . ,n}, a set of feasible solutions F ⊆ 2E , and an objective
function f : 2E →R. In its minimization version, we seek an optimal solution S∗ ∈F
such that f (S∗)≤ f (S), ∀S ∈ F . The ground set E, the cost function f , and the set of
feasible solutions F are defined for each specific problem. For instance, in the case
of the traveling salesman problem, the ground set E is that of all edges connecting
the cities to be visited, f (S) is the sum of the costs of all edges in S, and F is formed
by all edge subsets that determine a Hamiltonian cycle.

GRASP (Greedy Randomized Adaptive Search Procedure) [90, 91] is a multi-
start or iterative metaheuristic, in which each iteration consists of two phases: con-
struction and local search. The construction phase builds a solution using a greedy
randomized adaptive algorithm. If this solution is not feasible, then it is necessary
to apply a repair procedure to achieve feasibility or to make a new attempt to build
a feasible solution. Once a feasible solution is obtained, its neighborhood is investi-
gated until a local minimum is found during the local search phase. The best overall
solution is kept as the result.

Extensive literature surveys on greedy randomized adaptive search procedures
are presented in [98–100, 212, 213, 224]. A first book on GRASP was published in
2016 by Resende and Ribeiro [215].

The pseudo-code in Fig. 6.1 illustrates the main blocks of a GRASP procedure
for minimization, in which Max_Iterations iterations are performed and Seed
is used as the initial seed for the pseudo-random number generator.

procedure GRASP(Max Iterations,Seed)
1 Read Input();
2 for k = 1, . . . ,Max Iterations do
3 Solution ← Greedy Randomized Construction(Seed);
4 if Solution is not feasible then
5 Solution ← Repair(Solution);
6 end;
7 Solution ← Local Search(Solution);
8 Update Solution(Solution,Best Solution);
9 end;
10 return Best Solution;
end GRASP.

Fig. 6.1 Pseudo-code of the GRASP metaheuristic

Figure 6.2 illustrates the construction phase with its pseudo-code. At each iter-
ation of this phase, let the set of candidate elements be formed by all elements of
the ground set E that can be incorporated into the partial solution being built, with-
out impeding the construction of a feasible solution with the remaining ground set
elements. The selection of the next element for incorporation is determined by the

6 GRASP: Advances and Extensions 171

evaluation of all candidate elements according to a greedy evaluation function. This
greedy function usually represents the incremental increase in the cost function due
to the incorporation of this element into the solution under construction. The evalu-
ation of the elements by this function leads to the creation of a restricted candidate
list (RCL) formed by the best elements, i.e. those whose incorporation to the current
partial solution results in the smallest incremental costs (this is the greedy aspect of
the algorithm). The element to be incorporated into the partial solution is randomly
selected from those in the RCL (this is the probabilistic aspect of the heuristic).
Once the selected element is incorporated into the partial solution, the candidate list
is updated and the incremental costs are reevaluated (this is the adaptive aspect of
the heuristic). The above steps are repeated while there exists at least one candi-
date element. This strategy is similar to the semi-greedy heuristic proposed by Hart
and Shogan [122], which is also a multi-start approach based on greedy randomized
constructions, but without local search.

procedure Greedy Randomized Construction(Seed)
1 Solution ← ;0/
2 Initialize the set of candidate elements;
3 Evaluate the incremental costs of the candidate elements;
4 while there exists at least one candidate element do
5 Build the restricted candidate list (RCL);
6 Select an element s from the RCL at random;
7 Solution ← Solution∪{s};
8 Update the set of candidate elements;
9 Reevaluate the incremental costs;
10 end;
11 return Solution;
end Greedy Randomized Construction.

Fig. 6.2 Pseudo-code of the construction phase

A randomized greedy construction procedure is not always able to produce a
feasible solution. It may be necessary to apply a repair procedure to the solution to
achieve feasibility. Examples of repair procedures can be found in [80, 81, 169, 180].

The solutions generated by a greedy randomized construction are not necessarily
optimal, even with respect to simple neighborhoods. The local search phase usu-
ally improves the constructed solution. A local search algorithm works in an iter-
ative fashion by successively replacing the current solution by a better solution in
its neighborhood. It terminates when no better solution is found in the neighbor-
hood. The pseudo-code of a basic local search algorithm starting from the solution
Solution constructed in the first phase (and possibly made feasible by the repair
heuristic) and using a neighborhood N is given in Fig. 6.3.

172 M. G. C. Resende and C. C. Ribeiro

procedure Local Search(Solution)
1 while Solution is not locally optimal do
2 Find s′ ∈ N(Solution) with f (s′)< f (Solution);
3 Solution ← s′;
4 end;
5 return Solution;
end Local Search.

Fig. 6.3 Pseudo-code of the local search phase

The speed and the effectiveness of a local search procedure depend on several
aspects, such as the neighborhood structure, the neighborhood search technique, the
strategy used for the evaluation of the cost function value at the neighbors, and the
starting solution itself. The construction phase plays a very important role with re-
spect to this last aspect, building high-quality starting solutions for the local search.
Simple neighborhoods are typically used. The neighborhood search can be imple-
mented using either a best-improving or a first-improving strategy. In the case of the
best-improving strategy, all neighbors are investigated and the current solution is
replaced by the best neighbor. In the case of a first-improving strategy, the current
solution moves to the first neighbor whose cost function value is smaller than that
of the current solution. In practice, we observed on many applications that quite
often both strategies lead to the same final solution, but in smaller computation
times when the first-improving strategy is used. We also observed that premature
convergence to a bad local minimum is more likely to occur with a best-improving
strategy.

6.2 Construction of the Restricted Candidate List

An especially appealing characteristic of GRASP is the ease with which it can be
implemented. Few parameters need to be set and tuned. Therefore, development can
focus on implementing appropriate data structures for efficient construction and lo-
cal search algorithms. GRASP has two main parameters: one related to the stopping
criterion and the other to the quality of the elements in the restricted candidate list.

The stopping criterion used in the pseudo-code described in Fig. 6.1 is deter-
mined by the number Max_Iterations of iterations. Although the probability
of finding a new solution improving the incumbent (current best solution) decreases
with the number of iterations, the quality of the incumbent does not worsen with the
number of iterations. Since the computation time does not vary much from iteration
to iteration, the total computation time is predictable and increases linearly with the
number of iterations. Consequently, the larger the number of iterations, the larger
will be the computation time and the better will be the solution found.

For the construction of the RCL used in the first phase we consider, without loss
of generality, a minimization problem as the one formulated in Sect. 6.1. We denote

6 GRASP: Advances and Extensions 173

by c(e) the incremental cost associated with the incorporation of element e ∈ E
into the solution under construction. At any GRASP iteration, let cmin and cmax be,
respectively, the smallest and the largest incremental costs.

The restricted candidate list RCL is made up of the elements e ∈ E with the
best (i.e., the smallest) incremental costs c(e). This list can be limited either by
the number of elements (cardinality-based) or by their quality (value-based). In the
first case, it is made up of the p elements with the best incremental costs, where
p is a parameter. In this chapter, the RCL is associated with a threshold parameter
α ∈ [0,1]. The restricted candidate list is formed by all elements e ∈ E which can
be feasibly inserted into the partial solution under construction and whose quality
is superior to the threshold value, i.e., c(e) ∈ [cmin,cmin +α(cmax − cmin)]. The case
α = 0 corresponds to a pure greedy algorithm, while α = 1 is equivalent to a random
construction. The pseudo-code in Fig. 6.4 is a refinement of the greedy randomized
construction pseudo-code shown in Fig. 6.2. It shows that the parameter α controls
the amounts of greediness and randomness in the algorithm.

procedure Greedy Randomized Construction(,Seed)
1 Solution ← ;0/
2 Initialize the candidate set: C ← E;
3 Evaluate the incremental cost c(e) for all e ∈C;
4 whileC �= /0 do
5 cmin ← min{c(e) | e ∈C};
6 cmax ← max{c(e) | e ∈C};
7 RCL ← {e ∈C | c(e) ≤ cmin+ (cmax − cmin)};
8 Select an element s from the RCL at random;
9 Solution ← Solution∪{s};
10 Update the candidate setC;
11 Reevaluate the incremental cost c(e) for all e ∈C;
12 end;
13 return Solution;
end Greedy Randomized Construction.

a

a

Fig. 6.4 Refined pseudo-code of the construction phase

GRASP construction can be viewed as a repetitive sampling technique. Each
iteration produces a sample solution from an unknown distribution, whose mean
and variance are functions of the restrictive nature of the RCL. For example, if the
RCL is restricted to a single element, then the same solution will be produced at all
iterations. The variance of the distribution will be zero and the mean will be equal
to the value of the greedy solution. If the RCL is allowed to have more elements,
then many different solutions will be produced, implying a larger variance. Since
greediness plays a smaller role in this case, the average solution value should be
worse than that of the greedy solution. However, the value of the best solution found
outperforms the average value and can be near-optimal or even optimal. It is unlikely
that GRASP will find an optimal solution if the average solution value is high, even
if there is a large variance in the overall solution values. On the other hand, if there is

174 M. G. C. Resende and C. C. Ribeiro

little variance in the overall solution values, it is also unlikely that GRASP will find
an optimal solution, even if the average solution is low. What often leads to good
solutions are relatively low average solution values in the presence of a relatively
large variance, such as is the case for α = 0.2.

Another interesting observation is that the distances between the solutions ob-
tained at each iteration and the best solution found increase as the construction phase
moves from more greedy to more random. This causes the average time taken by the
local search to increase. Very often, many GRASP solutions may be generated in the
same amount of time required by the local search procedure to converge from a sin-
gle random start. In these cases, the time saved by starting the local search from
good initial solutions can be used to improve solution quality by performing more
GRASP iterations.

These results are illustrated in Table 6.1 and Fig. 6.5, for an instance of the
MAXSAT problem [219] where 1000 iterations were run. For each value of α rang-
ing from 0 (purely random construction for maximization problems) to 1 (purely
greedy construction for maximization problems), we give in Table 6.1 the average
Hamming distance between each solution built during the construction phase and
the corresponding local optimum obtained after local search, the average number of
moves from the former to the latter, the local search time in seconds, and the total
processing time in seconds. Figure 6.5 summarizes the values observed for the total
processing time and the local search time. We notice that both time measures consid-
erably decrease as α tends to 1, approaching the purely greedy choice. In particular,
we observe that the average local search time taken by α = 0 (purely random) is
approximately 2.5 times longer than the time taken by α = 0.9 (almost greedy). In
this example, two to three greedily constructed solutions can be investigated in the
same time needed to apply local search to one single randomly constructed solution.
The appropriate choice of the value of the RCL parameter α is clearly critical and
relevant to achieve a good balance between computation time and solution quality.

Table 6.1 Average number of moves and local search time as a function of the RCL parameter α
for a maximization problem

α Avg. distance Avg. moves Local search time (s) Total time (s)
0.0 12.487 12.373 18.083 23.378
0.1 10.787 10.709 15.842 20.801
0.2 10.242 10.166 15.127 19.830
0.3 9.777 9.721 14.511 18.806
0.4 9.003 8.957 13.489 17.139
0.5 8.241 8.189 12.494 15.375
0.6 7.389 7.341 11.338 13.482
0.7 6.452 6.436 10.098 11.720
0.8 5.667 5.643 9.094 10.441
0.9 4.697 4.691 7.753 8.941
1.0 2.733 2.733 5.118 6.235

6 GRASP: Advances and Extensions 175

Prais and Ribeiro [201] show that using a single fixed value for the RCL param-
eter α very often hinders finding a high-quality solution, which could be found if
another value is used. They propose an extension of the basic GRASP procedure,
which they call Reactive GRASP, in which the parameter α is self-tuned and its
value is periodically modified depending on the quality of the solutions obtained
along the search. In particular, computational experiments on the problem of traf-
fic assignment in communication satellites [202] show that Reactive GRASP finds
better solutions than the basic algorithm for many test instances. These results moti-
vated the study of the behavior of GRASP with different strategies for the variation
of the value of the RCL parameter α:

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

0 0.2 0.4 0.6 0.8 1

local search CPU time

total CPU time

tim
e

(s
ec

on
ds

)
fo

r
10

00
 it

er
at

io
ns

RCL parameter

Fig. 6.5 Total CPU time and local search CPU time as a function of the RCL parameter α for a
maximization problem (1000 repetitions for each value of α)

R: α self tuned with a Reactive GRASP procedure;
E: α randomly chosen from a uniform discrete probability distribution;
H: α randomly chosen from a decreasing non-uniform discrete probability distri-

bution;
F: α fixed, close to the purely greedy choice value.

We summarize the results obtained by the experiments reported in [200, 201].
These four strategies are incorporated into the GRASP procedures developed for
four different optimization problems: (P-1) matrix decomposition for traffic assign-
ment in communication satellites [202]; (P-2) set covering [90]; (P-3) weighted
MAX-SAT [219, 221]; and (P-4) graph planarization [210, 226]. Let

176 M. G. C. Resende and C. C. Ribeiro

Ψ = {α1, . . . ,αm}

be the set of possible values for the parameter α for the first three strategies. The
strategy for choosing and self-tuning the value of α in the case of the Reactive
GRASP procedure (R) is described later in Sect. 6.3. In the case of the strategy
(E) based on using the discrete uniform distribution, all choice probabilities are
equal to 1/m. The third case corresponds to the a hybrid strategy (H), in which
the authors considered p(α = 0.1) = 0.5, p(α = 0.2) = 0.25, p(α = 0.3) = 0.125,
p(α = 0.4) = 0.03, p(α = 0.5) = 0.03, p(α = 0.6) = 0.03, p(α = 0.7) = 0.01,
p(α = 0.8) = 0.01, p(α = 0.9) = 0.01, and p(α = 1.0) = 0.005. Finally, in the last
strategy (F), the value of α is fixed as recommended in the original references of
problems P-1 to P-4 cited above, where this parameter was tuned for each problem.
A subset of the literature instances was considered for each class of test problems.
The results reported in [201] are summarized in Table 6.2. For each problem, we
first list the number of instances considered. Next, for each strategy, we give the
number of times it found the best solution (hits), as well as the average CPU time
(in seconds) on an IBM 9672 model R34. The number of iterations was fixed at
10,000.

Table 6.2 Computational results for different strategies for the variation of parameter α
R E H F

Problem Instances Hits Time Hits Time Hits Time Hits Time
P-1 36 34 579.0 35 358.2 32 612.6 24 642.8
P-2 7 7 1346.8 6 1352.0 6 668.2 5 500.7
P-3 44 22 2463.7 23 2492.6 16 1740.9 11 1625.2
P-4 37 28 6363.1 21 7292.9 24 6326.5 19 5972.0

Total 124 91 85 78 59

Strategy (F) presented the shortest average computation times for three out the
four problem types. It was also the one with the least variability in the constructed
solutions and, in consequence, found the best solution the fewest times. The reactive
strategy (R) is the one which most often found the best solutions, however, at the
cost of computation times that are longer than those of some of the other strategies.
The high number of hits observed for strategy (E) also illustrates the effectiveness
of strategies based on the variation of the RCL parameter.

6.3 Alternative Construction Mechanisms

A possible shortcoming of the standard GRASP framework is the independence of
its iterations, i.e., the fact that it does not learn from the search history or from
solutions found in previous iterations. This is so because the basic algorithm dis-
cards information about any solution previously encountered that does not improve

6 GRASP: Advances and Extensions 177

the incumbent. Information gathered from good solutions can be used to imple-
ment memory-based procedures to influence the construction phase, by modifying
the selection probabilities associated with each element of the RCL or by enforcing
specific choices. Another possible shortcoming of the greedy randomized construc-
tion is its complexity. At each step of the construction, each yet unselected candidate
element has to be evaluated by the greedy function. In cases where the difference
between the number of elements in the ground set and the number of elements that
appear in a solution is large, this may not be very efficient.

In this section, we consider enhancements and alternative techniques for the con-
struction phase of GRASP. They include random plus greedy, sampled greedy, Re-
active GRASP, cost perturbations, bias functions, memory and learning, local search
on partially constructed solutions, and Lagrangean GRASP heuristics.

6.3.1 Random Plus Greedy and Sampled Greedy Construction

In Sect. 6.2, we described the semi-greedy construction scheme used to build ran-
domized greedy solutions that serve as starting points for local search. Two other
randomized greedy approaches were proposed in [216], with smaller worst-case
complexities than the semi-greedy algorithm.

Instead of combining greediness and randomness at each step of the construction
procedure, the random plus greedy scheme applies randomness during the first p
construction steps to produce a random partial solution. Next, the algorithm com-
pletes the solution with one or more pure greedy construction steps. The resulting
solution is randomized greedy. One can control the balance between greediness and
randomness in the construction by changing the value of the parameter p. Larger
values of p are associated with solutions that are more random, while smaller val-
ues result in greedier solutions.

Similar to the random plus greedy procedure, the sampled greedy construction
also combines randomness and greediness but in a different way. This procedure is
also controlled by a parameter p. At each step of the construction process, the pro-
cedure builds a restricted candidate list by randomly sampling min{p, |C|} elements
of the candidate set C. Each element of the RCL is evaluated by the greedy function.
The element with the smallest greedy function value is added to the partial solution.
This two-step process is repeated until there are no more candidate elements. The
resulting solution is also randomized greedy. The balance between greediness and
randomness can be controlled by changing the value of the parameter p, i.e. the
number of candidate elements that are sampled. Small sample sizes lead to more
random solutions, while large sample sizes lead to greedier solutions.

178 M. G. C. Resende and C. C. Ribeiro

6.3.2 Reactive GRASP

The first strategy to incorporate a learning mechanism in the memoryless construc-
tion phase of the basic GRASP was the Reactive GRASP procedure introduced in
Sect. 6.2. In this case, the value of the RCL parameter α is not fixed, but instead
is randomly selected at each iteration from a discrete set of possible values. This
selection is guided by the solution values found along the previous iterations. One
way to accomplish this is to use the rule proposed in [202]. Let Ψ = {α1, . . . ,αm}
be a set of possible values for α . The probabilities associated with the choice of
each value are all initially made equal to pi = 1/m, for i = 1, . . . ,m. Furthermore,
let z∗ be the incumbent solution and let Ai be the average value of all solutions found
using α = αi, for i = 1, . . . ,m. The selection probabilities are periodically reevalu-
ated by taking pi = qi/∑m

j=1 q j, with qi = z∗/Ai for i = 1, . . . ,m. The value of qi

will be larger for values of α = αi leading to the best solutions on average. Larger
values of qi correspond to more suitable values for the parameter α . The probabil-
ities associated with the more appropriate values will then increase when they are
reevaluated.

The reactive approach leads to improvements over the basic GRASP in terms of
robustness and solution quality, due to greater diversification and less reliance on
parameter tuning. In addition to the applications in [200–202], this approach has
been used in power system transmission network planning [46], job shop schedul-
ing [49], channel assignment in mobile phone networks [118], rural road network
development [249], capacitated location [71], strip-packing [15], and a combined
production-distribution problem [50].

6.3.3 Cost Perturbations

The idea of introducing some noise into the original costs is similar to that in the so-
called “noising” method of Charon and Hudry [57, 58]. It adds more flexibility into
the algorithm design and may be even more effective than the greedy randomized
construction of the basic GRASP procedure in circumstances where the construction
algorithms are not very sensitive to randomization. This is indeed the case for the
shortest-path heuristic of Takahashi and Matsuyama [259], used as one of the main
building blocks of the construction phase of the hybrid GRASP procedure proposed
by Ribeiro et al. [233] for the Steiner problem in graphs. Another situation where
cost perturbations can be very effective appears when no greedy algorithm is avail-
able for straightforward randomization. This happens to be the case of the hybrid
GRASP developed by Canuto et al. [54] for the prize-collecting Steiner tree prob-
lem, which makes use of the primal-dual algorithm of Goemans and Williamson
[117] to build initial solutions using perturbed costs.

In the case of the GRASP for the prize-collecting Steiner tree problem described
in [54], a new solution is built at each iteration using node prizes updated by a pertur-
bation function, based on the structure of the current solution. Two different prize

6 GRASP: Advances and Extensions 179

perturbation schemes were used. In perturbation by eliminations, the primal-dual
algorithm used in the construction phase is driven to build a new solution without
some of the nodes that appeared in the solution constructed in the previous iteration.
In perturbation by prize changes, some noise is introduced into the node prizes to
change the objective function, similarly to what is proposed in [57, 58].

The cost perturbation methods used in the GRASP for the minimum Steiner tree
problem described in [233] incorporate learning mechanisms associated with inten-
sification and diversification strategies. Three distinct weight randomization meth-
ods were applied. At a given GRASP iteration, the modified weight of each edge
is randomly selected from a uniform distribution over an interval which depends
on the selected weight randomization method applied at that iteration. The differ-
ent weight randomization methods use frequency information and may be used to
enforce intensification and diversification strategies. The experimental results re-
ported in [233] show that the strategy combining these three perturbation methods
is more robust than any of them used in isolation, leading to the best overall results
on a quite broad mix of test instances with different characteristics. The GRASP
heuristic using this cost perturbation strategy is among the most effective heuristics
currently available for the Steiner problem in graphs.

6.3.4 Bias Functions

In the construction procedure of the basic GRASP, the next element to be introduced
in the solution is chosen at random from the candidates in the RCL. The elements of
the RCL are assigned equal probabilities of being chosen. However, any probability
distribution can be used to bias the selection toward some particular candidates. An-
other construction mechanism was proposed by Bresina [51], where a family of such
probability distributions is introduced. They are based on the rank r(e) assigned to
each candidate element e ∈ C, according to its greedy function value. Several bias
functions were proposed, such as:

• random bias: bias(r) = 1;
• linear bias: bias(r) = 1/r;
• log bias: bias(r) = log−1(r+1);
• exponential bias: bias(r) = e−r; and
• polynomial bias of order n: bias(r) = r−n.

Let r(e) denote the rank of element e ∈ C and let bias(r(e)) be one of the bias
functions defined above. Once these values have been evaluated for all elements in
the candidate set C, the probability π(e) of selecting element e ∈C is

π(e) =
bias(r(e))

∑e′∈C bias(r(e′))
. (6.1)

180 M. G. C. Resende and C. C. Ribeiro

The evaluation of these bias functions may be restricted to the elements of the
RCL. Bresina’s selection procedure restricted to elements of the RCL was used in
[49]. The standard GRASP uses a random bias function.

6.3.5 Intelligent Construction: Memory and Learning

Fleurent and Glover [106] observed that the basic GRASP does not use a long-term
memory (information gathered in previous iterations) and proposed a long-term
memory scheme to address this issue in multi-start heuristics. Long-term memory
is one of the fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be used in the construction
phase. To become an elite solution, a solution must be either better than the best
member of the pool, or better than its worst member and sufficiently different from
the other solutions in the pool. For example, one can count identical solution vector
components and set a threshold for rejection.

A strongly determined variable is one that cannot be changed without eroding the
objective or changing significantly other variables. A consistent variable is one that
receives a particular value in a large portion of the elite solution set. Let the intensity
function I(e) be a measure of the strong determination and consistency features of
a solution element e ∈ E. Then, I(e) becomes larger as e appears more often in the
pool of elite solutions. The intensity function is used in the construction phase as
follows. Recall that c(e) is the greedy function, i.e. the incremental cost associated
with the incorporation of element e ∈ E into the solution under construction. Let
K(e) = F(c(e), I(e)) be a function of the greedy and intensification functions. For
example, K(e) = λc(e)+ I(e). The intensification scheme biases selection from the
RCL to those elements e ∈ E with a high value of K(e) by setting its selection
probability to be p(e) = K(e)/∑s∈RCL K(s).

The function K(e) can vary with time by changing the value of λ . For example,
λ may be set to a large value that is decreased when diversification is called for.
Procedures for changing the value of λ are given by Fleurent and Glover [106] and
Binato et al. [49].

6.3.6 POP in Construction

The Proximate Optimality Principle (POP) is based on the idea that “good solutions
at one level are likely to be found ‘close to’ good solutions at an adjacent level”
[115]. Fleurent and Glover [106] provided a GRASP interpretation of this principle.
They suggested that imperfections introduced during steps of the GRASP construc-
tion can be “ironed-out” by applying local search during (and not only at the end of)
the GRASP construction phase.

6 GRASP: Advances and Extensions 181

Because of efficiency considerations, a practical implementation of POP to
GRASP consists in applying local search a few times during the construction phase,
but not at every construction iteration. Local search was applied by Binato et al. [49]
after 40% and 80% of the construction moves were performed, as well as at the end
of the construction phase.

6.3.7 Lagrangean GRASP Heuristics

Lagrangean relaxation [45, 105] is a mathematical programming technique that can
be used to provide lower bounds for minimization problems. Held and Karp [123,
124] were among the first to explore the use of the dual multipliers produced by
Lagrangean relaxation to derive lower bounds, applying this idea in the context of
the traveling salesman problem. Lagrangean heuristics further explore the use of
different dual multipliers to generate feasible solutions. Beasley [43, 44] described
a Lagrangean heuristic for set covering.

6.3.7.1 Lagrangean Relaxation and Subgradient Optimization

Lagrangean relaxation can be used to provide lower bounds for combinatorial op-
timization problems. However, the primal solutions produced by the algorithms
used to solve the Lagrangean dual problem are not necessarily feasible. Lagrangean
heuristics exploit dual multipliers to generate primal feasible solutions.

Given a mathematical programming problem P formulated as

f ∗ = min f (x) (6.2)

gi(x)≤ 0, i = 1, . . . ,m, (6.3)

x ∈ X , (6.4)

its Lagrangean relaxation is obtained by associating dual multipliers λi ∈ R+ with
each inequality (6.3), for i = 1, . . . ,m. This results in the following Lagrangean
relaxation problem LRP(λ)

min f ′(x) = f (x)+
m

∑
i=1

λi ·gi(x) (6.5)

x ∈ X , (6.4)

whose optimal solution x(λ) gives a lower bound f ′(x(λ)) to the optimal value of
the original problem P defined by (6.2)–(6.4). The best (dual) lower bound is given
by the solution of the Lagrangean dual problem D

fD = f ′(x(λ ∗)) = max
λ∈Rm

+

f ′(x(λ)). (6.6)

182 M. G. C. Resende and C. C. Ribeiro

Subgradient optimization is used to solve the dual problem D defined by (6.6).
Subgradient algorithms start from any feasible set of dual multipliers, such as λi = 0,
for i = 1, . . . ,m, and iteratively generate updated multipliers.

At any iteration q, let λ q be the current vector of multipliers and let x(λ q) be
an optimal solution to problem LRP(λ q), whose optimal value is f ′(x(λ q)). Fur-
thermore, let f̄ be a known upper bound to the optimal value of problem P . Ad-
ditionally, let gq ∈ R

m be a subgradient of f ′(x) at x = x(λ q), with gq
i = gi(x(λ q))

for i = 1, . . . ,m. To update the Lagrangean multipliers, the algorithm makes use of
a step size

dq =
η · (f̄ − f ′(x(λ q)))

∑m
i=1(g

q
i)

2
, (6.7)

where η ∈ (0,2]. Multipliers are then updated as

λ q+1
i = max{0;λ q

i −dq ·gq
i }, i = 1, . . . ,m, (6.8)

and the subgradient algorithm proceeds to iteration q+1.

6.3.7.2 A Template for Lagrangean Heuristics

We describe next a template for Lagrangean heuristics that make use of the dual
multipliers λ q and of the optimal solution x(λ q) to each problem LRP(λ q) to build
feasible solutions to the original problem P defined by (6.2)–(6.4). In the following,
we assume that the objective function and all constraints are linear functions, i.e.
f (x) = ∑n

i=1 c jx j and gi(x) = ∑n
j=1 di jx j − ei, for i = 1, . . . ,m.

Let H be a primal heuristic that builds a feasible solution x to P , starting from
the initial solution x0 = x(λ q) at every iteration q of the subgradient algorithm.
Heuristic H is first applied using the original costs c j, i.e. using the cost function
f (x). In any subsequent iteration q of the subgradient algorithm, H uses either the
Lagrangean reduced costs c′j = c j −∑m

i=1 λ q
i di j or the complementary costs c̄ j =

(1− x j(λ q)) · c j.
Let xH ,γ be the solution obtained by heuristic H , using a generic cost vector γ

corresponding to either one of the above modified cost schemes or to the original
cost vector. Its cost can be used to update the upper bound f̄ to the optimal value of
the original problem. This upper bound can be further improved by local search and
is used to adjust the step size defined by Eq. (6.7).

Figure 6.6 shows the pseudo-code of a Lagrangean heuristic. Lines 1–4 initialize
the upper and lower bounds, the iteration counter, and the dual multipliers. The iter-
ations of the subgradient algorithm are performed along the loop defined in lines 5–
24. The reduced costs are computed in line 6 and the Lagrangean relaxation problem
is solved in line 7. In the first iteration of the Lagrangean heuristic, the original cost
vector is assigned to γ in line 9, while in subsequent iterations a modified cost vector
is assigned to γ in line 11. Heuristic H is applied in line 13 at the first iteration and
after every H iterations thereafter (i.e., whenever the iteration counter q is a multi-
ple of the input parameter H) to produce a feasible solution xH ,γ to problem P . If

6 GRASP: Advances and Extensions 183

the cost of this solution is smaller than the current upper bound, then the best solu-
tion and its cost are updated in lines 14–18. If the lower bound f ′(x(λ q)) is greater
than the current lower bound fD , then fD is updated in line 19. Line 20 computes a
subgradient at x(λ q) and line 21 computes the step size. The dual multipliers are up-
dated in line 22 and the iteration counter is incremented in line 23. The best solution
found and its cost are returned in line 24.

The strategy proposed by Held et al. [125] is commonly used in the implementa-
tion of Lagrangean heuristics to update the dual multipliers from one iteration to the
next. Beasley [44] reported as computationally useful the adjustment of components
of the subgradients to zero whenever they do not effectively contribute to the update
of the multipliers, i.e., arbitrarily setting gq

i = 0 whenever gq
i > 0 and λ q

i = 0, for
i = 1, . . . ,m.

procedure Lagrangean Heuristic(H)
1 f̄ ← + ;
2 fD ← − ;
3 q ← 0;
4 q

i ← 0, i= 1, . . . ,m;
5 repeat
6 Compute reduced costs: c′

j ← c j − m
i=1

q
i di j, j = 1, . . . ,n;

7 Solve LRP(q) to obtain a solution x(q);
8 if q= 0 then
9 ← c;
10 else
11 Set to the modified cost vector c′ or c̄;
12 end-if;
13 if q is a multiple of H then apply heuristic H with cost vector to obtain xH , ;
14 if f (xH ,)< f̄
15 then do;
16 x∗ ← xH , ;
17 f̄ ← f (xH ,);
18 end-if;
19 if f ′(x(q))> fD then fD ← f ′(x(q));
20 Compute a subgradient: gqi ← gi(x(q)), i= 1, . . . ,m;
21 Compute the step size: dq ← · (f̄ − f ′(x(q)))/ m

i=1(g
q
i)

2;
22 Update the dual multipliers: q+1

i ← max{0, q
i −dqgqi }, i= 1, . . . ,m;

23 q ← q+1;
24 until stopping criterion satisfied;
25 return x∗, f (x∗);
end Lagrangean Heuristic.

l
l

h S

S
l

l

l
l

l
l

g

g

g

gg

g
g

l

l

Fig. 6.6 Pseudo-code of a template for a Lagrangean heuristic

Different choices for the initial solution x0, for the modified costs γ , and for the
primal heuristic H itself lead to different variants of the above algorithm. The in-
teger parameter H defines the frequency in which H is applied. The smaller the
value of H, the greater the number of times H is applied. Therefore, the computa-

184 M. G. C. Resende and C. C. Ribeiro

tion time increases as the value of H decreases. In particular, one should set H = 1
if the primal heuristic H is to be applied at every iteration.

6.3.7.3 Lagrangean GRASP

Pessoa et al. [195, 196] proposed the hybridization of GRASP and Lagrangean re-
laxation leading to the Lagrangean GRASP heuristic described below. Different
choices for the primal heuristic H in the template of the algorithm in Fig. 6.6
lead to distinct Lagrangean heuristics. We consider two variants: the first makes
use of a greedy algorithm with local search, while in the second a GRASP with
path-relinking (see Sect. 6.4) is used.

Greedy heuristic: This heuristic greedily repairs the solution x(λ q) produced in
line 7 of the Lagrangean heuristic described in Fig. 6.6 to make it feasible for prob-
lem P . It makes use of the modified costs (c′ or c̄). Local search can be applied to
the resulting solution, using the original cost vector c. We refer to this approach as
a greedy Lagrangean heuristic (GLH).

GRASP heuristic: Instead of simply performing one construction step followed
by local search, as GLH does, this variant applies a GRASP heuristic to repair the
solution x(λ q) produced in line 7 of the Lagrangean heuristic to make it feasible for
problem P .

Although the GRASP heuristic produces better solutions than the greedy heuris-
tic, the greedy heuristic is much faster. To appropriately address this trade-off, we
adapt line 10 of Fig. 6.6 to use the GRASP heuristic with probability β and the
greedy heuristic with probability 1−β , where β is a parameter of the algorithm.

We note that this strategy involves three main parameters: the number H of iter-
ations after which the basic heuristic is always applied, the number Q of iterations
performed by the GRASP heuristic when it is chosen as the primal heuristic, and
the probability β of choosing the GRASP heuristic as H . We shall refer to the
Lagrangean heuristic that uses this hybrid strategy as LAGRASP(β ,H,Q).

We next summarize computational results obtained for 135 instances of the set
k-covering problem. These instances have up to 400 constraints and 4000 binary
variables. The set k-covering, or set multi-covering, problem is an extension of the
classical set covering problem, in which each element is required to be covered
at least k times. The problem finds applications in the design of communication
networks and in computational biology.

The first experiment with the GRASP Lagrangean heuristic established the rela-
tionship between running times and solution quality for different parameter settings.
Parameter β , the probability of GRASP being applied as the heuristic H , was set to

6 GRASP: Advances and Extensions 185

0, 0.25, 0.50, 0.75, and 1. Parameter H, the number of iterations between successive
calls to the heuristic H , was set to 1, 5, 10, and 50. Parameter Q, the number of it-
erations carried out by the GRASP heuristic, was set to 1, 5, 10, and 50. By combin-
ing some of these parameter values, 68 variants of the hybrid LAGRASP(β ,H,Q)
heuristic were created. Each variant was applied eight times to a subset of 21 in-
stances, with different initial seeds being given to the random number generator.

The plot in Fig. 6.7 summarizes the results for all variants evaluated, display-
ing points whose coordinates are the values of the average deviation from the best
known solution value and the total time in seconds for processing the eight runs on
all instances, for each combination of parameter values. Eight variants of special in-
terest are identified and labeled with the corresponding parameters β , H, and Q, in
this order. These variants correspond to selected Pareto points in the plot in Fig. 6.7.
Setting β = 0 and H = 1 corresponds to the greedy Lagrangean heuristic (GLH) or,
equivalently, to LAGRASP(0,1,−), whose average deviation (in percentage) from
the best value amounts to 0.12% in 4859.16 s of total running time. Table 6.3 shows
the average deviation from the best known solution value and the total time for each
of the eight selected variants.

In another experiment, all 135 test instances were considered for the comparison
of the above selected eight variants of LAGRASP. Table 6.4 summarizes the results

100

1000

10000

100000

1e+06

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

T
im

e
(s

)

AvgDev (%)

(0,1,-)

(0,50,-)

(0.25,5,1)

(0.25,5,5)

(0.25,5,10)

(0.25,50,5)

(0.50,1,1)

(1,1,50)

Fig. 6.7 Average deviation from the best value and total running time for 68 different variants of
LAGRASP on a reduced set of 21 instances of the set k-covering problem: each point represents a
unique combination of parameters β , H, and Q

186 M. G. C. Resende and C. C. Ribeiro

Table 6.3 Summary of the numerical results obtained with the selected variants of the GRASP
Lagrangean heuristic on a reduced set of 21 instances of the set k-covering problem

Heuristic Average deviation Total time (s)
LAGRASP(1,1,50) 0.09% 399,101.14
LAGRASP(0.50,1,1) 0.11% 6198.46
LAGRASP(0,1,−) 0.12% 4859.16
LAGRASP(0.25,5,10) 0.24% 4373.56
LAGRASP(0.25,5,5) 0.25% 2589.79
LAGRASP(0.25,5,1) 0.26% 1101.64
LAGRASP(0.25,50,5) 0.47% 292.95
LAGRASP(0,50,−) 0.51% 124.26
These values correspond to the coordinates of the selected variants in Fig. 6.7. The total time is
given in seconds

obtained by the eight selected variants. It shows that LAGRASP(1,1,50) found the
best solutions, with an average deviation from the best values amounting to 0.079%.
It also found the best known solutions in 365 runs (each variant was run eight times
on each instance), again with the best performance when the eight variants are eval-
uated side by side, although its running times are the largest. On the other hand, the
smallest running times were observed for LAGRASP(0,50,−), which was over 3000
times faster than LAGRASP(1,1,50) but found the worst-quality solutions among
the eight variants considered.

Table 6.4 Summary of the numerical results obtained with the selected variants of the GRASP
Lagrangean heuristic on the full set of 135 instances of the set k-covering problem

Heuristic Average deviation Hits Total time (s)
LAGRASP(1,1,50) 0.079% 365 1,803,283.64
LAGRASP(0.50,1,1) 0.134% 242 30,489.17
LAGRASP(0,1,−) 0.135% 238 24,274.72
LAGRASP(0.25,5,10) 0.235% 168 22,475.54
LAGRASP(0.25,5,5) 0.247% 163 11,263.80
LAGRASP(0.25,5,1) 0.249% 164 5347.78
LAGRASP(0.25,50,5) 0.442% 100 1553.35
LAGRASP(0,50,−) 0.439% 97 569.30
The total time is given in seconds

Figure 6.8 illustrates the merit of the proposed approach for one of the test
instances. We first observe that all variants reach the same lower bounds, as ex-
pected, since they depend exclusively on the common subgradient algorithm. How-
ever, as the lower bound appears to stabilize, the upper bound obtained by GLH
(LAGRASP(0,1,−) also seems to freeze. On the other hand, the other variants con-
tinue to make improvements by discovering better upper bounds, since the random-
ized GRASP construction helps them to escape from locally optimal solutions and
find new, improved upper bounds.

6 GRASP: Advances and Extensions 187

10300

10400

10500

10600

10700

10800

10900

0 500 1000 1500 2000 2500

Lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
s

Iterations

LAGRASP(1,1,50) UB
LAGRASP(0.50,1,1) UB

LAGRASP(0,1,-) UB
LAGRASP(0.25,5,10) UB
LAGRASP(0.25,5,5) UB
LAGRASP(0.25,5,1) UB

LAGRASP(0.25,50,5) UB
LAGRASP(0,50,-) UB

Lower Bound

Fig. 6.8 Evolution of lower and upper bounds over the iterations for different variants of LA-
GRASP. The number of iterations taken by each LAGRASP variant depends on the step-size,
which in turn depends on the upper bounds produced by each heuristic

Finally, we provide a comparison between GRASP with backward path-relinking
and the LAGRASP variants on all 135 test instances when the same time limits are
used to stop all heuristics. Eight runs were performed for each heuristic and each in-
stance, using different initial seeds for the random number generator. Each heuristic
was run a total of (8×135 =) 1080 times. The results in Table 6.5 show that all vari-
ants of LAGRASP outperformed GRASP with backward path-relinking and were
able to find solutions whose costs are very close to or as good as the best known
solution values, while GRASP with backward path-relinking found solutions whose
costs are on average 4.05% larger than the best known solution values.

Table 6.5 Summary of results for the best variants of LAGRASP and GRASP

Heuristic Average deviation Hits
LAGRASP(1,1,50) 3.30% 0
LAGRASP(0.50,1,1) 0.35% 171
LAGRASP(0,1,−) 0.35% 173
LAGRASP(0.25,5,10) 0.45% 138
LAGRASP(0.25,5,5) 0.45% 143
LAGRASP(0.25,5,1) 0.46% 137
LAGRASP(0.25,50,5) 0.65% 97
LAGRASP(0,50,−) 0.65% 93
GRASP with backward path-relinking 4.05% 0

188 M. G. C. Resende and C. C. Ribeiro

Figure 6.9 displays for one test instance the typical behavior of these heuristics.
As opposed to the GRASP with path-relinking, the Lagrangean heuristics are able to
escape from local optima for longer and keep on improving the solutions to obtain
the best results.

We note that an important feature of Lagrangean heuristics is that they provide
not only a feasible solution (which gives an upper bound, in the case of a minimiza-
tion problem), but also a lower bound that may be used to give an estimate of the
optimality gap that may be considered as a stopping criterion.

6.4 Path-Relinking

The LAGRASP heuristics presented in Sect. 6.3.7.3 made use of path-relinking.
Path-relinking is another enhancement to the basic GRASP procedure, leading to
significant improvements in both solution quality and running times. This tech-
nique was originally proposed by Glover [112] as an intensification strategy to
explore trajectories connecting elite solutions obtained by tabu search or scatter
search [113, 115, 116].

We consider the undirected graph associated with the solution space G = (S,M),
where the nodes in S correspond to feasible solutions and the edges in M corre-
spond to moves in the neighborhood structure, i.e. (i, j) ∈ M if and only if i ∈ S,
j ∈ S, j ∈ N(i) and i ∈ N(j), where N(s) denotes the neighborhood of a node s ∈ S.
Path-relinking is usually carried out between two solutions: one is called the initial

10400

10450

10500

10550

10600

10650

10700

10750

10800

0 5 10 15 20 25 30

C
os

t

Time (s)

GPRb
LAGRASP(1,1,50)

LAGRASP(0.50,1,1)
LAGRASP(0,1,-)

LAGRASP(0.25,5,10)
LAGRASP(0.25,5,5)
LAGRASP(0.25,5,1)

LAGRASP(0.25,50,5)
LAGRASP(0,50,-)

Fig. 6.9 Evolution of solution costs with time for the best variants of LAGRASP and GRASP with
backward path-relinking (GPRb)

6 GRASP: Advances and Extensions 189

solution, while the other is the guiding solution. One or more paths in the solution
space graph connecting these solutions are explored in the search for better solu-
tions. Local search is applied to the best solution in each of these paths, since there
is no guarantee that the best solution is locally optimal.

Let s ∈ S be a node on the path between an initial solution and a guiding solution
g ∈ S. Not all solutions in the neighborhood N(s) are candidates to follow s on the
path from s to g. We restrict the choice only to those solutions that are more similar
to g than s. This is accomplished by selecting moves from s that introduce attributes
contained in the guiding solution g. Therefore, path-relinking may be viewed as a
strategy that seeks to incorporate attributes of high quality solutions (i.e. the guiding
elite solutions), by favoring these attributes in the selected moves.

The use of path-relinking within a GRASP procedure, as an intensification strat-
egy applied to each locally optimal solution, was first proposed by Laguna and
Martí [147]. It was followed by several extensions, improvements, and successful
applications [8, 9, 22, 54, 104, 183, 206, 212, 216, 217, 227, 233, 249]. A survey
of GRASP with path-relinking can be found in [213].

Enhancing GRASP with path-relinking almost always improves the performance
of the heuristic. As an illustration, Fig. 6.10 shows time-to-target plots [7, 10, 228,
235, 236] for GRASP and GRASP with path-relinking implementations for four dif-
ferent applications. These time-to-target plots show the empirical cumulative prob-
ability distributions of the time-to-target random variable when using pure GRASP
and GRASP with path-relinking, i.e., the time needed to find a solution at least as
good as a prespecified target value. For all problems, the plots show that GRASP
with path-relinking is able to find target solutions faster than GRASP.

GRASP with path-relinking makes use of an elite set to collect a diverse pool
of high-quality solutions found during the search. This pool is limited in size, i.e. it
can have at most Max_Elite solutions. Several schemes have been proposed for
the implementation of path-relinking, which may be applied as:

• an intensification strategy, between each local optimum obtained after the local
search phase and one or more elite solutions;

• a post-optimization step, between every pair of elite solutions;
• an intensification strategy, periodically (after a fixed number of GRASP iterations

since the last intensification phase) submitting the pool of elite solutions to an
evolutionary process (see Sect. 6.4.7);

• a post-optimization phase, submitting the pool of elite solutions to an evolution-
ary process; or

• any other combination of the above schemes.

The pool of elite solutions is initially empty. Each locally optimal solution ob-
tained by local search and each solution resulting from path-relinking is considered
as a candidate to be inserted into the pool. If the pool is not yet full, the candidate
is simply added to the pool. Otherwise, if the candidate is better than the incumbent
(best solution found so far), it replaces an element of the pool. In case the candidate
is better than the worst element of the pool but not better than the best element, then
it replaces some element of the pool if it is sufficiently different from every other so-
lution currently in the pool. To balance the impact on pool quality and diversity, the
element selected to be replaced is the one that is most similar to the entering solution
among those elite solutions of quality no better than the entering solution [216].

190 M. G. C. Resende and C. C. Ribeiro

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
 1

 0 200 400 600 800 1000 1200 1400 1600

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

3 index assignment: Balas & Statzman 26.1

GRASP
GRASP+PR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350

cu
m

ul
at

iv
e

pr
ob

ab
ib

lit
y

time to target solution value (seconds)

MAX-SAT: jnh212

GRASP
GRASP+PR

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0 100 200 300 400 500 600

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

Bandwidth packing: ATT

GRASP
GRASP+PR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

QAP: ste36b

GRASP
GRASP+PR

Fig. 6.10 Time to target plots comparing running times of pure GRASP and GRASP with path-
relinking on four instances of distinct problem types: three index assignment, maximum satisfia-
bility, bandwidth packing, and quadratic assignment

6 GRASP: Advances and Extensions 191

Given a local optimum s1 produced at the end of a GRASP iteration, we need
to select at random a solution s2 from the pool to apply path-relinking between s1

and s2. In principle, any pool solution could be selected. However, we may want
to avoid pool solutions that are too similar to s1, because relinking two solutions
that are similar limits the scope of the path-relinking search. If the solutions are
represented by 0–1 indicator vectors, we should favor pairs of solutions that are far
from each other, based on their Hamming distance (i.e., the number of components
that take on different values in each solution). A strategy introduced in Resende and
Werneck [216] is to select a pool element s2 at random with a probability propor-
tional to the Hamming distance between the pool element and the local optimum
s1. Since the number of paths between two solutions grows exponentially with their
Hamming distance, this strategy favors pool elements with a large number of paths
connecting them to and from s1.

After determining which solution (s1 or s2) will be designated the initial solution
i and which will be the guiding solution g, the algorithm starts by computing the
set Δ(i,g) of components in which i and g differ. This set corresponds to the moves
which should be applied to i to reach g. Starting from the initial solution, the best
move in Δ(i,g) still not performed is applied to the current solution, until the guid-
ing solution is reached. By best move, we mean the one that results in the highest
quality solution in the restricted neighborhood. The best solution found along this
trajectory is submitted to local search and returned as the solution produced by the
path-relinking algorithm.

procedure GRASP+PR(Seed);
1 Set pool of elite solutions ← ∅;
2 Set best solution value f ∗ ← ;
3 while stopping criterion not satisfied do
4 Solution ← Greedy Randomized Construction(Seed);
5 if Solution is not feasible then
6 Solution ← Repair(Solution);
7 end-if;
8 Solution ← Local Search(Solution);
9 if | | > 0 then
10 Select an elite solution Solution’ at random from ;
11 Solution ← PR(Solution,Solution′);
12 end-if;
13 if f (Solution)< f ∗ then
14 Best Solution ← Solution;
15 f ∗ ← f (S);
16 end-if;
17 Update the pool of elite solutions with Solution;
18 end-while;
19 return Best Solution;
end GRASP+PR.

Fig. 6.11 Pseudo-code of a template of a GRASP with path-relinking for a minimization problem

192 M. G. C. Resende and C. C. Ribeiro

The pseudo-code shown in Fig. 6.11 summarizes the steps of a GRASP with
path-relinking for a minimization problem. The pseudo-code follows the structure
of the basic GRASP algorithm in Fig. 6.1. Lines 1 and 2 initialize the pool of elite
solutions and the best solution value, respectively. Path-relinking is performed in
line 11 between the solution Solution obtained at the end of the local search
phase (line 8) and a solution Solution′ randomly selected from the pool of elite
solutions E (line 10). Procedure PR(Solution,Solution′) could make use, for
example, of any variant of a pure or combined path-relinking strategy. The best
overall solution found Best_Solution is returned in line 19 after the stopping
criterion is satisfied.

Several alternatives have been considered and combined in recent implementa-
tions of path-relinking. These include forward, backward, back and forward, mixed,
truncated, greedy randomized adaptive, evolutionary, and external path-relinking.
All these alternatives, which are described in the following, involve trade-offs be-
tween computation time and solution quality.

6.4.1 Forward Path-Relinking

In forward path-relinking, the GRASP local optimum is designated as the initial
solution and the pool solution is made the guiding solution. This is the original
scheme proposed by Laguna and Martí [147].

6.4.2 Backward Path-Relinking

In backward path-relinking, the pool solution is designated as the initial solution
and the GRASP local optimum is made the guiding one. This scheme was orig-
inally proposed in Aiex et al. [9] and Resende and Ribeiro [212]. The main ad-
vantage of this approach over forward path-relinking comes from the fact that, in
general, there are more high-quality solutions near pool elements than near GRASP
local optima. Backward path-relinking explores more thoroughly the neighborhood
around the pool solution, whereas forward path-relinking explores more the neigh-
borhood around the GRASP local optimum. Experiments in [9, 212] have shown
that backward path-relinking usually outperforms forward path-relinking.

6.4.3 Back and Forward Path-Relinking

Back and forward path-relinking combines forward and backward path-relinking.
As shown in [9, 212], it finds solutions at least as good as forward path-relinking
or backward path-relinking, but at the expense of taking about twice as long to

6 GRASP: Advances and Extensions 193

run. The reason that back and forward path-relinking often finds solutions of better
quality than simple backward or forward path-relinking stems from the fact that it
thoroughly explores the neighborhoods of both solutions s1 and s2.

6.4.4 Mixed Path-Relinking

Mixed path-relinking shares the benefits of back and forward path-relinking, i.e.
it thoroughly explores both neighborhoods, but does so in about the same time as
forward or backward path-relinking alone. This is achieved by interchanging the
roles of the initial and guiding solutions at each step of the path-relinking procedure.
Therefore, two paths are generated, one starting at s1 and the other at s2. The paths
evolve and eventually meet at some solution about half way between s1 and s2.
The joined path relinks these two solutions. Mixed path-relinking was suggested by
Glover [112] and was first implemented and tested by Ribeiro and Rosseti [227],
where it was shown to outperform forward, backward, and back and forward path-
relinking. Figure 6.12 shows a comparison of pure GRASP and four variants of
path-relinking: forward, backward, back and forward, and mixed. The time-to-target
plots show that GRASP with mixed path-relinking has the best running time profile
among the variants compared.

6.4.5 Truncated Path-Relinking

Since good-quality solutions tend to be near other good-quality solutions, one would
expect to find the best solutions with path-relinking near the initial or guiding so-
lution. Indeed, Resende et al. [222] showed that this is the case for instances of the
max-min diversity problem, as shown in Fig. 6.13. In that experiment, a back and
forward path-relinking scheme was tested. The figure shows the average number
of best solutions found by path-relinking taken over several instances and several
applications of path-relinking. The 0–10% range in this figure corresponds to sub-
paths near the initial solutions for the forward path-relinking phase as well as the
backward phase, while the 90–100% range are subpaths near the guiding solutions.
As the figure indicates, exploring the subpaths near the extremities may produce
solutions about as good as those found by exploring the entire path. There is a
higher concentration of better solutions close to the initial solutions explored by
path-relinking.

Truncated path-relinking can be applied to either forward, backward, backward
and forward, or mixed path-relinking. Instead of exploring the entire path, truncated
path-relinking only explores a fraction of the path and, consequently, takes a fraction
of the time to run. Truncated path-relinking has been applied in [22, 222].

194 M. G. C. Resende and C. C. Ribeiro

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

GRASP+ mixed PR
GRASP+backward PR

GRASP+back-and-forward PR
GRASP+forward PR

GRASP (no PR)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target value (seconds)

GRASP+mixed PR
GRASP+backward PR

GRASP+back-and-forward PR
GRASP+forward PR

Fig. 6.12 Time-to-target plots for pure GRASP and four variants of GRASP with path-relinking
(forward, backward, back and forward, and mixed) on an instance of the 2-path network design
problem

6 GRASP: Advances and Extensions 195

6.4.6 Greedy Randomized Adaptive Path-Relinking

In path-relinking, the best not yet performed move in set Δ(i,g) is applied to the
current solution, until the guiding solution is reached. If ties are broken determin-
istically, this strategy will always produce the same path between the initial and
guiding solutions. Since the number of paths connecting i and g is exponential in
|Δ(i,g)|, exploring a single path can be somewhat limiting.

Greedy randomized adaptive path-relinking, introduced by Binato et al. [47], is
a semi-greedy version of path-relinking. Instead of taking the best move in Δ(i,g)
still not performed, a restricted candidate list of good moves still not performed is
set up and a randomly selected move from the latter is applied. By applying this
strategy several times between the initial and guiding solutions, several paths can be
explored. Greedy randomized adaptive path-relinking has been applied in [22, 86,
222].

0

10

20

30

40

50

60

70

80

90

100

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

A
ve

ra
ge

 n
um

be
r

of
 b

es
t s

ol
ut

io
ns

Percentage of path length

Fig. 6.13 Average number of best solutions found at different depths of the path from the initial
solution to the guiding solution on instances of the max-min diversity problem

196 M. G. C. Resende and C. C. Ribeiro

6.4.7 Evolutionary Path-Relinking

GRASP with path-relinking maintains a pool of elite solutions. Applying path-
relinking between pairs of pool solutions may result in an even better pool of solu-
tions. Aiex et al. [9] applied path-relinking between all pairs of elite solutions as an
intensification scheme to improve the quality of the pool and as a post-optimization
step. The application of path-relinking was repeated until no further improvement
was possible.

Resende and Werneck [216, 217] described an evolutionary path-relinking
scheme applied to pairs of elite solutions and used as a post-optimization step.
The pool resulting from the GRASP with path-relinking iterations is referred to as
population P0. At step k, all pairs of elite set solutions of population Pk are relinked
and the resulting solutions are made candidates for inclusion in population Pk+1 of
the next generation. The same rules for acceptance into the pool during GRASP
with path-relinking are used for acceptance into Pk+1. If the best solution in Pk+1 is
better than the best in Pk, then k is incremented by one and the process is repeated.
Resende et al. [222] describe another way to implement evolutionary path-relinking,
where a single population is maintained. Each pair of elite solutions is relinked and
the resulting solution is a candidate to enter the elite set. If accepted, it replaces an
existing elite solution. The process is continued while there are still pairs of elite
solutions that have not yet been relinked.

Fig. 6.14 An internal path (red arcs, red nodes) from solution S to solution T and two external
(blue arcs, blue nodes) paths, one emanating from solution S and the other from solution T . These
paths are produced by internal and external path-relinking

6 GRASP: Advances and Extensions 197

Andrade and Resende [21] used this evolutionary scheme as an intensification
process every 100 GRASP iterations. During the intensification phase, every solu-
tion in the pool is relinked with the two best ones. Since two elite solutions may
be relinked more than once in different calls to the intensification process, greedy
randomized adaptive path-relinking was used.

Resende et al. [222] showed that a variant of GRASP with evolutionary path-
relinking outperformed several other heuristics using GRASP with path-relinking,
simulated annealing, and tabu search for the max-min diversity problem.

6.4.8 External Path-Relinking and Diversification

So far in this section, we have considered variants of path-relinking in which a path
in the search space graph connects two feasible solutions by progressively introduc-
ing in one of them (the initial solution) attributes of the other (the guiding solution).
Since attributes common to both solutions are not changed and all solutions vis-
ited belong to a path between the two solutions, we may also refer to this type of
path-relinking as internal path-relinking.

External path-relinking extends any path connecting two feasible solutions S and
T beyond its extremities. To extend such a path beyond S, attributes not present in
either S or T are introduced in S. Symmetrically, to extend it beyond T , attributes
not present in either S or T are introduced in T . In its greedy variant, all moves are
evaluated and the solution chosen to be next in the path is one with best cost or, in
case they are all infeasible, the one with least infeasibility. In either direction, the
procedure stops when all attributes that do not appear in either S or T have been
tested for extending the path. Once both paths are complete, local search may be
applied to the best solution in each of them. The best of the two local minima is
returned as the solution produced by the external path-relinking procedure.

Figure 6.14 illustrates internal and external path-relinking. The path with red
nodes and edges is the one resulting from internal path-relinking applied with S as
the initial solution and T as the guiding solution. We observe that the orientation
introduced by the arcs in this path is due only to the choice of the initial and guiding
solutions. If the roles of solutions S and T were interchanged, it could have been
computed and generated in the reverse direction. The same figure also illustrates two
paths obtained by external path-relinking, one emanating from S and the other from
T , both represented with blue nodes and edges. The orientations of the arcs in each
of these paths indicate that they necessarily emanate from either solution S or T .

To conclude, we establish a parallel between internal and external path-relinking.
Since internal path-relinking works by fixing all attributes common to the initial and
guiding solutions and searches for paths between them satisfying this property, it is
clearly an intensification strategy. Contrarily, external path-relinking progressively
removes common attributes and replaces them by others that do not appear in either
one of the initial or guiding solution. Therefore, it can be seen as a diversification
strategy which produces solutions increasingly farther from both the initial and
the guiding solutions. External path-relinking becomes therefore a tool for search
diversification.

198 M. G. C. Resende and C. C. Ribeiro

External path-relinking was introduced by Glover [114] and first applied by
Duarte et al. [84] in a heuristic for differential dispersion minimization.

6.5 Restart Strategies

Figure 6.15 shows a typical iteration count distribution for a GRASP with path-
relinking. Observe in this example that for most of the independent runs whose
iteration counts make up the plot, the algorithm finds a target solution in relatively
few iterations: about 25% of the runs take at most 101 iterations; about 50% take at
most 192 iterations; and about 75% take at most 345. However, some runs take much
longer: 10% take over 1000 iterations; 5% over 2000; and 2% over 9715 iterations.
The longest run took 11,607 iterations to find a solution at least as good as the target.
These long tails contribute to a large average iteration count as well as to a high stan-
dard deviation. This section proposes strategies to reduce the tail of the distribution,
consequently reducing the average iteration count and its standard deviation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0.9

 1

10 100 1000 10000 100000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

iterations to target solution

(1982, 0.955)

(345, 0.745)

(192, 0.495)

(101, 0.245)

GRASP+PR (no restart)

Fig. 6.15 Typical iteration count distribution of GRASP with path-relinking

Consider again the distribution in Fig. 6.15. The distribution shows that each run
will take over 345 iterations with a probability of about 25%. Therefore, any time the
algorithm is restarted, the probability that the new run will take over 345 iterations
is also about 25%. By restarting the algorithm after 345 iterations, the new run will
take more than 345 iterations with probability of also about 25%. Therefore, the
probability that the algorithm will be still running after 345+ 345 = 690 iterations
is the probability that it takes more than 345 iterations multiplied by the probability
that it takes more than 690 iterations given that it took more than 345 iterations,
i.e., about (1/4)× (1/4) = (1/4)2. It follows by induction that the probability that

6 GRASP: Advances and Extensions 199

the algorithm will still be running after k periods of 345 iterations is 1/(4k). In this
example, the probability that the algorithm will be running after 1725 iterations will
be about 0.1%, i.e., much less than the 5% probability that the algorithm will take
over 2000 iterations without restart.

A restart strategy is defined as an infinite sequence of time intervals τ1,τ2,τ3, . . .
which define epochs τ1,τ1+τ2,τ1+τ2+τ3, . . . when the algorithm is restarted from
scratch. It can be shown that the optimal restart strategy uses τ1 = τ2 = · · · = τ∗,
where τ∗ is some (unknown) constant. Strategies for speeding up stochastic local
search algorithms using restarts were first proposed by Luby et al. [156], where
they proved the existence of an optimal restart strategy. Restart strategies in meta-
heuristics have been addressed in [67, 139, 182, 187, 250]. Further work on restart
strategies can be found in [251, 252].

Implementing the optimal strategy may be difficult in practice because it re-
quires the constant value τ∗. Runtimes can vary greatly for different combinations
of algorithm, instance, and solution quality sought. Since usually one has no prior
information about the runtime distribution of the stochastic search algorithm for the
optimization problem under consideration, one runs the risk of choosing a value of
τ∗ that is either too small or too large. On the one hand, a value that is too small
can cause the restart variant of the algorithm to take much longer to converge than
a no-restart variant. On the other hand, a value that is too large may never lead to
a restart, causing the restart-variant of the algorithm to take as long to converge as
the no-restart variant. Figure 6.16 illustrates the restart strategies with time-to-target

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0.9

 1

1 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 to

 fi
nd

 ta
rg

et
 s

ol
ut

io
n

time to target solution (seconds)

Restart every:
6 seconds
9 seconds

12 seconds
18 seconds
24 seconds
30 seconds
42 seconds

no restart

Fig. 6.16 Time-to-target plot for target solution value of 554 for a GRASP with path-linking with
restart on the maximum cut instance G12 using different values of τ

200 M. G. C. Resende and C. C. Ribeiro

plots for the maximum cut instance G12 [126] on an 800-node graph with edge
density of 0.63% with target solution value 554 for τ = 6, 9, 12, 18, 24, 30, and
42 s. For each value of τ , 100 independent runs of a GRASP with path-relinking
with restarts were performed. The variant with τ = ∞ corresponds to the heuristic
without restart. The figure shows that, for some values of τ , the resulting heuristic
outperformed its counterpart with no restart by a large margin.

In GRASP with path-relinking, the number of iterations between improvements
of the incumbent solution tends to vary less than the runtimes for different combina-
tions of instance and solution quality sought. If one takes this into account, a simple
and effective restart strategy for GRASP with path-relinking is to keep track of the
last iteration when the incumbent solution was improved and restart the GRASP
with path-relinking if κ iterations have gone by without improvement. We shall call
such a strategy restart(κ). A restart consists in saving the incumbent and emptying
out the elite set.

procedure GRASP+PR+Restarts(Seed);
1 Set pool of elite solutions ← ∅;
2 Set best solution value f ∗ ← ;
3 LastImprov ← 0;
4 CurrentIter ← 0;
5 while stopping criterion not satisfied do
6 CurrentIter ← CurrentIter+1;
7 Solution ← Greedy Randomized Construction(Seed);
8 if Solution is not feasible then
9 Solution ← Repair(Solution);
10 end-if;
11 Solution ← Local Search(Solution);
12 if | | > 0 then
13 Select an elite solution Solution’ at random from ;
14 Solution ← forward-PR(Solution,Solution′);
15 end-if;
16 if f (Solution)< f ∗ then
17 Best Solution ← Solution;
18 f ∗ ← f (S);
19 LastImprov ← CurrentIter;
20 end-if;
21 if CurrentIter−LastImprov> then
22 ← ∅;
23 LastImprov ← CurrentIter;
24 else
25 Update the pool of elite solutions with Solution;
26 end-if;
27 end-while;
28 return Best Solution;
end GRASP+PR+Restarts.

Fig. 6.17 Pseudo-code of a template of a GRASP with path-relinking with restarts for a minimiza-
tion problem

6 GRASP: Advances and Extensions 201

The pseudo-code shown in Fig. 6.17 summarizes the steps of a GRASP with path-
relinking using the restart(κ) strategy for a minimization problem. The algorithm
keeps track of the current iteration (CurrentIter), as well as of the last iteration
when an improving solution was found (LastImprov). If an improving solution
is detected in line 16, then this solution and its cost are saved in lines 17 and 18,
respectively, and the iteration of the last improvement is set to the current iteration
in line 19. If, in line 21, it is determined that more than κ iterations have gone by
since the last improvement of the incumbent, then a restart is triggered, emptying
out the elite set in line 22 and resetting the iteration of the last improvement to the
current iteration in line 23. If restart is not triggered, then in line 25 the current
solution is tested for inclusion in the elite set and the set is updated if it is accepted.
The best overall solution found Best_Solution is returned in line 28 after the
stopping criterion is satisfied.

As an illustration of the use of the restart(κ) strategy within a GRASP with path-
relinking, consider the maximum cut instance G12. For the values κ = 50, 100, 200,
300, 500, 1000, 2000, and 5000, the heuristic was run independently 100 times, and
was stopped when a cut of weight 554 or higher was found. A strategy without
restarts was also implemented. Figures 6.18 and 6.19, as well as Table 6.6, sum-
marize these runs, showing the average time to target solution as a function of the
value of κ and the time-to-target plots for different values of κ . These figures il-
lustrate well the effect on running time of selecting a value of κ that is either too
small (κ = 50,100) or too large (κ = 2000,5000). They further show that there is
a wide range of κ values (κ = 200, 300, 500, 1000) that result in lower runtimes
when compared to the strategy without restarts.

20

40

60

80

100

120

140

160

180

10 100 1000 10000 100000

av
er

ag
e

tim
e

to
 ta

rg
et

 s
ol

ut
io

n

restart period (in iterations)

Fig. 6.18 Average time to target solution for maximum cut instance G12 using different values of
κ . All runs of all strategies have found a solution at least as good as the target value of 554

202 M. G. C. Resende and C. C. Ribeiro

Figure 6.20 further illustrates the behavior of the restart(100), restart(500), and
restart(1000) strategies for the previous example, when compared with the strategy
without restarts on the same maximum cut instance G12. However, in this figure,
for each strategy, we plot the number of iterations to the target solution value. It
is interesting to note that, as expected, each strategy restart(κ) behaves exactly like
the strategy without restarts for the κ first iterations, for κ = 100,500,1000. After
this point, each trajectory deviates from that of the strategy without restarts. Among
these strategies, restart(500) is the one with the best performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution (seconds)

Restart frequency:
5000 iterations
2000 iterations
1000 iterations

500 iterations
300 iterations
200 iterations
100 iterations

50 iterations
no restart

Fig. 6.19 Time-to-target plots for maximum cut instance G12 using different values of κ . The
figure also shows the time-to-target plot for the strategy without restarts. All runs of all strategies
found a solution at least as good as the target value of 554

We make some final observations about these experiments. The effect of the
restart strategies can be mainly observed in the column corresponding to the fourth
quartile of Table 6.6. Entries in this quartile correspond to those in the heavy tails
of the distributions. The restart strategies in general did not affect the other quartiles
of the distributions, which is a desirable characteristic. Compared to the no-restart
strategy, restart strategies restart(500) and restart(1000) were able to reduce the
maximum number of iterations, as well as the average and the standard deviation.
Strategy restart(100) did so, too, but not as much as restart(500) and restart(1000).
Restart strategies restart(500) and restart(1000) were clearly the best strategies of
those tested.

6 GRASP: Advances and Extensions 203

Table 6.6 Summary of computational results on maximum cut instance G12 with four strategies

Iterations in quartile
Strategy 1st 2nd 3rd 4th Average st.dev.
No restarts 326 550 1596 68,813 4525.1 11,927.0
restart(1000) 326 550 1423 5014 953.2 942.1
restart(500) 326 550 1152 4178 835.0 746.1
restart(100) 509 1243 3247 8382 2055.0 2005.9
For each strategy, 100 independent runs were executed, each stopped when a solution as good
as the target solution value 554 was found. For each strategy, the table shows the distribution of
the number of iterations by quartile. For each quartile, the table gives the maximum number of
iterations taken by all runs in that quartile, i.e., the slowest of the fastest 25% (1st), 50% (2nd),
75% (3rd), and 100% (4th) of the runs. The average number of iterations over the 100 runs and the
standard deviation (st.dev.) are also given for each strategy

0

0.1

0.2

 0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

10 100 1000 10000 100000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

iterations to target solution

no restart
restart(1000)

restart(500)
restart(100)

Fig. 6.20 Comparison of the iterations-to-target plots for maximum cut instance G12 using strate-
gies restart(100), restart(500), and restart(1000). The figure also shows the iterations-to-target plot
for the strategy without restarts. All runs of all strategies found a solution at least as good as the
target value of 554

The restart(κ) strategy for GRASP with path-relinking discussed in this section
was originally proposed by Resende and Ribeiro [214]. Besides the experiments
presented in this chapter for the maximum cut instance G12, that paper also con-
sidered five other instances of maximum cut, maximum weighted satisfiability, and
bandwidth packing. Interian and Ribeiro [136] implemented restart strategies for
GRASP with path-relinking for the Steiner traveling salesman problem.

204 M. G. C. Resende and C. C. Ribeiro

6.6 Extensions

In this section, we comment on some extensions, implementation strategies, and
hybridizations of GRASP.

The use of hash tables to avoid cycling in conjunction with tabu search was pro-
posed by Woodruff and Zemel [266]. A similar approach was later explored by
Ribeiro et al. [232] in their tabu search algorithm for query optimization in rela-
tional databases. In the context of GRASP implementations, hash tables were first
used by Martins et al. [168] in their multi-neighborhood heuristic for the Steiner
problem in graphs, to avoid the application of local search to solutions already vis-
ited in previous iterations.

Filtering strategies are used to speed up the iterations of GRASP, see e.g. [93,
168, 202]. With filtering, local search is not applied to all solutions obtained at the
end of the construction phase, but only to some more promising unvisited solutions,
defined by a threshold with respect to the incumbent.

Almost all randomization effort in the basic GRASP algorithm involves the con-
struction phase. Local search stops at the first local optimum. On the other hand,
strategies such as VNS (Variable Neighborhood Search), proposed by Hansen and
Mladenović [121, 172], rely almost entirely on the randomization of the local search
to escape from local optima. With respect to randomization, GRASP and variable
neighborhood strategies can be considered complementary and potentially capable
of leading to effective hybrid methods. A first attempt in this direction was made
by Martins et al. [168] where the construction phase of a hybrid heuristic for the
Steiner problem in graphs follows the greedy randomized strategy of GRASP, while
the local search phase makes use of two different neighborhood structures, like the
VND (variable neighborhood descent) procedure [121, 172]. That heuristic was later
improved by Ribeiro et al. [233], where one of the key components of the new algo-
rithm was another strategy for the exploration of different neighborhoods. Ribeiro
and Souza [229] also combined GRASP with VND in a hybrid heuristic for the
degree-constrained minimum spanning tree problem. Festa et al. [102] studied dif-
ferent variants and combinations of GRASP and VNS for the maximum cut prob-
lem, finding and improving the best known solutions for some open instances from
the literature.

GRASP has also been used in conjunction with genetic algorithms. The greedy
randomized strategy used in the construction phase of a GRASP heuristic is applied
to generate the initial population for a genetic algorithm. As an example, consider
the genetic algorithm of Ahuja et al. [4] for the quadratic assignment problem. It
makes use of the GRASP heuristic proposed by Li et al. [150] to create the initial
population of solutions. A similar approach was used by Armony et al. [31], with
the initial population made up of both randomly generated solutions and those built
by a GRASP heuristic.

The hybridization of GRASP with tabu search was first studied by Laguna and
González-Velarde [146]. Delmaire et al. [71] considered two approaches. In the
first, GRASP is applied as a powerful diversification strategy in the context of a
tabu search procedure. The second approach is an implementation of the Reac-

6 GRASP: Advances and Extensions 205

tive GRASP algorithm presented in Sect. 6.3.2, in which the local search phase is
strengthened by tabu search. Results reported for the capacitated location problem
show that the hybrid approaches perform better than the isolated methods previously
used. Two two-stage heuristics are proposed in [1] for solving the multi-floor facil-
ity layout problem. GRASP/TS applies a GRASP to find the initial layout and tabu
search to refine it.

Iterated Local Search (ILS) iteratively builds a sequence of solutions generated
by the repeated application of local search and perturbation of the local optima
found by local search [42]. Lourenço et al. [155] point out that ILS has been re-
discovered many times and is also known as iterated descent [40, 41], large step
Markov chains [165], iterated Lin-Kernighan [137], and chained local optimization
[164]. A GRASP/ILS hybrid can be obtained by replacing the standard local search
of GRASP by ILS. The GRASP construction produces a solution which is passed to
the ILS procedure. Ribeiro and Urrutia [230] presented a hybrid GRASP with ILS
for the mirrored traveling tournament problem, in which perturbations are achieved
by randomly generating solutions in the game rotation ejection chain [110, 111]
neighborhood.

6.7 Applications

The first application of GRASP was described in the literature in 1989 [90]. In that
paper, GRASP was applied to difficult set covering problems Since then, GRASP
has been applied to a wide range of problems. The main applications areas are sum-
marized below with links to specific references:

• Assignment problems [4, 9, 89, 106, 150, 153, 154, 169, 170, 177, 178, 183, 188,
190, 198, 202, 204, 218, 241]

• Biology [23, 64, 68, 76, 97, 108, 231]
• Computer vision [53, 132, 246, 247]
• Covering, packing, and partitioning [13, 15, 16, 28, 29, 72, 77, 90, 109, 119, 192,

195, 196, 223, 239, 244, 245]
• Diversity and dispersion [79, 84, 163, 222]
• Finance [19, 127]
• Graph and map drawing [66, 96, 147, 159, 160, 162, 184, 210, 226]
• Location and layout [1, 60, 66, 71, 120, 133, 141, 171, 181, 185, 253, 255, 260,

261]
• Logic [75, 104, 189, 208, 219, 221]
• Minimum Steiner tree [54, 166–168, 233]
• Optimization in graphs [2, 3, 5, 12, 32, 56, 73, 82, 83, 93, 101, 103, 134, 148,

149, 157, 160, 161, 168, 179, 191, 193, 207, 210, 220, 226, 233, 248, 257]
• Power systems [25, 46, 48, 86, 203, 263]
• Robotics [144, 240]
• Routing [30, 33, 38, 52, 55, 63, 136, 143, 145, 151, 176, 181, 206, 262, 264, 265]
• Software engineering [158]

206 M. G. C. Resende and C. C. Ribeiro

• Sports [26, 140, 225, 230]
• Telecommunications [2, 17, 18, 20, 22, 31, 62, 107, 141, 153, 174, 175, 194, 197,

199, 202, 207, 209, 212, 234, 258]
• Timetabling, scheduling, and manufacturing [8, 11, 14, 20, 22, 24, 35–37, 39,

49, 50, 59, 61, 65, 69, 70, 74, 78, 85, 87, 88, 92, 94, 95, 138, 142, 146, 152, 173,
180, 186, 205, 230, 237, 238, 242, 243, 267, 268]

• Transportation [30, 34, 87, 89, 256]
• VLSI design [27, 28]

The reader is referred to Festa and Resende [100] and the book by Resende and
Ribeiro [215] for extended annotated bibliographies of GRASP applications.

6.8 Concluding Remarks

The results described in this chapter reflect successful applications of GRASP to a
large number of classical combinatorial optimization problems, as well as to prob-
lems that arise in real-world situations in different areas of business, science, and
technology.

We underscore the simplicity of implementation of GRASP, which makes use of
simple building blocks (solution construction procedures and local search methods)
that are often readily available. Contrary to what occurs with most other metaheuris-
tics, such as tabu search or genetic algorithms, that make use of a large number of
parameters in their implementations, the basic variant of GRASP requires the ad-
justment of a single parameter, i.e. the restricted candidate list (RCL) parameter α .

Recent developments, presented in this chapter, show that different extensions of
the basic procedure allow further improvements in the solutions found by GRASP.
Among these, we highlight reactive GRASP, which automates the adjustment of
the restricted candidate list parameter; variable neighborhoods, which permit accel-
erated and intensified local search; path-relinking, which beyond allowing the im-
plementation of intensification strategies based on the memory of elite solutions,
opens the way for the development of very effective cooperative parallel strate-
gies [6, 8, 9, 227]; and restart strategies to speedup the search.

These and other extensions make up a set of tools that can be added to sim-
pler heuristics to find better-quality solutions. To illustrate the effect of additional
extensions on solution quality, Fig. 6.21 shows some results obtained for the prize-
collecting Steiner tree problem (PCSTP), as discussed by Canuto et al. in [54]. The
figure shows results for 11 different levels of solution accuracy (varying from op-
timal to 10% from optimal) on 40 PCSTP instances. For each level of solution ac-
curacy, the figure shows the number of instances for which each component found
solutions within the accuracy level. The components are the primal-dual construc-
tive algorithm (GW) of Goemans and Williamson [117], GW followed by local
search (GW+LS), corresponding to the first GRASP iteration, 500 iterations of
GRASP with path-relinking (GRASP+PR), and the complete algorithm, using vari-
able neighborhood search as a post-optimization procedure (GRASP+PR+VNS).

6 GRASP: Advances and Extensions 207

We observe that the number of optimal solutions found goes from six, using only
the constructive algorithm, to a total of 36, using the complete algorithm described
in [54]. The largest relative deviation with respect to the optimal value decreases
from 36.4% in the first case, to only 1.1% for the complete algorithm. It is easy to
notice the contribution made by each additional extension.

Fig. 6.21 Performance of GW approximation algorithm, a single GRASP iteration (GW followed
by local search), 500 iterations of GRASP with path-relinking, and 500 iterations of GRASP with
path-relinking followed by VNS for series C prize-collecting Steiner tree problems

The structure of GRASP makes it very amenable to straightforward, efficient
parallel implementations that benefit from the computer architecture. Parallel im-
plementations of GRASP [6, 8, 9, 227] are quite robust and lead to linear speedups
both in independent and cooperative strategies. Cooperative strategies are based on
the collaboration between processors through path-relinking and a global pool of
elite solutions. This allows the use of more processors to find better solutions in less
computation time. Many parallel implementations of GRASP have been reported in
the literature, see e.g. [166, 168, 178, 188, 189]. In many of these papers, a common
observation was made: the speedups in the measured running times were propor-
tional to the number of processors. This observation can be explained if the random
variable time-to-target-solution-value is exponentially distributed. Aiex et al. [7]
developed a graphical methodology based on runtime distributions to empirically
show that the running times of GRASP heuristics fit exponential distributions, as
summarized below.

208 M. G. C. Resende and C. C. Ribeiro

Runtime distributions or time-to-target plots display on the ordinate axis the
probability that an algorithm will find a solution at least as good as a given tar-
get value within a given running time, shown on the abscissa axis. They provide a
very useful tool to characterize the running times of stochastic algorithms for com-
binatorial optimization problems and to compare different algorithms or strategies
for solving a given problem. Time-to-target plots were first used by Feo et al. [93]
and have been widely used as a tool for algorithm design and comparison. Run-
time distributions have also been advocated by Hoos and Stützle [135] as a way
to characterize the running times of stochastic local search algorithms for combi-
natorial optimization. In particular, they have been largely applied to evaluate and
compare the efficiency of different strategies of sequential and parallel implemen-
tations of GRASP with (and without) path-relinking heuristics. Aiex et al. [7] used
time-to-target plots to show experimentally that the running times of GRASP heuris-
tics fit shifted (or two-parameter) exponential distributions, reporting computational
results for 2400 runs of GRASP heuristics for each of five different problems: max-
imum stable set, quadratic assignment, graph planarization [210, 211, 226], maxi-
mum weighted satisfiability, and maximum covering. Aiex et al. [10] developed a
Perl program to create time-to-target plots for measured times that are assumed to
fit a shifted exponential distribution, following closely the work in [7]. Ribeiro et
al. [235] developed a closed form result to compare two exponential algorithms and
an iterative procedure to compare two algorithms following generic runtime distri-
butions. This work was extended by Ribeiro et al. [236] and was also applied in
the comparison of parallel heuristics. Ribeiro and Rosseti [228] developed a code to
compare runtime distributions of randomized algorithms.

To conclude, this chapter provides the reader with the tools to build a basic
GRASP to find optimal or near-optimal solutions to a combinatorial optimization
problem. The chapter also provides the means to add more advanced features to this
basic GRASP, like path-relinking and restart strategies, that enable better perfor-
mance, both with respect to solution quality and solution run time. Left out of this
chapter is the use of GRASP for solving continuous optimization problems. The in-
terested reader is pointed to [128–131, 215, 254] for an introduction to C-GRASP,
or Continuous GRASP, as well as to some software and applications of C-GRASP.

References

1. S. Abdinnour-Helm, S.W. Hadley, Tabu search based heuristics for multi-floor facility layout.
Int. J. Prod. Res. 38, 365–383 (2000)

2. J. Abello, P.M. Pardalos, M.G.C. Resende, On maximum clique problems in very large
graphs, in External Memory Algorithms and Visualization, ed. by J. Abello, J. Vitter. DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 50 (Ameri-
can Mathematical Society, Providence, 1999), pp. 199–130

3. J. Abello, M.G.C. Resende, S. Sudarsky, Massive quasi-clique detection, in LATIN 2002:
Theoretical Informatics, ed. by S. Rajsbaum. Lecture Notes in Computer Science, vol. 2286
(Springer, Berlin, 2002), pp. 598–612

6 GRASP: Advances and Extensions 209

4. R.K. Ahuja, J.B. Orlin, A. Tiwari, A greedy genetic algorithm for the quadratic assignment
problem. Comput. Oper. Res. 27, 917–934 (2000)

5. R.K. Ahuja, J.B. Orlin, D. Sharma, Multi-exchange neighborhood structures for the capaci-
tated minimum spanning tree problem. Math. Program. 91, 71–97 (2001)

6. R.M. Aiex, M.G.C. Resende, Parallel strategies for GRASP with path-relinking, in Meta-
heuristics: Progress as Real Problem Solvers, ed. by T. Ibaraki, K. Nonobe, M. Yagiura
(Springer, New York, 2005), pp. 301–331

7. R.M. Aiex, M.G.C. Resende, C.C. Ribeiro, Probability distribution of solution time in
GRASP: an experimental investigation. J. Heuristics 8, 343–373 (2002)

8. R.M. Aiex, S. Binato, M.G.C. Resende, Parallel GRASP with path-relinking for job shop
scheduling. Parallel Comput. 29, 393–430 (2003)

9. R.M. Aiex, P.M. Pardalos, M.G.C. Resende, G. Toraldo, GRASP with path-relinking for
three-index assignment. INFORMS J. Comput. 17, 224–247 (2005)

10. R.M. Aiex, M.G.C. Resende, C.C. Ribeiro, TTTPLOTS: a perl program to create time-to-
target plots. Optim Lett. 1, 355–366 (2007)

11. E. Alekseeva, M. Mezmaz, D. Tuyttens, N. Melab, Parallel multi-core hyper-heuristic
GRASP to solve permutation flow-shop problem. Concurrency Comput. Pract. Exp. 29,
e3835 (2017)

12. D. Aloise, C.C. Ribeiro, Adaptive memory in multistart heuristics for multicommodity net-
work design. J. Heuristics 17, 153–179 (2011)

13. R. Álvarez-Valdés, F. Parreno, J.M. Tamarit, A GRASP algorithm for constrained two-
dimensional non-guillotine cutting problems. J. Oper. Res. Soc. 56, 414–425 (2005)

14. R. Álvarez-Valdés, E. Crespo, J.M. Tamarit, F. Villa, GRASP and path relinking for project
scheduling under partially renewable resources. Eur. J. Oper. Res. 189, 1153–1170 (2008)

15. R. Alvarez-Valdesa, F. Parreno, J.M. Tamarit, Reactive GRASP for the strip-packing prob-
lem. Comput. Oper. Res. 35, 1065–1083 (2008)

16. R. Alvarez-Valdes, F. Parreño, J.M. Tamarit, A GRASP/path relinking algorithm for two- and
three-dimensional multiple bin-size bin packing problems. Comput. Oper. Res. 40, 3081–
3090 (2013)

17. E. Amaldi, A. Capone, F. Malucelli, Planning UMTS base station location: optimization
models with power control and algorithms. IEEE Trans. Wirel. Commun. 2, 939–952 (2003)

18. E. Amaldi, A. Capone, F. Malucelli, F. Signori, Optimization models and algorithms for
downlink UMTS radio planning, in Proceedings of Wireless Communications and Network-
ing, vol. 2 (2003), pp. 827–831

19. K.P. Anagnostopoulos, P.D. Chatzoglou, S. Katsavounis, A reactive greedy randomized adap-
tive search procedure for a mixed integer portfolio optimization problem. Manag. Financ. 36,
1057–1065 (2010)

20. D.V. Andrade, M.G.C. Resende, A GRASP for PBX telephone migration scheduling, in Pro-
ceedings of the Eighth INFORMS Telecommunications Conference (2006)

21. D.V. Andrade, M.G.C. Resende, GRASP with evolutionary path-relinking. Technical Report
TD-6XPTS7, AT&T Labs Research, Florham Park, 2007

22. D.V. Andrade, M.G.C. Resende, GRASP with path-relinking for network migration schedul-
ing, in Proceedings of the International Network Optimization Conference (2007)

23. A.A. Andreatta, C.C. Ribeiro, Heuristics for the phylogeny problem. J. Heuristics 8, 429–447
(2002)

24. C. Andrés, C. Miralles, R. Pastor, Balancing and scheduling tasks in assembly lines with
sequence-dependent setup times. Eur. J. Oper. Res. 187, 1212–1223 (2008)

25. C.H. Antunes, E. Oliveira, P. Lima, A multi-objective GRASP procedure for reactive power
compensation planning. Optim. Eng. 15, 199–215 (2014)

26. A.P.F. Araújo, C. Boeres, V.E.F. Rebello, C.C. Ribeiro, S. Urrutia, Exploring grid imple-
mentations of parallel cooperative metaheuristics: a case study for the mirrored traveling
tournament problem, in Metaheuristics: Progress in Complex Systems Optimization, ed. by
K.F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R.F. Hartl, M. Reimann (Springer,
New York, 2007), pp. 297–322

210 M. G. C. Resende and C. C. Ribeiro

27. S.M. Areibi, GRASP: an effective constructive technique for VLSI circuit partitioning, in
Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering,
Edmonton, pp. 462–467 (1999)

28. S. Areibi, A. Vannelli, A GRASP clustering technique for circuit partitioning, in Satisfia-
bility Problems, ed. by J. Gu, P.M. Pardalos. DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, vol. 35 (American Mathematical Society, Providence, 1997),
pp. 711–724

29. M.F. Argüello, T.A. Feo, O. Goldschmidt, Randomized methods for the number partitioning
problem. Comput. Oper. Res. 23, 103–111 (1996)

30. M.F. Argüello, J.F. Bard, G. Yu, A GRASP for aircraft routing in response to groundings and
delays. J. Comb. Optim. 1, 211–228 (1997)

31. M. Armony, J.C. Klincewicz, H. Luss, M.B. Rosenwein, Design of stacked self-healing rings
using a genetic algorithm. J. Heuristics 6, 85–105 (2000)

32. J.E.C. Arroyo, P.S. Vieira, D.S. Vianna, A GRASP algorithm for the multi-criteria minimum
spanning tree problem. Ann. Oper. Res. 159, 125–133 (2008)

33. J.B. Atkinson, A greedy randomised search heuristic for time-constrained vehicle scheduling
and the incorporation of a learning strategy. J. Oper. Res. Soc. 49, 700–708 (1998)

34. J.F. Bard, An analysis of a rail car unloading area for a consumer products manufacturer. J.
Oper. Res. Soc. 48, 873–883 (1997)

35. J.F. Bard, T.A. Feo, Operations sequencing in discrete parts manufacturing. Manage. Sci. 35,
249–255 (1989)

36. J.F. Bard, T.A. Feo, An algorithm for the manufacturing equipment selection problem. IIE
Trans. 23, 83–92 (1991)

37. J.F. Bard, T.A. Feo, S. Holland, A GRASP for scheduling printed wiring board assembly. IIE
Trans. 28, 155–165 (1996)

38. J.F. Bard, L. Huang, P. Jaillet, M. Dror, A decomposition approach to the inventory routing
problem with satellite facilities. Transp. Sci. 32, 189–203 (1998)

39. J.F. Bard, Y. Shao, A.I. Jarrah, A sequential GRASP for the therapist routing and scheduling
problem. J. Scheduling 17, 109–133 (2014)

40. E.B. Baum, Iterated descent: a better algorithm for local search in combinatorial optimization
problems. Technical Report, California Institute of Technology, 1986

41. E.B. Baum, Towards practical ‘neural’ computation for combinatorial optimization prob-
lems, in AIP Conference Proceedings 151 on Neural Networks for Computing (American
Institute of Physics Inc., Woodbury, 1987), pp. 53–58

42. J. Baxter, Local optima avoidance in depot location. J. Oper. Res. Soc. 32, 815–819 (1981)
43. J.E. Beasley, An algorithm for set-covering problems. Eur. J. Oper. Res. 31, 85–93 (1987)
44. J.E. Beasley, A Lagrangian heuristic for set-covering problems. Nav. Res. Logist. 37, 151–

164 (1990)
45. J.E. Beasley, Lagrangean relaxation, in Modern Heuristic Techniques for Combinatorial

Problems, ed. by C.R. Reeves (Blackwell Scientific Publications, Oxford, 1993), pp. 243–
303

46. S. Binato, G.C. Oliveira, A reactive GRASP for transmission network expansion planning,
in Essays and Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic
Publishers, Boston, 2002), pp. 81–100

47. S. Binato, H. Faria Jr., M.G.C. Resende, Greedy randomized adaptive path relinking, in Pro-
ceedings of the IV Metaheuristics International Conference, ed. by J.P. Sousa, pp. 393–397
(2001)

48. S. Binato, G.C. Oliveira, J.L. Araújo, A greedy randomized adaptive search procedure for
transmission expansion planning. IEEE Trans. Power Syst. 16, 247–253 (2001)

49. S. Binato, W.J. Hery, D. Loewenstern, M.G.C. Resende, A GRASP for job shop scheduling,
in Essays and Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic
Publishers, Boston, 2002), pp. 59–79

50. M. Boudia, M.A.O. Louly, C. Prins, A reactive GRASP and path relinking for a combined
production-distribution problem. Comput. Oper. Res. 34, 3402–3419 (2007)

6 GRASP: Advances and Extensions 211

51. J.L. Bresina, Heuristic-biased stochastic sampling, in Proceedings of the Thirteenth National
Conference on Artificial Intelligence, Portland, pp. 271–278 (1996)

52. A.M. Campbell, B.W. Thomas, Probabilistic traveling salesman problem with deadlines.
Transp. Sci. 42, 1–21 (2008)

53. R.G. Cano, G. Kunigami, C.C. de Souza, P.J. de Rezende, A hybrid GRASP heuristic to
construct effective drawings of proportional symbol maps. Comput. Oper. Res. 40, 1435–
1447 (2013)

54. S.A. Canuto, M.G.C. Resende, C.C. Ribeiro, Local search with perturbations for the prize-
collecting Steiner tree problem in graphs. Networks 38, 50–58 (2001)

55. C. Carreto, B. Baker, A GRASP interactive approach to the vehicle routing problem with
backhauls, in Essays and Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer
Academic Publishers, Boston, 2002), pp. 185–199

56. W.A. Chaovalitwongse, C.A.S Oliveira, B. Chiarini, P.M. Pardalos, M.G.C. Resende, Re-
vised GRASP with path-relinking for the linear ordering problem. J. Comb. Optim. 22, 572–
593 (2011)

57. I. Charon, O. Hudry, The noising method: a new method for combinatorial optimization.
Oper. Res. Lett. 14, 133–137 (1993)

58. I. Charon, O. Hudry, The noising methods: a survey, in Essays and Surveys in Metaheuristics,
ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic Publishers, Boston, 2002), pp. 245–261

59. M. Chica, O. Cordón, S. Damas, J. Bautista, A multiobjective GRASP for the 1/3 variant of
the time and space assembly line balancing problem, in Trends in Applied Intelligent Systems,
ed. by N. García-Pedrajas, F. Herrera, C. Fyfe, J. Benítez, M. Ali. Lecture Notes in Computer
Science, vol. 6098 (Springer, Berlin, 2010), pp. 656–665

60. R. Colomé, D. Serra, Consumer choice in competitive location models: formulations and
heuristics. Pap. Reg. Sci. 80, 439–464 (2001)

61. C.W. Commander, S.I. Butenko, P.M. Pardalos, C.A.S. Oliveira, Reactive GRASP with path
relinking for the broadcast scheduling problem, in Proceedings of the 40th Annual Interna-
tional Telemetry Conference, pp. 792–800 (2004)

62. C. Commander, C.A.S. Oliveira, P.M. Pardalos, M.G.C. Resende, A GRASP heuristic for
the cooperative communication problem in ad hoc networks, in Proceedings of the VI Meta-
heuristics International Conference, pp. 225–330 (2005)

63. A. Corberán, R. Martí, J.M. Sanchís, A GRASP heuristic for the mixed Chinese postman
problem. Eur. J. Oper. Res. 142, 70–80 (2002)

64. R. Cordone, G. Lulli, A GRASP metaheuristic for microarray data analysis. Comput. Oper.
Res. 40, 3108–3120 (2013)

65. J.F. Correcher, M.T. Alonso, F. Parre no, R. Alvarez-Valdes, Solving a large multicontainer
loading problem in the car manufacturing industry. Comput. Oper. Res. 82, 139–152 (2017)

66. G.L. Cravo, G.M. Ribeiro, L.A. Nogueira Lorena, A greedy randomized adaptive search
procedure for the point-feature cartographic label placement. Comput. Geosci. 34, 373–386
(2008)

67. M.M. D’Apuzzo, A. Migdalas, P.M. Pardalos, G. Toraldo, Parallel computing in global op-
timization, in Handbook of Parallel Computing and Statistics, ed. by E. Kontoghiorghes
(Chapman & Hall/CRC, Boca Raton, 2006)

68. S. Das, S.M. Idicula, Application of reactive GRASP to the biclustering of gene expression
data, in Proceedings of the International Symposium on Biocomputing (ACM, Calicut, 2010),
p. 14

69. P. De, J.B. Ghosj, C.E. Wells, Solving a generalized model for con due date assignment and
sequencing. Int. J. Prod. Econ. 34, 179–185 (1994)

70. R. De Leone, P. Festa, E. Marchitto, Solving a bus driver scheduling problem with random-
ized multistart heuristics. Int. Trans. Oper. Res. 18, 707–727 (2011)

71. H. Delmaire, J.A. Díaz, E. Fernández, M. Ortega, Reactive GRASP and Tabu Search based
heuristics for the single source capacitated plant location problem. INFOR 37, 194–225
(1999)

72. X. Delorme, X. Gandibleux, F. Degoutin, Evolutionary, constructive and hybrid procedures
for the bi-objective set packing problem. Eur. J. Oper. Res. 204, 206–217 (2010)

212 M. G. C. Resende and C. C. Ribeiro

73. Y. Deng, J.F. Bard, A reactive GRASP with path relinking for capacitated clustering. J.
Heuristics 17, 119–152 (2011)

74. Y. Deng, J.F. Bard, G.R. Chacon, J. Stuber, Scheduling back-end operations in semiconductor
manufacturing. IEEE Trans. Semicond. Manuf. 23, 210–220 (2010)

75. A.S. Deshpande, E. Triantaphyllou, A greedy randomized adaptive search procedure
(GRASP) for inferring logical clauses from examples in polynomial time and some exten-
sions. Math. Comput. Model. 27, 75–99 (1998)

76. S. Dharan, A.S. Nair, Biclustering of gene expression data using reactive greedy randomized
adaptive search procedure. BMC Bioinf. 10(Suppl 1), S27 (2009)

77. J.A. Díaz, D.E. Luna, J.-F. Camacho-Vallejo, M.-S. Casas-Ramírez, GRASP and hybrid
GRASP-Tabu heuristics to solve a maximal covering location problem with customer pref-
erence ordering. Expert Syst. Appl. 82, 67–76 (2017)

78. A. Drexl, F. Salewski, Distribution requirements and compactness constraints in school
timetabling. Eur. J. Oper. Res. 102, 193–214 (1997)

79. A. Duarte, R. Martí, Tabu search and GRASP for the maximum diversity problem. Eur. J.
Oper. Res. 178, 71–84 (2007)

80. A. Duarte, C.C. Ribeiro, S. Urrutia, A hybrid ILS heuristic to the referee assignment problem
with an embedded MIP strategy. Lect. Notes Comput. Sci. 4771, 82–95 (2007)

81. A.R. Duarte, C.C. Ribeiro, S. Urrutia, E.H. Haeusler, Referee assignment in sports leagues.
Lect. Notes Comput. Sci. 3867, 158–173 (2007)

82. A. Duarte, R. Martí, M.G.C. Resende, R.M.A. Silva, GRASP with path relinking heuristics
for the antibandwidth problem. Networks 58, 171–189 (2011)

83. A. Duarte, R. Martí, A. Álvarez, F. Ángel-Bello, Metaheuristics for the linear ordering prob-
lem with cumulative costs. Eur. J. Oper. Res. 216, 270–277 (2012)

84. A. Duarte, J. Sánchez-Oro, M.G.C. Resende, F. Glover, R. Martí, GRASP with exterior path
relinking for differential dispersion minimization. Inform. Sci. 296, 46–60 (2015)

85. M. Essafi, X. Delorme, A. Dolgui, Balancing lines with CNC machines: a multi-start and
based heuristic. CIRP J. Manuf. Sci. Technol. 2, 176–182 (2010)

86. H. Faria Jr., S. Binato, M.G.C. Resende, D.J. Falcão, Transmission network design by a
greedy randomized adaptive path relinking approach. IEEE Trans. Power Syst. 20, 43–49
(2005)

87. T.A. Feo, J.F. Bard, Flight scheduling and maintenance base planning. Manag. Sci. 35, 1415–
1432 (1989)

88. T.A. Feo, J.F. Bard, The cutting path and tool selection problem in computer-aided process
planning. J. Manufact. Syst. 8, 17–26 (1989)

89. T.A. Feo, J.L. González-Velarde, The intermodal trailer assignment problem: Models, algo-
rithms, and heuristics. Transp. Sci. 29, 330–341 (1995)

90. T.A. Feo, M.G.C. Resende, A probabilistic heuristic for a computationally difficult set cov-
ering problem. Oper. Res. Lett. 8, 67–71 (1989)

91. T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim.
6, 109–133 (1995)

92. T.A. Feo, K. Venkatraman, J.F. Bard, A GRASP for a difficult single machine scheduling
problem. Comput. Oper. Res. 18, 635–643 (1991)

93. T.A. Feo, M.G.C. Resende, S.H. Smith, A greedy randomized adaptive search procedure for
maximum independent set. Oper. Res. 42, 860–878 (1994)

94. T.A. Feo, J.F. Bard, S. Holland, Facility-wide planning and scheduling of printed wiring
board assembly. Oper. Res. 43, 219–230 (1995)

95. T.A. Feo, K. Sarathy, J. McGahan, A GRASP for single machine scheduling with sequence
dependent setup costs and linear delay penalties. Comput. Oper. Res. 23, 881–895 (1996)

96. E. Fernández, R. Martí, GRASP for seam drawing in mosaicking of aerial photographic
maps. J. Heuristics 5, 181–197 (1999)

97. P. Festa, On some optimization problems in molecular biology. Math. Biosci. 207, 219–234
(2007)

6 GRASP: Advances and Extensions 213

98. P. Festa, M.G.C. Resende, GRASP: An annotated bibliography, in Essays and Surveys in
Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic Publishers, Boston, 2002),
pp. 325–367

99. P. Festa, M.G.C. Resende, An annotated bibliography of GRASP, part I: algorithms. Int.
Trans. Oper. Res. 16, 1–24 (2009)

100. P. Festa, M.G.C. Resende, An annotated bibliography of GRASP, part II: applications. Int.
Trans. Oper. Res. 16, 131–172 (2009)

101. P. Festa, P.M. Pardalos, M.G.C. Resende, Algorithm 815: FORTRAN subroutines for com-
puting approximate solution to feedback set problems using GRASP. ACM Trans. Math.
Softw. 27, 456–464 (2001)

102. P. Festa, M.G.C. Resende, P. Pardalos, C.C. Ribeiro, GRASP and VNS for Max-Cut, in
Extended Abstracts of the Fourth Metaheuristics International Conference, Porto, pp. 371–
376 (2001)

103. P. Festa, P.M. Pardalos, M.G.C. Resende, C.C. Ribeiro, Randomized heuristics for the MAX-
CUT problem. Optim. Methods Softw. 7, 1033–1058 (2002)

104. P. Festa, P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, GRASP with path-relinking for the
weighted MAXSAT problem. ACM J. Exp. Algorithmics 11, 1–16 (2006)

105. M.L. Fisher, The Lagrangian relaxation method for solving integer programming problems.
Manag. Sci. 50, 1861–1871 (2004)

106. C. Fleurent, F. Glover, Improved constructive multistart strategies for the quadratic assign-
ment problem using adaptive memory. INFORMS J. Comput. 11, 198–204 (1999)

107. E. Fonseca, R. Fuchsuber, L.F.M. Santos, A. Plastino, S.L. Martins, Exploring the hybrid
metaheuristic DM-GRASP for efficient server replication for reliable multicast, in Interna-
tional Conference on Metaheuristics and Nature Inspired Computing, Hammamet (2008)

108. R.D. Frinhani, R.M. Silva, G.R. Mateus, P. Festa, M.G.C. Resende, GRASP with path-
relinking for data clustering: a case study for biological data, in Experimental Algorithms, ed.
by P.M. Pardalos, S. Rebennack. Lecture Notes in Computer Science, vol. 6630 (Springer,
Berlin, 2011), pp. 410–420

109. J.B. Ghosh, Computational aspects of the maximum diversity problem. Oper. Res. Lett. 19,
175–181 (1996)

110. F. Glover, New ejection chain and alternating path methods for traveling salesman problems,
in Computer Science and Operations Research: New Developments in Their Interfaces, ed.
by O. Balci, R. Sharda, S. Zenios (Elsevier, Amsterdam, 1992), pp. 449–509

111. F. Glover, Ejection chains, reference structures and alternating path methods for traveling
salesman problems. Discret. Appl. Math. 65, 223–254 (1996)

112. F. Glover, Tabu search and adaptive memory programing – advances, applications and chal-
lenges, in Interfaces in Computer Science and Operations Research, ed. by R.S. Barr, R.V.
Helgason, J.L. Kennington (Kluwer Academic Publishers, Boston, 1996), pp. 1–75

113. F. Glover, Multi-start and strategic oscillation methods – principles to exploit adaptive mem-
ory, in Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer
Science and Operations Research, ed. by M. Laguna, J.L. Gonzáles-Velarde (Kluwer Aca-
demic Publishers, Boston, 2000), pp. 1–24

114. F. Glover, Exterior path relinking for zero-one optimization. Int. J. Appl. Metaheuristic Com-
put. 5, 1–8 (2014)

115. F. Glover, M. Laguna, Tabu Search (Kluwer Academic Publishers, Boston, 1997)
116. F. Glover, M. Laguna, R. Martí, Fundamentals of scatter search and path relinking. Control

Cybern. 39, 653–684 (2000)
117. M.X. Goemans, D.P. Williamson, The primal dual method for approximation algorithms

and its application to network design problems, in Approximation Algorithms for NP-Hard
Problems, ed. by D. Hochbaum (PWS Publishing Co., Boston, 1996), pp. 144–191

118. F.C. Gomes, C.S. Oliveira, P.M. Pardalos, M.G.C. Resende, Reactive GRASP with path re-
linking for channel assignment in mobile phone networks, in Proceedings of the 5th Interna-
tional Workshop on Discrete Algorithms and Methods for Mobile Computing and Communi-
cations (ACM Press, New York, 2001), pp. 60–67

214 M. G. C. Resende and C. C. Ribeiro

119. P.L. Hammer, D.J. Rader Jr., Maximally disjoint solutions of the set covering problem. J.
Heuristics 7, 131–144 (2001)

120. B.T. Han, V.T. Raja, A GRASP heuristic for solving an extended capacitated concentrator
location problem. Int. J. Inf. Technol. Decis. Mak. 2, 597–617 (2003)

121. P. Hansen, N. Mladenović, Developments of variable neighborhood search, in Essays and
Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic Publishers,
Boston, 2002), pp. 415–439

122. J.P. Hart, A.W. Shogan, Semi-greedy heuristics: an empirical study. Oper. Res. Lett. 6, 107–
114 (1987)

123. M. Held, R.M. Karp, The traveling-salesman problem and minimum spanning trees. Oper.
Res. 18, 1138–1162 (1970)

124. M. Held, R.M. Karp, The traveling-salesman problem and minimum spanning trees: part II.
Math. Program. 1, 6–25 (1971)

125. M. Held, P. Wolfe, H.P. Crowder, Validation of subgradient optimization. Math. Program. 6,
62–88 (1974)

126. C. Helmberg, F. Rendl, A spectral bundle method for semidefinite programming. SIAM J.
Optim. 10, 673–696 (2000)

127. A.J. Higgins, S. Hajkowicz, E. Bui, A multi-objective model for environmental investment
decision making. Comput. Oper. Res. 35, 253–266 (2008)

128. M.J. Hirsch, GRASP-based heuristics for continuous global optimization problems. Ph.D.
thesis, Department of Industrial and Systems Engineering, University of Florida, Gainesville,
2006

129. M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.G.C. Resende, Global optimization by contin-
uous GRASP. Optim. Lett. 1, 201–212 (2007)

130. M.J. Hirsch, P.M. Pardalos, M.G.C. Resende, Solving systems of nonlinear equations with
continuous GRASP. Nonlinear Anal. Real World Appl. 10, 2000–2006 (2009)

131. M.J. Hirsch, P.M. Pardalos, M.G.C. Resende, Speeding up continuous GRASP. Eur. J. Oper.
Res. 205, 507–521 (2010)

132. M.J. Hirsch, P.M. Pardalos, M.G.C. Resende, Correspondence of projected 3D points and
lines using a continuous GRASP. Int. Trans. Oper. Res. 18, 493–511 (2011)

133. K. Holmqvist, A. Migdalas, P.M. Pardalos, Greedy randomized adaptive search for a lo-
cation problem with economies of scale, in Developments in Global Optimization, ed. by
I.M. Bomze et al. (Kluwer Academic Publishers, Dordrecht, 1997), pp. 301–313

134. K. Holmqvist, A. Migdalas, P.M. Pardalos, A GRASP algorithm for the single source un-
capacitated minimum concave-cost network flow problem, in Network Design: Connectiv-
ity and Facilities Location, ed. by P.M. Pardalos, D.-Z. Du. DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, vol. 40 (American Mathematical Society,
Providence, 1998), pp. 131–142

135. H.H. Hoos, T. Stützle, Evaluation of Las Vegas algorithms - Pitfalls and remedies, in Pro-
ceedings of the 14th Conference on Uncertainty in Artificial Intelligence, ed. by G. Cooper,
S. Moral (Morgan Kaufmann, Madison, 1998), pp. 238–245

136. R. Interian, C.C. Ribeiro, A GRASP heuristic using path-relinking and restarts for the Steiner
traveling salesman problem. Int. Trans. Oper. Res. 24, 1307–1323 (2017)

137. D.S. Johnson, Local optimization and the traveling salesman problem, in Proceedings of the
17th Colloquium on Automata. LNCS, vol. 443 (Springer, Berlin, 1990), pp. 446–461

138. E.H. Kampke, J.E.C. Arroyo, A.G. Santos, Reactive GRASP with path relinking for solving
parallel machines scheduling problem with resource-assignable sequence dependent setup
times, in Proceedings of the World Congress on Nature and Biologically Inspired Computing,
Coimbatore (IEEE, New York, 2009), pp. 924–929

139. H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, B. Selman, Dynamic restart policies, in Proceed-
ings of the Eighteenth National Conference on Artificial Intelligence (American Association
for Artificial Intelligence, Edmonton, 2002), pp. 674–681

140. G. Kendall, S. Knust, C.C. Ribeiro, S. Urrutia, Scheduling in sports: an annotated bibliogra-
phy. Comput. Oper. Res. 37, 1–19 (2010)

6 GRASP: Advances and Extensions 215

141. J.G. Klincewicz, Avoiding local optima in the p-hub location problem using tabu search and
GRASP. Ann. Oper. Res. 40, 283–302 (1992)

142. J.G. Klincewicz, A. Rajan, Using GRASP to solve the component grouping problem. Nav.
Res. Log. 41, 893–912 (1994)

143. G. Kontoravdis, J.F. Bard, A GRASP for the vehicle routing problem with time windows.
ORSA J. Comput. 7, 10–23 (1995)

144. M. Kulich, J.J. Miranda-Bront, L. Preucil, A meta-heuristic based goal-selection strategy for
mobile robot search in an unknown environment. Comput. Oper. Res. 84, 178–187 (2017)

145. N. Labadi, C. Prins, M. Reghioui, GRASP with path relinking for the capacitated arc routing
problem with time windows, in Advances in Computational Intelligence in Transport, Lo-
gistics, and Supply Chain Management, ed. by A. Fink, F. Rothlauf (Springer, Berlin, 2008),
pp. 111–135

146. M. Laguna, J.L. González-Velarde, A search heuristic for just-in-time scheduling in parallel
machines. J. Intell. Manuf. 2, 253–260 (1991)

147. M. Laguna, R. Martí, GRASP and path relinking for 2-layer straight line crossing minimiza-
tion. INFORMS J. Comput. 11, 44–52 (1999)

148. M. Laguna, R. Martí, A GRASP for coloring sparse graphs. Comput. Optim. Appl. 19,
165–178 (2001)

149. M. Laguna, T.A. Feo, H.C. Elrod, A greedy randomized adaptive search procedure for the
two-partition problem. Oper. Res. 42, 677–687 (1994)

150. Y. Li, P.M. Pardalos, M.G.C. Resende, A greedy randomized adaptive search procedure
for the quadratic assignment problem, in Quadratic Assignment and Related Problems,
ed. by P.M. Pardalos, H. Wolkowicz. DIMACS Series on Discrete Mathematics and The-
oretical Computer Science, vol. 16 (American Mathematical Society, Providence, 1994),
pp. 237–261

151. A. Lim, F. Wang, A smoothed dynamic tabu search embedded GRASP for m-VRPTW, in
Proceedings of ICTAI 2004, pp. 704–708 (2004)

152. A. Lim, B. Rodrigues, C. Wang, Two-machine flow shop problems with a single server. J.
Sched. 9, 515–543 (2006)

153. X. Liu, P.M. Pardalos, S. Rajasekaran, M.G.C. Resende, A GRASP for frequency assignment
in mobile radio networks, in Mobile Networks and Computing, ed. by B.R. Badrinath, F. Hsu,
P.M. Pardalos, S. Rajasejaran. DIMACS Series on Discrete Mathematics and Theoretical
Computer Science, vol. 52 (American Mathematical Society, Providence, 2000), pp. 195–
201

154. H.R. Lourenço, D. Serra, Adaptive approach heuristics for the generalized assignment prob-
lem. Mathw. Soft Comput. 9, 209–234 (2002)

155. H.R. Lourenço, O.C. Martin, T. Stützle, Iterated local search, in Handbook of Metaheuristics,
ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Boston, 2003), pp. 321–
353

156. M. Luby, A. Sinclair, D. Zuckerman, Optimal speedup of Las Vegas algorithms. Inf. Process.
Lett. 47, 173–180 (1993)

157. M. Luis, S. Salhi, G. Nagy, A guided reactive GRASP for the capacitated multi-source Weber
problem. Comput. Oper. Res. 38, 1014–1024 (2011)

158. C.L.B. Maia, R.A.F. Carmo, F.G. Freitas, G.A.L. Campos, J.T. Souza, Automated test case
prioritization with reactive GRASP. Adv. Softw. Eng. 2010, Article ID 428521 (2010)

159. R. Martí, Arc crossing minimization in graphs with GRASP. IEE Trans. 33, 913–919 (2001)
160. R. Martí, Arc crossing minimization in graphs with GRASP. IEEE Trans. 33, 913–919 (2002)
161. R. Martí, V. Estruch, Incremental bipartite drawing problem. Comput. Oper. Res. 28, 1287–

1298 (2001)
162. R. Martí, M. Laguna, Heuristics and meta-heuristics for 2-layer straight line crossing mini-

mization. Discret. Appl. Math. 127, 665–678 (2003)
163. R. Martí, F. Sandoya, GRASP and path relinking for the equitable dispersion problem. Com-

put. Oper. Res. 40, 3091–3099 (2013)
164. O. Martin, S.W. Otto, Combining simulated annealing with local search heuristics. Ann.

Oper. Res. 63, 57–75 (1996)

216 M. G. C. Resende and C. C. Ribeiro

165. O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling salesman
problem. Complex Syst. 5, 299–326 (1991)

166. S.L. Martins, C.C. Ribeiro, M.C. Souza, A parallel GRASP for the Steiner problem in graphs,
in Proceedings of IRREGULAR’98 – 5th International Symposium on Solving Irregularly
Structured Problems in Parallel, ed. by A. Ferreira, J. Rolim. Lecture Notes in Computer
Science, vol. 1457 (Springer, Berlin, 1998), pp. 285–297

167. S.L. Martins, P.M. Pardalos, M.G.C. Resende, C.C. Ribeiro, Greedy randomized adaptive
search procedures for the steiner problem in graphs, in Randomization Methods in Algorith-
mic Design, P.M. Pardalos, S. Rajasejaran, J. Rolim. DIMACS Series on Discrete Mathemat-
ics and Theoretical Computer Science, vol. 43 (American Mathematical Society, Providence,
1999), pp. 133–145

168. S.L. Martins, M.G.C. Resende, C.C. Ribeiro, P.M. Pardalos, A parallel GRASP for the
Steiner tree problem in graphs using a hybrid local search strategy. J. Glob. Optim. 17, 267–
283 (2000)

169. G.R. Mateus, M.G.C. Resende, R.M.A. Silva, GRASP with path-relinking for the generalized
quadratic assignment problem. J. Heuristics 17, 527–565 (2011)

170. T. Mavridou, P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, A GRASP for the biquadratic
assignment problem. Eur. J. Oper. Res. 105, 613–621 (1998)

171. M. Mestria, L.S. Ochi, S.L. Martins, GRASP with path relinking for the symmetric Euclidean
clustered traveling salesman problem. Comput. Oper. Res. 40, 3218–3229 (2013)

172. N. Mladenović, P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24, 1097–
1100 (1997)

173. S.K. Monkman, D.J. Morrice, J.F. Bard, A production scheduling heuristic for an electronics
manufacturer with sequence-dependent setup costs. Eur. J. Oper. Res. 187, 1100–1114 (2008)

174. R.E.N. Moraes, C.C. Ribeiro, Power optimization in ad hoc wireless network topology con-
trol with biconnectivity requirements. Comput. Oper. Res. 40, 3188–3196 (2013)

175. L.F. Morán-Mirabal, J.L. González-Velarde, M.G.C. Resende, R.M.A. Silva, Randomized
heuristics for handover minimization in mobility networks. J. Heuristics 19, 845–880 (2013)

176. L.F. Morán-Mirabal, J.L. González-Velarde, M.G.C. Resende, Randomized heuristics for the
family traveling salesperson problem. Int. Trans. Oper. Res. 21, 41–57 (2014)

177. R.A. Murphey, P.M. Pardalos, L.S. Pitsoulis, A greedy randomized adaptive search proce-
dure for the multitarget multisensor tracking problem, in Network Design: Connectivity and
Facilities Location, ed. by P.M. Pardalos, D.-Z. Du. DIMACS Series on Discrete Mathemat-
ics and Theoretical Computer Science, vol. 40 (American Mathematical Society, Providence,
1998), pp. 277–301

178. R.A. Murphey, P.M. Pardalos, L.S. Pitsoulis, A parallel GRASP for the data association
multidimensional assignment problem, in Parallel Processing of Discrete Problems, ed. by
P.M. Pardalos. The IMA Volumes in Mathematics and Its Applications, vol. 106 (Springer,
New York, 1998), pp. 159–180

179. M.C.V. Nascimento, L. Pitsoulis, Community detection by modularity maximization using
GRASP with path relinking. Comput. Oper. Res. 40, 3121–3131 (2013)

180. M.C.V. Nascimento, M.G.C. Resende, F.M.B. Toledo, GRASP heuristic with path-relinking
for the multi-plant capacitated lot sizing problem. Eur. J. Oper. Res. 200, 747–754 (2010)

181. V.-P. Nguyen, C. Prins, C. Prodhon, Solving the two-echelon location routing problem by a
GRASP reinforced by a learning process and path relinking. Eur. J. Oper. Res. 216, 113–126
(2012)

182. E. Nowicki, C. Smutnicki, An advanced tabu search algorithm for the job shop problem. J.
Sched. 8, 145–159 (2005)

183. C.A. Oliveira, P.M. Pardalos, M.G.C. Resende, GRASP with path-relinking for the quadratic
assignment problem, in Proceedings of III Workshop on Efficient and Experimental Algo-
rithms, vol. 3059, ed. by C.C. Ribeiro, S.L. Martins (Springer, New York, 2004), pp. 356–
368

184. I.H. Osman, B. Al-Ayoubi, M. Barake, A greedy random adaptive search procedure for the
weighted maximal planar graph problem. Comput. Ind. Eng. 45, 635–651 (2003)

6 GRASP: Advances and Extensions 217

185. J.A. Pacheco, S. Casado, Solving two location models with few facilities by using a hybrid
heuristic: a real health resources case. Comput. Oper. Res. 32, 3075–3091 (2005)

186. A.V.F. Pacheco, G.M. Ribeiro, G.R. Mauri, A GRASP with path-relinking for the workover
rig scheduling problem. Int. J. Nat. Comput. Res. 1, 1–14 (2010)

187. G. Palubeckis, Multistart tabu search strategies for the unconstrained binary quadratic opti-
mization problem. Ann. Oper. Res. 131, 259–282 (2004)

188. P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, A parallel GRASP implementation for the
quadratic assignment problem, in Parallel Algorithms for Irregularly Structured Problems –
Irregular’94, ed. by A. Ferreira, J. Rolim (Kluwer Academic Publishers, Dordrecht, 1995),
pp. 115–133

189. P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, A parallel GRASP for MAX-SAT problems.
Lect. Notes Comput. Sci. 1184, 575–585 (1996)

190. P.M. Pardalos, L.S. Pitsoulis, M.G.C. Resende, Algorithm 769: Fortran subroutines for ap-
proximate solution of sparse quadratic assignment problems using GRASP. ACM Trans.
Math. Softw. 23, 196–208 (1997)

191. P.M. Pardalos, T. Qian, M.G.C. Resende, A greedy randomized adaptive search procedure
for the feedback vertex set problem. J. Comb. Optim. 2, 399–412 (1999)

192. F. Parreño, R. Alvarez-Valdes, J.M. Tamarit, J.F. Oliveira, A maximal-space algorithm for
the container loading problem. INFORMS J. Comput. 20, 412–422 (2008)

193. R.A. Patterson, H. Pirkul, E. Rolland, A memory adaptive reasoning technique for solving
the capacitated minimum spanning tree problem. J. Heuristics 5, 159–180 (1999)

194. O. Pedrola, M. Ruiz, L. Velasco, D. Careglio, O. González de Dios, J. Comellas, A GRASP
with path-relinking heuristic for the survivable IP/MPLS-over-WSON multi-layer network
optimization problem. Comput. Oper. Res. 40, 3174–3187 (2013)

195. L.S. Pessoa, M.G.C. Resende, C.C. Ribeiro, Experiments with the LAGRASP heuristic for
set k-covering. Optim. Lett. 5, 407–419 (2011)

196. L.S. Pessoa, M.G.C. Resende, C.C. Ribeiro, A hybrid Lagrangean heuristic with GRASP and
path-relinking for set k-covering. Comput. Oper. Res. 40, 3132–3146 (2013)

197. E. Pinana, I. Plana, V. Campos, R. Martí, GRASP and path relinking for the matrix bandwidth
minimization. Eur. J. Oper. Res. 153, 200–210 (2004)

198. L.S. Pitsoulis, P.M. Pardalos, D.W. Hearn, Approximate solutions to the turbine balancing
problem. Eur. J. Oper. Res. 130, 147–155 (2001)

199. F. Poppe, M. Pickavet, P. Arijs, P. Demeester, Design techniques for SDH mesh-restorable
networks, in Proceedings of the European Conference on Networks and Optical Communi-
cations, Volume 2: Core and ATM Networks, pp. 94–101, (1997)

200. M. Prais, C.C. Ribeiro, Parameter variation in GRASP implementations, in Extended Ab-
stracts of the Third Metaheuristics International Conference, Angra dos Reis, pp. 375–380
(1999)

201. M. Prais, C.C. Ribeiro, Parameter variation in GRASP procedures. Investigación Operativa
9, 1–20 (2000)

202. M. Prais, C.C. Ribeiro, Reactive GRASP: an application to a matrix decomposition problem
in TDMA traffic assignment. INFORMS J. Comput. 12, 164–176 (2000)

203. M. Rahmani, M. Rashidinejad, E.M. Carreno, R.A. Romero, Evolutionary multi-move path-
relinking for transmission network expansion planning, in 2010 IEEE Power and Energy
Society General Meeting, Minneapolis (IEEE, New York, 2010), pp. 1–6

204. M.C. Rangel, N.M.M. Abreu, P.O. Boaventura Netto, GRASP in the QAP: an acceptance
bound for initial solutions. Pesquisa Operacional 20, 45–58 (2000)

205. M.G. Ravetti, F.G. Nakamura, C.N. Meneses, M.G.C. Resende, G.R. Mateus, P.M. Pardalos,
Hybrid heuristics for the permutation flow shop problem. Technical Report, AT&T Labs
Research Technical Report, Florham Park, 2006

206. M. Reghioui, C. Prins, N. Labadi, GRASP with path relinking for the capacitated arc routing
problem with time windows, in Applications of Evolutionary Computing, ed. by M. Giacobini
et al. Lecture Notes in Computer Science, vol. 4448 (Springer, Berlin, 2007), pp. 722–731

207. M.G.C. Resende, Computing approximate solutions of the maximum covering problem using
GRASP. J. Heuristics 4, 161–171 (1998)

218 M. G. C. Resende and C. C. Ribeiro

208. M.G.C. Resende, T.A. Feo, A GRASP for satisfiability, in Cliques, Coloring, and Satisfi-
ability: The Second DIMACS Implementation Challenge, ed. by D.S. Johnson, M.A. Trick.
DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 26 (Amer-
ican Mathematical Society, Providence, 1996), pp. 499–520

209. L.I.P. Resende, M.G.C. Resende, A GRASP for frame relay permanent virtual circuit rout-
ing, in Extended Abstracts of the III Metaheuristics International Conference, ed. by C.C.
Ribeiro, P. Hansen, Angra dos Reis, pp. 397–401 (1999)

210. M.G.C. Resende, C.C. Ribeiro, A GRASP for graph planarization. Networks 29, 173–189
(1997)

211. M.G.C. Resende, C.C. Ribeiro, Graph planarization, in Encyclopedia of Optimization, vol. 2,
ed. by C. Floudas, P.M. Pardalos (Kluwer Academic Publishers, Boston, 2001), pp. 368–373

212. M.G.C. Resende, C.C. Ribeiro, A GRASP with path-relinking for private virtual circuit rout-
ing. Networks 41, 104–114 (2003)

213. M.G.C. Resende, C.C. Ribeiro, GRASP with path-relinking: recent advances and applica-
tions, in Metaheuristics: Progress as Real Problem Solvers, ed. by T. Ibaraki, K. Nonobe,
M. Yagiura (Springer, Boston, 2005), pp. 29–63

214. M.G.C. Resende, C.C. Ribeiro, Restart strategies for GRASP with path-relinking heuristics.
Optim. Lett. 5, 467–478 (2011)

215. M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP: Greedy Randomized Adaptive
Search Procedures (Springer, New York, 2016)

216. M.G.C. Resende, R.F. Werneck, A hybrid heuristic for the p-median problem. J. Heuristics
10, 59–88 (2004)

217. M.G.C. Resende, R.F. Werneck, A hybrid multistart heuristic for the uncapacitated facility
location problem. Eur. J. Oper. Res. 174, 54–68 (2006)

218. M.G.C. Resende, P.M. Pardalos, Y. Li, Algorithm 754: Fortran subroutines for approximate
solution of dense quadratic assignment problems using GRASP. ACM Trans. Math. Softw.
22, 104–118 (1996)

219. M.G.C. Resende, L.S. Pitsoulis, P.M. Pardalos, Approximate solution of weighted MAX-
SAT problems using GRASP, in Satisfiability Problems, ed. by J. Gu, P.M. Pardalos. DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 35 (Ameri-
can Mathematical Society, Providence, 1997), pp. 393–405

220. M.G.C. Resende, T.A. Feo, S.H. Smith, Algorithm 787: Fortran subroutines for approximate
solution of maximum independent set problems using GRASP. ACM Trans. Math. Softw.
24, 386–394 (1998)

221. M.G.C. Resende, L.S. Pitsoulis, P.M. Pardalos, Fortran subroutines for computing approx-
imate solutions of MAX-SAT problems using GRASP. Discret. Appl. Math. 100, 95–113
(2000)

222. M.G.C. Resende, R. Martí, M. Gallego, A. Duarte, GRASP and path relinking for the max-
min diversity problem. Comput. Oper. Res. 37, 498–508 (2010)

223. A.P. Reynolds, B. de la Iglesia, A multi-objective GRASP for partial classification. Soft
Comput. 13, 227–243 (2009)

224. C.C. Ribeiro, GRASP: Une métaheuristique gloutone et probabiliste, in Optimisation Ap-
prochée en Recherche Opérationnelle, ed. by J. Teghem, M. Pirlot (Hermès, Paris, 2002),
pp. 153–176

225. C.C. Ribeiro, Sports scheduling: problems and applications. Int. Trans. Oper. Res. 19, 201–
226 (2012)

226. C.C. Ribeiro, M.G.C. Resende, Algorithm 797: Fortran subroutines for approximate solu-
tion of graph planarization problems using GRASP. ACM Trans. Math. Softw. 25, 342–352
(1999)

227. C.C. Ribeiro, I. Rosseti, Efficient parallel cooperative implementations of GRASP heuristics.
Parallel Comput. 33, 21–35 (2007)

228. C.C. Ribeiro, I. Rosseti, tttplots-compare: A perl program to compare time-to-target plots or
general runtime distributions of randomized algorithms. Optim. Lett. 9, 601–614 (2015)

229. C.C. Ribeiro, M.C. Souza, Variable neighborhood search for the degree constrained mini-
mum spanning tree problem. Discret. Appl. Math. 118, 43–54 (2002)

6 GRASP: Advances and Extensions 219

230. C.C. Ribeiro, S. Urrutia, Heuristics for the mirrored traveling tournament problem. Eur. J.
Oper. Res. 179, 775–787 (2007)

231. C.C. Ribeiro, D.S. Vianna, A GRASP/VND heuristic for the phylogeny problem using a new
neighborhood structure. Int. Trans. Oper. Res. 12, 325–338 (2005)

232. C.C. Ribeiro, C.D. Ribeiro, R.S. Lanzelotte, Query optimization in distributed relational
databases. J. Heuristics 3, 5–23 (1997)

233. C.C. Ribeiro, E. Uchoa, R.F. Werneck, A hybrid GRASP with perturbations for the Steiner
problem in graphs. INFORMS J. Comput. 14, 228–246 (2002)

234. C.C. Ribeiro, S.L. Martins, I. Rosseti, Metaheuristics for optimization problems in computer
communications. Comput. Comuun. 30, 656–669 (2007)

235. C.C. Ribeiro, I. Rosseti, R. Vallejos, On the use of run time distributions to evaluate and com-
pare stochastic local search algorithms, in Engineering Stochastic Local Search Algorithms,
ed. by T. Sttzle, M. Biratari, and H.H. Hoos. Lecture Notes in Computer Science, vol. 5752
(Springer, Berlin, 2009), pp. 16–30

236. C.C. Ribeiro, I. Rosseti, R. Vallejos, Exploiting run time distributions to compare sequential
and parallel stochastic local search algorithms. J. Glob. Optim. 54, 405–429 (2012)

237. R.Z. Ríos-Mercado, J.F. Bard, Heuristics for the flow line problem with setup costs. Eur. J.
Oper. Res. 110, 76–98 (1998)

238. R.Z. Ríos-Mercado, J.F. Bard, An enhanced TSP-based heuristic for makespan minimization
in a flow shop with setup costs. J. Heuristics 5, 57–74 (1999)

239. R.Z. Ríos-Mercado, E. Fernández. A reactive GRASP for a commercial territory design prob-
lem with multiple balancing requirements. Comput. Oper. Res. 36, 755–776 (2009)

240. A. Riva, F. Amigoni, A GRASP metaheuristic for the coverage of grid environments with
limited-footprint tools, in Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’17, Richland, SC, pp. 484–491. International Foundation for
Autonomous Agents and Multiagent Systems (2017)

241. A.J. Robertson, A set of greedy randomized adaptive local search procedure (GRASP) imple-
mentations for the multidimensional assignment problem. Comput. Optim. Appl. 19, 145–
164 (2001)

242. P.L. Rocha, M.G. Ravetti, G.R. Mateus, The metaheuristic GRASP as an upper bound for a
branch and bound algorithm in a scheduling problem with non-related parallel machines and
sequence-dependent setup times, in Proceedings of the 4th EU/ME Workshop: Design and
Evaluation of Advanced Hybrid Meta-Heuristics, vol. 1 (2004), pp. 62–67

243. F.J. Rodriguez, C. Blum, C. García-Martínez, M. Lozano, GRASP with path-relinking for
the non-identical parallel machine scheduling problem with minimising total weighted com-
pletion times. Ann. Oper. Res. 201, 383–401 (2012)

244. F.J. Rodriguez, F. Glover, C. García-Martínez, R. Martí, M. Lozano, Grasp with exterior path-
relinking and restricted local search for the multidimensional two-way number partitioning
problem. Comput. Oper. Res. 78, 243–254 (2017)

245. M.A. Salazar-Aguilar, R.Z. Ríos-Mercado, J.L. González-Velarde, GRASP strategies for a
bi-objective commercial territory design problem. J. Heuristics 19, 179–200 (2013)

246. J. Santamaría, O. Cordón, S. Damas, R. Martí, R.J. Palma, GRASP & evolutionary path
relinking for medical image registration based on point matching, in 2010 IEEE Congress on
Evolutionary Computation (IEEE, New York, 2010), pp. 1–8

247. J. Santamaría, O. Cordón, S. Damas, R. Martí, R.J. Palma, GRASP and path relinking hy-
bridizations for the point matching-based image registration problem. J. Heuristics 18, 169–
192 (2012)

248. D. Santos, A. de Sousa, F. Alvelos, A hybrid column generation with GRASP and path
relinking for the network load balancing problem. Comput. Oper. Res. 40, 3147–3158 (2013)

249. M. Scaparra, R. Church, A GRASP and path relinking heuristic for rural road network de-
velopment. J. Heuristics 11, 89–108 (2005)

250. I.V. Sergienko, V.P. Shilo, V.A. Roshchin, Optimization parallelizing for discrete program-
ming problems. Cybern. Syst. Anal. 40, 184–189 (2004)

251. O.V. Shylo, T. Middelkoop, P.M. Pardalos, Restart strategies in optimization: parallel and
serial cases. Parallel Comput. 37, 60–68 (2011)

252. O.V. Shylo, O.A. Prokopyev, J. Rajgopal, On algorithm portfolios and restart strategies. Oper.
Res. Lett. 39, 49–52 (2011)

220 M. G. C. Resende and C. C. Ribeiro

253. F. Silva, D. Serra, Locating emergency services with different priorities: the priority queuing
covering location problem. J. Oper. Res. Soc. 59, 1229–1238 (2007)

254. R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, M.J. Hirsch, A Python/C library for bound-
constrained global optimization with continuous GRASP. Optim. Lett. 7, 967–984 (2013)

255. R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, G.R. Mateus, G. de Tomi, GRASP with path-
relinking for facility layout, in Models, Algorithms, and Technologies for Network Analysis,
ed. by B.I. Goldengorin, V.A. Kalyagin, P.M. Pardalos. Springer Proceedings in Mathematics
and Statistics, vol. 59 (Springer, Berlin, 2013), pp. 175–190

256. D. Sosnowska, Optimization of a simplified fleet assignment problem with metaheuristics:
simulated annealing and GRASP, in Approximation and Complexity in Numerical Optimiza-
tion, ed. by P.M. Pardalos (Kluwer Academic Publishers, Dordrecht, 2000)

257. M.C. Souza, C. Duhamel, C.C. Ribeiro, A GRASP heuristic for the capacitated minimum
spanning tree problem using a memory-based local search strategy, in Metaheuristics: Com-
puter Decision-Making, ed. by M.G.C. Resende, J. Souza (Kluwer Academic Publisher, Dor-
drecht, 2004), pp. 627–658

258. A. Srinivasan, K.G. Ramakrishnan, K. Kumaram, M. Aravamudam, S. Naqvi, Optimal de-
sign of signaling networks for Internet telephony, in IEEE INFOCOM 2000, vol. 2 (2000),
pp. 707–716

259. H. Takahashi, A. Matsuyama, An approximate solution for the Steiner problem in graphs.
Math. Jpn. 24, 573–577 (1980)

260. T.L. Urban, Solution procedures for the dynamic facility layout problem. Ann. Oper. Res.
76, 323–342 (1998)

261. T.L. Urban, W.-C. Chiang, R.A. Russel, The integrated machine allocation and layout prob-
lem. Int. J. Prod. Res. 38, 2913–2930 (2000)

262. F.L. Usberti, P.M. França, A.L.M. França, GRASP with evolutionary path-relinking for the
capacitated arc routing problem. Comput. Oper. Res. 40, 3206–3217 (2013)

263. J.X. Vianna Neto, D.L.A. Bernert, L.S. Coelho, Continuous GRASP algorithm applied to
economic dispatch problem of thermal units, in Proceedings of the 13th Brazilian Congress
of Thermal Sciences and Engineering, Uberlandia (2010)

264. J.G. Villegas, C. Prins, C. Prodhon, A.L. Medaglia, N. Velasco, GRASP/VND and multi-
start evolutionary local search for the single truck and trailer routing problem with satellite
depots. Eng. Appl. Artif. Intelli. 23, 780–794 (2010)

265. J.G. Villegas, C. Prins, C. Prodhon, A.L. Medaglia, N. Velasco, A GRASP with evolutionary
path relinking for the truck and trailer routing problem. Comput. Oper. Res. 38, 1319–1334
(2011)

266. D.L. Woodruff, E. Zemel, Hashing vectors for tabu search. Ann. Oper. Res. 41, 123–137
(1993)

267. J.Y. Xu, S.Y. Chiu, Effective heuristic procedure for a field technician scheduling problem.
J. Heuristics 7, 495–509 (2001)

268. J. Yen, M. Carlsson, M. Chang, J.M. Garcia, H. Nguyen, Constraint solving for inkjet print
mask design. J. Imaging Sci. Technol. 44, 391–397 (2000)

Chapter 7
Intelligent Multi-Start Methods

Rafael Martí, Ricardo Aceves, Maria Teresa León, Jose M. Moreno-Vega,
and Abraham Duarte

Abstract Heuristic search procedures aimed at finding globally optimal solutions to
hard combinatorial optimization problems usually require some type of diversifica-
tion to overcome local optimality. One way to achieve diversification is to re-start
the procedure from a new solution once a region has been explored, which consti-
tutes a multi-start procedure. In this chapter we describe the best known multi-start
methods for solving optimization problems. We also describe their connections with
other metaheuristic methodologies. We propose classifying these methods in terms
of their use of randomization, memory and degree of rebuild. We also present a com-
putational comparison of these methods on solving the Maximum Diversity Problem
to illustrate the efficiency of the multi-start methodology in terms of solution quality
and diversification power.

R. Martí (�) · M. T. León
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Valencia, Spain
e-mail: rafael.marti@uv.es; teresa.leon@uv.es

R. Aceves
Departamento de Ingeniería de Sistemas, Universidad Nacional Autónoma de México, Mexico
City, Mexico
e-mail: aceves@unam.mx

J. M. Moreno-Vega
Departamento de Ingeniería Informática y de Sistemas, Universidad de La Laguna, San Cristobal
de La Laguna, Spain
e-mail: jmmoreno@ull.es

A. Duarte
Departamento de Ciencias de la Computación, Arquitectura de Computadores, Lenguajes y Sis-
temas Informáticos, Estadística e Investigación Operativa, Universidad Rey Juan Carlos, Móstoles,
Spain
e-mail: abraham.duarte@urjc.es

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_7

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_7&domain=pdf
mailto:rafael.marti@uv.es
mailto:teresa.leon@uv.es
mailto:aceves@unam.mx
mailto:jmmoreno@ull.es
mailto:abraham.duarte@urjc.es
https://doi.org/10.1007/978-3-319-91086-4_7

222 R. Martí et al.

7.1 Introduction

Metaheuristics are high level solution methods that provide guidelines to design and
integrate subordinate heuristics to solve optimization problems. These high level
methods characteristically focus on strategies to escape from local optima and per-
form a robust search of a solution space. Most of them are based, at least partially,
on a neighborhood search, and the degree to which neighborhoods are exploited
varies according to the type of method.

Multi-start procedures were originally conceived as a way to exploit a local or
neighborhood search procedure, by simply applying it from multiple random initial
solutions. It is well known that search methods based on local optimization that
are aimed at finding global optima usually require some type of diversification to
overcome local optimality. Without this diversification, such methods can become
reduced to tracing paths that are confined to a small area of the solution space,
making it impossible to find a global optimum. Multi-start methods, appropriately
designed, incorporate a powerful form of diversification.

For some problems, construction procedures are more effective than neighbor-
hood based procedures. For example, in constrained scheduling problems it is diffi-
cult to define neighborhoods (i.e., structures that allow transitions from a given solu-
tion to so-called adjacent solutions) that maintain feasibility, whereas solutions can
be created relatively easily by an appropriate construction process. Something simi-
lar happens in simulation-optimization where the model treats the objective-function
evaluation as a black box, making the search algorithm context-independent. In
these problems the generation of solutions by stepwise constructions, according
to information recorded during the search process, is more efficient than the ex-
ploration of solutions in the neighborhood of a given solution since the evaluation
requires a simulation process that is usually very time-consuming. Therefore, Multi-
start methods provide an appropriate framework within which to develop algorithms
to solve combinatorial optimization problems.

The re-start mechanism of multi-start methods can be superimposed on many dif-
ferent search methods. Once a new solution has been generated, a variety of options
can be used to improve it, ranging from a simple greedy routine to a complex meta-
heuristic. This chapter focuses on the different strategies and methods for generating
solutions to launch a succession of new searches for a global optimum. We illustrate
the efficiency of the multi-start methodology with a computational comparison of
different methods on solving the Maximum Diversity Problem. This chapter com-
plements a recent survey [44] devoted to multi-start methods in the context of com-
binatorial optimization. In particular, the survey sketches historical developments
that have motivated these methods and focuses on several contributions that defined
the state-of-the-art of the field in 2013.

7 Intelligent Multi-Start Methods 223

7.2 An Overview

Multi-start methods have two phases: the first one in which the solution is generated
and the second one in which the solution is typically (but not necessarily) improved.
Then, each global iteration produces a solution (usually a local optima) and the best
overall is the algorithm’s output.

In recent years, many heuristic algorithms have been proposed to solve some
combinatorial optimization problems. Some of them are problem-dependent and
the ideas and strategies implemented are difficult to apply to different problems,
while others are based on a framework that can be used directly to design solving
methods for other problems. In this section we describe the most relevant procedures
in terms of applying them to a wide variety of problems. We pay special attention
to the adaptation of memory structures to multi-start methods.

The explicit use of memory structures constitutes the core of a large number
of intelligent solving methods. They include tabu search [16], scatter search [34],
iterated-based methods [40], evolutionary path relinking [56], and some hybridiza-
tions of multi-start procedures. These methods focus on exploiting a set of strategic
memory designs. Tabu search (TS), the metaheuristic that launched this perspective,
is the source of the term Adaptive Memory Programming (AMP) to describe meth-
ods that use advanced memory strategies (and hence learning, in a non-trivial sense)
to guide a search.

In the following subsections we trace some of the more salient contributions
to multi-start methods of the past two decades (though the origins of the meth-
ods go back somewhat farther). We have grouped them according to four cate-
gories: memory based designs (Sect. 7.2.1), GRASP (Sect. 7.2.2), theoretical anal-
ysis (Sect. 7.2.5), constructive designs (Sect. 7.2.3) and hybrid designs (Sect. 7.2.4).
Based on the analysis of these methods, we propose a classification of multi-start
procedures (Sect. 7.3) in which the use of memory plays a central role.

7.2.1 Memory Based Designs

Many papers on multi-start methods that appeared before the mid-90s do not use ex-
plicit memory, as notably exemplified by the Monte Carlo random re-start approach
in the context of nonlinear unconstrained optimization. Here, the method simply
evaluates the objective function at randomly generated points. The probability of
success approaches one as the sample size tends to infinity under very mild assump-
tions about the objective function. Many algorithms have been proposed that com-
bine the Monte Carlo method with local search procedures [57]. The convergence
for random re-start methods is studied in [62], where the probability distribution
used to choose the next starting point can depend on how the search evolves. Some
extensions of these methods seek to reduce the number of complete local searches
that are performed and increase the probability that they start from points close to

224 R. Martí et al.

the global optimum [45]. More advanced probabilistic forms of re-starting based on
memory functions were subsequently developed in [38, 58].

Fleurent and Glover [13] propose some adaptive memory search principles to
enhance multi-start approaches. The authors introduce a template of a constructive
version of Tabu Search using both a set of elite solutions and intensification strate-
gies based on identifying strongly determined and consistent variables. Strongly de-
termined variables are those whose values cannot be changed without significantly
eroding the objective function value or disrupting the values of other variables. A
consistent variable is defined as one that receives a particular value in a significant
portion of good solutions. The authors propose the inclusion of memory structures
within the multi-start framework as it is done with tabu search. Computational ex-
periments for the quadratic assignment problem show that these methods improve
significantly over previous multi-start methods like GRASP and random restart that
do not incorporate memory based strategies.

Patterson et al. [51] introduce a multi-start framework (Adaptive Reasoning
Techniques, ART) based on memory structures. The authors implement the short
term and long term memory functions, proposed in the Tabu Search framework,
to solve the Capacitated Minimum Spanning Tree Problem. ART is an iterative,
constructive solution procedure that implements learning methodologies on top of
memory structures. ART derives its success from being able to learn about, and
modify the behavior of a primary greedy heuristic. The greedy heuristic is executed
repeatedly, and for each new execution, constraints that prohibit certain solution
elements from being considered by the greedy heuristic are probabilistically intro-
duced. The active constraints are held in a short term memory. A long term memory
holds information regarding the constraints that were in the active memory for the
best set of solutions.

Glover [17] proposes approaches for creating improved forms of constructive
multi-start and strategic oscillation methods, based on new search principles: per-
sistent attractiveness and marginal conditional validity. These concepts play a key
role in deriving appropriate measures to capture information during prior search.
Applied to constructive neighborhoods, strategic oscillation operates by alternating
constructive and destructive phases, where each solution generated by a constructive
phase is dismantled (to a variable degree) by the destructive phase, after which a new
phase builds the solution anew. The conjunction of both phases and their associated
memory structures provides the basis for an improved multi-start method.

The principle of persistent attractiveness says that good choices derive from
making decisions that have often appeared attractive, but that have not previously
been made within a particular region of the search space. That is, persistent attrac-
tiveness also carries with it the connotation of persistently unselected (i.e., not se-
lected in many trials) within a specific domain or interval. The principle of marginal
conditional validity specifies that the problem becomes more restricted as more and
more decisions are made. Consequently, as the search progresses future decisions
face less complexity and less ambiguity about which choices are likely to be prefer-
able. Therefore, early decisions are more likely to be bad ones or at least to look

7 Intelligent Multi-Start Methods 225

better than they should, once later decisions are made. Specific strategies for ex-
ploiting these concepts and their underlying principles are given in [17].

Scatter Search and Path-Relinking [23] are effective methodologies to solve a
great diversity of optimization problems. These methods differ from other evolu-
tionary procedures, such as genetic algorithms, in their approach to combine so-
lutions based on path construction (both in Euclidean spaces and in neighborhood
spaces). In the context of Scatter Search, Laguna and Martí [33] discuss the de-
velopment and application of the OptQuest system. Using this library, Ugray et al.
[66] develop the algorithm called OQNLP to find global optimal for pure and mixed
integer non-linear problems, where all the functions are differentiable with respect
to continuous variables. It uses OptQuest to generate candidate starting points for a
local NLP solver as a kind of multi-start algorithm. Additionally, the authors show
in [67] that OQNLP is a promising approach to NLP smooth nonconvex problems
with continuous variables. Later, Lasdon and Plummer [36] describe modifications
to OptQuest/NLP and Multistart-NLP for global optimization, which allow them to
find feasible solutions to a system of nonlinear constraints more efficiently. Modifi-
cations include the replacement of the penalty function used to measure the good-
ness of an initial point by the sum of infeasibilities and ending the search when a
feasible solution is found.

Beausoleil at al. [3] consider a multi-objective combinatorial optimization prob-
lem called Extended Knapsack Problem. By applying multi-start search and path
relinking their solving method rapidly guides the search toward the most balanced
zone of the Pareto-optimal front (the zone in which all the objectives are equally
important). Through the Pareto relation, a subset of the best generated solutions
is designated as the current efficient set of solutions. A max-min criterion applied
to the Hamming distance is used as a measure of dissimilarity in order to find di-
verse solutions to be combined. The performance of this approach is compared with
several state-of-the-art Multi-Objective Evolutionary Algorithms on a suite of test
problems taken from the literature.

Considering the problem of finding global optima for restricted multimodal func-
tions, Lasdon et al. [37] present some multi-start methods based on the adaptive
memory programming (AMP) structure, which involves memory structures that can
be superimposed to a local optimizer, to guide the search for initial points when
solving global optimization problems. The first approach is based on a tabu tunnel-
ing strategy and the second one on a pseudo-cut strategy. Both are designed to avoid
being trapped in local optima.

Since we cannot refer here to all the previous developments in this area, and
we limit ourselves to a few significant examples. For instance, there is a recent ap-
plication in the context of mobile network design [64]. The problem of assigning
network elements to controllers when defining network structure can be modeled as
a graph partitioning problem. Accordingly, a comprehensive analysis of a sophis-
ticated graph partitioning algorithm for grouping base stations into packet control
units for a mobile network is presented. The proposed algorithm combines multi-
level and adaptive multi-start schemes to obtain high quality solutions efficiently.
Performance assessment is carried out on a set of problem instances built from mea-

226 R. Martí et al.

surements in a live network. The overall results confirm that the proposed algorithm
finds solutions better than those obtained by classical multi-level approaches and
much faster than classical multistart approaches. The analysis shows that the best
local minima share strong similarities, which explains the superiority of adaptive
multi-start approaches

7.2.2 GRASP

One of the most well known Multi-start methods is the Greedy Adaptive Search Pro-
cedures (GRASP), which was introduced by Feo and Resende [11]. It was first used
to solve set covering problems [10]. Each GRASP iteration consists of constructing
a trial solution and then applying a local search procedure to find a local optimum
(i.e., the final solution for that iteration). The construction step is an adaptive and
iterative process guided by a greedy evaluation function. It is iterative because the
initial solution is built considering one element at a time. It is greedy because the
addition of each element is guided by a greedy function. It is adaptive because the
element chosen at any iteration in a construction is a function of previously chosen
elements. (That is, the method is adaptive in the sense of updating relevant infor-
mation from one construction step to the next.) At each stage, the next element to
be added to the solution is randomly selected from a candidate list of high quality
elements according to the evaluation function. Once a solution has been obtained,
it is typically improved by a local search procedure. The improvement phase per-
forms a sequence of moves towards a local optimum, which becomes the output of
a complete GRASP iteration. Some examples of successful applications are given
in [32, 35, 54]. Recently, Festa and Resende [12] present an overview of GRASP,
describing its basic components and enhancements to the basic procedure, including
reactive GRASP and intensification strategies.

Laguna and Martí [32] introduce Path Relinking within GRASP as a way to im-
prove Multi-start methods. Path Relinking has been suggested as an approach to
integrate intensification and diversification strategies in the context of tabu search
[21]. This approach generates new solutions by exploring trajectories that connect
high-quality solutions. It starts from one of these solutions and generates a path in
the neighborhood space that leads toward the other solutions. This is accomplished
by selecting moves that introduce attributes contained in the guiding solutions. Re-
linking in the context of GRASP consists in finding a path between a solution found
after an improvement phase and a chosen elite solution. Therefore, the relinking
concept has a different interpretation within GRASP, since the solutions found from
one iteration to the next are not originally linked by a sequence of moves (as in
tabu search), but are linked for the first time when this procedure is applied. The
proposed strategy can be applied to any method that produces a sequence of solu-
tions; specifically, it can be used in any multi-start procedure. Based on these ideas,
Binato et al. [4] proposed the Greedy Randomized Adaptive Path Relinking. Many
different designs named Evolutionary Path Relinking have also been studied in [55].

7 Intelligent Multi-Start Methods 227

Prais and Ribeiro [52] propose an improved GRASP implementation, called re-
active GRASP, for a matrix decomposition problem arising in the context of traffic
assignment in communication satellites. The method incorporates a memory struc-
ture to record information about previously found solutions. In Reactive GRASP,
the basic parameter which restricts the candidate list during the construction phase
is self-adjusted, according to the quality of the previously found solutions. The pro-
posed method matches most of the best solutions known.

Morillo et al. [48] propose a new design of the GRASP for solving the latency-
aware partitioning problem in Distributed Virtual Environments (DVE systems)
called M-GRASP or GRASP with memory. The idea is to start from scratch and
to design a specific GRASP that can be implemented in parallel and can provide a
feasible solution for the considered problem at any iteration, in such a way that it
can be adapted to any time constraint. Since each iteration in GRASP consists of a
constructive phase and a local search phase, they propose different alternatives for
each phase, evaluating the performance obtained with each alternative. Additionally,
they enhance this basic approach with some intensification strategies, selecting the
option with the best performance as the proposed final implementation.

Ribeiro and Resende [56] compare the run time distributions of GRASP with and
without path-relinking implementations for four different applications: three-index
assignment, maximum satisfiability, bandwidth packing, and quadratic assignment.
In all cases the plots show that GRASP with path relinking performs better (found-
ing target solutions faster) than the memoryless basic algorithm.

Glover [19] introduces a new design for a framework that links iterated neigh-
borhood search methods and iterated constructive methods by exploiting the notions
of conditional influence within a strategic oscillation framework. These approaches,
which are unified within a class of methods called multi-wave algorithms, exploit
memory-based strategies that draw on the concept of persistent attractiveness. These
algorithms provide new forms of both neighborhood search methods and multi-start
methods and are readily embodied within evolutionary algorithms and memetic al-
gorithms by solution combination mechanisms derived from path relinking.

In 2007, Hirsch [26] proposed an adaptation of GRASP for continuous global
optimization called continuous GRASP (C-GRASP), which was shown to perform
well on a set of multimodal test functions, as well as on real-world applications.
C-GRASP is a stochastic local search metaheuristic for finding cost-efficient solu-
tions to continuous global optimization problems subject to box constraints. Like
GRASP, C-GRASP is a multi-start procedure where a starting solution for local
improvement is constructed in a greedy randomized fashion. In 2010, Hirsch et al.
[27] described several improvements to speed up the original C-GRASP and make
it more robust. The authors compare the new C-GRASP with the original version
as well as with other algorithms from the recent literature on a set of benchmark
multimodal test functions whose global minima are known. A sequential stopping
rule is implemented and C-GRASP is shown to converge.

De Santis et al. [8] recently propose a variant of the GRASP framework that
uses a nonmonotone strategy to explore the neighborhood of the current solution.
Inspired by an idea proposed for Newton’s method, this approach controls uphill

228 R. Martí et al.

moves without using a tabu list but rather by maintaining a number of previously
computed objective function values. A new solution is accepted if its function value
improves the worst value in the set. The authors formally state the convergence of
the nonmonotone local search to a locally optimal solution and illustrate the effec-
tiveness of the resulting Nonmonotone GRASP on three classical hard combinato-
rial optimization problems: the maximum cut problem (MAX-CUT), the weighted
maximum satisfiability problem (MAX-SAT), and the quadratic assignment prob-
lem (QAP).

7.2.3 Constructive Designs

Multi-start procedures usually follow a global scheme in which generation and im-
provement alternate for a certain number of iterations. Note that there are some
applications in which the improvement can be applied several times within a global
iteration. In the incomplete construction methods, the improvement phase is peri-
odically invoked during the construction process of the partial solution rather than
after the complete construction, as it is usually done (see [7, 59] for successful ap-
plications of this approach in vehicle routing).

Hickernell and Yuan [25] present a multi-start algorithm for unconstrained global
optimization based on quasirandom samples. Quasirandom samples are sets of de-
terministic points, as opposed to random points, that are evenly distributed over a
set. The algorithm applies an inexpensive local search (steepest descent) on a set
of quasirandom points to concentrate the sample. Then, the sample is reduced by
replacing worse points with new quasirandom points. Any point that is retained for
a certain number of iterations is used to start an efficient complete local search. The
algorithm terminates when no new local minimum is found after several iterations.
An experimental comparison shows that the method performs favorably with respect
to other global optimization procedures.

Hagen and Kahng [24] implement an adaptive multi start method for a VLSI
partitioning optimization problem where the objective is to minimize the number of
signals sent between components. The method consists of two phases: (1) generate
a set of random starting points and perform the iterative (local search) algorithm
on each point, thus producing a set of local minima; and (2) construct adaptive
starting points derived from the best local minima found so far. The authors add
a preprocessing cluster module to reduce the size of the problem. The resulting
Clustering Adaptive Multi Start method (CAMS) is fast and stable and improves
upon previous partitioning results reported in the literature.

Tu and Mayne [65] describe a multi-start approach with a clustering strategy
for constrained optimization problems. It exploits the characteristics of non-linear
constrained global optimization problems by extending a strategy previously tested
on unconstrained problems. In this study, variations of multi-start with clustering
are considered including a simulated annealing procedure for sampling the design
domain and a quadratic programming (QP) sub-problem for cluster formation. The

7 Intelligent Multi-Start Methods 229

strategies are evaluated by solving 18 non-linear mathematical problems and six
engineering design problems. Numerical results show that the solution of a one-step
QP sub-problem helps predict possible basins of attraction of local minima and can
enhance robustness and effectiveness in identifying local minima without sacrificing
efficiency. In comparison with other multi-start techniques, the strategies proposed
in this study are superior in terms of the number of local searches performed, the
number of minima found and the number of function evaluations required.

Bronmo et al. [6] present a multi-start local search heuristic for a typical ship
scheduling problem. Their method generates a large number of initial solutions
with a randomized insertion heuristic. The best initial solutions are improved with
a quick local search heuristic coupled with an extended version. The quick local
search is used to improve a given number of the best initial solutions. The extended
local search heuristic then further improves some of the best solutions found. The
multi-start local search heuristic is compared with an optimization-based solution
approach with respect to computation time and solution quality. The computational
study shows that the multi-start local search method consistently returns optimal or
near-optimal solutions to real-life instances of the ship scheduling problem within a
reasonable amount of CPU time.

In 2013, Glover [18] introduces advanced greedy algorithms and applies them on
knapsack and covering problems with linear and quadratic objective functions. Be-
ginning with single-constraint problems, he provides extensions for multiple knap-
sack and covering problems, where the elements should be assigned to different
knapsacks and covers. For multi-constraint knapsack and covering problems, the
constraints are exploited using surrogate constraint strategies. Also, he introduces a
progressive probe strategy for improving the selection of variables that should be as-
signed a value. The author describes ways to utilize these algorithms with multi-start
and strategic oscillation metaheuristics. He also identifies how surrogate constraints
can be employed to produce inequalities that dominate those previously used in the
best linear programming methods for multi-constraint knapsack problems. These al-
gorithms are often embedded within constructive processes used in multi-start meta-
heuristics and also within linked constructive and destructive processes in strategic
oscillation metaheuristics.

Talarico et al. [63] develop and combine four constructive heuristics, as well as a
local search composed of six operators to solve a variant of the capacitated vehicle
routing problem. The initial solution obtained with one of the four construction
heuristics serves as input for the local search. The construction heuristics and the
local search are embedded in two different global metaheuristic structures: a multi-
start and a perturb-and-improve (or perturbation) structure. The multi-start structure
repeats both the construction phase and the local search phase a number of times.
The perturbation structure only uses the construction heuristic once, and restarts the
local search block from a perturbed solution. The resulting metaheuristics are able
to obtain solutions of excellent quality in very limited computing times.

Luis et al. [41] investigate a multi-start constructive heuristic algorithm based on
the furthest distance rule and a concept of restricted regions is developed to tackle
a variant of the classical multi-source location-allocation problem in the presence

230 R. Martí et al.

of capacity restrictions. The classical problem assumes that the number of facilities
is known in advance, whereas in practice, determining the number of facilities is a
decision factor. This new approach determines the number of facilities minimizing
the total sum of fixed and variable costs in accordance with finding the best trade-off
between customer demand and opening of new facilities. The proposed method is
assessed using benchmark data sets from the literature.

7.2.4 Hybrid Designs

Ulder et al. [68] combine genetic algorithms with local search strategies to improve
previous genetic approaches for the travelling salesman problem. They apply an it-
erative algorithm to improve each individual, either before or while being combined
with other individuals to form a new solution (offspring). The combination of these
three elements: Generation, Combination and Local Search, extends the paradigm
of Re-Start and establishes links with other metaheuristics such as Scatter Search
[17] or Memetic Algorithms [49].

Mezmaz et al. [46] hybridize the multi-start framework with a model in which
several evolutionary algorithms run simultaneously and cooperate to compute bet-
ter solutions (called island model). They propose a solving method in the context
of multi-objective optimization on a computational grid. The authors point out that
although the combination of these two models usually provides very effective par-
allel algorithms, experiments on large-size problem instances must often be stopped
before convergence. The full exploitation of the cooperation model needs a large
amount of computational resources and the management of fault tolerance issues.
In this paper, a grid-based fault-tolerant approach for these models and their imple-
mentation on the XtremWeb grid middleware is proposed. The approach has been
tested on the bi-objective Flow-Shop problem on a computational grid made of 321
heterogeneous Linux PCs within a multi-domain education network. The prelimi-
nary results, obtained after an execution time of several days, demonstrate that the
use of grid computing effectively and efficiently exploits the two parallel models and
their combination for solving challenging optimization problems. In particular, the
effectiveness is improved by over 60% when compared with a serial meta-heuristic.

An open question about the design of a good search procedure is whether it is bet-
ter to implement a simple improving method that allows a large number of global
iterations or, alternatively, to apply a complex routine that significantly improves
a few generated solutions. A simple procedure depends heavily on the initial so-
lution but a more elaborate method takes much more running time and therefore
can only be applied a few times, thus reducing the sampling of the solution space.
Some metaheuristics, such as GRASP, launch limited local searches from numer-
ous constructions (i.e., starting points). In most tabu search implementations, the
search starts from one initial point and if a restarting procedure is also part of the
method, it is invoked only a limited number of times. However, the inclusion of re-

7 Intelligent Multi-Start Methods 231

starting strategies within the Tabu Search framework has been well documented in
several papers (see for example [15, 21]). In [42] the balance between restarting and
search-depth (i.e., the time spent searching from a single starting point) is studied
in the context of the Bandwidth Matrix Problem. The authors tested both alterna-
tives and concluded that it was better to invest the CPU time to search from a few
starting points than re-starting the search more often. Although we cannot draw a
general conclusion from these experiments, the experience gained in this work and
in previous research indicates that some metaheuristics, like Tabu Search, need to
reach a critical search depth to be effective. If this search depth is not reached, the
effectiveness of the method is severely compromised.

Based on Iterated Local Search (ILS), Prins [53] proposes heuristics for the Ve-
hicle Routing Problem: an ILS with several offspring solutions per generation called
Evolutionary Local Search (ELS), and two hybrid forms of GRASP. These variants
share three main features: a simple structure, a mechanism to alternate between so-
lutions encoded as giant tours and VRP solutions, and a fast local search based on a
sequential decomposition of moves. Using this idea, Lacomme et al. [31] address an
extension of the Capacitated Vehicle Routing Problem where the demand of a cus-
tomer consists of three-dimensional weighted items (3L-CVRP), and the objective
is to design a set of trips for a homogeneous fleet of vehicles based at a depot node
so as to minimize the total transportation cost. The items in each vehicle trip must
satisfy the three-dimensional orthogonal packing constraints. The proposed method
is a multi-start algorithm where ELS is applied to the initial solutions generated by
the greedy randomized heuristics.

Kaucic [29] presents a multi-start Particle Swarm Optimization (PSO) algorithm
for the global optimization of a function subject to bound constraints. The procedure
consists of three main steps. In the initialization phase, an opposition-based learning
strategy is performed. Then, a variant of an adaptive differential evolution scheme is
used to adjust the velocity of the particles. Finally, a re-initialization strategy based
on two swarm diversity measures is applied to avoid premature convergence and
stagnation. The overall idea is to increase the search abilities of PSO by employing
an opposition-based selection for the initial swarm and an adaptive velocity update
equation for the following iterations. The restart scheme is applied to the particles
in the swarm whenever premature convergence and stagnation occur.

Pacheco et al. [50] propose a heuristic method for solving a problem of sequenc-
ing jobs on a machine with programmed preventive maintenance and sequence-
dependent set-up times. The method hybridizes multi-start strategies with Tabu
Search. Their algorithm, called Multi-start Tabu (MST), is an iterative algorithm
that generates a solution in each iteration using a constructive algorithm (called
Diversification Generator), and then, improves it using a Tabu Search procedure
(called Basic Tabu). In this way, each iteration produces a local optimum and the
best one is the algorithm’s output. To explore the whole space of feasible solutions,
the designed constructive procedure takes into account the knowledge accumulated
during previous executions, generating solutions in regions not visited previously.

The research work of Sharma and Glemmestad [60] focuses on the use of the
Generalized Reduced Gradient (GRG) method [67] to solve a constraint multivari-

232 R. Martí et al.

able lift gas allocation optimization problem. The GRG algorithm is a local solver
i.e. the solution provided by GRG may only be a local optimum. To ensure that the
final solution is as close as possible to a global optimum, a multi-start search routine
is applied on top of the GRG algorithm. First, different feasible starting points are
generated. Then, GRG is applied to each of these feasible starting points and the
corresponding local optima are stored. Finally, when all points have been exploited,
the solution which maximizes the objective function is returned as the final solution.

7.2.5 Theoretical Analysis

From a theoretical point of view, Hu et al. [28] study the combination of the gradient
algorithm with random initializations to find a global optimum. Efficacy of parallel
processing, choice of the restart probability distribution and number of restarts are
studied for both discrete and continuous models. The authors show that the uniform
probability distribution is a good choice for restarting procedures.

Boese et al. [5] analyze relationships among local minima from the perspective
of the best local minimum, finding convex structures in the cost surfaces. Based on
the results of that study, they propose a multi-start method where starting points for
greedy descent are adaptively derived from the best previously found local minima.
In the first step, Adaptive Multi-start heuristics (AMS) generate r random starting
solutions and run a greedy descent method from each one to determine a set of cor-
responding random local minima. In the second step, adaptive starting solutions
are constructed based on the local minima obtained so far and improved with a
greedy descent method. This improvement is applied several times from each adap-
tive starting solution to yield corresponding adaptive local minima. The authors test
this method for the traveling salesman problem and obtain significant speedups over
previous multi-start implementations. Hagen and Kahng [24] apply this method for
the iterative partitioning problem.

Moreno et al. [47] propose a stopping rule for the multi-start method based on a
statistical study of the number of iterations needed to find the global optimum. The
authors introduce two random variables that together provide a way of estimating the
number of global iterations needed to find the global optima: the number of initial
solutions generated and the number of objective function evaluations performed to
find the global optima. From these measures, the probability that the incumbent
solution is the global optimum is evaluated via a normal approximation. Thus, at
each global iteration, this value is computed and if it is greater than a fixed threshold,
the algorithm stops, otherwise a new solution is generated. The authors illustrate the
method using the median p-hub problem.

Simple forms of multi-start methods are often used to compare other methods and
measure their relative contribution. Baluja [2] compares different genetic algorithms
for six sets of benchmark problems commonly found in the GA literature: Traveling
Salesman Problem, Job-Shop Scheduling, Knapsack, Bin Packing, Neural Network
Weight Optimization, and Numerical Function Optimization. The author uses the

7 Intelligent Multi-Start Methods 233

multi-start method (Multiple Restart Stochastic Hill-climbing, MRSH) as a baseline
in the computational testing. Since solutions are represented with strings, the im-
provement step consists of a local search based on random flip of bits. The results
indicate that using Genetic Algorithms for the optimization of static functions does
not yield a benefit, in terms of the final result obtained, over simpler optimization
heuristics. Other comparisons between MRSH and GAs can be found, for example,
in [1, 70].

Many heuristics used for global optimization can be described as population-
based algorithms in which, at every iteration, the quality of a population of solutions
is evaluated and a new population is randomly generated according to a given rule,
designed to achieve an acceptable trade-off in the allocation of computational effort
for “exploration” versus “exploitation”. Wang and García [69] propose an algorith-
mic design for global optimization with multiple interacting threads. It applies a
multi-start method that makes use of a local search algorithm to guarantee the di-
versity of search spaces. In the proposed design, each thread implements a search
with a relative emphasis on exploitation that does not vary over time. More efficient
exploration is achieved by means of a simple acceptance-rejection rule preventing
duplication of the search spaces.

7.3 A Classification

We have found three key elements in multi-start methods that can be used for clas-
sification purposes: memory, randomization and degree of rebuild. The possible
choices for each element are not restricted to its presence or absence, but rather
represent a whole continuum between these two extremes. We can identify these
extremes as:

• Memory/Memory-less
• Systematic/Randomized
• Rebuild/Build-from-scratch

The Memory classification refers to elements that are common to certain pre-
viously generated solutions. As in the Tabu Search framework [21], such memory
provides a foundation for incentive-based learning, where actions leading to good
solutions are reinforced through incentives or actions leading to bad solutions are
discouraged through deterrents. Thus, instead of simply resorting to randomized
re-starting processes, in which the current decisions do not get any benefit from
the knowledge accumulated during prior search, specific information is identified to
exploit the search history. On the other hand, memory avoidance (via the Memory-
less classification) is employed in a variety of methods where the construction of
unconnected solutions is viewed as a means of strategically sampling the solution
space. It should be noted that memory is not restricted to recording good solutions
(or attributes of these solutions) but also includes recording solutions that exhibit
diversity.

234 R. Martí et al.

Starting solutions can be randomly generated or, on the contrary, they can be
generated in a systematic way. Randomization is a very simple way of achiev-
ing diversification, but with no control over the diversity achieved since in some
cases randomization can obtain very similar solutions. Moreover, there is a variety
of forms of diversity that can be more important for conducting an effective search
process than the haphazard outcomes of randomization. More systematic mecha-
nisms are available to control the similarities among solutions, as a way to yield
outcomes exhibiting a useful range of structural differences. Between the extremes
of Randomized and Systematic (or deterministic) generation of solutions lie a signif-
icant number of possibilities. These can range from imposing deterministic controls
on a randomized process to alternating in various ways between randomized and
deterministic processes. The GRASP method discussed later combines several of
these intermediate possibilities.

The Degree of Rebuild measures the number or proportion of elements that re-
main fixed from one generation to another. Most applications build the solution at
each generation from scratch, but some strategies fix (or lock-in) some elements
found in previously generated solutions. Such an approach was proposed in the
context of identifying and then iteratively exploiting strongly determined and con-
sistent variables [15]. This selective way of fixing elements, by reference to their
impact and frequency of occurrence in previously visited solutions, is a memory-
based strategy of the type commonly used in tabu search. This type of approach
is also implicit in the operation of Path Relinking [20] which generates new solu-
tions by exploring trajectories that connect high-quality solutions. In this case the
process seeks to incorporate the attributes of previously generated elite solutions by
creating incentives to favor these attributes in currently generated solutions. In an
extreme case all the elements in the new solution will be determined (and fixed) by
the information generated from the set of elite solutions considered. This is labeled
as (complete) Rebuild.

This classification has already been used in a practical approach to solve a vehi-
cle routing problem proposed by an international company operating in Spain. The
work reported in [39] considered a variant of the Open Vehicle Routing Problem in
which the makespan, i.e., the time spent in the vehicle by one person, must be mini-
mized. A competitive multi-start algorithm producing high quality solutions within
reasonable computing time is proposed. The effectiveness of the algorithm is ana-
lyzed through computational testing on a set of 19 school-bus routing benchmark
problems from the literature, and on 9 hard real-world problem instances.

The multi-start algorithm in [39] is a classical two-phases iterative process. First,
there is a construction phase in which a feasible solution is generated, followed by
a local search phase in which an attempt to improve solution quality and (possi-
bly) infeasibility is performed. As a consequence, each iteration produces a locally
optimal solution, and the algorithm returns the best solution found during the iter-
ative process. According to our classification, the authors classify their method as
Memory-less, Randomized, and Build-from-scratch because those characteristics
favor solution diversity, thus providing a best overall result.

7 Intelligent Multi-Start Methods 235

7.4 The Maximum Diversity Problem

In this section we consider a difficult optimization problem to illustrate how to im-
plement a multi-start method. In particular, we describe different solution methods
for the Maximum Diversity Problem. It also gives us the opportunity to evaluate the
use of memory structures in the context of multi-start methods.

The problem of choosing a subset of elements with maximum diversity from a
given set is known as the Maximum Diversity Problem (MDP). This problem has
a wide range of practical applications involving fields such as medical treatments,
environmental balance, immigration policies and genetic engineering, among others
[22]. The MDP has been studied by numerous authors, the most prominent among
them being Kuo et al. [30], who described four formulations of the problem, rang-
ing from the most intuitive to the most efficient. These formulations also served to
show that the MDP is NP-hard. In 1996, Ghosh [14] proposed a multi-start method
and proved the completeness of the problem. Later, Glover et al. [22] proposed
four deterministic heuristic methods, two of them constructive and the other two
destructive. Silva et al. [61] presented a multi-start algorithm based on the GRASP
methodology. Specifically, they described three constructive methods, called KLD,
KLDv2 and MDI, and two improvement methods: LS, which is an adaptation of the
one proposed by Ghosh, and SOMA, based on a VNS implementation.

The MDP can be formally described as a combinational optimization problem
which can be stated as follows: let S = {si : i ∈ N} be a set of elements where N =
{1,2, . . . ,n} is the set of indexes. Each element of the set si ∈ S may be represented
by a vector si = (si1 ,si2 , ..,sir). Let di j be the distance between two elements si and
s j and let m (with m < n) be the desired size of the maximum diversity set. In this
context, the solution of the MDP consists of finding a subset Sel of m elements of S
(Sel ⊂ S and |Sel|= m) in order to maximize the sum of the distances between the
selected elements. Mathematically, the MDP may be rewritten as an optimization
problem in the following terms:

max z = ∑
i< j

di jxix j

subject to
n

∑
i=1

xi = m

xi ∈ {0,1} i = 1, . . . ,n

where xi = 1 indicates that element si has been selected.
Two constructive algorithms are proposed to solve the MDP using a multi-start

scheme, one with memory and the other without. Each algorithm is described in
turn in the following sections.

236 R. Martí et al.

7.4.1 Multi-Start Without Memory (MSWoM)

The Multi-Start Without Memory (MSWoM) algorithm consists of a GRASP based
constructive procedure and a first improvement local search. This approach comes
from a heuristic method proposed in Glover et al. [22]. In each step, the constructive
procedure adds a high quality element (given by a greedy function) to the set Sel.
The non-selected elements are contained in the set S− Sel. The set Sel is initially
empty, meaning that all elements may be selected. The algorithm starts by selecting
an element from S at random and placing it in the set Sel. The distance from all
the non-selected elements si ∈ S− Sel to the elements in Sel is then computed as
follows:

d(si,Sel) = ∑
s j∈Sel

d(si,s j) (7.1)

To select the next element for inclusion in the set Sel, an ordered list L is constructed
with all the elements si ∈ S− Sel within a percentage α of the maximum distance.
Mathematically, L is defined as:

L = {si ∈ S−Sel/d(si,Sel)≥ dmin +α(dmax −dmin)} (7.2)

where

dmax = max
si∈S−Sel

d(si,Sel) dmin = min
si∈S−Sel

d(si,Sel)

The next element introduced in set Sel is chosen at random among the elements in
L, thus ensuring a minimum quality as defined by the percentage α . So, it is not a
purely greedy selection, but it combines greediness with randomization. This pro-
cedure is repeated until m elements have been chosen (|Sel|= m). At this point, Sel
contains a solution to the problem. After niter executions, the arithmetic mean of the
niter solutions will typically be worse than if the solution had been constructed by
taking the element with a maximum distance over those already selected, although
some of the niter solutions will probably improve on this value.

For the algorithm to have a reactive behavior, the parameter α is initially set at 0.5
and then adjusted dynamically depending on the quality of the solutions obtained;
that is, if after niter/5 consecutive iterations, the best solution has not improved,
then α is increased by 0.1 (up to a maximum of 0.9).

The improvement method is based on a simplification of the local search de-
scribed in [14], which seeks to increase the efficiency of the local search. The pro-
posed method is classified as a first improvement local search which, as described
in [32], not only tends to yield better results than the best improvement strategies,
but also requires much less time. It does so by factoring the contribution from each
element si in Sel; that is, for each element si ∈ Sel, its contribution di to the objective
function is:

di = ∑
s j∈Sel

di j = d(si,Sel) (7.3)

7 Intelligent Multi-Start Methods 237

with the objective function defined as:

z =
1
2 ∑

si∈Sel

di (7.4)

Subsequently, the element si∗ ∈ Sel with the lowest contribution di∗ to the current
solution is selected and exchanged with the first element s j ∈ S− Sel (in lexico-
graphical order) that leads to an increase in the objective value. The search pro-
cedure continues for as long as the objective function improves by extracting the
element from the set Sel which contributes the least and inserting another element
from S− Sel which improves the value of the objective function. When there is no
improvement, the second least-contributing element is used, and so on. This proce-
dure is continued until no further improvement is obtained.

7.4.2 Multi-Start With Memory (MSWM)

Multistart with Memory (MSWM) is the second multistart algorithm described in
[9]. The method uses memory both in the solution construction and improvement
phases. These strategies are integrated within the Tabu Search method [21].

In each iteration, the constructive algorithm penalizes the frequency of use of
those elements which appeared in previous solutions. The procedure also rewards
those elements which previously appeared in high quality solutions. To implement
this algorithm, the number of times element si was selected in previous constructions
is stored in f req[i]. The maximum value of f req[i] over all i is stored in max f req.
The average value of the solutions in which element si has appeared is stored in
quality[i]. In addition, maxq stores the maximum value of quality[i] over all i. The
evaluation of each non-selected element in the current construction is modified de-
pending on these values, thus favoring the selection of low-frequency, high-quality
elements. This is achieved by using the following expression instead of the distance
metric described in Eq. (7.3) between an element and the set of selected elements:

d′(si,Sel) = d(si,Sel)−β range(Sel)
f req[i]

max_ f req
+δ range(Sel)

quality[i]
max_q

with
range(Sel) = max

s j∈S−Sel
d(s j,Sel)− min

s j∈S−Sel
d(s j,Sel)

where β and δ are parameters that quantify the contributions of the frequency
penalty and the reward for quality. Both are adjusted experimentally. The purpose
of the range(Sel) parameter is to smooth the changes in the penalty function.

The set Sel is initially empty, meaning that any element can be selected. The
algorithm starts by selecting an element from S at random and inserting it in the set
Sel. It then computes the distance d′(si,Sel) for each element si ∈ S−Sel, which in

238 R. Martí et al.

the first construction would correspond with d(si,Sel), since f req[i] = quality[i] =
0. The chosen element i∗ is the one such that:

d′(si∗ ,Sel) = max
si∈S

{d′(si,Sel)}

It is then inserted in Sel, after which the frequency vector is updated. This procedure
is repeated until m elements have been chosen. Once a solution is constructed, the
quality vector is updated. The tabu multi-start method executes this procedure niter
times, in such a way that with each construction the distances between an element
and the set of those already selected is updated depending on its past history.

The improvement method is a modification of the one described above with the
addition of a short-term memory based on the exchange of an element between
Sel and S− Sel. One iteration of this algorithm consists of randomly selecting an
element si ∈ Sel. The probability of selecting this element is inversely proportional
to its associated di value. That element of Sel is replaced by the first element s j ∈
S−Sel which improves the value of the objective function. If this element does not
exist, then the one which degrades the least the objective function is chosen (i.e.,
an exchange is always performed). When this exchange is carried out, both si, and
s j take on a tabu status for TabuTenure iterations. Consequently, it is forbidden to
remove element s j from set Sel (respectively, element si from set S− Sel) for that
number of iterations. The tabu search process continues until MaxIter consecutive
iterations are executed without improving the best value obtained thus far.

7.4.3 Experimental Results

To illustrate the behavior of the two multi-start algorithms summarized in this paper
and proposed in [9], we present a comparison with two other previously reported
algorithms. Specifically, the MSWoM and MSWM algorithms are compared with
the D2 constructive algorithm [22], along with the improvement method described
in [14], and the KLDv2 algorithm with its improvement procedure [61]. They are
the best methods for this problem. All the algorithms were coded in C and compiled
with Borland Builder 5.0, optimized for maximum speed. The experiments were
carried out on a 3-GHz Pentium IV with 1 GB RAM.

The algorithms were executed on three sets of instances:

1. Silva: 20 n × n matrices with random integer values generated from a [0,9]
uniform distribution with n ∈ [100,500] and m ∈ [0.1n,0.4n].

2. Glover: 20 n× n matrices in which the values are the distances between each
pair of points with Euclidean coordinates randomly generated in [0,10]. Each
point has r coordinates, with r ∈ [2,21].

3. Random: 20 n×n matrices with real weights generated from a (0,10) uniform
distribution with n = 2000 and m = 200. It should be noted that these were the
largest problem instances solved in the references consulted.

7 Intelligent Multi-Start Methods 239

Tables 7.1, 7.2 and 7.3 compare MSWoM, MSWM, D2 + LS and KLDv2+LS. These
tables show the average percentage of deviation for each procedure with respect to
the best solution produced in each experiment (since the optimal values are un-
known), the number of best solutions and the number of constructions and improve-
ments made by the algorithm in 10 s (stopping criterion).

Table 7.1 Constructive methods—Silva instances
D2 + LS KLDv2 + LS MSWoM MSWM

Dev. 1.722% 1.079% 0.0377% 0.0130%
� Best 2 5 12 13
� Const. 5140.5 5 12 13

Table 7.2 Constructive methods—Glover instances
D2 + LS KLDv2 + LS MSWoM MSWM

Dev. 0.018% 0.006% 0.000% 0.000%
� Best 16 18 20 20
� Const. 2149.6 971.0 790.4 397.5

Table 7.3 Constructive methods—Random instances
D2 + LS KLDv2 + LS MSWoM MSWM

Dev. 1.270% 1.219% 0.204% 0.099%
� Best 0 0 7 15
� Const. 128.1 3.5 12 14.8

We can conclude from these tables that the proposed multi-start methods sub-
stantially improve on previous algorithms, with regard to both the deviation from
the best known values and the number of times that value is found. Moreover, the
experiments also show that the use of memory, at least for the instances tested, leads
to better results. Note that in the case of Glover instances, the algorithms studied
yield very similar values. This fact indicates that these are the simplest problem in-
stances, and consequently say little about the quality of each algorithm. At the other
extreme are the Random instances, where substantial improvements are obtained
with the multi-start methods.

A thorough computational study to compare 10 heuristics and 20 metaheuristics
for the maximum diversity problem (MDP) can be found in [43]. The authors present
the benchmark library MDPLIB which contains 315 instances of the problem, and
compare the 30 methods on MDPLIB making use of non-parametric statistical tests
to draw significant conclusions. They conclude that even the simplest heuristics
provide good solutions to this problem. However, to obtain high-quality solutions
they recommend to apply multi-start metaheuristics.

240 R. Martí et al.

7.5 Conclusion

The objective of this chapter is to extend and advance the knowledge on multi-start
methods. Unlike other well-known methods, these procedures have not yet become
widely implemented and tested as true metaheuristic for solving complex optimiza-
tion problems. We have presented new ideas that have recently emerged in the field
of multi-start methods. These ideas, which have yet to be fully explored, have great
potential. We have also shown the connections between these methodologies and
other metaheuristics.

Our findings indicate that memory appears to play an important role during both
the constructive and the improvement phase of a multi-start procedure. One possible
explanation may be that the repeated application of the constructive phase operates
primarily as a diversification process, while the introduction of memory structures
guides the diversification in an efficient way. On the other hand, the benefits as-
sociated with the inclusion of memory structures in the local search (improvement
phase) has been extensively documented in the Tabu Search literature. Our results
with the Maximum Diversity Problem confirm these previous findings. The com-
parison between memory-based and memory-less designs is an interesting area for
future research.

Acknowledgements This research was partially supported by the Ministerio de Economía y Com-
petitividad with codes TIN2015-65460-C2 (MINECO-FEDER) and TIN2015-70226-R.

References

1. D.P. Ackley, An empirical study of bit vector function optimization, in Genetic Algorithms
and Simulated Annealing, ed. by L. Davis (Morgan Kaufmann, Los Altos, 1987), pp. 170–204

2. S. Baluja, An empirical comparison of seven iterative and evolutionary function optimiza-
tion heuristics. Technical report CMU-CS-95-193, Computer Science Department, Carnegie
Mellon University (1995)

3. R.P. Beausoleil, G. Baldoquin, R.A. Montejo, Multi-start and path relinking methods to deal
with multiobjective knapsack problems. Ann. Oper. Res. 157(1), 105–133 (2008)

4. S. Binato, H. Faria Jr., M.G.C. Resende, Greedy randomized adaptive path relinking, in Pro-
ceedings of the 4th Metaheuristics International Conference (2001), pp. 393–397

5. K.D. Boese, A.B. Kahng, S. Muddu, A new adaptive multi-start technique for combinatorial
global optimizations. Oper. Res. Lett. 16(2), 101–113 (1994)

6. G. Brønmo, M. Christiansen, K. Fagerholt, B. Nygreen, A multi-start local search heuristic
for ship scheduling: a computational study. Comput. Oper. Res. 34(3), 900–917 (2007)

7. W.C. Chiang, R.A. Russell, Simulated annealing metaheuristics for the vehicle routing prob-
lem with time windows. Ann. Oper. Res. 63(1), 3–27 (1996)

8. M. De Santis, P. Festa, G. Liuzzi, S. Lucidi, F. Rinaldi, A nonmonotone GRASP. Math. Pro-
gram. Comput. 8(3), 271–309 (2016)

9. A. Duarte, R. Martí, Tabu search and GRASP for the maximum diversity problem. Eur. J.
Oper. Res. 178(1), 71–84 (2007)

10. T.A. Feo, M.G.C. Resende, A probabilistic heuristic for a computationally difficult set cover-
ing problem. Oper. Res. Lett. 8(2), 67–71 (1989)

7 Intelligent Multi-Start Methods 241

11. T. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim. 6(2),
109–133 (1995)

12. P. Festa, M.G.C. Resende, GRASP: basic components and enhancements. Telecommun. Syst.
46(3), 253–271 (2011)

13. C. Fleurent, F. Glover, Improved constructive multistart strategies for the quadratic assignment
problem using adaptive memory. INFORMS J. Comput. 11(2), 198–204 (1999)

14. J.B. Ghosh, Computational aspects of the maximum diversity problem. Oper. Res. Lett. 19(4),
175–181 (1996)

15. F. Glover, Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1),
156–166 (1977)

16. F. Glover, Tabu search. ORSA J. Comput. 1(3), 190–206 (1989)
17. F. Glover, Multi-start and strategic oscillation methods: principles to exploit adaptive memory,

in Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer Sci-
ence and Operations Research, ed. by M. Laguna, J.L. González-Velarde (Springer, Boston,
2000), pp. 1–23

18. F. Glover, Advanced greedy algorithms and surrogate constraint methods for linear and
quadratic knapsack and covering problems. Eur. J. Oper. Res. 230(2), 212–225 (2013)

19. F. Glover, Multi-wave algorithms for metaheuristic optimization. J. Heuristics 22(3), 331–358
(2016)

20. F. Glover, M. Laguna, Tabu search, in Modern Heuristic Techniques for Combinatorial Prob-
lems, ed. by C.R. Reeves (Blackwell Scientific Publications, Oxford, 1993), pp. 70–141

21. F. Glover, M. Laguna, Tabu Search (Kluwer, Boston, 1997)
22. F. Glover, C.C. Kuo, K.S. Dhir, Heuristic algorithms for the maximum diversity problem. J.

Inform. Optim. Sci. 19(1), 109–132 (1998)
23. F. Glover, M. Laguna, R. Martí, Fundamentals of scatter search and path relinking. Control

Cybern. 29, 653–684 (2000)
24. L.W. Hagen, A.B. Kahng, Combining problem reduction and adaptive multistart: a new tech-

nique for superior iterative partitioning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
16(7), 709–717 (1997)

25. F.J. Hickernell, Y. Yuany, A simple multistart algorithm for global optimization. OR Trans.
1(2), 1–11 (1997)

26. M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M. Ragle, Mauricio G.C. Resende, A continuous
GRASP to determine the relationship between drugs and adverse reactions. AIP Conf. Proc.
953(1), 106–121 (2007)

27. M.J. Hirsch, P.M. Pardalos, M.G.C. Resende, Speeding up continuous GRASP. Eur. J. Oper.
Res. 205(3), 507–521 (2010)

28. X. Hu, R. Shonkwiler, M.C. Spruill, Random restarts in global optimization. Technical report,
Georgia Institute of Technology (2009)

29. M. Kaucic, A multi-start opposition-based particle swarm optimization algorithm with adap-
tive velocity for bound constrained global optimization. J. Glob. Optim. 55(1), 165–188 (2013)

30. C.C. Kuo, F. Glover, K.S. Dhir, Analyzing and modeling the maximum diversity problem by
zero-one programming. Decis. Sci. 24(6), 1171–1185 (1993)

31. P. Lacomme, H. Toussaint, C. Duhamel, A GRASP x ELS for the vehicle routing problem
with basic three-dimensional loading constraints. Eng. Appl. Artif. Intell. 26(8), 1795–1810
(2013)

32. M. Laguna, R. Martí, GRASP and path relinking for 2-layer straight line crossing minimiza-
tion. INFORMS J. Comput. 11(1), 44–52 (1999)

33. M. Laguna, R. Martí, The OptQuest callable library, in Optimization Software Class Libraries,
ed. by S. Voß, D.L. Woodruff (Springer, Boston, 2002), pp. 193–218

34. M. Laguna, R. Martí, Scatter Search: Methodology and Implementations in C, vol. 24
(Springer, Boston, 2012)

35. M. Laguna, T.A. Feo, H.C. Elrod, A greedy randomized adaptive search procedure for the
two-partition problem. Oper. Res. 42(4), 677–687 (1994)

36. L. Lasdon, J.C. Plummer, Multistart algorithms for seeking feasibility. Comput. Oper. Res.
35(5), 1379–1393 (2008)

242 R. Martí et al.

37. L. Lasdon, A. Duarte, F. Glover, M. Laguna, R. Martí, Adaptive memory programming for
constrained global optimization. Comput. Oper. Res. 37(8), 1500–1509 (2010)

38. A. Løkketangen, F. Glover, Probabilistic move selection in tabu search for zero-one mixed
integer programming problems, in Meta-Heuristics – Theory and Applications (Springer, New
York, 1996), pp. 467–487

39. A.D. López-Sánchez, A.G. Hernández-Díaz, D. Vigo, R. Caballero, J. Molina, A multi-start
algorithm for a balanced real-world open vehicle routing problem. Eur. J. Oper. Res. 238(1),
104–113 (2014)

40. M. Lozano, F. Glover, C. García-Martínez, F.J. Rodríguez, R. Martí, Tabu search with strategic
oscillation for the quadratic minimum spanning tree. IIE Trans. 46(4), 414–428 (2014)

41. M. Luis, H. Lamsali, A. Imran, A. Lin, A multi-start heuristic for the capacitated planar
location-allocation problem with facility fixed costs. Information 19(7A), 2441–2446 (2016)

42. R. Martí, M. Laguna, F. Glover, V. Campos, Reducing the bandwidth of a sparse matrix with
tabu search. Eur. J. Oper. Res. 135(2), 450–459 (2001)

43. R. Martí, M. Gallego, A. Duarte, E.G. Pardo, Heuristics and metaheuristics for the maximum
diversity problem. J. Heuristics 19(4), 591–615 (2013)

44. R. Martí, M.G.C. Resende, C.C. Ribeiro, Multi-start methods for combinatorial optimization.
Eur. J. Oper. Res. 226(1), 1–8 (2013)

45. D.Q. Mayne, C.C. Meewella, A non-clustering multistart algorithm for global optimization,
in Analysis and Optimization of Systems (Springer, Berlin, 1988), pp. 334–345

46. M. Mezmaz, N. Melab, E.-G. Talbi, Using the multi-start and island models for parallel multi-
objective optimization on the computational grid, in e-Science 2006 - Second IEEE Interna-
tional Conference on e-Science and Grid Computing (IEEE, Piscataway, 2006)

47. J.A. Moreno, N. Mladenovic, J.M. Moreno-Vega, A statistical analysis of strategies for mul-
tistart heuristic searches for p-facility location-allocation problems, in Eighth Meeting of the
EWG on Locational Analysis (Lambrecht, Germany, 1995)

48. P. Morillo, J.M. Orduna, J. Duato, M-GRASP: a GRASP with memory for latency-aware
partitioning methods in DVE systems. IEEE Trans. Syst. Man Cybern. - Part A: Syst. Hum.
39(6), 1214–1223 (2009)

49. P. Moscato, Memetic algorithms: a short introduction, in New Ideas in Optimization (McGraw-
Hill, London, 1999), pp. 219–234

50. J. Pacheco, F. Ángel-Bello, A. Álvarez, A multi-start tabu search method for a single-
machine scheduling problem with periodic maintenance and sequence-dependent set-up times.
J. Scheduling 16(6), 661–673 (2013)

51. R. Patterson, H. Pirkul, E. Rolland, A memory adaptive reasoning technique for solving the
capacitated minimum spanning tree problem. J. Heuristics 5(2), 159–180 (1999)

52. M. Prais, C.C. Ribeiro, Reactive grasp: an application to a matrix decomposition problem in
TDMA traffic assignment. INFORMS J. Comput. 12(3), 164–176 (2000)

53. C. Prins, A GRASP evolutionary local search hybrid for the vehicle routing problem, in Bio-
inspired Algorithms for the Vehicle Routing Problem, ed. by F.B. Pereira, J. Tavares (Springer,
Berlin, 2009), pp. 35–53

54. M.G.C. Resende, Computing approximate solutions of the maximum covering problem with
GRASP. J. Heuristics 4(2), 161–177 (1998)

55. M.G.C. Resende, R. Martí, M. Gallego, A. Duarte, GRASP and path relinking for the max–
min diversity problem. Comput. Oper. Res. 37(3), 498–508 (2010)

56. C.C. Ribeiro, M.G.C. Resende, Path-relinking intensification methods for stochastic local
search algorithms. J. Heuristics 18(2), 193–214 (2012)

57. A.H.G. Rinnooy Kan, G.T. Timmer, Global optimization, in Handbooks in Operations Re-
search and Management Science, vol. 1, ed. by A.H.G. Rinnooy Kan, M.J. Todd (North Hol-
land, Amsterdam, 1989), pp. 631–662

58. Y. Rochat, E.D. Taillard, Probabilistic diversification and intensification in local search for
vehicle routing. J. Heuristics 1(1), 147–167 (1995)

59. R.A. Russell, Hybrid heuristics for the vehicle routing problem with time windows. Transp.
Sci. 29(2), 156–166 (1995)

7 Intelligent Multi-Start Methods 243

60. R. Sharma, B. Glemmestad, On generalized reduced gradient method with multi-start and
self-optimizing control structure for gas lift allocation optimization. J. Process Control 23(8),
1129–1140 (2013)

61. G.C. Silva, L.S. Ochi, S.L. Martins, Experimental comparison of greedy randomized adaptive
search procedures for the maximum diversity problem. Lect. Notes Comput. Sci 3059, 498–
512 (2004)

62. F.J. Solis, R.J.B. Wets, Minimization by random search techniques. Math. Oper. Res. 6(1),
19–30 (1981)

63. L. Talarico, K. Sörensen, J. Springael, Metaheuristics for the risk-constrained cash-in-transit
vehicle routing problem. Eur. J. Oper. Res. 244(2), 457–470 (2015)

64. M. Toril, V. Wille, I. Molina-Fernández, C. Walshaw, An adaptive multi-start graph partition-
ing algorithm for structuring cellular networks. J. Heuristics 17(5), 615–635 (2011)

65. W. Tu, R.W. Mayne, An approach to multi-start clustering for global optimization with non-
linear constraints. Int. J. Numer. Methods Eng. 53(9), 2253–2269 (2002)

66. Z. Ugray, L. Lasdon, J.C. Plummer, F. Glover, J. Kelly, R. Martí, A multistart scatter search
heuristic for smooth NLP and MINLP problems, in Metaheuristic Optimization via Memory
and Evolution: Tabu Search and Scatter Search, ed. by R. Sharda, S. Voß, C. Rego, B. Alidaee
(Springer, Boston, 2005), pp. 25–57

67. Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, R. Martí, Scatter search and local NLP
solvers: a multistart framework for global optimization. INFORMS J. Comput. 19(3), 328–340
(2007)

68. N.L.J. Ulder, E.H.L. Aarts, H.-J. Bandelt, P.J.M. Van Laarhoven, E. Pesch, Genetic local
search algorithms for the traveling salesman problem, in International Conference on Par-
allel Problem Solving from Nature (Springer, Berlin, 1990), pp. 109–116

69. Y. Wang, A. García, Interactive model-based search for global optimization. J. Glob. Optim.
61(3), 479–495 (2015)

70. M. Wattenberg, A. Juels, Stochastic hillclimbing as a baseline method for evaluating genetic
algorithms. Technical report, Berkeley (1994)

Chapter 8
Next Generation Genetic Algorithms: A
User’s Guide and Tutorial

Darrell Whitley

Abstract Genetic algorithms are different from most other metaheuristics because
they exploit three key ideas: (1) the use of a population of solutions to guide search,
(2) the use of crossover operators that recombine two or more solutions to generate
new and potentially better solutions, and (3) the active management of diversity to
sustain exploration. New ideas that are also introduced in this chapter include (1) the
use of deterministic recombination operators that are capable of tunneling between
local optima, and (2) the use of deterministic constant time move operators.

8.1 Introduction

Genetic algorithms have been a popular tool for search and optimization for more
than 30 years. The first “International Conference on Genetic Algorithms and Their
Applications” was held in 1985, and there has been steady growth in the field since
that time. Two key landmark publications that appeared in 1975 were John Holland’s
book “Adaptation in Natural and Artificial Systems” [26], and the Ph.D. dissertation
of Ken De Jong, “An analysis of the behavior of a class of genetic adaptive systems”
[9].

Both Holland (in the introduction to the second edition of his book [27]) and De
Jong [10] have argued that “genetic algorithms are not function optimizers,” and
that instead, genetic algorithms are complex systems that adaptively find new com-
petitive opportunities in complex environments where the notion of a static “optimal
solution” may not make sense. Nevertheless, genetic algorithms have been widely
used as function optimizers.

D. Whitley (�)
Colorado State University, Fort Collins, CO, USA
e-mail: whitley@colostate.edu

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_8

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_8&domain=pdf
mailto:whitley@colostate.edu
https://doi.org/10.1007/978-3-319-91086-4_8

246 D. Whitley

Genetic algorithms and evolutionary algorithms in general build on the idea that
natural evolution is a powerful adaptive system that is responsible for the diversity
and adaptation of all life on earth. In a natural system, the environment is constantly
changing and natural evolution has resulted in highly adapted life forms capable of
complex behavior. The connection between “evolutionary computation” and natural
evolution makes it possible to separate evolutionary algorithms from other meta-
heuristics based on natural metaphors. Sorensen [47] has written a blistering cri-
tique of the creation of metaheuristics based on what are essentially meaningless
metaphors. Swarms of bees and flocks of birds might display interesting adaptive
behavior, but a natural swarm of bees has never evolved an eye, or designed a wing,
or solved any other general design problem. Evolution is different. However, we
still do not understand how to harness the power of evolution in an open-end fash-
ion: artificial evolution is highly constrained compared to natural evolution. Natural
evolution builds new life forms, whereas artificial evolution in most cases just opti-
mizes a parameterized search space.

Part of the early euphoria over genetic algorithms was fueled by claims that ge-
netic algorithms were capable of global search and near optimal allocation of trials
to sample different regions of the search space. Thus, by extension, genetic algo-
rithms were thought to ensure globally competitive results. These claims were partly
based on mathematics combined with certain sampling assumptions, and ultimately,
those assumptions were not well suited to static function optimizers. Note that the
title of Holland’s seminal book also references adaptation in natural systems. Hol-
land’s theories were about open-ended evolution where a solution can be evolved
to adaptively respond to almost any kind of problem in almost any kind of envi-
ronment. When evolutionary algorithms are used as static optimization tools and as
function optimizers, we have changed the rules of the game.

Today, there is very little theoretical justification for claims that genetic algo-
rithms used for function optimizers are “global optimizers.” Instead they must be
seen as complex stochastic hill climbers that operate in a more complex space than
other stochastic hill climbers. Nevertheless, genetic algorithms still bring three pow-
erful trademark ideas to the table:

1. How can a population of solutions be used to yield a more robust search?
2. How can two or more solutions be recombined to yield new (and potentially

better) solutions?
3. How can “diversity” in a population be actively managed to sustain exploration?

This notion of diversity is often associated with mutation operators in evolution-
ary systems. But diversity can also be achieved by random restarts, by using local
search operators, or by any number of other mechanisms. Diversity can also be man-
aged by controlling selection and the composition of the population.

In this paper, a brief overview of classic, Holland-style genetic algorithms will
be given. This also serves the purpose of explaining the three critical components
of evolutionary systems, the population, recombination and diversity, and the role
these components play in genetic algorithms. Also, genetic algorithms will only
be considered for discrete combinatorial optimization problems. This is consistent

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 247

with the fact that evolutionary algorithms such as Covariance Matrix Adaptation
Evolution Strategies [19, 20] have now replaced genetic algorithms for real-valued
parameter optimization [2].

This paper will also present a new generation of genetic algorithms. Genetic
algorithms (and evolutionary algorithms in general) are normally highly stochas-
tic algorithms. “Mutations” are generally random mutations. Recombination is also
generally a random process that mixes components from two (or more) “parents” in
order to construct an “offspring” solution. But in some cases crossover and mutation
need not be random. In certain domains, we can prove that deterministic forms of
recombination can be used to “tunnel” between local optima in O(n) time. These
deterministic forms of recombination decompose the parents into q components,
such that the offspring generated by recombination is guaranteed to be the best of
2q possible reachable solutions. “Random mutation” can also be replaced by the
deterministic selection of improving moves in constant time. The result is a form
of Gray Box Optimization where knowledge about problem structure is actively and
explicitly exploited [67].

8.2 Classic Simple Genetic Algorithms (SGA)

We will start with pseudo-Boolean optimization problems. A pseudo-Boolean func-
tion is a function f : {0,1}n → R that maps strings over a binary alphabet into the
real numbers. We can represent the search space using binary strings drawn from
the set X = {0,1}n (i.e., all binary strings of length n). The neighborhood N is
given by the standard Hamming operator. The neighbors at Hamming distance 1 are
generated by flipping a single bit.

Recombination: Assume we are working with strings where n = 50, which means
the size of the search space is 250. Without loss of generality, assume the following
two strings, Parent 1 and Parent 2 are possible candidate solutions. (To illustrate
recombination more clearly, y=0 and x=1 in Parent 2.) Assume that recombination is
applied by performing a single randomly chosen crossover point to yield Offspring
1 and Offspring 2.

Parent 1: 0000011111 0010101010 0000011111 0000000000 0000000000
Parent 2: yyxxxxxyyy yyyxyxxyyy xxxxxyyyyy xxxxxxxxxx xxxxxxxxxx

Offspring 1: 0000011111 0010101010 00 xxxyyyyy xxxxxxxxxx xxxxxxxxxx
Offspring 2: yyxxxxxyyy yyyxyxxyyy xx 00011111 0000000000 0000000000

We could also use two crossover points to generate another pair of offspring,
Offspring 3 and Offspring 4, as follows:

Offspring 3: 0000011111 0010101010 00 xxxyyyyy xxxxxxxxxx 0000000000
Offspring 4: yyxxxxxyyy yyyxyxxyyy xx 00011111 0000000000 xxxxxxxxxx

248 D. Whitley

Recombination is sometimes referred to as crossover. And the strings in the pop-
ulation are sometimes referred to as individuals.

Selection: Selection determines which parents are allowed to produce offspring.
More precisely, a “fitness function” is used to sample the population so as to allocate
opportunities to reproduce to “parent strings.” Obviously, selection must reference
the objective function in some way. Often, “fitness” is a relative measure: how good
is string A compared to the rest of the current population or compared to another
string B? Many researchers now refer to the objective function as being the “fitness
function.” This is technically imprecise (or incorrect), but it is nevertheless common
practice.

Mutation: For pseudo-Boolean optimization problems, the neighborhood N is
given by the standard Hamming operator: the neighbors at Hamming distance 1
are generated by flipping a single bit. In classic genetic algorithms, a mutation op-
erator is applied to every bit with very low probably. Typically, the probability of
mutating a single bit, denoted by pm, is proportional to string length, for example

pm = 1/n

is commonly used. It is inefficient to actually compute a mutation probability for
every bit, and instead one might compute how many mutations will occur and then
compute where the mutations should occur.

One can also discard mutation and instead apply local search to improve every
offspring that is generated. This result is a “hybrid genetic algorithm” that com-
bines local search and the genetic algorithm [11]; such hybrids have also been called
“memetic algorithms” [36] although the term “memetic” is more correctly applied
to the evolution of ideas.

The goal of mutation is to introduce new variation and to explore locally. Vari-
ation can be introduced by generating a completely random new string. Variation
can also be introduced by doing a random walk: take a high quality solution, then
randomly change a small number of bits (e.g. 10 or 20) or randomly change a small
percentage of the entire string (e.g., 10%).

8.2.1 The Population and Selection

A hallmark of all genetic algorithms is the use of a population. The population
makes genetic algorithms unlike other “point based” search methods, such as local
search. A point based search method maintains a single current incumbent solu-
tion (e.g., denoted by x); the search algorithm then selects a direction to move that
will yield an improving move (or an exploratory move). For local search methods
applied to combinatorial optimization problems, searching for an improving move
usually means defining a neighborhood and then searching that neighborhood for an
improving move.

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 249

A point based search method has a search trajectory that moves in the space
of solutions. This trajectory can be seen as a probability distribution; given that the
current incumbent solution is x, what is the probably of moving to any other solution
xi in the search space?

A genetic algorithm using a population has a search trajectory that moves from
population to population. So even if an genetic algorithm is a complex hill-climber,
it is climbing in the space of possible populations, and the trajectory of that search
can be presented as a probability distribution that asks: if the current population is
Pc, what is the probably of moving to any other population Pi, where Pi can be
any other feasible population? Michael Vose’s book The Simple Genetic Algorithm
[55] is the classic reference describing the trajectory of populations.

Returning to Holland’s simple genetic algorithm [14], assume we have a popula-
tion, and we have recombination and mutation operators. We also need to define a
selection operator to decide which strings in the population will undergo recombi-
nation and/or mutation. In fact, we can think of “one generation” in a simple genetic
algorithm as first using selection to create an intermediate population (see Fig. 8.1)
that is made up of clones, or identical copies of the parents. The population size (as
well as the size of the intermediate population) is fixed to a constant. Based on se-
lection, some parents are replicated more than others, and a small number of parents
are dropped from the population at this phase.

Holland proposed using what is known as “fitness proportional selection.” This
involves computing the average evaluation of all strings in the population: we denote
this by f̄ p. We also denote the fitness of a string j in the current population by
f j. Under fitness proportional selection the string j should be selected such that in
expectation there are f j/ f̄ p copies of string j in the intermediate population. One
way to do this is using a method known as “roulette wheel selection.” Each string is
assigned a space on a roulette wheel proportional to f j/ f̄ p, and a spin of the roulette
wheel selects a string. (One can also construct the roulette wheel so as to select the
entire population in one spin [14, 62].)

To be more precise, we should also index the current population by time (denoted
by t) as measured by generations. Denote the population average at generation t by
f̄ p,t . This makes it obvious the roulette wheel is redefined every generation. This
also highlights one of the problems with “fitness proportional selection” when us-
ing a genetic algorithm for static function optimization. Assuming the population
average increases over time (when maximizing) the selective pressure for string j
decreases because f j/ f̄ p,t decreases as f̄ p,t increases. Several references cover fit-
ness proportional selection in detail [14, 62].

One dubious advantage of fitness proportional selection is that it is much easier
to model mathematically than other common types of selection [55]. This also con-
tributes to a divergence between theory (modeling simple genetic algorithms that
are nicely described by mathematics) and practice (where complex operators may
be used that are more difficult to model).

We can now outline the operation of a simple genetic algorithm as illustrated
in Fig. 8.1. There is a population at time t. First, all individuals in the population
are evaluated using the objective function. Second, an intermediate population is
created using selection. The selection operator draws strings from the population
at time t, and then creates clones of these individuals (exact copies) in such a way

250 D. Whitley

Fig. 8.1 An illustration of the classic Holland style “simple genetic algorithm.” In this illustra-
tion, it is assumed that the order in which strings have been placed in the intermediate population
has been randomized so that the recombination of adjacent strings in the intermediate population
results in the random pairing of parent strings

that better individuals pass more copies into the intermediate population. Third,
after the intermediate population is defined, crossover and mutation are applied to
create the next population (i.e., the next generation) at time t+1. If the placement of
individuals into the intermediate population has been randomized, adjacent strings
can be recombined; otherwise, a random pairing of parents is used.

In Holland’s classic simple genetic algorithm, two parents are recombined to
create two offspring, and the two offspring replace the two parents. This means that
the best solution might not survive from one generation to the next.

Elitism is a mechanism whereby the best solution at generation t is placed directly
into the population at generation t + 1. Elitism can also be parameterized so that
a constant number of the best individuals are directly placed into the next genera-
tion. This also has the side effect of increasing selective pressure, since it reduces
the number of available positions that can be filled in the population by newly cre-
ated strings produced by recombination and/or mutation. Both crossover and muta-
tion can be parameterized so that not all strings undergo recombination, and not all
strings undergo mutation.

This cycle of (1) evaluation, (2) selection and (3) reproduction is then repeated
for some number of generations or until other stopping criteria are met. The ini-
tial population is often randomly generated. The initial population might also be
improved using local search or some other mechanism.

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 251

8.2.2 Tournament Selection

In modern genetic algorithms fitness proportional selection has been largely re-
placed by rank based selection, the most common form being tournament selection
[16, 17].

In its simplest form, tournament selection randomly selects two strings from the
population, compares their evaluation using the objective function, and then returns
the best of the two strings. This also randomizes the order in which strings are
placed in the intermediate population, thus allowing parents in adjacent positions
to be recombined without bias (see Fig. 8.1). When this form of tournament selec-
tion is used to fill every position in the intermediate population, this produces a
linear selective pressure of 2.0, such that the best individual is represented 2 times
in expectation, the median individual is represented 1.0 time in expectation, and the
worst individual’s representation drops to 0. (By interpolation, the individual at the
top 75% quartile in the population has an expected representation of 1.5 and the
individual at the lower 25% quartile has an expected representation of 0.5.)

Unbiased Tournament Selection: One flaw in tournament selection is due to ran-
dom sampling: not all strings will compete in exactly two tournaments under stan-
dard tournament selection. A form of unbiased tournament selection [45, 46] can
be implemented by using a random permutation denoted by π representing pointers
into the population. Obviously, the length of the permutation is equal to the popu-
lation size denoted by Npop. A tournament would then compare the two randomly
chosen strings indexed by π(i) and π(i+ 1) and select the best. The last tourna-
ment also compares the strings indexed by π(1) and π(Npop). Since the permutation
was generated randomly, this also randomly pairs the parent strings. This strategy
guarantees that every string competes in exactly two tournaments and makes the
sampling process less noisy.

Parameterized Tournament Selection: One other enhancement to tournament se-
lection is to adjust the selective pressure. To create a linear selective pressure of
less than 2.0, define a selective pressure variable, denoted by 0.5 ≤ Sv ≤ 1 such that
the actual selective pressure is given by 2Sv. The parameter Sv denotes the proba-
bility that the best string is selected during tournament selection. If Sv = 0.5, then
selection is completely random because the selective pressure is 1.0 and thus flat. If
Sv = 1.0 the linear selective pressure is 2.0. As Sv increases, the probability that the
better string is selected also increases linearly.

8.3 Steady State and Monotonic Genetic Algorithms

Steady state genetic algorithms have become one of the most popular forms of ge-
netic algorithm. Davis [7] notes that the first steady state genetic algorithm was
the GENITOR algorithm introduced by Whitley and Kauth [61]. The “steady state”

252 D. Whitley

name was later coined by Syswerda [49]. An alternative (and probably better) name
is monotonic genetic algorithms. In a steady state genetic algorithm, the popula-
tion is always monotonically improving. Typically some form of rank based selec-
tion is also used.

A monotonic genetic algorithm is very easy to implement, particularly when used
in combination with tournament selection. Offspring are generated one at a time in-
stead of generating a whole generation in one step. The algorithm works as follows.
(1) Select two individuals to recombine using two tournaments. (2) Generate one
offspring (e.g., by recombination and mutation), or generate two offspring, evaluate
them both, and keep the best. (3) Place the new offspring in the population by re-
placing the worst member of the population. The population can be stored in a data
structure known as a heap so that finding and replacing the worst individual can be
done efficiently.

The use of a steady state genetic algorithm results in much higher selective pres-
sure than the Holland style genetic algorithm: the pressure of tournament selection
is compounded with the pressure created by replacing the worst member of the pop-
ulation [17]. It also increases the genetic algorithm’s hill-climbing abilities, but it
does so at a cost: diversity is driven out of the population faster.

8.4 The Demise of Hyperplane Sampling Theory

Two ideas formed the cornerstones of John Holland’s theoretical characterizations
of genetic algorithms: “building blocks” and “hyperplane sampling.” Holland used
schemata to define hyperplanes. We will use three symbols to construct schemata:
0’s, 1’s and *’s. The 0’s and 1’s denote bits. The * symbol denotes a “wildcard”
operator that matches either a 0 or a 1. Thus, the hyperplane (for n = 30) containing
strings that have a 0 in the first position is denoted by:

0*****************************

A hyperplane with only 1 bit specified in this way is called an order 1 hyperplane.
In general a hyperplane with i bits specified denotes an order i hyperplane. If the
string length is n then an order i hyperplane denotes a set of strings of size 2n−i.

The hyperplane sampling hypothesis asserts that if hyperplane A contains bet-
ter solutions on average than hyperplane B, then the specified bits (the 0’s and 1’s)
found in the strings contained in hyperplane A should increase faster in the popula-
tion. Consider the following examples of hyperplanes:

hyperplane A: 0*****************************
hyperplane B: 1*****************************
hyperplane C: 0**10*************************
hyperplane D: 1**01*************************

The hyperplane sampling hypothesis suggests that if hyperplane A contains
better solutions on average than hyperplane B, then the number of 0’s in the first

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 253

position should increase in the population in the next generation. But suppose that
hyperplane A is better than hyperplane B, but hyperplane D is better than hyper-
plane C. So which hyperplane increases its representation in the population faster,
hyperplane A, which has a 0 in the first position, or hyperplane D, which has a 1 in
first position? Do the number of 0’s in the first position now increase or decrease?
And what happens at generation 1 compared to generation 100? These questions
cannot be answered without modeling the full dynamics of the genetic algorithm
[40, 54, 57].

Holland’s schema theorem computes a lower bound on the sampling rate of a hy-
perplane from one generation at time t to the next generation at time t+1. However,
the schema theorem, while mathematically correct, does not precisely characterize
hyperplane sampling rates (even in a single generation) and it certainly cannot ade-
quately predict hyperplane sampling rates over multiple generations. Exact Markov
Models of the genetic algorithm’s behavior developed in the early 1990s make this
abundantly clear [40, 54, 57].

There is also another problem. For some classes of problems, it is possible to
exactly calculate static hyperplane averages in polynomial time. For example, we
can exactly compute hyperplane averages in closed form for MAX-kSAT and for
all k-bounded pseudo-Boolean optimization problems [41]. It turns out that exactly
determining that Hyperplane A is better than Hyperplane B, and that Hyperplane D
is better than Hyperplane C does not always (or even often) help to guide search.
Statically computed hyperplane averages do not appear to provide reliable gradient
information. Occasionally hyperplane averages can be useful. But sometimes hy-
perplane averages can be deceptive and misleading [67]. Interactions between low
order hyperplanes are enough to render MAX-3SAT problems NP Hard.

The Building Block Hypothesis. Consider the following argument: If a giraffe with
a long neck is better able to reach its food, and a giraffe with long legs is better able
to reach its food, then a giraffe with both long legs and a long neck is even better.

The building block hypothesis asserts that useful traits will be assembled together
by evolution. Selection increases the number of good “building blocks” in the pop-
ulation, and crossover reassorts these building blocks to combine useful traits.

The population can certainly assemble building blocks during selection and re-
combination. But things can also go wrong. Assume that trait A is normally good,
and trait B is normally good, but A and B together are not good. This can certainly
happen with nonlinear functions. Even for problems with bounded nonlinearity, it is
very difficult to predict how variables will interact.

Recombination and selection can also fail to isolate and properly reassort differ-
ent traits [34]. How (and where) different parameters are encoded on the string also
matters. Parameters that are close together on the string representation tend to be
inherited together more often under 1-point or 2-point crossover. Assume trait A is
very good, but trait Z is not. Nevertheless, if A and Z are often inherited together,
Z can benefit from selection for trait A. This results in a form of genetic hitching
where the frequency of a less desirable trait nevertheless increases in the population
because it is commonly inherited along with a more desirable trait.

254 D. Whitley

8.5 Gray Box Optimization

Optimization is often posed as a “blackbox” process. Parameter values are passed
into an objective function (the black box), and the evaluation of that particular pa-
rameter configuration is passed out.

However, in most cases, the best optimizer is not a blackbox optimizer. Instead,
we can extract additional information from the objective function that can be used to
guide search. Indeed, for many classic NP Hard problems such as MAX-kSAT or the
Traveling Salesman Problem (TSP), the best optimizers are not blackbox optimizers.
Indeed, blackbox optimizers are hopelessly inefficient on such problems. Instead,
the best optimizers explicitly exploit problem structure. And it is relatively safe to
say that every exact solver exploits problem structure.

Gray Box Optimizers are designed to exploit problem specific structure while
still maintaining a high degree of generality [67]. We will look specifically at k-
bounded Pseudo-Boolean functions as well as the TSP as two examples where a
Gray Box Optimization strategy can be used to dramatically improve the search
capabilities of genetic algorithms.

8.6 The k-Bounded Pseudo-Boolean Functions

As previously noted, a pseudo-Boolean function is a function f : {0,1}n → R that
maps strings over a binary alphabet into the real numbers. A pseudo-Boolean func-
tion is k-bounded if it can be expressed as the sum of m subfunctions where each
subfunction depends on at most k bits (where k is a constant).

f (x) =
m

∑
i=1

fi(x)

Figure 8.2 shows a simplified general model for k-bounded pseudo-Boolean func-
tions. A mask can be used to select the k (or fewer) variables that are passed to
subfunction fi. However, we can assume that the mask is implicit in the definition
of each subfunction fi. In many cases, we will assume m = O(n) which implies
there exists a constant z such that m = zn. It is possible to implement a Hamming
distance r local search and to know exactly where the improving moves are located
without enumerating the local search neighborhood.

MAX-kSAT is the classic k-bounded Boolean function [44]. But other k-bounded
Boolean and pseudo-Boolean functions are associated with a number of well-studied
combinatorial optimization problems over the set of binary strings. For MAX-kSAT,
each subfunction is a logical clause in Conjunctive Normal Form, and each clause
evaluates to True or False (1 or 0). NK Landscapes [29, 30] are another well known
class of k-bounded pseudo-Boolean functions. Whitley et al. [67] has proposed the
more general term “Mk Landscapes” to refer to functions composed of m subfunc-
tions where each subfunction accepts k variables.

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 255

1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1

f1 f2 f3 f f4 m

f
i = 1

if(x) =

m

(x)

Fig. 8.2 A general model of Mk landscapes and k-bounded pseudo-Boolean optimization

Under Gray Box Optimization, we want to ask what general properties can be
exploited when optimizing a k-bounded pseudo-Boolean function. First, the func-
tion f (x) can be expressed as a discrete Fourier polynomial, also known as a Walsh
polynomial.

f (x) =W (f (x)) =
m

∑
i=1

W (fi(x))

where W is a discrete Fourier transform [21, 41], also known as a Walsh transform.
Goldberg [15] provides a helpful tutorial on Walsh polynomials and how they have
been used to understand genetic algorithms. Converting a subfunction fi(x) into a
Walsh polynomial takes 2k time. Thus, if m = O(n) then the construction of the
Walsh polynomial takes m2k = O(n) time, and (luckily!) there are at most O(n)
non-zero coefficients. This result is critical: in the worst case, the Walsh transform
yields O(2n) coefficients [15], but for k-bounded pseudo-Boolean problems where
m = O(n), there are only O(n) coefficients.

Every k-bounded pseudo-Boolean optimization problem is also a sum of k Ele-
mentary Landscapes

f (x) = w0 +
k

∑
j=1

ϕ(j)(x)

where w0 = f̄ (i.e., w0 is the order zero Walsh coefficient) and the jth subfunction
ϕ(j) is composed of all the jth order coefficients of the Walsh polynomial. For exam-
ple, ϕ(1)(x) is composed of the n linear Walsh coefficients, and ϕ(2)(x) is composed
of all of the order two “pairwise” nonlinear Walsh coefficients. There are at most
m(k(k−1)/2) order two Walsh coefficients. Each subfunction ϕ(j), j ≤ k is also an
eigenvector of the neighborhood graph Laplacian. This makes it possible to exactly
compute basic statistical information about neighborhoods in closed form [43, 48].

256 D. Whitley

2

4

5

6

9
1

10

11

12

13

15
17

14

8

16

7

18

3

Fig. 8.3 An illustration of the Variable Interaction Graph (VIG). The vertices present the variables
using numbers, e.g., 9 = x9. There is an edge in the VIG if there is nonlinear interaction between
two variables. For k-bounded pseudo Boolean functions the VIG has at most O(n) edges

8.6.1 Tunneling Between Optima

We next show how it is possible to “tunnel” between local optima in O(n) time on
k-bounded pseudo-Boolean optimization problems.

As an illustration, we produce a graph of the nonlinear interactions as indicated
by the non-zero Walsh coefficients. Note again there are at most O(n) coefficients,
the graph is generated only once, and this takes O(n) time. Consider a function
composed of the following subfunctions:

f (x) = ∑m
i=1 fi(x) where:

f1(x1,x3,x6) f6(x6,x10,x13) f11(x11,x16,x17) f15(x15,x7,x13)
f2(x2,x1,x6) f7(x7,x12,x15) f12(x12,x10,x17) f16(x16,x9,x11)
f3(x3,x6,x14) f8(x8,x18,x6) f13(x13,x12,x15) f17(x17,x5,x16)
f4(x4,x1,x14) f9(x9,x11,x14) f14(x14,x4,x16) f18(x18,x7,x13)
f5(x5,x4,x2) f10(x10,x2,x17)

From these subfunctions, assume we extract the nonlinear interactions from the
Walsh polynomial: these are shown in Fig. 8.3 as a Variable Interaction Graph.
Two variables are not connected in the VIG if the Walsh coefficients associated
with those potential variable interactions are zero in value (or do not exist). In this
example, every pair of variables that appear together in a subfunction has a nonlinear
interaction.

We will use the Variable Interaction Graph [4] to implement a recombination op-
erator that can directly move from local optima to local optima with high probability
[51]. For now we will assume that local optima are well defined: a local optimum
represents a single solution rather than a set of solutions with equal evaluation form-
ing a plateau. Plateaus are not a problem: but for the moment, it is simpler to have a
well-defined local optimum.

The recombination operator is named “Partition Crossover” because it partitions
the evaluation function into linearly separable subfunctions during recombination.
Partition Crossover is not random: instead, it is both greedy and deterministic.

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 257

2

9
1

11

12

13

15

8

16

7

3

18

Fig. 8.4 The recombination graph with three separable recombining components for the parent
strings SP1 = 000000000000000000 and SP2 = 111000111011101101

We will assume the two parents that are to be recombined using Partition
Crossover are local optima under Hamming distance 1 local search. Returning to
the example in Fig. 8.3, without loss of generality let the two parents be denoted by
SP1 and SP2 such that

SP1 = 000000000000000000 and SP2 = 111000111011101101

Thus, x4 = x5 = x6 = x10 = x14 = x17 = 0 in both parents. Otherwise, xi = 0 in
parent 1 (SP1), and xi = 1 in parent 2 (SP2) for all of the other bits. Thus, both parents
reside in the hyperplane ∗∗∗000∗∗∗0∗∗∗0∗∗0∗ where ∗ denotes the bits that are
different in the two solutions, and 0 marks the positions where they have the same
bit values (again, without loss of generality).

Next, we will use the hyperplane ∗ ∗ ∗000 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗0∗ to decompose the
VIG in order to produce a recombination graph. We remove all of the variables (ver-
tices) that have the same “common assignments” and also remove all edges that are
incident on the vertices corresponding to these bits. This yields the Recombination
Graph shown in Fig. 8.4.

We will use the idea of connected components to identify recombining compo-
nents. The decomposition in Fig. 8.4 results in q = 3 recombining components. Any
variables that are connected in the recombination graph must be inherited together
from one parent. The recombination graph also allows us to define a reduced evalu-
ation function, g, that is linearly separable into q recombining components.

g(x′) = a+g1(x9,x11,x16)+g2(x1,x2,x3)+g3(x18,x7,x8,x12,x13,x15)

where g(x′) = f (x) but where the domain of function g(x′) is restricted to a subspace
that contains the parent strings SP1 and SP2; a is a constant, a = f (x)−∑q

i=1 gi(x′).
In other words, g(x′) operates over the largest Hamming hyperplane subspace that
contains both parent 1 and parent 2. Also note that the function g(x′) is linearly
separable. The subfunctions that make up g(x′) share no variables.

One can compute each subfunction gi from the original subfunctions used by
function f . Keep in mind that only active variables are passed to these subfunc-

258 D. Whitley

tions; for example, g2(x′) calls subfunction f3(x′), but the only active variable being
passed to f3(x3,x6,x14) is x3 because x6 = 0 and x14 = 0 in both parents. Note that
g(x′) partitions both the subfunctions and the variables used by function f (x).

g1(x
′) = f9(x9,x11)+ f11(x11,x16)+ f14(x16)+ f16(x16,x9,x11)+ f17(x16)

g2(x
′) = f1(x1,x3)+ f2(x1,x2)+ f3(x3)+ f4(x1)+ f5(x2)+ f10(x2)

And expressed more generically in terms of x′:

g3(x
′) = f6(x

′)+ f7(x
′)+ f8(x

′)+ f12(x
′)+ f13(x

′)+ f15(x
′)+ f18(x

′)

Again, there is no overlap in the subfunctions or the variables. As a result of this
decomposition, evaluating the contribution of all of the subfunctions in g can be
done in O(n) time. Note that not all subfunctions will necessarily be used in the
decomposition of g(x′), and the constant a must account for the contribution of
subfunctions where there are no active variables.

We can now see how tunneling works. Every recombination over q recombining
components induces a new separable function g(x′) that operates in a hyperplane of
f (x):

g(x′) = a+
q

∑
i=1

gi(x
′)

Since g(x′) is separable, we can be greedy and select which parent yields the best
partial solution for each subfunction gi(x′). We can now prove the following results.

The Partition Crossover Theorem [65]: Given q linearly separable recombin-
ing components, Partition Crossover using two parents returns the best of 2q − 2
reachable solutions distinct from parent 1 and parent 2 in O(n) time.

The Local Optimum Theorem [51]: Every solution generated by Partition
Crossover for k-bounded pseudo-Boolean optimization is guaranteed to be a lo-
cal optimum relative to the function g(x′) when the parent strings SP1 and SP2 are
locally optimal relative to function f (x).

Stated another way, an offspring generated by Partition Crossover must be locally
optimal in the largest hyperplane subspace containing both parents. Empirically, in
most cases when an offspring is locally optimal in g(x′), is it locally optimal in f (x).

8.6.2 How to Select Improving Moves in Constant Time

Normally, when local search is used to find improving moves for a combinatorial
optimization problem, the local search neighborhood is enumerated to find an im-
proving move. However, for certain NP Hard problems and for certain neighbor-
hoods, selecting an improving move can be done in constant time. This is true for
both “best improving” moves that return the best move in the entire neighborhood,

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 259

as well as for “next improving” moves that return the first improving move that is
found. We show how to do this for k-bounded pseudo-Boolean functions. Comput-
ing the location of improving moves makes normal mutation operators unnecessary.

1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1

f1 f2 f3 f f4 m

f
i = 1

if(x) =

m

flip

(x)

Fig. 8.5 Tracking the changes following 1 bit flip; the location of potential improving moves is
obvious

Figure 8.2 shows a simplified general model for k-bounded pseudo-Boolean
functions. Figure 8.5 shows what happens after a bit flip that allows us to identify
new improving moves in constant time. We will first consider Hamming distance 1
local search. Assume we have scanned the full neighborhood and know the location
of all of the improving moves. Then a move is taken, and the set of available im-
proving moves must be updated. The bit interactions can be traced in Fig. 8.5. If a bit
flips, the interactions flow up to the subfunctions. When a subfunction is affected, it
changes the potential contribution of the other bits that flow into those subfunctions.
One can prove that the only new improving moves are found at the variables that
feed into the affected subfunctions. Over multiple moves, on average there can be
only a constant number of locations that must be checked for new improving moves.
By tracking these changes, we can construct a highly efficient move operator with
Θ(1) average complexity per move [60, 66].

The idea of looking at all k-bounded pseudo-Boolean problems in this way is
new; the idea of looking at MAXSAT in this way is only partly new. The origi-
nal GSAT local search algorithm for MAX-kSAT used a similar strategy to track
the cascading effects of each bit flip [12, 28, 44]. Whitley and collaborators have
introduced three new contributions: (1) using a mild tabu on repeated bit flips, it
can be proven that improving moves can be found in Θ(1) time on average for all
k-bound pseudo-Boolean functions [60], (2) a proof that there is no difference in
runtime complexity between (an almost always best) best-improving local search
and next-improving local search (which is somewhat surprising) [66], and (3) an
algorithm showing these results can be extended to the Hamming distance r local
search neighborhood [4].

260 D. Whitley

Following Hoos and Stützle [28], let Score be a vector where Score(p) stores the
incremental change in the evaluation function relative to the current solution x when
bit p is flipped; the string yp is a Hamming distance 1 neighbor of x which is reached
by flipping a single bit p.

f (yp)− f (x) = Score(p)

We will generalize the Score vector notation: Score(radius,start,destination) where
radius = r denotes the number of bits that are flipped in a single move, start is
the current solution, and destination is the solution to which we are moving. The
destination will be denoted by yp1,p2,...,pr where p1, p2, . . . , pr explicitly denotes the
individual r bits that are flipped. (There are more concise notations, but the goal
in this case is to be very explicit about how updates occur.) Thus, Score(1,x,yp)
denotes the start solution is x and the destination is yp which is reached by flipping
a single bit p.

Let yp ∈N(x) be a Hamming distance 1 neighbor of string x generated by flipping
bit p.

∀yp ∈ N(x) : f (yp) = f (x)+Score(1,x,yp)

Optimizing Score(1,x,yp) also optimizes the choice of an improving move f (yp).
In practice, the current start solution x is implicit, and what is actually stored and
updated is Score(r,destination).

We will convert all subfunctions into Walsh polynomials. When a bit flips, this
changes the contribution (by changing the sign) of the Walsh coefficients. This ap-
proach has three advantages: (1) the results generalize to all k-bounded pseudo-
Boolean problems, (2) the updates remain simple for multistep moves involving
multiple bit flips, and (3) the representation is compact, since it consolidates dupli-
cation of interactions. However, other implementations use differences in subfunc-
tions rather than Walsh polynomial to update the Score vectors [4], particularly for
MAXSAT [28, 44].

Assume bit p is flipped and search moves from solution x to neighboring solution
yp. Recall that:

Score(1,x,yp) = f (yp)− f (x).

When search first starts, the Score vector must be initialized by evaluating every
possible bit flips, which requires n evaluations. After this, the Score vector can be
updated incrementally in constant time (on average).

Assume we now want to update the Score vector because bit p has just flipped
and the new start location is yp. Let yh be any arbitrary bit flip in the Score vector
(i.e., this anticipates flipping bit h). The only linear update changes Score(1,yp,yp).
As will be seen in the following explanation, when updated Score(1,yp,yp) =
−Score(1,x,yp) because every Walsh coefficient changes sign. All other updates
of the form Score(1,yp,yh) are strictly nonlinear.

The update is as follows:

Score(1,yp,yh) = Score(1,x,yh)−2 ∑
∀i,(h⊂i)∧(p⊂i)

wiψi(yp)

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 261

where wi is a Walsh coefficient and ψi(x) =−1iT x modulates the sign of the Walsh
coefficient. The index i is a bit string which also encodes the integer i indexing
wi. The notation (h ⊂ i)∧ (p ⊂ i) indicates both bit h and j have value 1 in the
string i encoding integer index i. If there is a nonlinear Walsh coefficient indexed
by both bit p and bit h, then Score(1,yp,yh) needs to be updated after a bit flip
moving from solution x to solution yp. On average, this takes constant time: the
only update is to change the sign of a subset of the Walsh coefficients, ψi(yp) =

−ψi(x) = −(−1iT x) since x and yp must differ by exactly one bit. Because Walsh
coefficients are zero centered, when a Walsh coefficient changes its contribution,
the difference is a factor of 2 (e.g., a negative contribution of wi must be removed
before a positive contribution of wi is added). Thus, the net impact of each relevant
Walsh coefficient after one bit flip is −2.

However, if no Walsh coefficients are indexed by both p and h (e.g., they do not
co-occur in any subfunction), then Score(1,x,yh) = Score(1,yp,yh) and no update
is needed. This is conceptually the same as the example given in Fig. 8.5; the Score
vector can also be updated by computing the change in the affected subfunctions in
those cases were p and h do co-occur in one or more subfunctions.

There are O(n2) possible pairwise variable interactions but only O(n) total Walsh
coefficients. Thus, there is approximately a probability of O(1/n) that bit p and bit
h will have a nonlinear interaction, and in most cases there is no interaction. This
means that, on average, most of the values stored in the Score vector do not change.
We have proven that on average only a constant number of locations in the Score
vector need to be updated after a bit flip. One update can take O(n) time in the worst
case, but updates takes O(1) time on average [60, 66]; this assumes a mild tabu on
flipping the same (costly) bit again if it was very recently flipped.

8.6.3 Looking Multiple Steps Ahead

Can we look five or ten steps ahead instead of just one step ahead? And how can this
be done in constant time? In general, flipping r bits induces a neighborhood of size
O(nr). However, the number of possible new improving moves remains bounded by
a constant (on average) if no variable appears in more than a constant number of
subfunctions. (This additional restriction does not apply to the Hamming distance 1
neighborhood.)

To illustrate this, assume we wish to look three moves ahead by flipping individ-
ual variables vp,vh,vw. We will use the notation yp,h to denote that bits p,h were
most recently flipped to arrive at solution yp,h, starting from some solution x.

f (yp) = f (x)+Score(1,x,yp)

f (yp,h) = [f (x)+Score(1,x,yp)]+Score(1,yp,yh)

= f (x)+Score(2,x,yp,h)

f (yp,h,w) = [[f (x)+Score(1,x,yp)]+Score(1,yp,yh)]+Score(1,yh,yw)

= f (x)+Score(3,x,yp,h,w)

262 D. Whitley

Fig. 8.6 An example of the graph constructed from the union of two solutions, SP1 (dashed edges)
and SP2 (solid edges), and how graph Gu can be partitioned into three recombining components

Note that Score(1,yp,yh) and Score(1,yh,yw) can be computed on the fly given
Score(1,x,yp). Chicano et al. [4] show that one can also use differences in the sub-
function evaluations to update the Score vectors, and describe how to compute im-
proving moves in the r-radius Hamming Ball in detail.

One might ask, “Doesn’t the cost of this computation explode?” We can prove it
does not [4]. Because there are only O(n) Walsh coefficients, there are only O(n)
combinations of r variables that can result in an improving move. For example,
in the Variable Interaction Graph in Fig. 8.3, note that variables x2,x7 and x11 are
not directly connected in the VIG. Assume all of the Hamming distance 1 moves
have already been taken (and thus no linear improvement is possible); then flipping
bits x2,x7 and x11 together cannot yield an improving move because there are no
nonlinear Walsh coefficients associated with any combination of these variables.

8.7 The Traveling Saleman (TSP): Tunneling Between Optima

We next consider the Traveling Salesman Problem (TSP). The goal when solving
the TSP is to find the shortest Hamiltonian cycle that visits all of the vertices in a
graph, assuming the graph is fully connected [5, 42]. A solution, S, is a permutation
of vertices. We again start with two parent solutions, SP1 and SP2.

We first look at how to apply “Partition Crossover” to the TSP. The tunneling
algorithm first constructs a graph Gu = (V,E) where V is the set of cities in the TSP
instance and E is the union of edges in the two parent solutions SP1 and SP2.

An example of finding recombination components is given in Fig. 8.6. We will
use two mechanisms to break Gu into multiple linearly independent subgraphs: (1)
remove common edges, and (2) split a vertex if and only if it has degree 4. We again
refer to the subgraphs that result from decomposing the parents as recombining
components. The recombining components can be found in O(n) time.

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 263

The simplest types of components have the property that every subgraph (except
one) has two end points: let one end point be an entry and the other an exit. This

2

1

8

6

7

4
3

5

910

Fig. 8.7 This illustration shows how viable partitions can be found that cut four edges at a time

means that both solutions SP1 and SP2 enter a recombining component at the same
“entry” vertex, and exit the recombining component at the same “exit” vertex. The
tunneling algorithm selects the path followed by either SP1 or SP2 in a greedy fash-
ion from each recombining component to construct a new solution. The Partition
Crossover Theorem tells us that the solution that is constructed is the best of the
2q −2 reachable solutions distinct from SP1 and SP2.

Another TSP recombination operator, Iterative Partial Transcription (IPT), can
also find the same recombining components that have two end points. The IPT
crossover operator was first proposed by Möbius et al. in 1999 [35]; the original
IPT explicitly searches for two endpoints of the recombining components and has
O(n2) complexity. The Partition Crossover operator achieves O(n) complexity by
exploiting decomposition.

However these are not the only partitions that exist. In Fig. 8.7 the graph can
be separated into two feasible recombining components, but the partition cuts four
edges. These kinds of partitions are not found by IPT. Tinós et al. [50] discuss
methods that can still find these additional recombining components.

One thing that is immediately obvious from Figs. 8.6 and 8.7 is that the parent so-
lutions SP1 and SP2 must share a significant number of “common edges.” This does
not happen if SP1 and SP2 are randomly generated solutions. However local optima
do share a significant number of “common edges.” 2-opt and 3-opt are the most com-
monly used local search operators for the TSP [6, 32]. For a sample of 1500 city to
2000 city problems, we found that when recombining solutions improved using 3-
opt there was on average 26 recombining components, and we confirmed that more
than 225 of these reachable solutions were also locally optimal under 3-opt. Thus, a
single tunneling event is returning the best of 225 locally optimal solutions. More re-
cent versions of Partition Crossover are capable of finding many more recombining
components and it is an open research question whether all possible opportunities
for Partition Crossover can be found in O(n) time (or even polynomial time) for
the TSP.

264 D. Whitley

Figure 8.8 shows tunnels between local optima included by Partition Crossover
on a 323 city problem, instance rbg323 [52]. By contrast, local search in the form

Fig. 8.8 This illustration shows how partition crossover induces tunnels connecting local optima.
Each circle denotes a local optimum. Each directed edge denotes a tunnel between local optima
induced by Partition Crossover. These tunnels can lead to one of several globally optimal solutions
(larger red circles) on TSP instance rbg323 [52]

of the Chained LK algorithm [5] is often trapped on plateaus in the search space on
this same instance [52].

8.8 An Iterated Hybrid Genetic Algorithm

The Lin-Kernigham-Helsaun (LKH) algorithm [22–24] is widely recognized as the
best iterated local search algorithm [28] for the TSP. The core of LKH is the variable
depth local search heuristic developed by Lin and Kernighan (LK) [32]. LKH also
explores general k-opt submoves and the partition of large TSPs into smaller sub-
problems. Surprisingly, the LKH algorithm also includes a recombination operator:
the previously mentioned Iterative Partial Transcription (IPT) [35].

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 265

Helsgaun’s implementation of LKH uses recombination in a clever way. In gen-
eral, iterated local search runs the local search multiple times. In LKH (and the
well-known Chained LK algorithm [5]), when local search stalls, a soft restart mech-
anism is used. We might assume that each iteration of local search converges to a

Fig. 8.9 An Iterated Hybrid Genetic Algorithm compared to Multi-trial LKH2 on a 31,000 city
clustered TSP instance. The Iterated Hybrid Genetic Algorithm (LKH+PX) is created by maintain-
ing a population of all of the “Local Optima” found by LKH2. Every new solution is recombined
with all members of the population using Partition Cross (PX)

local optimum, but when variable size neighborhoods are used by local search, one
iteration of local search more likely stops because some stagnation metric is trig-
gered. We will still (imprecisely) refer to these solutions as “local optima” since
they will still be locally optimal under 2-opt and 3-opt local search.

Let SLO denote the “new local optimum” returned by the most recent iteration
of local search. Let SBsF denote the “Best so Far” solution found by iterated local
search. In the LKH algorithm, the solutions SLO and SBsF are recombined using
Iterative Partial Transcription (IPT). If an improvement is found, this becomes the
new “Best so Far” solution.

The use of crossover in the LKH algorithm suggests a new way that genetic
algorithms can be hybridized with iterated local search.

To create an Iterated Hybrid Genetic Algorithm we will accumulate all of the
“local optima” found by iterated local search [18]. Thus, “the population” can be
created dynamically and opportunistically, and continues to grow in size with every
newly discovered local optimum. Every new local optimum that is found can be
recombined with all of the previously discovered local optima. Alternatively, instead
of allowing the population size to continue to grow indefinitely, one can establish
a fixed population size to retain a subset of the best previously discovered local
optima. Again, every new local optimum that is found is recombined with all of the
members of the current population.

266 D. Whitley

Figure 8.9 illustrates how the LKH algorithm can be improved by maintaining a
population of all the local optima found by each iteration of local search on a 31,000
city clustered TSP instance. In this case, the main improvement is not the use of
Partition Crossover (vs. IPT), but rather collecting a population of local optima that
are then recombined to yield more improving moves [18]. Tinós et al. [50] use this
strategy to improve on LKH on both symmetric and asymmetric TSP instances.

8.8.1 The Limitations of Tunneling and Partition Crossover

Recombination operators such as Partition Crossover are capable of producing rapid
and dramatic improvements during search. However, while Partition Crossover is
highly exploitive, it also lacks exploratory power. This is particularly evident in the
case of the TSP. Partition Crossover returns an offspring that is only composed of
edges found in the two parents. This means that Partition Crossover never introduces
new edges into a population: if the edges needed to construct a globally optimal
solution are not in the population, then Partition Crossover cannot be used to reach
a globally optimal solution. Therefore, other operators are needed to generate new
edges, but particularly new edges that are likely to be found in high quality solutions.

8.9 The EAX Algorithms for the TSP

To illustrate the kind of implementation that can be found in a modern genetic al-
gorithm we specifically examine the EAX genetic algorithm [37–39]. The name
“EAX” stands for Edge Assembly Crossover, but EAX also is used to refer to both
the EAX crossover operator and the genetic algorithm that uses EAX.

The EAX crossover operator combines the two parents into a graph, which we
again denote by Gu. It then finds what are known as AB-Cycles in the graph Gu. An
AB-Cycle is found by taking one edge from parent 1, then one edge from parent
2, then one edge from parent 1 again, etc. This continues until a loop results. The
loop of alternating edges is an AB-Cycle. A number of AB-Cycles are generated
and together are referred to as the E-Set. The AB-Cycles can then be used to cut
one of the parents into subcycles. These steps are illustrated in Fig. 8.10. Parent 1 is
cut using the AB-Cycles shown. This cutting process means that edges found both
in Parent 1 and the AB-Cycles are removed. Then edges from Parent 2 found in the
AB-Cycles are added to Parent 1. This process yields the subcycles. The subcycles
are then merged in a greedy fashion to create an offspring. This greedy process
which merges the subcycles into a Hamiltonian cycle also introduces relatively short
edges that are not found in either parent. Thus, EAX has a way to introduce new (and
highly useful) diversity into the population [37, 56].

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 267

In addition to the novelty of the EAX recombination operator, the EAX genetic
algorithm also provides a lesson in how genetic algorithms can be configured to
yield sustained search.

The curse of all genetic algorithms is a lack of diversity. Without diversity, the
population stagnates. It is easy to see why this would be deadly to an operator such
as Partition Crossover. However, an operator such as EAX would seem to be in-
herently diversity preserving, since it can continually introduce new edges into the
population. But this is not quite true. If two parent strings are too similar, there are
few AB-Cycles and it is not possible to decompose the parents into subcycles in
useful ways. When this happens, EAX also fails to introduce new edges into the

PARENT 1 PARENT 2 UNION OF PARENTS

AB CYCLES (THE E−SET) THE SUBCYCLES OFFSPRING: NEW EDGES

Fig. 8.10 An illustration of the EAX recombination operator. The top three graphs represent the
two parents and the union of the two parents into one graph. AB-Cycles are extracted from the
graph which is the Union of the Parents. The AB-Cycles are then used to cut Parent 1 into subcy-
cles. These subcycles are then reconnected in a greedy fashion to create an offspring

population at a rate that can sustain diversity. When diversity collapses in this way,
the population and the search stagnates. One way to enhance diversity is to use a
larger population size. A larger population converges slower and preseves diversity
(see Fig. 8.11).

268 D. Whitley

Fig. 8.11 A composite illustration of the runtime behavior of EAX based on multiple runs on a
10,000 city TSP. The EAX algorithm displays the classic “Tortoise and Hare” phenomenon, where
small populations converge faster, but larger populations ultimately converge to better results

The EAX genetic algorithm uses a number of mechanisms to preserve population
diversity. It can “localize” the EAX crossover operator so that the offspring is more
similar to Parent 1, or it can “globalize” the EAX crossover operator so that the
offspring inherits a more mixed combination of edges from parents and new edges.
One way it can do this is to use fewer or more AB-Cycles in the Edge Set. If only
a single AB-cycle is used, the offspring will be more like Parent 1 because most of
the edges are inherited from Parent 1.

The EAX genetic algorithm can also exploit the similarity between Parent 1 and
the offspring. It does not use selection in the conventional sense. EAX uses a form
of generational replacement that in some ways represents a return to a Holland style
genetic algorithm compared to the use of steady state genetic algorithms. A random
permutation of pointers to members of the population is generated. We again denote
this random permutation by π . Instead of using π to apply tournament selection, the
parent at location π(i) is directly recombined with the solution at location π(i+1).
The offspring that is generated replaces parent π(i). By making parent π(i) the
“Parent 1” solution (as illustrated in Fig. 8.10) during an application of EAX, the
offspring will replace the parent from which it inherited the most edges. This slows
down the loss of diversity.

If the EAX genetic algorithm does not use selection pressure when selecting
parents, where is selection pressured applied? EAX uses brood selection.

Brood Selection is a form of selection where a large number of offspring are
generated, and the best offspring is then selected. For example, in the EAX ge-
netic algorithm, two parents may be recombined 30 times to generate 30 different
offspring. (The number of offspring can obviously be parameterized.) But only the
best of the 30 offspring is returned. In this case, recombination is clearly a stochastic
process, and different offspring can be produced by generating different sets of AB-

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 269

Cycles when applying the EAX recombination operator. Brood selection increases
the probability that the EAX recombination operator will find an improvement.

Yet another way that diversity can be preserved in the population is to not always
select the best solution during brood selection. EAX computes two metrics to deter-
mine fitness: one metric looks at the improvement in tour length using the objective
function. But the EAX genetic algorithm also looks at the edges in the current pop-
ulation and computes a diversity metric relative to each new potential offspring and
the current population [38]. An offspring that represents a more modest improve-
ment in tour length that also preserves diversity can be selected instead of a solution
with a shorter tour length that does not preserve diversity. Whitley et al. [65] also
used a hybrid fitness function that included a diversity metric in combination with
Partition Crossover for the TSP.

EAX can be highly effective for large TSP instances. Nagata and Kobayashi [38]
report they have found optimal or new best known solutions on many TSP instances
with up to 200,000 cities. And EAX does this without using any mutation operator
or any local search operators.

8.10 Massively Parallel Genetic Algorithms

Holland’s generational genetic algorithm is easily parallelized when tournament se-
lection is used. The processes of tournament selection, recombination, mutation and
evaluation can be done in parallel. The level of parallelism is proportional to the
population size. However, we can also look to the EAX algorithm to see how a
more modern genetic algorithm can be parallelized.

As noted in the last section, in the EAX genetic algorithm every recombination
involves only the parent at location i and location i+1. All of these recombinations
can be done in parallel. Assuming a population size of 500, this work can easily
be mapped onto 500 processors. And because EAX also uses brood selection, the
construction and evaluation of 30 offspring produced by recombining the parents at
position i and i+ 1 can also be done in parallel. Thus, assuming a population size
of 500 and a brood of 30 offspring, this work could be trivially parallelized across
15,000 processors. While there are synchronization issues, there is very little global
communication in the EAX algorithm.

This use of localized mating in a 1-D population array by the EAX genetic algo-
rithm has connections to parallel “cellular genetic algorithms” [59] where parents
are selected locally to reproduce. However, cellular genetic algorithms are more
commonly associated with populations that are distributed onto a 2-D or 3-D grid.

“Steady State Genetic Algorithms” are perhaps best parallelized using an Island
Model of parallelism. This also provides a more coarse grain level of parallelism.
For example, if the population size is 1600, the population might be broken into 16
subpopulations, or “islands,” where each island has a population of 100 strings. Each
island runs for a fixed amount of time. Then a migration process allows a very small
number of individuals (e.g., one individual per island) to migrate from one island to

270 D. Whitley

another. If migration is frequent, the islands behave more like one single population
due to panmictic mixing. However, if migration is more restricted, the island model
can help to preserve diversity and increase exploration. Thus, an island model steady
state genetic algorithm can produce results that are better than a single population
steady state genetic algorithm [58, 63]. Lugue and Alba [1] provide a more recent
review of parallel genetic algorithms.

8.11 Conclusions

It is impossible to capture the wide range of work that has been published on ge-
netic algorithms in a relatively short survey. One of the areas where genetic algo-
rithms have been particular useful is for scheduling applications, particularly re-
source scheduling applications; Whitley et al. [64] surveys this work. There has
also been very interesting work on Vehicle Routing problems [25, 53] and on Graph
Coloring [13, 33].

This survey has focused on a few application areas, specifically k-bounded
pseudo-Boolean optimization and the TSP. While it may not be widely appreci-
ated, the EAX genetic algorithm is one of the best heuristic TSP solvers, and LKH,
the primary iterated local search competitor, also uses recombination to accelerate
search. Kotthoff et al. [31] have used both solvers in combination, using machine
learning to decide which method to apply to which TSP instance, but genetic re-
combination is still inside both algorithms.

The focus on k-bounded functions in the tutorial might seem restrictive. At the
same time, every pseudo-Boolean function (every problem with a bit representation)
and a closed form evaluation function (with a polynomial space representation) can
be transformed into a k-bounded pseudo-Boolean function [3]. This mirrors the well
known result for SAT such that every SAT problem can be transformed (reduced)
to MAX-3SAT in polynomial time. While such transformations are common place
in the SAT community, they have not been explored to any significant degree in the
genetic algorithm community.

This tutorial has also looked at how old ideas can be applied in new ways. The
use of brood selection in the EAX algorithm provides a different way of approach-
ing the problem of selection. Rather than use a steady state genetic algorithm and
tournament selection, the EAX algorithm combines brood selection (a configuration
that one might associate with a (μ +λ) evolution strategy) and a generational ge-
netic algorithm. Brood selection provides the genetic algorithm with a different way
to be greedy, in as much as many offspring are generated, but only the single best
offspring is retained. At the same time, this approach can still yield high levels of
parallelism, and it keeps communication overhead minimal: there is no tournament
to worry about, and replacement is simple.

The concept of tunneling between local optima was also outlined. “Tunneling” is
likely to be an important part of other genetic algorithm applications in the future. A
genetic algorithm introduced by Deb and Myburgh [8] for foundry cast scheduling

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 271

uses a related form of deterministic greedy recombination. Rather than decomposing
the problems into separable subfunctions, the method used by Deb and Myburgh
relaxes constraints to decompose parents into independent components; when this
relaxation results in violations of the constraints, repair mechanisms are used after
recombination. Deb and Myburgh show how this form of recombination and repair
scales to solve problems with up to one billion variables.

Genetic algorithms continue to provide state-of-the-art results for certain classes
of discrete combinatorial optimization problems.

This tutorial has also advanced the idea that genetic algorithms should be con-
structed as Gray Box Optimizers whenever possible. A number of toy test problems
(ONEMAX, LEADING ONES, the JUMP function and all functions of unitation)
become absolutely trivial to solve under Gray Box optimization. This should come
as no surprise, since all of these problems have simple polynomial time solutions.
Furthermore, there is no theoretical evidence to suggest that complexity results on
toy problems that have polynomial time solutions can yield any insight about how
genetic algorithms perform on NP Hard problems. Gray Box Optimization, on the
other hand, allows us to ask relevant questions about the complexity and decompos-
ability of challenging NP Hard problems.

References

1. E. Alba, G. Lugue, Parallel Genetic Algorithms: Theory and Real World Applications, vol. 367
(Springer, Berlin, 2011)

2. Th. Bäck, C. Foussette, P. Krause, Contemporary Evolutionary Strategies (Springer, Berlin,
2013)

3. E. Boros, P.L. Hammer, Pseudo-boolean optimization. Discret. Appl. Math. 123(1), 155–225
(2002)

4. F. Chicano, D. Whitley, A. Sutton, Efficient identification of improving moves in a ball for
pseudo-boolean problems, in Genetic and Evolutionary Computation Conference (GECCO)
(ACM, New York, 2014), pp. 437–444

5. W. Cook, Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation
(Princeton University Press, Princeton, 2011)

6. G.A. Croes, A method for solving traveling salesman problems. Oper. Res. 6(6), 791–812
(1958)

7. L. Davis, Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York, 1991)
8. K. Deb, C. Myburgh, Breaking the billion variable barrier in real world optimization, in Ge-

netic and Evolutionary Computation Conference (GECCO) (ACM, New York, 2016), pp. 653–
660

9. K. DeJong, An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis,
University of Michigan, Department of Computer and Communication Sciences, Ann Arbor,
1975

10. K. DeJong, Genetic algorithms are NOT function optimizers, in Foundations of Genetic Algo-
rithms, ed. by D. Whitley, vol. 2 (Morgan Kaufmann, Burlington, 1993), pp. 5–17

11. T. El-Mihoub, A. Hopgood, L. Nolle, A. Battersby, Hybrid genetic algorithms: a review. Eng.
Lett. 13(2), 124–137 (2006)

12. I.P. Gent, T. Walsh, Towards an understanding of hill-climbing procedures for SAT, in
The National Conference on Artificial Intelligence (AAAI) (MIT Press, Cambridge, 1993),
pp. 28–33

272 D. Whitley

13. C. Glass, A. Prugel-Bennett, Genetic algorithm for graph coloring: exploration of Galinier and
Hao’s algorithm. J. Comb. Optim. 7(3), 229–236 (2003)

14. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-
Wesley, Reading, 1989)

15. D. Goldberg, Genetic algorithms and Walsh functions: part I, a gentle introduction. Complex
Syst. 3, 129–152 (1989)

16. D. Goldberg, A note on Boltzmann tournament selection for genetic algorithms and
population-oriented simulated annealing. Complex Syst. 4(4), 445–460 (1990)

17. D. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms,
in Foundations of Genetic Algorithms, ed. by G. Rawlins, vol. 1 (Morgan Kaufmann, Burling-
ton, 1991), pp. 69–93

18. D. Hains, D. Whitley, A. Howe, Improving Lin-Kernighan-Helsgaun with crossover on clus-
tered instances of the TSP, in Parallel Problem Solving from Nature (PPSN) (Springer, Berlin,
2012), pp. 388–397

19. N. Hansen, The CMA evolution strategy: a comparing review, in Toward a New Evolutionary
Computation (Springer, Berlin, 2006), pp. 75–102

20. N. Hansen, S. Kern, Evaluating the CMA evolution strategy on multimodal test functions, in
Parallel Problem Solving from Nature (PPSN) (Springer, Berlin, 2004), pp. 282–291

21. R.B. Heckendorn, Embedded landscapes. Evol. Comput. 10(4), 345–369 (2002)
22. K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman heuristic.

Eur. J. Oper. Res. 126(1), 106–130 (2000)
23. K. Helsgaun, General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program.

Comput. 1(2–3), 119–163 (2009)
24. K. Helsgaun, DIMACS TSP challenge results: current best tours found by LKH (2013). http://

www.akira.ruc.dk/keld/research/LKH/DIMACSresults.html. November 24, 2013
25. G. Ho, P. Ji, H. Lau, A hybrid genetic algorithm for multi-depot vehicle routing problem. Eng.

Appl. Artif. Intell. 21(4), 548–557 (2008)
26. J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann

Arbor, 1975)
27. J. Holland, Adaptation in Natural and Artificial Systems, 2nd edn. (MIT Press, Cambridge,

1992)
28. H.H. Hoos, Th. Stützle, Stochastic Local Search: Foundations and Applications (Morgan

Kaufman, Burlington, 2004)
29. S.A. Kauffman, Adaptation on rugged fitness landscapes, in Lectures in the Science of Com-

plexity, ed. by D.L. Stein (Addison-Wesley, Boston, 1989), pp. 527–618
30. S.A. Kauffman, The Origins of Order (Oxford Press, Oxford, 1993)
31. L. Kotthoff, P. Kerschke, H. Hoos, H. Trautmann, Improving the state of the art in inexact TSP

solving using per-instance algorithm selection, in International Conference on Learning and
Intelligent Optimization (Springer, Berlin, 2015), pp. 202–217

32. S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling salesman problem.
Oper. Res. 21, 498–516 (1973)

33. Z. Lü, J.K. Hao, A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203(1), 241–250
(2010)

34. M. Mitchell, S. Forrest, Fitness landscapes: royal road functions, in Handbook of Evolution-
ary Computation, ed. by T. Bäck, D. Fogel, Z. Michalewicx, vol. B2.7 (Institute of Physics
Publishing, Bristol, 1997), pp. 1–25

35. A. Möbius, B. Freisleben, P. Merz, M. Schreiber, Combinatorial optimization by iterative par-
tial transcription. Phys. Rev. E 59(4), 4667–4674 (1999)

36. P. Moscato, C. Cotta, A gentle introduction to memetic algorithms, in Handbook of Meta-
heuristics, ed. by F. Glover, G. Kochenberger (Springer, Boston, 2003), pp. 105–144

37. Y. Nagata, S. Kobayashi, Edge assembly crossover: a high-power genetic algorithm for the
traveling salesman problem, in International Conference on Genetic Algorithms (ICGA), ed.
by T. Bäck (Morgan Kaufmann, Burlington, 1997), pp. 450–457

38. Y. Nagata, S. Kobayashi, A powerful genetic algorithms using edge assemble crossover the
traveling salesman problem. INFORMS J. Comput. 25(2), 346–363 (2013)

http://www.akira.ruc.dk/ keld/research/LKH/DIMACS results.html
http://www.akira.ruc.dk/ keld/research/LKH/DIMACS results.html

8 Next Generation Genetic Algorithms: A User’s Guide and Tutorial 273

39. Y. Nagata, D. Soler, A new genetic algorithm for the asymmetric TSP. Expert Syst. Appl.
39(10), 8947–8953 (2012)

40. A. Nix, M. Vose, Modelling genetic algorithms with Markov chains. Ann. Math. Artif. Intell.
5, 79–88 (1992)

41. S. Rana, R. Heckendorn, D. Whitley, A tractable Walsh analysis of SAT and its implications
for genetic algorithms, in The National Conference on Artificial Intelligence (AAAI) (MIT
Press, Cambridge, 1998), pp. 392–397

42. C. Rego, D. Gamboa, F. Glover, C. Osterman, Traveling salesman problem heuristics: leading
methods, implementations and latest advances. Eur. J. Oper. Res. 211(3), 427–441 (2011)

43. C.M. Reidys, P.F. Stadler, Combinatorial landscapes. SIAM Rev. 44, 3–54 (2002)
44. B. Selman, H. Levesque, D. Mitchell, A new method for solving hard satisfiability problems,

in The National Conference on Artificial Intelligence (AAAI), San Jose (1992), pp. 44–446
45. A. Sokolov, D. Whitley, Unbiased tournament selection, in Genetic and Evolutionary Compu-

tation Conference (GECCO) (ACM, New York, 2005), pp. 1131–1138
46. A. Sokolov, D. Whitley, A note on the variance of rank-based selection strategies for genetic

algorithms and genetic programming. Genet. Program Evolvable Mach. 8(3), 221–237 (2007)
47. K. Sorensen, Metaheuristics: the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)
48. A.M. Sutton, A. Howe, D. Whitley, A theoretical analysis of the k-satisfiability search space,

in Workshop on Engineering Stochastic Local Search Algorithms (SLS) (2009), pp. 46–60
49. G. Syswerda, Reproduction in generational and steady state genetic algorithms, in Founda-

tions of Genetic Algorithms, ed. by G. Rawlins, vol. 1 (Morgan Kaufmann, Burlington, 1991),
pp. 94–101

50. R. Tinós, D. Whitley, G. Ochoa, Generalized asymmetric partition crossover (GAPX) for the
asymmetric TSP, in Genetic and Evolutionary Computation Conference (GECCO) (ACM,
New York, 2014), pp. 501–508

51. R. Tinós, D. Whitley, F. Chicano, Partition crossover for pseudo-Boolean optimization, in
Foundations of Genetic Algorithms (FOGA-15) (2015), pp. 137–149

52. N. Veerapen, G. Ochoa, D. Whitley, Tunneling crossover for the asymmetric TSP, in Parallel
Problem Solving from Nature (PPSN). Lecture Notes in Computer Science (Springer, Cham,
2016), pp. 994–1004

53. T. Vidal, T. Crainic, M. Gendreau, N. Lahrichi, W. Rei, A hybrid genetic algorithm for multi-
depot and periodic vehicle routing problems. Oper. Res. 60(3), 611–624 (2012)

54. M. Vose, Modeling simple genetic algorithms, in Foundations of Genetic Algorithms (FOGA
2), ed. by D. Whitley (Morgan Kaufmann, Burlington, 1993), pp. 63–73

55. M. Vose, The Simple Genetic Algorithm (MIT Press, Cambridge, 1999)
56. J. Watson, C. Ross, V. Eisele, J. Denton, J. Bins, C. Guerra, D. Whitley, The traveling Salesrep

problem, edge assembly crossover, and 2-opt, in Parallel Problem Solving from Nature (PPSN)
(Springer, Berlin, 1998), pp. 823–832

57. D. Whitley, An executable model of the simple genetic algorithm, in Foundations of Genetic
Algorithms (FOGA 2) ed. by D. Whitley (Morgan Kaufmann, Burlington, 1993), pp. 45–62

58. D. Whitley, A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994)
59. D. Whitley, A review of models for simple and cellular genetic algorithms, in Applications of

Modern Heuristic Search, ed. by V.J. Rayward-Smith, Chap. 4 (Alfred Waller Limited, Oxon,
1995), pp. 55–67

60. D. Whitley, W. Chen, Constant time steepest descent local search with lookahead for NK-
landscapes and MAX-kSAT, in Genetic and Evolutionary Computation Conference (GECCO)
(ACM, New York, 2012), pp. 1357–1364

61. D. Whitley, J. Kauth, GENITOR: a different genetic algorithm, in Proceedings of the Rocky
Mountain Conference on Artificial Intelligence (1988), pp. 118–130

62. D. Whitley, A. Sutton, Genetic algorithms: a survey of models and methods, in Handbook of
Natural Computation (Springer, Berlin, 2013), pp. 637–671

63. D. Whitley, S. Rana, R. Heckendorn, The island model genetic algorithm: on separability,
population size and convergence. J. Comput. Inf. Technol. 7(1), 33–47 (1999)

274 D. Whitley

64. D. Whitley, A. Sutton, A.E. Howe, L. Barbulescu, Resource scheduling with permutation
based representations: three applications, in Evolutionary Computation in Practice, ed. by
T. Yu, L. Davis, C. Baydar, R. Roy. Studies in Computational Intelligence, vol. 88 (Springer,
Berlin, 2008), pp. 219–243

65. D. Whitley, D. Hains, A. Howe, A hybrid genetic algorithm for the traveling salesman prob-
lem using generalized partition crossover, in Parallel Problem Solving from Nature (PPSN)
(Springer, Berlin, 2010), pp. 566–575

66. D. Whitley, A. Howe, D. Hains, Greedy or not? Best improving versus first improving stochas-
tic local search for MAXSAT, in The National Conference on Artificial Intelligence (AAAI)
(2013), pp. 940–946

67. D. Whitley, F. Chicano, B. Goldman, Gray box optimization for Mk landscapes (NK land-
scapes and MAX-kSAT). Evol. Comput. 24, 491–519 (2016)

Chapter 9
An Accelerated Introduction to Memetic
Algorithms

Pablo Moscato and Carlos Cotta

Abstract Memetic algorithms (MAs) are optimization techniques based on the or-
chestrated interplay between global and local search components and have the ex-
ploitation of specific problem knowledge as one of their guiding principles. In its
most classical form, a MA is typically composed of an underlying population-based
engine onto which a local search component is integrated. These aspects are de-
scribed in this chapter in some detail, paying particular attention to design and in-
tegration issues. After this description of the basic architecture of MAs, we move
to different algorithmic extensions that give rise to more sophisticated memetic ap-
proaches. After providing a meta-review of the numerous practical applications of
MAs, we close this chapter with an overview of current perspectives of memetic
algorithms.

9.1 Introduction and Historical Notes

The generic denomination of ‘Memetic Algorithms’ (MAs) [135] is used to encom-
pass a broad class of metaheuristics, understanding the latter as high-level templates
that orchestrate the functioning on low-level rules and heuristics. The method, which
is based on a population of agents, had practical success in a variety of problem do-
mains, in particular for the heuristic resolution of NP-hard optimization problems.

P. Moscato
The University of Newcastle, Callaghan, NSW, Australia
e-mail: Pablo.Moscato@newcastle.edu.au

C. Cotta (�)
Escuela Técnica Superior de Ingeniería Informática, Universidad de Málaga, Málaga, Spain
e-mail: ccottap@lcc.uma.es

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_9

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_9&domain=pdf
mailto:Pablo.Moscato@newcastle.edu.au
mailto:ccottap@lcc.uma.es
https://doi.org/10.1007/978-3-319-91086-4_9

276 P. Moscato and C. Cotta

Unlike traditional evolutionary computation (EC) methods, MAs are intrinsically
concerned with exploiting all available knowledge about the problem under study.
The incorporation of problem domain knowledge is not an optional mechanism,
but a fundamental feature that characterizes MAs. This functioning philosophy is
perfectly illustrated by the term “memetic”. Coined by Dawkins [40], the word
‘meme’ denotes an analogous to the gene in the context of cultural evolution [116].
In Dawkins’ words:

Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of making pots
or of building arches. Just as genes propagate themselves in the gene pool by leaping from
body to body via sperms or eggs, so memes propagate themselves in the meme pool by
leaping from brain to brain via a process which, in the broad sense, can be called imitation.

This characterization of a meme suggests that in cultural evolution processes,
information is not simply transmitted unaltered between individuals. Rather, it is
processed and enhanced by the communicating parts. This enhancement is accom-
plished in MAs by incorporating heuristics, approximation algorithms, local search
techniques, specialized recombination operators, truncated exact methods, etc. In
essence, most MAs can be interpreted as a search strategy in which a population of
optimizing agents cooperate and compete [144]. The success of MAs can probably
be explained as being a direct consequence of the synergy of the different search
approaches they incorporate.

The most crucial and distinctive feature of MAs, the inclusion of problem knowl-
edge, is also supported by strong theoretical results. As Hart and Belew [68] initially
stated and Wolpert and Macready [190] later popularized in the so-called No-Free-
Lunch Theorem, a search algorithm strictly performs in accordance with the amount
and quality of the problem knowledge they incorporate. More precisely, the theo-
rem establishes that the performance of any search algorithm is indistinguishable
on average from any other one when all possible problems are considered, a sce-
nario that captures the lack of knowledge on the target problem (this very broad
assumption can be challenged [45]; this said, similar results can be found for more
restricted scenarios [78, 165]). The quest for universal solvers is thus futile [36]: us-
ing and exploiting problem knowledge is a requirement for attaining efficient prob-
lem solvers [116]. Given that the term hybridization is often used to denote the
process of incorporating problem knowledge (due to the fact that it is accomplished
by combining or hybridizing concepts from different resolution algorithms [39]), it
is not surprising that MAs are sometimes called ‘Hybrid Evolutionary Algorithms’
(hybrid EAs) as well.

One of the first algorithms to which the MA label was assigned dates back to
1988 [144], and was regarded by many as a hybrid of traditional Genetic Algo-
rithms (GAs) and Simulated Annealing (SA). Part of the initial motivation was to
find a way out of the limitations of both techniques on a well-studied combinato-
rial optimization problem the MIN EUCLIDEAN TRAVELING SALESMAN problem
(MIN ETSP)—the reader interested in the historical circumstances of the initial de-
velopments in this field is directed to a personal and very detailed account in [119].
According to the authors, the original inspiration came from computer game tour-
naments [72] used to study “the evolution of cooperation” [4, 130]. That approach

9 An Accelerated Introduction to Memetic Algorithms 277

had several features which anticipated many current algorithms in practice today.
The competitive phase of the algorithm was based on the new allocation of search
points in the configuration space, a process involving a “battle” for survival fol-
lowed by the so-called “cloning”, which has a strong similarity with ‘go with the
winners’ algorithms [1, 150]. Thus, the cooperative phase followed by local search
may be better named “go-with-the-local-winners” since the topological arrange-
ment of the optimizing agents was a two-dimensional toroidal lattice. After initial
computer experiments, an insight was derived on the particular relevance of the
“spatial” organization, when coupled with an appropriate set of rules, for the over-
all performance of population search processes. A few months later, Moscato and
Norman discovered that they shared similar views with other researchers [61, 126]
and other authors proposing “island models” for GAs. Spacialization is now being
recognized as the “catalyzer” responsible for a variety of phenomena [129, 130].
This is an important research issue, currently only understood in a rather heuristic
way. However, some proper undecidability results have been obtained for related
problems [63] giving some hope to a more formal treatment.

Less than a year later, in 1989, Moscato and Norman identified several authors
who were also pioneering the introduction of heuristics to improve the solutions be-
fore recombining them [60, 127] (see other references and the discussion in [116]).
Particularly coming from the GA field, several authors were introducing problem-
domain knowledge in a variety of ways. In [116] the denomination of ‘memetic
algorithms’ was introduced for the first time. It was also suggested that cultural
evolution can be a better working metaphor for these metaheuristics to avoid “bio-
logically constrained” thinking that was restricting progress at that time.

Thirty years later, albeit unfortunately under different names, MAs have become
an important optimization approach, with several successes in a variety of classical
NP-hard optimization problems. We aim to provide an updated and self-contained
introduction to MAs, focusing on their technical innards and formal features, but
without loosing the perspective of their practical applications and open research
issues.

9.2 Memetic Algorithms

Before proceeding to the description of MAs, it is necessary to provide some ba-
sic concepts and definitions. Several notions introduced in the first subsection are
strongly related to the field of computational complexity. Nevertheless, we approach
them in a slightly different way, more oriented toward the subsequent developments
in the chapter. These basic concepts will give rise to the notions of local search and
population-based search, upon which MAs are founded. This latter class of search
settles the scenario for recombination, a crucial mechanism in the functioning of
MAs that will be studied to some depth. Finally, a basic algorithmic template and
some guidelines for designing MAs will be presented.

278 P. Moscato and C. Cotta

9.2.1 Basic Concepts

An algorithm is a detailed step-by-step procedure for solving a computational prob-
lem. A computational problem P denotes a class of algorithmically-doable tasks,
and it has an input domain set of instances denoted IP. For each instance x ∈ IP,
there is an associated set solP(x) which denotes the feasible solutions for problem
P given instance x. The set solP(x) is also known as the set of acceptable or valid
solutions.

We are expected to deliver an algorithm that solves problem P; this means that
our algorithm, given instance x ∈ IP, must return at least one element y from a set
of answers ansP(x) (also called given solutions) that satisfies the requirements of
the problem. This is the first design issue to face. To be precise, depending on the
kind of answers expected, computational problems can be classified into different
categories; for example:

• finding all solutions in solP(x), i.e., enumeration problems.
• counting how many solutions exist in solP(x), i.e. counting problems.
• determining whether the set solP(x) is empty or not, i.e., decision problems.
• finding a solution in solP(x) maximizing or minimizing a given function, i.e.,

optimization problems.

In this chapter, we will focus on the last possibility, that is, a problem will be
considered solved by finding a feasible solution y ∈ solP(x) which is optimal or by
giving an indication that no such feasible solution exists. It is thus convenient in
many situations to define a Boolean feasibility function f easibleP(x,y) in order to
identify whether a given solution y ∈ ansP(x) is acceptable for an instance x ∈ IP of
a computational problem P, i.e., checking if y ∈ solP(x).

An algorithm is said to solve problem P if it can fulfill this condition for any
given instance x ∈ IP. This definition is certainly too broad, so a more restrictive
characterization for our problems of interest is necessary. This characterization is
provided by restricting ourselves to the so-called combinatorial optimization prob-
lems. These constitute a special subclass of computational problems in which for
each instance x ∈ IP:

• the cardinality of solP(x) is finite.
• each solution y ∈ solP(x) has a goodness integer value mP(y,x), obtained by

means of an associated objective function mP.
• a partial order ≺P is defined over the set of goodness values returned by the

objective function, thus allowing to determine which of two goodness values is
preferable.

An instance x∈ IP of a combinatorial optimization problem P is solved by finding
the best solution y∗ ∈ solP(x), i.e., finding a solution y∗ such that no other solution
y ≺P y∗ exists if solP(x) is not empty. It is very common to have ≺P defining a total
order. In this case, the best solution is the one that maximizes (or minimizes) the
objective function.

9 An Accelerated Introduction to Memetic Algorithms 279

As an example of a combinatorial optimization problem consider the 0–1 MUL-
TIPLE KNAPSACK PROBLEM (0–1 MKP). Each instance x of this problem is defined
by a vector of profits V = {v0, · · · ,vn−1}, a vector of capacities C = {c0, · · · ,cm−1},
and a matrix of capacity constraints coefficients M = {mi j : 0 � i < m, 0 � j < n}.
Intuitively, the problem consists of selecting a set of objects so as to maximize the
profit of this set without violating the capacity constraints. If the objects are indexed
with the elements of the set Nn = {0,1, · · · ,n− 1}, the answer set ansP(x) for an
instance x is simply the power set of Nn, that is, each subset of Nn is a possible
answer. Furthermore, the set of feasible answers solP(x) is composed of those sub-
sets whose incidence vector B verifies M ·B � C. Finally, the objective function is
defined as mP(y,x) = ∑i∈y vi, i.e., the sum of profits for all selected objects, the goal
being to maximize this value.

Notice that a decisional version can be associated with a combinatorial opti-
mization problem. To formulate the decision problem, an integer goodness value K
is considered, and instead of trying to find the best solution of instance x, we ask
whether x has a solution whose goodness is equal or better than K. In the above
example, we could ask whether a feasible solution y exists such that its associated
profit is equal or better than K.

9.2.2 Search Landscapes

As mentioned above, having defined the concept of combinatorial optimization
problem, the goal is to find at least one of the optimal solutions for a given instance.
For this purpose, a search algorithm must be used. Before discussing search algo-
rithms, three entities must be discussed. These are the search space, the neighbor-
hood relation, and the guiding function. It is important to consider that, for any given
computational problem, these three entities can be instantiated in several ways, giv-
ing rise to different optimization tasks.

Let us start by defining the concept of search space for a combinatorial problem
P. To do so, we consider a set SP(x), whose elements must satisfy the following
requirements:

• Each element s ∈SP(x) represents at least one answer in ansP(x).
• For decision problems: at least one element of solP(x) that stands for a ‘Yes’

answer must be represented by one element in SP(x).
• For optimization problems: at least one optimal element y∗ of solP(x) is repre-

sented by one element in SP(x).

Each element of SP(x) is called a configuration. It is related to an answer in ansP(x)
by a growth function g : SP(x)→ ansP(x). Note that the first requirement refers to
ansP(x) and not to solP(x), i.e., some configurations in the search space may corre-
spond to infeasible solutions. Thus, the search algorithm may need to be prepared
to deal with this fact. If these requirements have been achieved, we say that we have
a valid representation or valid formulation of the problem. For simplicity, we will

280 P. Moscato and C. Cotta

just write S to refer to SP(x) when x and P are clear from the context. People using
biologically-inspired metaphors like to call SP(x) the genotype space and ansP(x)
the phenotype space, so we appropriately refer to g as the growth function.

To illustrate this notion of search space, consider again the case of the 0–1 MKP.
Since solutions in ansP(x) are subsets of Nn, we can define the search space as the
set of n-dimensional binary vectors. Each vector will represent the incidence vector
of a certain subset, i.e., the growth function g is defined as g(s) = g(b0b1 · · ·bn−1) =
{i | bi = 1}. As mentioned above, many binary vectors may correspond to infea-
sible sets of objects. Another possibility is defining the search space as the set of
permutations of elements in Nn [62]. In this case, the growth function may consist
of applying a greedy construction algorithm, considering objects in the order pro-
vided by the permutation. Unlike the binary search space previously mentioned, all
configurations represent feasible solutions in this case.

The role of the search space is to provide a “ground” where the search algorithm
will act. Important properties of the search space that affect the dynamics of the
search algorithm are related to the accessibility relationships between the configura-
tions. These relationships are dependent of a neighborhood function N : S → 2S .
This function assigns to each element s ∈S a set N (s)⊆S of neighboring con-
figurations of s. The set N (s) is called the neighborhood of s and each member
s′ ∈N (s) is called a neighbor of s.

It must be noted that the neighborhood depends on the instance, so the notation
N (s) is a simplified form of NP(s,x) since it is clear from the context. The ele-
ments of N (s) need not be listed explicitly. In fact, it is very usual to define them
implicitly by referring to a set of possible moves, which define transitions between
configurations. Moves are usually defined as “local” modifications of some part of
s, where “locality” refers to the fact that the move is done on a single solution to
obtain another single solution. This “locality”, is one of the key ingredients of local
search, and actually it has also given the name to the whole search paradigm.

As examples of concrete neighborhood definitions, consider the two representa-
tions of solutions for the 0–1 MKP presented above. In the first case (binary rep-
resentation), moves can be defined as changing the values of a number of bits.
If just one bit is modified at a time, the resulting neighborhood structure is the
n-dimensional binary hypercube. In the second case (permutation representation),
moves can be defined as the interchange of two positions in the permutation. Thus,
two configurations are neighboring if, and only if, they differ in exactly two posi-
tions.

This definition of locality presented above is not necessarily related to “close-
ness” under some kind of distance relationship between configurations (except in
the tautological situation in which the distance between two configurations s and s′
is defined as the number of moves needed to reach s′ from s). As a matter of fact,
it is possible to give common examples of very complex neighborhood definitions
unrelated to intuitive distance measures.

An important feature that must be considered when selecting the class of moves
to be used in the search algorithm is its “ergodicity”, that is the ability, given any
s ∈S to find a sequence of moves that can reach all other configurations s′ ∈S .

9 An Accelerated Introduction to Memetic Algorithms 281

In many situations this property is self-evident and no explicit demonstration is re-
quired. It is important since even if we have a valid representation (recall the defini-
tion above), it is necessary to guarantee a priori that at least one optimal solution is
reachable from any given initial solution. Again, consider the binary representation
of solutions for a 0–1 MKP instance. If moves are defined as single bit-flips, it is
easily seen that any configuration s′ can be reached from another configuration s in
exactly h moves, where h is the Hamming distance between these configurations.
This is not always the case though.

The last entity that must be defined is the guiding function. To do so, we require
a set F whose elements are termed fitness values (typically F ≡ R), and a partial
order ≺F on F (typically, but not always, ≺F≡<). The guiding function is defined
as a function Fg : S →F that associates to each configuration s ∈S a value Fg(s)
that assesses the quality of the solution. The behavior of the search algorithm will
be “controlled” by these fitness values.

Notice that for optimization problems there is an obvious direct connection be-
tween the guiding function Fg and the objective function mP (and hence between
partial orders ≺P and ≺F). As a matter of fact, it is very common to enforce this re-
lationship to the point that both terms are usually considered equivalent. However,
this equivalence is not necessary and, in many situations, not even desirable. For
decision problems, since a solution is a ‘Yes’ or ‘No’ answer, associated guiding
functions usually take the form of distance to satisfiability.

A typical example is the BOOLEAN SATISFIABILITY PROBLEM, i.e., determin-
ing whether a Boolean expression in conjunctive normal form is satisfiable. In this
case, solutions are assignments of Boolean values to variables, and the objective
function mP is a binary function returning 1 if the solution satisfies the Boolean
expression, and 0 otherwise. This objective function could be used as the guiding
function. However, a much more typical choice is to use the number of satisfied
clauses in the current configuration as guiding function, i.e., Fg(s) = ∑i fi(s), the
sum over clause indexes i of fi(s), defined as fi(s) = 0 for a yet unsatisfied clause
i, and fi(s) = 1 if the clause i is satisfied. Hence, the goal is to maximize this num-
ber. Notice that the guiding function in this case is the objective function of the
associated NP-hard optimization problem called MAX SAT.

The above differentiation between objective function and guiding function is also
very important in the context of constrained optimization problems, i.e., problems
for which, in general, solP(x) is chosen to be a proper subset of ansP(x). Since
the growth function establishes a mapping from S to ansP(x), the search algo-
rithm may need to process both feasible solutions (whose goodness values are well-
defined) and infeasible solutions (whose goodness values are ill-defined in general).
In many implementations of MAs for these problems, a guiding function is defined
as a weighted sum of the value of the objective function and the distance to feasi-
bility (which accounts for the constraints). Typically, a higher weight is assigned to
the constraints, so as to give preference to feasibility over optimality. Several other
remedies to this problem abound, including resorting to multi-objective techniques.

The combination of a certain problem instance and the three entities defined
above induces a so-called fitness landscape [87]. Essentially, a fitness landscape

282 P. Moscato and C. Cotta

can be defined as a weighted digraph, in which the vertices are configurations of
the search space S , and the arcs connect neighboring configurations. The weights
are the differences between the guiding function values of the two endpoint con-
figurations. The search can thus be seen as the process of “navigating” the fitness
landscape using the information provided by the guiding function. This is a very
powerful metaphor; it allows interpretations in terms of well-known topographical
objects such as peaks, valleys, mesas, etc., which is of great utility to visualize the
search progress, and to grasp factors affecting the performance of the process. In
particular, the important notion of local optimum is associated with this definition
of fitness landscape. To be precise, a local optimum is a vertex of the fitness land-
scape whose guiding function value is better than the values of all its neighbors. No-
tice that different moves define different neighborhoods and hence different fitness
landscapes, even when the same problem instance is considered. For this reason, the
notion of local optimum is not intrinsic to a problem instance as it is, sometimes,
erroneously considered.

The notion of fitness landscape is not only useful for conceptual or visualization
purposes. It also serves as a very useful instrument in order to analyze the properties
of the search space as regarded by a certain search algorithm (via the moves used by
the latter). Thus, analytical tools such as random-walk correlation or fitness distance
correlation can be used to assess the difficulty perceived by the optimizer, and other
statistical tools can be utilized to guide the design/parameterization of the search
algorithm—see [111].

9.2.3 Local vs. Population-Based Search

The definitions presented in the previous subsection naturally lead to the notion
of local search algorithm. A local search algorithm starts from a configuration
s0 ∈S , generated at random or constructed by some other algorithm. Subsequently,
it iterates using at each step a transition based on the neighborhood of the current
configuration. Transitions leading to preferable (according to the partial order ≺F)
configurations are accepted, i.e., the newly generated configuration turns to be the
current configuration in the next step. Otherwise, the current configuration is kept.
This process is repeated until a certain termination criterion is met. Typical crite-
ria are the realization of a pre-specified number of iterations, not having found any
improvement in the last m iterations, or even more complex mechanisms based on
estimating the probability of being at a local optimum [29]. Due to these character-
istics, the approach is metaphorically called “hill climbing”. The whole process is
sketched in Algorithm 1.

The selection of the particular type of moves to use (which are also known as
mutations in the context of GAs) does certainly depend on the specific character-
istics of the problem and the representation chosen. There is no general advice for
this, since it is a matter of the available computer time for the whole process as
well as other algorithmic decisions that include ease of coding, etc. In some cases

9 An Accelerated Introduction to Memetic Algorithms 283

Algorithm 1: A local search algorithm

Procedure Local-Search-Engine (current);1
begin2

repeat3
new ← GenerateNeighbor(current);4
if Fg(new)≺F Fg(current) then5

current ← new;6
endif7

until TerminationCriterion() ;8
return current;9

end10

some moves are conspicuous, for example it can be the change of the value of one
single variable or the swap of the values of two different variables. Sometimes the
“step” may also be composed of a chain of transitions. For instance, in relation with
MAs, Radcliffe and Surry introduced the concept of Binomial Minimal Mutation,
where the number of mutations to perform is selected according to a certain bino-
mial distribution [159]. In the context of fitness landscapes, this is equivalent to a
redefinition of the neighborhood relation, considering two configurations as neigh-
bors when there exists a chain of transitions connecting them.

Local search algorithms are thus characterized by keeping a single configuration
at a time. The immediate generalization of this behavior is the simultaneous main-
tenance of k, (k � 2) configurations. The term population-based search algorithms
has been coined to denote search techniques behaving this way.

The availability of several configurations at a time allows the use of new power-
ful mechanisms for traversing the fitness landscape in addition to the standard mu-
tation operator. The most popular of these mechanisms, the recombination operator,
will be studied in more depth in the next section. In any case, notice that the general
functioning of population-based search techniques is very similar to the pseudocode
depicted in Algorithm 1. As a matter of fact, a population-based algorithm can be
seen as a procedure in which we sequentially visit vertices of a hypergraph. Each
vertex of the hypergraph represents a set of configurations in SP(x), i.e., a pop-
ulation. The next vertex to be visited, i.e., the new population, can be established
according to the composition of the neighborhoods of the different transition mech-
anisms used in the population algorithm. Despite the analogy with local search, it is
widely accepted in the scientific literature to apply the denomination ‘local’ just to
one-configuration-at-a-time search algorithms. For this reason, the term ‘local’ will
be used with this interpretation in the remainder of the chapter.

284 P. Moscato and C. Cotta

9.2.4 Recombination

As mentioned in the previous section, local search is based on the application of a
mutation operator to a single configuration. Despite the apparent simplicity of this
mechanism, “mutation-based” local search has revealed itself a very powerful mech-
anism for obtaining good quality solutions for NP-hard problems. For this reason,
some researchers have tried to provide a more theoretically-solid background to this
class of search. In this line, it is worth mentioning the definition of the Polynomial
Local Search class (PLS) by Johnson et al. [86]. Basically, this complexity class
comprises a problem and an associated search landscape such that for any given
point in the search landscape we can decide in polynomial time if it is a local op-
timum or not, and in the latter case find an improved solution in the neighborhood.
Unfortunately, this does not mean that we can find a local optimum in polynomial
time (in fact, it may generally take an exponential number of steps to do so). This
fact has justified the quest for additional search mechanisms to be used as stand-
alone operators or as complements to standard mutation.

In this line, recall that population-based search allowed the definition of gener-
alized move operators termed recombination operators. In essence, recombination
can be defined as a process in which a set Spar of n configurations (informally re-
ferred to as “parents”) is taken into consideration to create a set Sdesc ⊆ solP(x)
of m new configurations (informally termed “descendants”). The creation of these
descendants involves the identification and combination of features extracted from
the parents.

At this point, it is possible to consider properties of interest that can be exhib-
ited by recombination operators [159]. The first property, respect, represents the
exploitation side of recombination. A recombination operator is said to be respect-
ful, regarding a particular type of features of the configurations, if, and only if, it
generates descendants carrying all basic features common to all parents (where the
term ‘basic’ refers to features being used to represent solutions, hence constituting
a representation basis in an algebraic sense). Notice that, if all parent configurations
are identical, a respectful recombination operator is forced to return the same con-
figuration as a descendant. This property is termed purity, and can be achieved even
when the recombination operator is not generally respectful.

On the other hand, assortment represents the exploratory side of recombination.
A recombination operator is said to be properly assorting if, and only if, it can
generate descendants carrying any combination of compatible features taken from
the parents. The assortment is said to be weak if this cannot be accomplished in a
single recombination event, and further applications of the recombination operator
on the offspring are required.

Finally, transmission is a very important property that captures the intuitive role
of recombination. An operator is said to be transmitting if every feature exhibited
by the offspring is present in at least one of the parents. Thus, a transmitting re-
combination operator combines the information present in the parents but does not
introduce new information. This latter task is usually left to the mutation opera-

9 An Accelerated Introduction to Memetic Algorithms 285

tor. For this reason, a non-transmitting recombination operator is said to introduce
implicit mutation.

The three properties above suffice to describe the abstract input/output behav-
ior of a recombination operator regarding some particular features. It provides a
characterization of the possible descendants that can be produced by the operator.
Nevertheless, there exist other aspects of the functioning of recombination that must
be studied. In particular, it is interesting to consider how the construction of Sdesc

is approached.
First of all, a recombination operator is said to be blind if it has no other input

than Spar, i.e., it does not use any information from the problem instance. This
definition is certainly very restrictive, and hence is sometimes relaxed to allow the
recombination operator to use information regarding the problem constraints (so as
to construct feasible descendants), and possibly the fitness values of configurations
y ∈ Spar (so as to bias the generation of descendants toward the best parents). A
typical example of a blind recombination operator is the classical Uniform crossover
[180]. This operator is defined on search spaces S ≡ Σ n, i.e., strings of n symbols

taken from an alphabet Σ . The construction of the descendant is done by randomly
selecting at each position one of the symbols appearing in that position in any of the
parents. This random selection can be totally uniform or can be biased according
to the fitness values of the parents as mentioned before. Furthermore, the selection
can be done so as to enforce feasibility (e.g., consider the binary representation of
solutions in the 0–1 MKP). Notice that, in this case, the resulting operator is neither
respectful nor transmitting in general.

The use of blind recombination operators has been usually justified on the
grounds of not introducing excessive bias in the search algorithm, thus preventing
extremely fast convergence to suboptimal solutions. This is questionable though.
First, notice that the behavior of the algorithm is in fact biased by the choice of rep-
resentation and the mechanics of the particular operators. Second, there exist widely
known mechanisms (e.g., spatial isolation) to hinder these problems. Finally, it can
be better to quickly obtain a suboptimal solution and restart the algorithm than using
blind operators for a long time in pursuit of an asymptotically optimal behavior (not
even guaranteed in most cases).

Recombination operators that use problem knowledge are commonly termed
heuristic or hybrid. In these operators, problem information is utilized to guide the
process of constructing the descendants. This can be done in a plethora of ways for
each problem, so it is difficult to provide a taxonomy of heuristic recombination
operators. Nevertheless, there exist two main aspects into which problem knowl-
edge can be injected: the selection of the parental features that will be transmitted
to the descendant, and the selection of non-parental features that will be added to it.
A heuristic recombination operator can focus in one of these aspects, or in both of
them simultaneously.

As an example of a heuristic recombination operator focusing on the first aspect,
Dynastically Optimal Recombination (DOR) [27] can be mentioned. This operator
explores the dynastic potential (i.e., the set of possible children) of the configura-
tions being recombined, so as to find the best member of this set (notice that, since

286 P. Moscato and C. Cotta

configurations in the dynastic potential are entirely composed of features taken from
any of the parents, this is a transmitting operator). This exploration is done using a
subordinate complete algorithm, and its goal is thus to find the best combination
of parental features giving rise to a feasible child. This can be accomplished us-
ing techniques such as branch and bound (BnB) or dynamic programming (see, e.g.
[57]). This operator is monotonic in the sense that any child generated is at least as
good as the best parent.

With regard to heuristic operators concentrating on the selection of non-parental
features, one can cite the patching-by-forma-completion operators proposed by Rad-
cliffe and Surry [158]. These operators are based on generating an incomplete child
using a non-heuristic procedure (e.g., the RARω operator [157]), and then complet-
ing the child either using a local hill climbing procedure restricted to non-specified
features (locally optimal forma completion) or a global search procedure that finds
the globally best solution carrying the specified features (globally optimal forma
completion). Notice the similarity of this latter approach with DOR.

Finally, there exist some operators trying to exploit knowledge in both of the
above aspects. A distinguished example is the Edge Assembly Crossover (EAX)
[128]. EAX is a specialized operator for the TSP (both for symmetric and asymmet-
ric instances) in which the construction of the child comprises two-phases: the first
one involves the generation of an incomplete child via the so-called E-sets (subtours
composed of alternating edges from each parent); subsequently, these subtours are
merged into a single feasible subtour using a greedy repair algorithm. The authors
of this operator reported impressive results in terms of accuracy and speed. It has
some similarities with the recombination operator proposed in [117]. We can also
mention the use of path relinking [59], a method based on creating a trajectory in
the search space between the solutions being “recombined” and picking the best
solution along that path.

A final comment must be made in relation to the computational complexity of re-
combination. It is clear that combining the features of several solutions is in general
computationally more expensive than modifying a single solution (i.e., a mutation).
Furthermore, the recombination operation will be usually invoked a large number of
times. For this reason, it is convenient (and in many situations mandatory) to keep
it at a low computational cost. A reasonable guideline is to consider an O(N logN)
upper bound for its complexity, where N is the size of the input (the set Spar and the
problem instance x). Such limit is easily affordable for blind recombination opera-
tors, which are called crossover, a reasonable name to convey their low complexity
(yet not always used in this context). However, this limit can be relatively astringent
in the case of heuristic recombination, mainly when epistasis (non-additive inter-
feature influence on the fitness value) is involved. This admits several solutions de-
pending upon the particular heuristic used. For example, DOR has exponential worst
case behavior, but it can be made affordable by picking larger pieces of information
from each parent (the larger the size of these pieces of information, the lower the
number of them needed to complete the child) [26]. In any case, heuristic recom-
bination operators provide better solutions than blind recombination operators, and
hence they need not be invoked the same number of times.

9 An Accelerated Introduction to Memetic Algorithms 287

Algorithm 2: A population-based search algorithm

Procedure Population-Based-Search-Engine;1
begin2

Initialize pop using GenerateInitialPopulation();3
repeat4

newpop ← GenerateNewPopulation(pop);5
pop ← UpdatePopulation (pop, newpop);6
if pop has converged then7

pop ← RestartPopulation(pop);8
endif9

until TerminationCriterion() ;10

end11

Algorithm 3: Injecting high-quality solutions in the initial population

Procedure GenerateInitialPopulation;1
begin2

Initialize pop using EmptyPopulation();3
for j ← 1 to popsize do4

i ← GenerateRandomConfiguration();5
i ← Local-Search-Engine (i);6
InsertInPopulation individual i to pop;7

endfor8
return pop;9

end10

9.2.5 A Memetic Algorithm Template

In light of the above considerations, it is possible to provide a general template for
a memetic algorithm. As mentioned in Sect. 9.2.3, this template is very similar to
that of a local search procedure acting on a set of |pop| � 2 configurations. This is
shown in Algorithm 2.

This template requires some explanation. First of all, the GenerateInitialPopu-
lation procedure is responsible for creating the initial set of |pop| configurations.
This can be done by simply generating |pop| random configurations or by using
a more sophisticated seeding mechanism (for instance, some constructive heuris-
tic), by means of which high-quality configurations are injected in the initial pop-
ulation [179]. Another possibility is to use the Local-Search-Engine presented in
Sect. 9.2.3 (as shown in Algorithm 3) or any other randomized constructive algo-
rithm for that matter. For example, a Greedy Randomized Adaptive Search Proce-
dure (GRASP) [161, 162] mechanism was used in [51], and Beam Search [189] was
used in [56].

As for the TerminationCriterion function, it can be defined very similarly to Lo-
cal Search, i.e., setting a limit on the total number of iterations, reaching a maximum
number of iterations without improvement or performing a certain number of popu-
lation restarts, etc.

288 P. Moscato and C. Cotta

Algorithm 4: The pipelined GenerateNewPopulation procedure

Procedure GenerateNewPopulation (pop);1
begin2

buffer0 ← pop;3
for j ← 1 to nop do4

Initialize buffer j using EmptyPopulation();5
endfor6
for j ← 1 to nop do7

S j
par ← ExtractFromBuffer (buffer j−1, arity j

in);8

S j
desc ← ApplyOperator (op j , S j

par);9

for z ← 1 to arity j
out do10

InsertInPopulation individual S j
desc[z] to buffer j;11

endfor12

endfor13
return buffernop ;14

end15

The GenerateNewPopulation procedure is at the core of memetic algorithms. Es-
sentially, this procedure can be seen as a pipelined process comprising nop stages.
Each of these stages consists of applying a variation (or reproductive) operator op j

by taking arity j
in configurations from the previous stage to produce arity j

out new con-
figurations. This pipeline is restricted to have arity1

in = popsize. The whole process
is sketched in Algorithm 4.

This template for the GenerateNewPopulation procedure is typically instantiated
in GAs by letting nop = 3, using a selection, a recombination, and a mutation opera-
tor. Traditionally, mutation is applied after recombination, i.e., on each child gener-
ated by the recombination operator. However, if a heuristic recombination operator
is being used, it may be more convenient to apply mutation before recombination.
Since the purpose of mutation is simply to introduce new features in the configura-
tion pool, using it in advance is possible in this case. Furthermore, the smart feature
combination performed by the heuristic operator would not be disturbed this way.

This situation is slightly different in MAs. In this case, it is very common to let
nop = 4, inserting a Local-Search-Engine right after applying op2 and op3 (respec-
tively recombination and mutation). Due to the local optimization performed after
mutation, their combined effect (i.e., mutation + local search) cannot be regarded as
a simple disruption of a computationally-demanding recombination. Note also that
the interplay between mutation and local search requires the former to be differ-
ent than the neighborhood structure used in the latter; otherwise mutations can be
readily reverted by local search, and their usefulness would be negligible.

The UpdatePopulation procedure is used to reconstruct the current population us-
ing the old population pop and the newly generated population newpop. Borrowing
the terminology from the evolution strategy [160, 166] community, there exist two
main possibilities to carry on this reconstruction: the plus strategy and the comma
strategy. In the former, the current population is constructed taken the best popsize
configurations from pop∪ newpop. For the latter, the best popsize configurations

9 An Accelerated Introduction to Memetic Algorithms 289

are taken just from newpop. In this case, it is required to have |newpop|> popsize,
so as to put some selective pressure on the process (the bigger the |newpop|/popsize
ratio, the stronger the pressure). Otherwise, the search would reduce to a random
wandering through S .

There are a number of studies regarding appropriate choices for the UpdatePopu-
lation procedure (see e.g., [6]). As a general guideline, the comma strategy is usually
regarded as less prone to stagnation, with the ratio |newpop|/popsize � 6 being a
common choice [7]. Nevertheless, this option can be somewhat computationally ex-
pensive if the guiding function is complex and time-consuming. Another common
alternative is to use a plus strategy with a low value of |newpop|, analogous to the
so-called steady-state replacement strategy in GAs [187]. This option usually pro-
vides a faster convergence to high-quality solutions. However, care has to be taken
with premature convergence to suboptimal regions of the search space, i.e., all con-
figurations in the population being very similar to each other, hence hindering the
exploration of other regions of S .

The above consideration about premature convergence leads to the last compo-
nent of the template shown in Algorithm 2, the restarting procedure. First of all,
it must be decided whether the population has degraded or has not. To do so, it
is possible to use some measure of information diversity in the population such as
Shannon’s entropy [38]. If this measure falls below a predefined threshold, the pop-
ulation is considered to be in a degenerate state. This threshold depends upon the
representation (number of values per variable, constraints, etc.) and hence must be
determined in an ad-hoc fashion. A different possibility is using a probabilistic ap-
proach to determine with a desired confidence that the population has converged.
For example, in [77] a Bayesian approach is presented for this purpose.

Once the population is considered to be at a degenerate state, the restart procedure
is invoked. Again, this can be implemented in a number of ways. A very typical
strategy is to keep a fraction of the current population (this fraction can be as small
as one solution, the current best), and substituting the remaining configurations with
newly generated (from scratch) solutions, as shown in Algorithm 5.

The procedure shown in Algorithm 5 is also known as the random-immigrant
strategy [20]. Another possibility is using the previous search history [178] or ac-
tivate a strong or heavy mutation operator in order to drive the population away
from its current location in the search space. Both options have their advantages
and disadvantages. For example, when using the random-immigrant strategy, one
has to take some caution to prevent the preserved configurations to take over the
population (this can be achieved by putting a low selective pressure, at least in the
first iterations after a restart). As to the heavy mutation strategy, one has to achieve a
tradeoff between an excessively strong mutation that would destroy any information
contained in the current population, and a not so strong mutation that would cause
the population to converge again in a few iterations.

290 P. Moscato and C. Cotta

Algorithm 5: The RestartPopulation procedure

Procedure RestartPopulation (pop);1
begin2

Initialize newpop using EmptyPopulation();3
#preserved ← popsize ·%preserve;4
for j ← 1 to #preserved do5

i ← ExtractBestFromPopulation(pop);6
InsertInPopulation individual i to newpop;7

endfor8
for j ← #preserved +1 to popsize do9

i ← GenerateRandomConfiguration();10
i ← Local-Search-Engine (i);11
InsertInPopulation individual i to newpop;12

endfor13
return newpop;14

end15

9.2.6 Designing an Effective Memetic Algorithm

The general template of MAs depicted in the previous section must be instantiated
with precise components in order to be used for solving a specific problem. This
instantiation has to be done carefully so as to obtain an effective optimization tool.
We will address some design issues in this section.

A first obvious remark is that there exist no general approach for the design of ef-
fective MAs. This observation is based on different proofs depending on the precise
definition of effective in the previous statement. Such proofs may involve classical
complexity results and conjectures if ‘effective’ is understood as ‘polynomial-time’,
or the NFL Theorem if we consider a more general set of performance measures,
and even Computability Theory if we relax the definition to arbitrary decision prob-
lems. For these reasons, we can only define several design heuristics that will likely
result in good-performing MAs, but without explicit guarantees for this.

This said, MAs are commonly implemented as evolutionary algorithms endowed
with an independent search component, sometimes provided by a local search mech-
anism (recall previous section), and as such can benefit from the theoretical corpus
available for EAs. This is particularly applicable to some basic aspects such as the
representation of solutions in terms of meaningful information units [37, 158]. Fo-
cusing now on more specific aspects of MAs, the first consideration that must be
clearly taken into account is the interplay among the local search component and
the remaining operators, mostly with respect to the characteristics of the search
landscape. A good example of this issue can be found in the work of Merz and
Freisleben on the TSP [49]. They consider the use of a highly intensive local search
procedure—the Lin-Kernighan heuristic [104]—and note that the average distance
between local optima is similar to the average distance between a local optimum and
the global optimum. For this reason, they introduce a distance-preserving crossover
(DPX) operator that generate offspring whose distance from the parents is the same

9 An Accelerated Introduction to Memetic Algorithms 291

as the distance between the parents themselves. Such an operator is likely to be
less effective if a not-so-powerful local improvement method, e.g., 2-opt, was used,
inducing a different distribution of local optima.

Another important choice refers to the learning model used. The most common
option is to use a Lamarckian model, whereby an improved solution is sought via
local search and the corresponding genotypic changes are retained in the solution.
However, there also exists the possibility of using a Baldwinian model, in which
the improved solution is only used for the purposes of fitness computation, but the
actual solution is not changed at all. This might be useful in order to avoid local
optima while converging to the global optimum [58, 89, 192]; see also [188] for a
classical analysis of these two strategies in optimization.

In addition to the particular choice (or choices) of local search operator, there
remains the issue of determining an adequate parameterization for the procedure,
namely, how much effort must be spent on each local search, how often the local
search must be applied, and—were it not applied to every new solution generated—
how to select the solutions that will undergo local improvement. Regarding the first
two items, there exists theoretical evidence [99, 175] that an inadequate parameter
setting can turn the algorithmic solution from easily solvable to non-polynomially
solvable. Besides, there are obvious practical limitations in situations where the lo-
cal search and/or the fitness function is computationally expensive. This fact admits
different solutions. On the one hand, the use of surrogates (i.e., fast approximate
models of the true function) to accelerate evolution is an increasingly popular option
in such highly demanding problems [64, 102, 185, 186, 194]. On the other hand, par-
tial lamarckism [23, 74, 149], where not every individual is subject to local search,
is commonly used as well. The precise value for the local search application prob-
ability (or multiple values when more than one local search procedure is available)
largely depends on the problem under consideration [81], and its determination is
in many cases an art. For this reason, adaptive and self-adaptive mechanisms have
been defined in order to let the algorithm learn what the most appropriate setting
is (see Sect. 9.3.4). The interested reader is referred to [176, 177] for a more in-
depth analysis of the balance between the local and global (i.e., population-based)
components of the memetic algorithm.

As to the selection of individuals that will undergo local search, the most com-
mon options are random-selection, and fitness-based selection, where only the best
individuals are subject to local improvement. Nguyen et al. [136] also consider a
‘stratified’ approach, in which the population is sorted and divided into k levels (k
being the number of local search applications), and one individual per level is ran-
domly selected. Their experimentation on some continuous functions indicates that
this strategy and improve-the-best (i.e., applying local search to the best individ-
uals) provide better results than random selection. Such strategies can be readily
deployed on a structured MA as defined by Moscato et al. [10, 15, 48, 110, 125],
where good solutions flow upwards within a tree-structured population, and lay-
ers are explicitly available. Other population management strategies are possible as
well, see [14, 153, 154, 173].

292 P. Moscato and C. Cotta

9.3 Algorithmic Extensions of Memetic Algorithms

The algorithmic template and design guidelines described in the previous section
can characterize most basic incarnations of MAs, namely population-based algo-
rithms endowed with static local search for single-objective optimization. However,
more sophisticated approaches can be conceived, and are certainly required in cer-
tain applications. This section is aimed at providing an overview of more advanced
algorithmic extensions used in the MA realm.

9.3.1 Multiobjective Memetic Algorithms

Multiobjective problems are frequent in real-world applications. Rather than having
a single objective to be optimized, the solver is faced with multiple, partially con-
flicting objectives. As a result, there is no a priori single optimal solution but rather
a collection of optimal solutions, providing different trade-offs among the objectives
considered. In this scenario, the notion of Pareto-dominance is essential: given two
solutions s,s′ ∈ solP(x), s is said to dominate s′ if it is better than s′ in at least one of
the objectives, and it is no worse in the remaining ones. This clearly induces a partial
order ≺P, since given two solutions it may be the case that none of them dominates
the other. This collection of optimal solutions is termed the optimal Pareto front, or
the optimal non-dominated front.

Population-based search techniques, in particular evolutionary algorithms (EAs),
are naturally fit to deal with multiobjective problems, due to the availability of a
population of solutions which can approach the optimal Pareto front from different
directions. There is an extensive literature on the deployment of EAs in multiobjec-
tive settings, and the reader is referred to [21, 22, 42, 195], among others, for more
information on this topic. MAs can obviously benefit from this corpus of knowl-
edge. However, MAs typically incorporate a local search mechanism, and it has to
be adapted to the multiobjective setting as well. This can be done in different ways
[94], which can be roughly classified into two major classes: scalarizing approaches,
and Pareto-based approaches. Scalarizing approaches are based on the use of some
aggregation mechanism to combine the multiple objectives into a single scalar value.
This is usually done using a linear combination of the objective values, with weights
that are either fixed (at random or otherwise) for the whole execution of the local
search procedure [182], or adapted as the local search progresses [66]. With regard
to Pareto-based approaches, the notion of Pareto-dominance is considered for de-
ciding transitions among neighboring solutions, typically coupled with the use of
some measure of crowding to spread the search, e.g, [91].

A full-fledged multiobjective MA (MOMA) is obtained by appropriately com-
bining population-based and local search-based components for multiobjective op-
timization. Again, the strategy used in the local search mechanism can be used to
classify most MOMAs. On one hand, we have aggregation approaches. Thus, two
proposals due to Ishibuchi and Murata [79, 80] and Jaszkiewicz [83, 84] are based

9 An Accelerated Introduction to Memetic Algorithms 293

on the use of random scalarization each time a local search is to be used. Alterna-
tively, a single-objective local search could be used to optimize individual objectives
[82]. Ad hoc mating strategies based on the particular weights chosen at each local
search invocation (whereby the solutions to be recombined are picked according
to these weights) are used as well. A related approach—including the on-line ad-
justment of scalarizing weights—is followed by Guo et al. [65–67]. On the other
hand, we have Pareto-based approaches. In this line, a MA based on PAES (Pareto
Archived Evolution Strategy) was defined by Knowles and Corne [92, 93]. More
recently, a MOMA based on particle swarm optimization (PSO) has been defined
by Liu et al. [101, 108]. In this algorithm, an archive of non-dominated solutions is
maintained and randomly sampled to obtain reference points for particles. A differ-
ent approach is used by Schuetze et al. [164] for numerical-optimization problems.
The continuous nature of solution variables allows using their values for computing
search directions. This fact is exploited in their local search procedure (HCS for
Hill Climber with Sidestep) to direct the search toward specific regions (e.g., along
the Pareto front) when required. We refer to [85] for a more in-depth discussion on
multiobjective MAs.

9.3.2 Continuous Optimization

Continuous optimization problems are defined on a dense search space [183], typ-
ically by some subset of the n-fold Cartesian product Rn. Many problems have de-
cision variables of this continuous nature and hence continuous optimization is a
realm of paramount importance. Throughout previous sections, MAs were admit-
tedly described with a discrete background in mind. Indeed, discrete optimization
problems put to test the skills of the algorithmic designer in the sense that the dif-
ficulty of solving a particular problem and the effectiveness of the solver depend
on the precise instantiation of notions such as the neighborhood relation. This said,
most of the ideas and concepts sketched before for discrete optimization are also ap-
plicable to continuous optimization. Of course, in this realm there is a natural notion
of neighborhood of a point s given by open balls Bd(s) = {s′ : ||s− s′|| < d}, i.e.,
those points located within distance d of x, for a suitable distance metric (typically,
but not necessarily, the Euclidean distance—see [44]).

The different components of a classic MA, namely the population-based engine
and the local search technique, must be adapted to deal with this new domain of
solutions. Regarding the former, there is plenty of literature on how to adapt the
variation operators to tackle continuous optimization [70, 71, 109, 191] and actually
some evolutionary computation families lend themselves naturally to this kind of
optimization [13, 174]. Typical options with regard to the recombination operator
are the following (assuming for the sake of notation that parental solutions s =
〈s1, . . . ,sn〉 and s′ = 〈s′1, . . . ,s′n〉 are being recombined to obtain u = 〈u1, . . . ,un〉):
• use a discrete approach and create the offspring by using the precise values the

decision variable have in the parental solutions, i.e., ui ∈ {si,s′i}.

294 P. Moscato and C. Cotta

• use some arithmetical operation to combine the values of homologous variables
in the parental solutions, e.g., compute an average: ui = (si + s′i)/2.

• use some sampling procedure within some hyperrectangle, hyperellipse, or other
suitable hypersurface defined by the parental solutions, e.g., ui ∈ [mi,Mi] where
mi = min(si,s′i)−αdi, Mi = max(si,s′i)+αdi, di = |si − s′i|, α � 0.

The situation is more flexible when multiparent recombination is used. In this case,
other possibilities exist in addition to the previous methods, such as utilizing some
subset of the parental solutions to create a hypersurface and using some projection
technique to create the offspring, much like it is done in the Nelder-Mead method
[131]. For mutation, it is typically accomplished by some additive or multiplicative
perturbation to variable values, obtained by means of some predefined distribution
such as uniform, Gaussian or Cauchy, just to cite some of the most common exam-
ples. The extent of the perturbation is a parameter than can be subject to adaptation
during the run (cf. Sect. 9.3.4)

Regarding the local search component, there are many techniques that can be
used for this purpose, just by adapting the definition of neighborhood as mentioned
before and using some kind of gradient ascent, possibly modulated with some mech-
anism to escape from local optima (as it is done in e.g., simulated annealing); see
[41] for a more detailed discussion of these. One particular issue worth mentioning
in connection with local search is the fact that, unlike many typical discrete opti-
mization scenarios in which the objective function can be decomposed in order to
isolate the effect caused by the modification of a certain decision variable (i.e., the
fitness value of the modified solution is f (u) = f (s) +Δ(s,u) for some function
Δ(s,u) which is computationally cheaper to compute than f (u)), continuous opti-
mization problem usually exhibits many couplings and non-linearities that preclude
or at least limit such approaches. This affects the cost of the local search component
which in turn may influence the optimal balance between local and global search
in the algorithm. Some authors [115] have proposed to store the state of the local
search along with each solution it is applied to, so that further applications of the lo-
cal improvement routine resume from this state. We refer to [25] for a more detailed
discussion of design issues in MAs for continuous optimization.

9.3.3 Memetic Computing Approaches

Memes were introduced in Sect. 9.1 as units of imitation. In a computational context
(and more precisely with regard to memetic algorithms), they acquire a new mean-
ing though. In this sense, a first interpretation would be to use the notion of meme
as a high-level non-genetic pattern of information, that is, the carrier particle of in-
dividual learning. From the standpoint of classical MAs, this role is implemented
by local improvement procedures. Thus, the particular choice of a local search pro-
cedure (a simple heuristic rule, hill climbing, simulated annealing, etc.) plus the
corresponding parameterization can be regarded as the implicit definition of a fixed

9 An Accelerated Introduction to Memetic Algorithms 295

meme. However, earlier works already anticipated that these memes needed not be
static, but change dynamically during the search. Quoting [118]:

It may be possible that a future generation of MAs will work in at least two levels and two
timescales. In the short-timescale, a set of agents would be searching in the search space
associated to the problem while the long-time scale adapts the heuristics associated with the
agents.

The first steps in this direction were taken in [96, 168] by including an explicit rep-
resentation of memes alongside solutions, and having them evolve. This has given
rise to the notion of memetic computing, which can be defined as a broad discipline
that focuses on the use of dynamic complex computational structures composed of
interacting modules (the memes) which are harmoniously coordinated to solve par-
ticular problems [132]; see also [19, 146].

There are obvious connections here with the notion of adaptive hyperheuristics
[16, 18, 35, 88], particularly in the context of Meta-Lamarckian learning [137, 145],
in which a collection of memes are available and some mechanism is used to decide
which one to apply and when (be it using information on the previous applications
of each meme or gathering population statistics [134]). Some other possibilities can
be used though. As mentioned above, memes can be explicitly represented (this can
range from a simple parameterization of a generic template—i.e., the neighborhood
definition of a local search procedure, the pivot rule, etc.—to the full definition of
the local improver using mechanisms akin to genetic programming) and self-adapt
during the execution of the algorithm, either as a part of solutions [97, 98, 140, 171]
or in a separate population [169]. Furthermore, it is possible to aggregate simple
memes into larger compounds or memeplexes [19] in order to attain synergistic co-
operation and improved search efficiency.

9.3.4 Self-� Memetic Algorithms

When some design guidelines were given in Sect. 9.2.6, the fact that these were
heuristics that ultimately relied on the available problem knowledge was stressed.
This is not a particular feature of MAs, but affects the field of metaheuristics as a
whole. Indeed, one of the keystones in practical metaheuristic problem-solving is
the necessity of customizing the solver for the problem at hand [30]. Therefore, it is
not surprising that attempts to transfer a part of this tuning effort to the metaheuristic
technique itself have been common. Such attempts can take place at different levels,
or can affect different components of the algorithm. The first—and more intuitive
one—is the parametric level involving the numerical values of parameters, such as
the operator application rates. Examples of this can be found in early EAs, see for
example [3, 12, 39, 167]. An overview of these approaches (actually broader in
scope, covering more advanced topics than parameter adaptation) can be found in
[170]. Focusing specifically on MAs, this kind of adaptation has been applied in
[8, 71, 113, 114, 147].

296 P. Moscato and C. Cotta

The explicit processing of memes described in the previous section is actually a
further step in the direction of promoting the autonomous functioning of the algo-
rithm. Indeed, from a very general point of view this connects to the idea of auto-
nomic computing [73], that tries to transfer to the computing realm the idea of the
autonomic nervous system carrying essential functions without conscious control.
In this line, the umbrella term self-� properties [5] is used to describe the capacity
of self-management in complex computational systems [76]. Self-parameterization
attempts mentioned previously fall within the scope of self-� properties, and so does
the explicit handling of memes described in previous section, which can be consid-
ered a case of self-generating search strategies. As a matter of fact, both approaches
constitute examples of self-optimization [9], because they aim at improving the ca-
pabilities of the algorithm for carrying out its functions (which is in turn solving the
objective problem).

Self-� properties can encompass other advanced capabilities beyond self-
optimization such as self-scaling or self-healing. The former refers to the ability
of the system to react efficiently to changes in its scale parameters, be it related to
changes in the scale of the problem being solved, in the scale of the computational
resources available, or in other circumstance or combination of circumstances of the
computation. Such capability may involve some form of self-configuration in order
to accomplish the objective of the computation in the most effective way in light of
the change of scale. An example can be found in the domain of island-based MAs
[138] deployed in unstable distributed environments [32]: if the computational sub-
strate is composed of processing nodes whose availability fluctuate, the algorithm
may face uncontrollable reductions or increments of the computational resources
(i.e., some islands may appear, other islands may disappear). As a reaction, the algo-
rithm may attempt to resize the islands and balance them out, so that the population
size is affected as little as possible [141]. The second property, namely self-healing,
is also relevant in this context: it aims to maintain and restore system attributes that
may have been affected by internal or external actions, i.e., self-healing externally
infringed damage. In the volatile computational scenario depicted, such damage is
caused by the loss of information and the disruptions in connectivity caused by the
disappearance of islands [142]. To tackle these issues, the algorithm may use self-
sampling (using a probabilistic model of the population—much like it is done in
estimation of distribution algorithms [100, 151]—in order to enlarge it in a sensi-
ble way when required) and self-rewiring in order to create new connectivity links
and prevent the network from becoming disconnected. It must also be noted as an
aside that very traditional techniques commonly used when metaheuristic face con-
strained problems, namely using a repair function to restore the feasibility of solu-
tions [112], can also fall within the scope of self-repairing approaches.

9 An Accelerated Introduction to Memetic Algorithms 297

9.3.5 Memetic Algorithms and Complete Techniques

The combination of exact techniques with metaheuristics is an increasingly pop-
ular approach. Focusing on local search techniques, Dumitrescu and Stüztle [46]
have provided a classification of methods in which exact algorithms are used to
strengthen local search, i.e., to explore large neighborhoods, to solve exactly some
subproblems, to provide bounds and problem relaxations to guide the search, etc.
Some of these combinations can also be found in the literature on population-
based methods. For example, exact techniques—such as BnB [27] or dynamic pro-
gramming [54] among others—have been used to perform recombination (recall
Sect. 9.2.4), and approaches in which exact techniques solved some subproblems
provided by EAs date back to 1995 [28]; see also [47] for a large list of references
regarding local search/exact hybrids.

Puchinger and Raidl [155] have provided a classification of this kind of hybrid
techniques in which algorithmic combinations are either collaborative (sequential
or intertwined execution of the combined algorithms) or integrative (one technique
works inside the other one, as a subordinate). Some of the exact/metaheuristic hy-
brid approaches defined before are clearly integrative—i.e., using an exact technique
to explore neighborhoods. Further examples are the use of BnB in the decoding
process [156] of a genetic algorithm (i.e., exact method within a metaheuristic tech-
nique), or the use of evolutionary techniques for the strategic guidance of BnB [95]
(metaheuristic approach within an exact method).

With regard to collaborative combinations, a sequential approach in which the
execution of a MA is followed by a branch-and-cut method can be found in [90]. In-
tertwined approaches are also popular. For example, Denzinger and Offerman [43]
combine genetic algorithms and BnB within a parallel multi-agent system. These
two algorithms also cooperate in [28, 52], the exact technique providing partial
promising solutions, and the metaheuristic returning improved bound. A related ap-
proach involving beam search and full-fledged MAs can be found in [53, 55, 56];
see also [31] for a broader overview of this kind of combinations.

It must be noted that most hybrid algorithms defined so far that involve exact
techniques and metaheuristics are not complete, in the sense that they do not guaran-
tee an optimal solution (an exception is the proposal of French et al. [50], combining
an integer-programming BnB approach with GAs for MAX-SAT). Thus, the term
‘complete MA’ may be not fully appropriate. Nevertheless, many of these hybrids
can be readily adapted for completeness purposes, although obviously time and/or
space requirements will grow faster-than-polynomial in general.

9.4 Applications of Memetic Algorithms

Applications are the “raison d’être” of memetic algorithms. Their functioning phi-
losophy, namely incorporating and exploiting knowledge of the problem being
solved, presumes they are designed with a target problem in mind. This section will

298 P. Moscato and C. Cotta

provide an overview of the numerous applications of MAs. The reader may actually
be convinced of the breadth of these applications by noting the existence of a num-
ber of domain-specific reviews of MAs. As a matter of fact, we have organized this
section as a meta-review of applications, providing pointers to these compilations
rather than to individual specific applications. This is done in Table 9.1.

Table 9.1 Application surveys of memetic algorithms

Domain References

General overviews [33, 69, 120–123, 132]

Bioinformatics [11, 122]
Combinatorial optimization [120–123]
Electronics and telecommunications [33, 34, 120, 122, 123]
Engineering [17, 33]
Machine learning and knowledge discovery [120, 122, 123]
Molecular optimization [120, 123]
Planning, scheduling, and timetabling [24, 122–124]

General overviews are also referenced with respect to the subdomains in which they are internally
structured

Any of the reviews mentioned are far from exhaustive since new applications are
being developed continuously. However, they are intended to illustrate the practical
impact of these optimization techniques, pointing out some selected compilations
from these well-known application areas. For further information about MA ap-
plications, we suggest querying bibliographical databases or web browsers for the
keywords ‘memetic algorithms’ and ‘hybrid genetic algorithms’.

9.5 Conclusions

We believe that the future looks good for MAs. This belief is based on the following.
First of all, MAs are showing a great record of efficient implementations, providing
very good results for practical problems, as the reader may have noted in Sect. 9.4.
We also have reasons to believe that we are close to some major leaps forward in
our theoretical understanding of these techniques, including for example the worst-
case and average-case computational complexity of recombination procedures. On
the other hand, the ubiquitous nature of distributed systems is likely to boost
the deployment of MAs on large-scale, computationally demanding optimization
problems.

We also see as a healthy sign the systematic development of other particular op-
timization strategies. If any of the simpler metaheuristics (SA, TS, VNS, GRASP,
etc.) performs the same as a more complex method (GAs, MAs, Ant Colonies, etc.),
an “elegance design” principle should prevail and we must either resort to the sim-
pler method, or to the one that has less free parameters, or to the one that is easier

9 An Accelerated Introduction to Memetic Algorithms 299

to implement. Such a fact should challenge us to adapt complex methodologies to
beat simpler heuristics, or to check if that is possible at all. An unhealthy sign of

2000 2005 2010 2015

0

50

100

150

200

250

year

nu
m

be
ro

fp
ub

lic
at

io
ns

Web of Science
Scopus

Fig. 9.1 Number of publications obtained by querying the Web of Science and Scopus with the
term “memetic algorithm” (1998–2016)

current research, however, are the attempts to encapsulate metaheuristics in sepa-
rate compartments. Fortunately, such attempts are becoming increasingly less fre-
quent. Indeed, combinations of MAs with other metaheuristics such as differential
evolution [133, 143, 163, 181], estimation of distribution algorithms [2, 139, 184],
particle swarm optimization [75, 101, 105–108, 148, 152, 172, 193], or ant-colony
optimization [103] are not unusual nowadays. Furthermore, there is a clear ascend-
ing trend in the number of publications related to MAs, as shown in Fig. 9.1. Thus,
as stated before, the future looks promising for MAs.

Acknowledgements This chapter is an update of [122], refurbished with new references and the
inclusion of sections on timely topics which were not fully addressed in the previous editions.
Pablo Moscato acknowledges funding of his research by the Australian Research Council grants
Future Fellowship FT120100060 and Discovery Project DP140104183. He also acknowledges pre-
vious support by FAPESP, Brazil (1996–2001). Carlos Cotta acknowledges the support of Spanish
Ministry of Economy and Competitiveness and European Regional Development Fund (FEDER)
under project EphemeCH (TIN2014-56494-C4-1-P).

300 P. Moscato and C. Cotta

References

1. D. Aldous, U. Vazirani, “Go with the winners” algorithms, in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science (IEEE Press, Los Alamitos, 1994), pp. 492–
501

2. J.E. Amaya, C. Cotta, A.J. Fernández, Cross entropy-based memetic algorithms: an applica-
tion study over the tool switching problem. Int. J. Comput. Intell. Syst. 6(3), 559–584 (2013)

3. P. Angeline, Morphogenic evolutionary computations: introduction, issues and example, in
Fourth Annual Conference on Evolutionary Programming, ed. by J.R. McDonnell et al. (MIT
Press, Cambridge, 1995), pp. 387–402

4. R. Axelrod, W. Hamilton, The evolution of cooperation. Science 211(4489), 1390–1396
(1981)

5. Ö. Babaoğlu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi, A. van Moorsel, M. van Steen
(eds.), Self-Star Properties in Complex Information Systems. Lecture Notes in Computer
Science, vol. 3460 (Springer, Berlin, 2005)

6. T. Bäck, Evolutionary Algorithms in Theory and Practice (Oxford University Press, New
York, 1996)

7. T. Bäck, F. Hoffmeister, Adaptive search by evolutionary algorithms, in Models of Self-
organization in Complex Systems, ed. by W. Ebeling, M. Peschel, W. Weidlich. Mathematical
Research, vol. 64 (Akademie-Verlag, Berlin, 1991), pp. 17–21

8. N. Bambha, S. Bhattacharyya, J. Teich, E. Zitzler, Systematic integration of parameterized
local search into evolutionary algorithms. IEEE Trans. Evol. Comput. 8(2), 137–155 (2004)

9. A. Berns, S. Ghosh, Dissecting self-� properties, in Third IEEE International Conference on
Self-Adaptive and Self-Organizing Systems - SASO 2009 (IEEE Press, San Francisco, 2009),
pp. 10–19

10. R. Berretta, C. Cotta, P. Moscato, Enhancing the performance of memetic algorithms by
using a matching-based recombination algorithm: results on the number partitioning prob-
lem, in Metaheuristics: Computer-Decision Making, ed. by M. Resende, J. Pinho de Sousa
(Kluwer Academic Publishers, Boston, 2003), pp. 65–90

11. R. Berretta, C. Cotta, P. Moscato, Memetic algorithms in bioinformatics, in Handbook of
Memetic Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelli-
gence, vol. 379 (Springer, Berlin, 2012), pp. 261–271

12. H. Beyer, Toward a theory of evolution strategies: self-adaptation. Evol. Comput. 3(3), 311–
348 (1995)

13. H.G. Beyer, H.P. Schwefel, Evolution strategies – a comprehensive introduction. Nat. Com-
put. 1(1), 3–52 (2002)

14. M. Boudia, C. Prins, M. Reghioui, An effective memetic algorithm with population manage-
ment for the split delivery vehicle routing problem, in Hybrid Metaheuristics 2007, ed. by
T. Bartz-Beielstein et al. Lecture Notes in Computer Science, vol. 4771 (Springer, Berlin,
2007), pp. 16–30

15. L. Buriol, P. França, P. Moscato, A new memetic algorithm for the asymmetric traveling
salesman problem. J. Heuristics 10(5), 483–506 (2004)

16. E. Burke, G. Kendall, E. Soubeiga, A tabu search hyperheuristic for timetabling and roster-
ing. J. Heristics 9(6), 451–470 (2003)

17. A. Caponio, F. Neri, Memetic algorithms in engineering and design, in Handbook of Memetic
Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelligence,
vol. 379 (Springer, Berlin, 2012), pp. 241–260

18. K. Chakhlevitch, P. Cowling, Hyperheuristics: recent developments, in Adaptive and Mul-
tilevel Metaheuristics, ed. by C. Cotta, M. Sevaux, K. Sörensen. Studies in Computational
Intelligence, vol. 136 (Springer, Berlin, 2008), pp. 3–29

19. X. Chen, Y.S. Ong, A conceptual modeling of meme complexes in stochastic search. IEEE
Trans. Syst. Man Cybern. Part C Appl. Rev. 42(5), 612–625 (2012)

20. H. Cobb, J. Grefenstette, Genetic algorithms for tracking changing environments, in Proceed-
ings of the Fifth International Conference on Genetic Algorithms, ed. by S. Forrest (Morgan
Kaufmann, San Mateo, 1993), pp. 529–530

9 An Accelerated Introduction to Memetic Algorithms 301

21. C. Coello Coello, G. Lamont, Applications of Multi-Objective Evolutionary Algorithms
(World Scientific, New York, 2004)

22. C. Coello Coello, D. Van Veldhuizen, G. Lamont, Evolutionary Algorithms for Solving Multi-
Objective Problems. Genetic Algorithms and Evolutionary Computation, vol. 5 (Kluwer
Academic Publishers, Dordrecht, 2002)

23. C. Cotta, Memetic algorithms with partial lamarckism for the shortest common superse-
quence problem, in Artificial Intelligence and Knowledge Engineering Applications: A Bioin-
spired Approach, ed. by J. Mira, J. Álvarez. Lecture Notes in Computer Science, vol. 3562
(Springer, Berlin, 2005), pp. 84–91

24. C. Cotta, A. Fernández, Memetic algorithms in planning, scheduling, and timetabling, in
Evolutionary Scheduling, ed. by K. Dahal, K. Tan, P. Cowling. Studies in Computational
Intelligence, vol. 49 (Springer, Berlin, 2007), pp. 1–30

25. C. Cotta, F. Neri, Memetic algorithms in continuous optimization, in Handbook of Memetic
Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelligence,
vol. 379 (Springer, Berlin, 2012), pp. 121–134

26. C. Cotta, J. Troya, On the influence of the representation granularity in heuristic forma re-
combination, in ACM Symposium on Applied Computing 2000, ed. by J. Carroll, E. Damiani,
H. Haddad, D. Oppenheim (ACM Press, New York, 2000), pp. 433–439

27. C. Cotta, J. Troya, Embedding branch and bound within evolutionary algorithms. Appl. In-
tell. 18(2), 137–153 (2003)

28. C. Cotta, J. Aldana, A. Nebro, J. Troya, Hybridizing genetic algorithms with branch and
bound techniques for the resolution of the TSP, in Artificial Neural Nets and Genetic Algo-
rithms 2, ed. by D. Pearson, N. Steele, R. Albrecht (Springer, Wien, 1995), pp. 277–280

29. C. Cotta, E. Alba, J. Troya, Stochastic reverse hillclimbing and iterated local search, in Pro-
ceedings of the 1999 Congress on Evolutionary Computation (IEEE, Washington, DC, 1999),
pp. 1558–1565

30. C. Cotta, M. Sevaux, K. Sörensen, Adaptive and Multilevel Metaheuristics. Studies in Com-
putational Intelligence, vol. 136 (Springer, Berlin, 2008)

31. C. Cotta, A.J. Fernández Leiva, J.E. Gallardo, Memetic algorithms and complete techniques,
in Handbook of Memetic Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Com-
putational Intelligence, vol. 379 (Springer, Berlin, 2012), pp. 189–200

32. C. Cotta, A.J. Fernández-Leiva, F. Fernández de Vega, F. Chávez, J.J. Merelo, P.A. Castillo,
G. Bello, D. Camacho, Ephemeral computing and bioinspired optimization - challenges and
opportunities, in 7th International Joint Conference on Evolutionary Computation Theory
and Applications, Lisboa (2015), pp. 319–324

33. C. Cotta, L. Mathieson, P. Moscato, Memetic algorithms, in Handbook of Heuristics, ed. by
M. Resende, R. Marti, P. Pardalos (Springer, Berlin, 2015)

34. C. Cotta, J. Gallardo, L. Mathieson, P. Moscato, A contemporary introduction to memetic al-
gorithms, in Wiley Encyclopedia of Electrical and Electronic Engineering (Wiley, Hoboken,
2016), pp. 1–15. https://doi.org/10.1002/047134608X.W8330

35. P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach to schedule a sales submit,
in Third International Conference on Practice and Theory of Automated Timetabling III -
PATAT 2000, ed. by E. Burke, W. Erben. Lecture Notes in Computer Science, vol. 2079
(Springer, Berlin, 2000), pp. 176–190

36. J. Culberson, On the futility of blind search: an algorithmic view of “no free lunch”. Evol.
Comput. 6(2), 109–128 (1998)

37. Y. Davidor, Epistasis variance: suitability of a representation to genetic algorithms. Complex
Syst. 4(4), 369–383 (1990)

38. Y. Davidor, O. Ben-Kiki, The interplay among the genetic algorithm operators: informa-
tion theory tools used in a holistic way, in Parallel Problem Solving From Nature II, ed. by
R. Männer, B. Manderick (Elsevier Science Publishers B.V., Amsterdam, 1992), pp. 75–84

39. L. Davis, Handbook of Genetic Algorithms (Van Nostrand Reinhold Computer Library, New
York, 1991)

40. R. Dawkins, The Selfish Gene (Clarendon Press, Oxford, 1976)

https://doi.org/10.1002/047134608X.W8330

302 P. Moscato and C. Cotta

41. M.A.M. de Oca, C. Cotta, F. Neri, Local search, in Handbook of Memetic Algorithms. Studies
in Computational Intelligence, ed. by F. Neri, C. Cotta, P. Moscato, vol. 379 (Springer, Berlin,
2012), pp. 29–41

42. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, Chichester,
2001)

43. J. Denzinger, T. Offermann, On cooperation between evolutionary algorithms and other
search paradigms, in 6th International Conference on Evolutionary Computation (IEEE
Press, New York, 1999), pp. 2317–2324

44. M. Deza, E. Deza, Encyclopedia of Distances (Springer, Berlin, 2009)
45. S. Droste, T. Jansen, I. Wegener, Perhaps not a free lunch but at least a free appetizer, in

Genetic and Evolutionary Computation - GECCO 1999, ed. by W. Banzhaf et al., vol. 1
(Morgan Kaufmann Publishers, Orlando, 1999), pp. 833–839

46. I. Dumitrescu, T. Stützle, Combinations of local search and exact algorithms, in Applications
of Evolutionary Computing: EvoWorkshops 2003, ed. by G.R. Raidl et al. Lecture Notes in
Computer Science, vol. 2611 (Springer, Berlin, 2003), pp. 212–224

47. S. Fernandes, H. Lourenço, Hybrids combining local search heurisitcs with exact algorithms,
in V Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, Las
Palmas, Spain, ed. by F. Almeida et al. (2007), pp. 269–274

48. P.M. França, J.N. Gupta, A.S. Mendes, P. Moscato, K.J. Veltink, Evolutionary algorithms for
scheduling a flowshop manufacturing cell with sequence dependent family setups. Comput.
Ind. Eng. 48(3), 491–506 (2005)

49. B. Freisleben, P. Merz, A genetic local search algorithm for solving symmetric and asymmet-
ric traveling salesman problems, in Proceedings of the 1996 IEEE International Conference
on Evolutionary Computation, Nagoya, Japan (IEEE Press, New York, 1996), pp. 616–621

50. A. French, A. Robinson, J. Wilson, Using a hybrid genetic-algorithm/branch and bound ap-
proach to solve feasibility and optimization integer programming problems. J. Heuristics
7(6), 551–564 (2001)

51. J.E. Gallardo, C. Cotta, A GRASP-based memetic algorithm with path relinking for the far
from most string problem. Eng. Appl. Artif. Intell. 41, 183–194 (2015)

52. J. Gallardo, C. Cotta, A. Fernández, Solving the multidimensional knapsack problem using
an evolutionary algorithm hybridized with branch and bound, in Artificial Intelligence and
Knowledge Engineering Applications: A Bioinspired Approach, ed. by J. Mira, J. Álvarez.
Lecture Notes in Computer Science, vol. 3562 (Springer, Berlin, 2005), pp. 21–30

53. J. Gallardo, C. Cotta, A. Fernández, A multi-level memetic/exact hybrid algorithm for the
still life problem, in Parallel Problem Solving from Nature IX, ed. by T. Runarsson et al.
Lecture Notes in Computer Science, vol. 4193 (Springer, Berlin, 2006), pp. 212–221

54. J. Gallardo, C. Cotta, A. Fernández, A memetic algorithm with bucket elimination for the
still life problem, in Evolutionary Computation in Combinatorial Optimization, ed. by J. Got-
tlieb, G. Raidl. Lecture Notes in Computer Science, vol. 3906 (Springer, Budapest, 2006),
pp. 73–84

55. J. Gallardo, C. Cotta, A. Fernández, Reconstructing phylogenies with memetic algorithms
and branch-and-bound, in Analysis of Biological Data: A Soft Computing Approach, ed. by
S. Bandyopadhyay, U. Maulik, J.T.L. Wang (World Scientific, Singapore, 2007), pp. 59–84

56. J.E. Gallardo, C. Cotta, A.J. Fernández, On the hybridization of memetic algorithms with
branch-and-bound techniques. IEEE Trans. Syst. Man Cybern. B 37(1), 77–83 (2007)

57. J.E. Gallardo, C. Cotta, A.J. Fernández, Solving weighted constraint satisfaction problems
with memetic/exact hybrid algorithms. J. Artif. Intell. Res. 35, 533–555 (2009)

58. M. Gen, R. Cheng, Genetic Algorithms and Engineering Optimization (Wiley, Hoboken,
2000)

59. F. Glover, M. Laguna, R. Mart, Fundamentals of scatter search and path relinking. Control.
Cybern. 29(3), 653–684 (2000)

60. M. Gorges-Schleuter, ASPARAGOS: an asynchronous parallel genetic optimization strat-
egy, in Proceedings of the 3rd International Conference on Genetic Algorithms, ed. by J.D.
Schaffer (Morgan Kaufmann Publishers, Burlington, 1989), pp. 422–427

9 An Accelerated Introduction to Memetic Algorithms 303

61. M. Gorges-Schleuter, Explicit parallelism of genetic algorithms through population struc-
tures, in Parallel Problem Solving from Nature, ed. by H.P. Schwefel, R. Männer (Springer,
Berlin, 1991), pp. 150–159

62. J. Gottlieb, Permutation-based evolutionary algorithms for multidimensional knapsack prob-
lems, in ACM Symposium on Applied Computing 2000, ed. by J. Carroll, E. Damiani, H. Had-
dad, D. Oppenheim (ACM Press, New York, 2000), pp. 408–414

63. P. Grim, The undecidability of the spatialized prisoner’s dilemma. Theor. Decis. 42(1), 53–80
(1997)

64. F. Guimarães, F. Campelo, H. Igarashi, D. Lowther, J. Ramírez, Optimization of cost func-
tions using evolutionary algorithms with local learning and local search. IEEE Trans. Magn.
43(4), 1641–1644 (2007)

65. X. Guo, Z. Wu, G. Yang, A hybrid adaptive multi-objective memetic algorithm for 0/1 knap-
sack problem, in AI 2005: Advances in Artificial Intelligence. Lecture Notes in Artificial
Intelligence, vol. 3809 (Springer, Berlin, 2005), pp. 176–185

66. X. Guo, G. Yang, Z. Wu, A hybrid self-adjusted memetic algorithm for multi-objective opti-
mization, in 4th Mexican International Conference on Artificial Intelligence. Lecture Notes
in Computer Science, vol. 3789 (Springer, Berlin, 2005), pp. 663–672

67. X. Guo, G. Yang, Z. Wu, Z. Huang, A hybrid fine-timed multi-objective memetic algorithm.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89A(3), 790–797 (2006)

68. W. Hart, R. Belew, Optimizing an arbitrary function is hard for the genetic algorithm, in
Proceedings of the Fourth International Conference on Genetic Algorithms, ed. by R. Belew,
L. Booker (Morgan Kaufmann, San Mateo, 1991), pp. 190–195

69. W. Hart, N. Krasnogor, J. Smith, Recent Advances in Memetic Algorithms. Studies in Fuzzi-
ness and Soft Computing, vol. 166 (Springer, Berlin, 2005)

70. F. Herrera, M. Lozano, J. Verdegay, Tackling real-coded genetic algorithms: operators and
tools for behavioural analysis. Artif. Intell. Rev. 12(4), 265–319 (1998)

71. F. Herrera, M. Lozano, A. Sánchez, A taxonomy for the crossover operator for real-coded
genetic algorithms: an experimental study. Int. J. Intell. Syst. 18, 309–338 (2003)

72. D. Hofstadter, Computer tournaments of the prisoners-dilemma suggest how cooperation
evolves. Sci. Am. 248(5), 16–23 (1983)

73. P. Horn, Autonomic computing: IBM’s perspective on the state of information technology,
Technical report, IBM Research, 2001, http://people.scs.carleton.ca/~soma/biosec/readings/
autonomic_computing.pdf. Accessed 18 Sept 2017

74. C. Houck, J. Joines, M. Kay, J. Wilson, Empirical investigation of the benefits of partial
lamarckianism. Evol. Comput. 5(1), 31–60 (1997)

75. Z. Hu, Y. Bao, T. Xiong, Comprehensive learning particle swarm optimization based memetic
algorithm for model selection in short-term load forecasting using support vector regression.
Appl. Soft Comput. 25, 15–25 (2014)

76. M. Huebscher, J. McCann, A survey of autonomic computing-degrees, models and applica-
tions. ACM Comput. Surv. 40(3) (2008). Article 7

77. M. Hulin, An optimal stop criterion for genetic algorithms: a bayesian approach, in Proceed-
ings of the Seventh International Conference on Genetic Algorithms, ed. by T. Bäck (Morgan
Kaufmann, San Mateo, 1997), pp. 135–143

78. C. Igel, M. Toussaint, On classes of functions for which no free lunch results hold. Inf.
Process. Lett. 86(6), 317–321 (2003)

79. H. Ishibuchi, T. Murata, Multi-objective genetic local search algorithm, in 1996 Interna-
tional Conference on Evolutionary Computation, ed. by T. Fukuda, T. Furuhashi (IEEE Press,
Nagoya, 1996), pp. 119–124

80. H. Ishibuchi, T. Murata, Multi-objective genetic local search algorithm and its application to
flowshop scheduling. IEEE Trans. Syst. Man Cybern. 28(3), 392–403 (1998)

81. H. Ishibuchi, T. Yoshida, T. Murata, Balance between genetic search and local search in
memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol.
Comput. 7(2), 204–223 (2003)

http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf

304 P. Moscato and C. Cotta

82. H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, Y. Nojima, Use of heuristic local search
for single-objective optimization in multiobjective memetic algorithms, in Parallel Prob-
lem Solving from Nature X, ed. by G. Rudolph et al. Lecture Notes in Computer Science,
vol. 5199 (Springer, Berlin, 2008), pp. 743–752

83. A. Jaszkiewicz, Genetic local search for multiple objective combinatorial optimization. Eur.
J. Oper. Res. 137(1), 50–71 (2002)

84. A. Jaszkiewicz, A comparative study of multiple-objective metaheuristics on the bi-objective
set covering problem and the Pareto memetic algorithm. Ann. Oper. Res. 131(1–4), 135–158
(2004)

85. A. Jaszkiewicz, H. Ishibuchi, Q. Zhang, Multiobjective memetic algorithms, in Handbook of
Memetic Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelli-
gence, vol. 379 (Springer, Berlin, 2012), pp. 201–217

86. D. Johnson, C. Papadimitriou, M. Yannakakis, How easy is local search? J. Comput. Syst.
Sci. 37(1), 79–100 (1988)

87. T. Jones, Evolutionary algorithms, fitness landscapes and search, Ph.D. thesis, University of
New Mexico, 1995

88. G. Kendall, P. Cowling, E. Sou, Choice function and random hyperheuristics, in Fourth Asia-
Pacific Conference on Simulated Evolution and Learning, ed. by L. Wang et al. (2002),
pp. 667–671

89. C.W. Kheng, S.Y. Chong, M. Lim, Centroid-based memetic algorithm - adaptive lamarckian
and baldwinian learning. Int. J. Syst. Sci. 43(7), 1193–1216 (2012)

90. G. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. Raidl, R. Weiskircher,
Combining a memetic algorithm with integer programming to solve the prize-collecting
Steiner tree problem, in GECCO 04: Genetic and Evolutionary Computation Conference
(Part 1), vol. 3102 (2004), pp. 1304–1315

91. J. Knowles, D. Corne, Approximating the non-dominated front using the pareto archived
evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

92. J. Knowles, D. Corne, A comparison of diverse approaches to memetic multiobjective com-
binatorial optimization, in Proceedings of the 2000 Genetic and Evolutionary Computation
Conference Workshop Program, ed. by A.S. Wu (2000), pp. 103–108

93. J. Knowles, D.W. Corne, M-PAES: a memetic algorithm for multiobjective optimization,
in Proceedings of the 2000 Congress on Evolutionary Computation (CEC00) (IEEE Press,
Piscataway, 2000), pp. 325–332

94. J. Knowles, D. Corne, Memetic algorithms for multiobjective optimization: issues, methods
and prospects, in Recent Advances in Memetic Algorithms, ed. by W. Hart, N. Krasnogor, J.E.
Smith. Studies in Fuzziness and Soft Computing, vol. 166 (Springer, Berlin, 2005), pp. 313–
352

95. K. Kostikas, C. Fragakis, Genetic programming applied to mixed integer programming, in
7th European Conference on Genetic Programming, ed. by M. Keijzer et al. Lecture Notes
in Computer Science, vol. 3003 (Springer, Berlin, 2004), pp. 113–124

96. N. Krasnogor, Studies in the theory and design space of memetic algorithms, Ph.D. thesis,
University of the West of England, 2002

97. N. Krasnogor, Self generating metaheuristics in bioinformatics: the proteins structure com-
parison case. Genet. Program. Evolvable Mach. 5(2), 181–201 (2004)

98. N. Krasnogor, J. Smith, A tutorial for competent memetic algorithms: model, taxonomy and
design issues. IEEE Trans. Evol. Comput. 9(5), 474–488 (2005)

99. N. Krasnogor, J. Smith, Memetic algorithms: the polynomial local search complexity theory
perspective. J. Math. Model. Algorithms 7(1), 3–24 (2008)

100. P. Larrañaga, J. Lozano (eds.), Estimation of Distribution Algorithms. Genetic Algorithms
and Evolutionary Computation, vol. 2 (Springer, Berlin, 2002)

101. B.B. Li, L. Wang, B. Liu, An effective PSO-based hybrid algorithm for multiobjective per-
mutation flow shop scheduling. IEEE Trans. Syst. Man Cybern. B 38(4), 818–831 (2008)

102. D. Lim, Y.S. Ong, Y. Jin, B. Sendhoff, A study on metamodeling techniques, ensembles, and
multi-surrogates in evolutionary computation, in GECCO ’07: Proceedings of the 9th annual

9 An Accelerated Introduction to Memetic Algorithms 305

conference on Genetic and evolutionary computation, ed. by D. Thierens et al., vol. 2 (ACM
Press, London, 2007), pp. 1288–1295

103. K. Lim, Y.S. Ong, M. Lim, X. Chen, A. Agarwal, Hybrid ant colony algorithms for path
planning in sparse graphs. Soft. Comput. 12(10), 981–994 (2008)

104. S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling salesman problem.
Oper. Res. 21(2), 498–516 (1973)

105. B. Liu, L. Wang, Y.H. Jin, D.X. Huang, An effective PSO-based memetic algorithm for TSP,
in Intelligent Computing in Signal Processing and Pattern Recognition. Lecture Notes in
Control and Information Sciences, vol. 345 (Springer, Berlin, 2006), pp. 1151–1156

106. B. Liu, L. Wang, Y. Jin, An effective PSO-based memetic algorithm for flow shop scheduling.
IEEE Trans. Syst. Man Cybern. B 37(1), 18–27 (2007)

107. B. Liu, L. Wang, Y. Jin, D. Huang, Designing neural networks using PSO-based memetic
algorithm, in 4th International Symposium on Neural Networks, ed. by D. Liu, S. Fei, Z.G.
Hou, H. Zhang, C. Sun. Lecture Notes in Computer Science, vol. 4493 (Springer, Berlin,
2007), pp. 219–224

108. D. Liu, K.C. Tan, C.K. Goh, W.K. Ho, A multiobjective memetic algorithm based on particle
swarm optimization. IEEE Trans. Syst. Man Cybern. B 37(1), 42–50 (2007)

109. M. Lozano, F. Herrera, N. Krasnogor, D. Molina, Real-coded memetic algorithms with
crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)

110. A. Mendes, C. Cotta, V. Garcia, P. França, P. Moscato, Gene ordering in microarray data
using parallel memetic algorithms, in Proceedings of the 2005 International Conference
on Parallel Processing Workshops, ed. by T. Skie, C.S. Yang (IEEE Press, Oslo, 2005),
pp. 604–611

111. P. Merz, Memetic algorithms and fitness landscapes in combinatorial optimization, in Hand-
book of Memetic Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational
Intelligence, vol. 379 (Springer, Berlin, 2012), pp. 95–119

112. Z. Michalewicz, Repair algorithms, in Handbook of Evolutionary Computation, ed. by
T. Bäck et al. (Institute of Physics Publishing/Oxford University Press, Bristol, 1997),
pp. C5.4:1–5

113. D. Molina, F. Herrera, M. Lozano, Adaptive local search parameters for real-coded memetic
algorithms, in Proceedings of the 2005 IEEE Congress on Evolutionary Computation, ed. by
D. Corne et al., vol. 1 (IEEE Press, Edinburgh, 2005), pp. 888–895

114. D. Molina, M. Lozano, F. Herrera, Memetic algorithms for intense continuous local search
methods, in Hybrid Metaheuristics 2008, ed. by M. Blesa et al. Lecture Notes in Computer
Science, vol. 5296 (Springer, Berlin, 2008), pp. 58–71

115. D. Molina, M. Lozano, A.M. Sánchez, F. Herrera, Memetic algorithms based on local search
chains for large scale continuous optimisation problems: ma-ssw-chains. Soft. Comput.
15(11), 2201–2220 (2011)

116. P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts: towards
memetic algorithms, Technical report, Caltech Concurrent Computation Program, Report
826, California Institute of Technology, Pasadena, CA, 1989

117. P. Moscato, An introduction to population approaches for optimization and hierarchical ob-
jective functions: the role of tabu search. Ann. Oper. Res. 41(1–4), 85–121 (1993)

118. P. Moscato, Memetic algorithms: a short introduction, in New Ideas in Optimization, ed. by
D. Corne, M. Dorigo, F. Glover (McGraw-Hill, Maidenhead, 1999), pp. 219–234

119. P. Moscato, Memetic algorithms: the untold story, in Handbook of Memetic Algorithms, ed.
by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelligence, vol. 379 (Springer,
Berlin, 2012), pp. 275–309

120. P. Moscato, C. Cotta, A gentle introduction to memetic algorithms, in Handbook of Meta-
heuristics, ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Boston, 2003),
pp. 105–144

121. P. Moscato, C. Cotta, Chapter 22: Memetic algorithms, in Handbook of Approximation Al-
gorithms and Metaheuristics, ed. by T. González (Taylor & Francis, Milton Park, 2006)

306 P. Moscato and C. Cotta

122. P. Moscato, C. Cotta, A modern introduction to memetic algorithms, in Handbook of Meta-
heuristics, ed. by M. Gendreau, J. Potvin. International Series in Operations Research and
Management Science, vol. 146, 2nd edn. (Springer, Berlin, 2010), pp. 141–183

123. P. Moscato, C. Cotta, A. Mendes, Memetic algorithms, in New Optimization Techniques in
Engineering, ed. by G. Onwubolu, B. Babu (Springer, Berlin, 2004), pp. 53–85

124. P. Moscato, A. Mendes, C. Cotta, Scheduling & produ, in New Optimization Techniques in
Engineering, ed. by G. Onwubolu, B. Babu (Springer, Berlin, 2004), pp. 655–680

125. P. Moscato, A. Mendes, R. Berretta, Benchmarking a memetic algorithm for ordering mi-
croarray data. Biosystems 88(1), 56–75 (2007)

126. H. Mühlenbein, Evolution in time and space – the parallel genetic algorithm, in Founda-
tions of Genetic Algorithms, ed. by G.J. Rawlins (Morgan Kaufmann Publishers, Burlington,
1991), pp. 316–337

127. H. Mühlenbein, M. Gorges-Schleuter, O. Krämer, Evolution algorithms in combinatorial op-
timization. Parallel Comput. 7(1), 65–88 (1988)

128. Y. Nagata, S. Kobayashi, Edge assembly crossover: a high-power genetic algorithm for the
traveling salesman problem, in Proceedings of the Seventh International Conference on Ge-
netic Algorithms, ed. by T. Bäck (Morgan Kaufmann, San Mateo, 1997), pp. 450–457

129. M. Nakamaru, H. Matsuda, Y. Iwasa, The evolution of social interaction in lattice models.
Sociol. Theory Methods 12(2), 149–162 (1998)

130. M. Nakamaru, H. Nogami, Y. Iwasa, Score-dependent fertility model for the evolution of
cooperation in a lattice. J. Theor. Biol. 194(1), 101–124 (1998)

131. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7(4), 308–
313 (1965)

132. F. Neri, C. Cotta, Memetic algorithms and memetic computing optimization: a literature
review. Swarm Evol. Comput. 2, 1–14 (2012)

133. F. Neri, V. Tirronen, On memetic differential evolution frameworks: a study of advantages
and limitations in hybridization, in 2008 IEEE World Congress on Computational Intelli-
gence, ed. by J. Wang (IEEE Computational Intelligence Society/IEEE Press, Hong Kong,
2008), pp. 2135–2142

134. F. Neri, V. Tirronen, T. Kärkkäinen, T. Rossi, Fitness diversity based adaptation in multimeme
algorithms: a comparative study, in IEEE Congress on Evolutionary Computation - CEC
2007 (IEEE Press, Singapore, 2007), pp. 2374–2381

135. F. Neri, C. Cotta, P. Moscato (eds.), Handbook of Memetic Algorithms. Studies in Computa-
tional Intelligence, vol. 379 (Springer, Berlin, 2012)

136. Q.H. Nguyen, Y.S. Ong, N. Krasnogor, A study on the design issues of memetic algorithm,
in 2007 IEEE Congress on Evolutionary Computation, ed. by D. Srinivasan, L. Wang (IEEE
Computational Intelligence Society/IEEE Press, Singapore, 2007), pp. 2390–2397

137. Q.C. Nguyen, Y.S. Ong, J.L. Kuo, A hierarchical approach to study the thermal behavior of
protonated water clusters H+(H2O)(n). J. Chem. Theory Comput. 5(10), 2629–2639 (2009)

138. R. Nogueras, C. Cotta, An analysis of migration strategies in island-based multimemetic
algorithms, in Parallel Problem Solving from Nature - PPSN XIII, ed. by T. Bartz-Beielstein
et al. Lecture Notes in Computer Science, vol. 8672 (Springer, Berlin, 2014), pp. 731–740

139. R. Nogueras, C. Cotta, A study on multimemetic estimation of distribution algorithms, in
Parallel Problem Solving from Nature - PPSN XIII, ed. by T. Bartz-Beielstein et al. Lecture
Notes in Computer Science, vol. 8672 (Springer, Berlin, 2014), pp. 322–331

140. R. Nogueras, C. Cotta, A study on meme propagation in multimemetic algorithms. Appl.
Math. Comput. Sci. 25(3), 499–512 (2015)

141. R. Nogueras, C. Cotta, Studying self-balancing strategies in island-based multimemetic al-
gorithms. J. Comput. Appl. Math. 293, 180–191 (2016)

142. R. Nogueras, C. Cotta, Self-healing strategies for memetic algorithms in unstable and
ephemeral computational environments. Nat. Comput. 6(2), 189–200 (2017)

143. N. Noman, H. Iba, Accelerating differential evolution using an adaptive local search. IEEE
Trans. Evol. Comput. 12(1), 107–125 (2008)

9 An Accelerated Introduction to Memetic Algorithms 307

144. M. Norman, P. Moscato, A competitive and cooperative approach to complex combinatorial
search, in Proceedings of the 20th Informatics and Operations Research Meeting, Buenos
Aires (1989), pp. 3.15–3.29

145. Y. Ong, A. Keane, Meta-lamarckian learning in memetic algorithm. IEEE Trans. Evol. Com-
put. 8(2), 99–110 (2004)

146. Y. Ong, M. Lim, X. Chen, Memetic computation—past, present and future. IEEE Comput.
Intell. Mag. 5(2), 24–31 (2010)

147. E. Özcan, J.H. Drake, C. Altintas, S. Asta, A self-adaptive multimeme memetic algorithm
co-evolving utility scores to control genetic operators and their parameter settings. Appl.
Soft Comput. 49, 81–93 (2016)

148. Q.K. Pan, L. Wang, B. Qian, A novel multi-objective particle swarm optimization algorithm
for no-wait flow shop scheduling problems. J. Eng. Manuf. 222(4), 519–539 (2008)

149. W. Paszkowicz, Properties of a genetic algorithm extended by a random self-learning oper-
ator and asymmetric mutations: a convergence study for a task of powder-pattern indexing.
Anal. Chim. Acta 566(1), 81–98 (2006)

150. M. Peinado, T. Lengauer, Parallel “go with the winners algorithms” in the LogP Model,
in Proceedings of the 11th International Parallel Processing Symposium (IEEE Computer
Society Press, Los Alamitos, 1997), pp. 656–664

151. M. Pelikan, M. Hauschild, F. Lobo, Estimation of distribution algorithms, in Handbook
of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz (Springer, Berlin, 2015),
pp. 899–928

152. Y.G. Petalas, K.E. Parsopoulos, M.N. Vrahatis, Memetic particle swarm optimization. Ann.
Oper. Res. 156(1), 99–127 (2007)

153. C. Prins, C. Prodhon, R. Calvo, A memetic algorithm with population management (MA
| PM) for the capacitated location-routing problem, in Evolutionary Computation in Com-
binatorial Optimization, ed. by J. Gottlieb, G. Raidl. Lecture Notes in Computer Science,
vol. 3906 (Springer, Budapest, 2006), pp. 183–194

154. C. Prodhom, C. Prins, A memetic algorithm with population management (MA|PM) for the
periodic location-routing problem, in Hybrid Metaheuristics 2008, ed. by M. Blesa et al.
Lecture Notes in Computer Science, vol. 5296 (Springer, Berlin, 2008), pp. 43–57

155. J. Puchinger, G. Raidl, Combining metaheuristics and exact algorithms in combinatorial op-
timization: a survey and classification, in Artificial Intelligence and Knowledge Engineering
Applications: A Bioinspired Approach, ed. by J. Mira, J. Álvarez. Lecture Notes in Computer
Science, vol. 3562 (Springer, Berlin, 2005), pp. 41–53

156. J. Puchinger, G. Raidl, G. Koller, Solving a real-world glass cutting problem, in 4th European
Conference on Evolutionary Computation in Combinatorial Optimization, ed. by J. Gottlieb,
G. Raidl. Lecture Notes in Computer Science, vol. 3004 (Springer, Berlin, 2004), pp. 165–
176

157. N. Radcliffe, The algebra of genetic algorithms. Ann. Math. Artif. Intell. 10(4), 339–384
(1994)

158. N. Radcliffe, P. Surry, Fitness variance of formae and performance prediction, in Proceedings
of the 3rd Workshop on Foundations of Genetic Algorithms, ed. by L. Whitley, M. Vose
(Morgan Kaufmann, San Francisco, 1994), pp. 51–72

159. N. Radcliffe, P. Surry, Formal memetic algorithms, in Evolutionary Computing: AISB Work-
shop, ed. by T. Fogarty. Lecture Notes in Computer Science, vol. 865 (Springer, Berlin,
1994), pp. 1–16

160. I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution (Frommann-Holzboog Verlag, Stuttgart, 1973)

161. M. Resende, C. Ribeiro, Greedy randomized adaptive search procedures, in Handbook of
Metaheuristics, ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Boston,
2003), pp. 219–249

162. M.G.C. Resende, C.C. Ribeiro, Optimization by GRASP: Greedy Randomized Adaptive
Search Procedures (Springer, New York, 2016)

308 P. Moscato and C. Cotta

163. N.R. Sabar, J.H. Abawajy, J. Yearwood, Heterogeneous cooperative co-evolution memetic
differential evolution algorithm for big data optimization problems. IEEE Trans. Evol. Com-
put. 21(2), 315–327 (2017)

164. O. Schuetze, G. Sanchez, C. Coello Coello, A new memetic strategy for the numerical treat-
ment of multi-objective optimization problems, in GECCO ’08: Proceedings of the 10th An-
nual Conference on Genetic and Evolutionary Computation, ed. by M. Keijzer et al. (ACM
Press, Atlanta, 2008), pp. 705–712

165. C. Schumacher, M. Vose, L. Whitley, The no free lunch and description length, in Genetic
and Evolutionary Computation - GECCO 2001, ed. by L. Spector et al. (Morgan Kaufmann
Publishers, San Francisco, 2001), pp. 565–570

166. H.P. Schwefel, Evolution strategies: a family of non-linear optimization techniques based on
imitating some principles of natural evolution. Ann. Oper. Res. 1(2), 165–167 (1984)

167. H. Schwefel, Imitating evolution: collective, two-level learning processes, in Explaining Pro-
cess and Change - Approaches to Evolutionary Economics (University of Michigan Press,
Ann Arbor, 1992), pp. 49–63

168. J. Smith, The co-evolution of memetic algorithms for protein structure prediction, in Re-
cent Advances in Memetic Algorithms, ed. by W. Hart, N. Krasnogor, J. Smith. Studies in
Fuzziness and Soft Computing, vol. 166 (Springer, Berlin, 2005), pp. 105–128

169. J.E. Smith, Coevolving memetic algorithms: a review and progress report. IEEE Trans. Syst.
Man Cybern. B 37(1), 6–17 (2007)

170. J. Smith, Self-adaptation in evolutionary algorithms for combinatorial optimization, in Adap-
tive and Multilevel Metaheuristics, ed. by C. Cotta, M. Sevaux, K. Sörensen. Studies in Com-
putational Intelligence, vol. 136 (Springer, Berlin, 2008), pp. 31–57

171. J. Smith, Self-adaptative and coevolving memetic algorithms, in Handbook of Memetic Algo-
rithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelligence, vol. 379
(Springer, Berlin, 2012), pp. 167–188

172. S.M. Soak, S.W. Lee, N. Mahalik, B.H. Ahn, A new memetic algorithm using particle swarm
optimization and genetic algorithm, in Knowledge-Based Intelligent Information and Engi-
neering Systems. Lecture Notes in Artificial Intelligence, vol. 4251 (Springer, Berlin, 2006),
pp. 122–129

173. K. Sörensen, M. Sevaux: MA | PM: memetic algorithms with population management. Com-
put. Oper. Res. 33(5), 1214–1225 (2006)

174. R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global opti-
mization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

175. D. Sudholt, Memetic algorithms with variable-depth search to overcome local optima, in
GECCO ’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Com-
putation, ed. by M. Keijzer et al. (ACM Press, Atlanta, 2008), pp. 787–794

176. D. Sudholt, The impact of parametrization in memetic evolutionary algorithms. Theor. Com-
put. Sci. 410(26), 2511–2528 (2009)

177. D. Sudholt, Parametrization and balancing local and global search, in Handbook of Memetic
Algorithms, ed. by F. Neri, C. Cotta, P. Moscato. Studies in Computational Intelligence,
vol. 379 (Springer, Berlin, 2012), pp. 55–72

178. J. Sun, J.M. Garibaldi, N. Krasnogor, Q. Zhang, An intelligent multi-restart memetic algo-
rithm for box constrained global optimisation. Evol. Comput. 21(1), 107–147 (2013)

179. P. Surry, N. Radcliffe, Inoculation to initialise evolutionary search, in Evolutionary Com-
puting: AISB Workshop, ed. by T. Fogarty. Lecture Notes in Computer Science, vol. 1143
(Springer, Berlin, 1996), pp. 269–285

180. G. Syswerda, Uniform crossover in genetic algorithms, in Proceedings of the 3rd Interna-
tional Conference on Genetic Algorithms, ed. by J. Schaffer (Morgan Kaufmann, San Mateo,
1989), pp. 2–9

181. V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava, T. Rossi, A memetic differential evolution in
filter design for defect detection in paper production, in Applications of Evolutionary Com-
puting, ed. by M. Giacobini et al. Lecture Notes in Computer Science, vol. 4448 (Springer,
Berlin, 2007), pp. 320–329

9 An Accelerated Introduction to Memetic Algorithms 309

182. E. Ulungu, J. Teghem, P. Fortemps, D. Tuyttens, MOSA method: a tool for solving multi-
objective combinatorial optimization problems. J. Multi-Criteria Decis. Anal. 8(4), 221–236
(1999)

183. M. Voı̆tsekhovskiı̆, Continuous set, in Encyclopaedia of Mathematics, ed. by M. Hazewinkel,
vol. 1 (Springer, Berlin, 1995)

184. S. Wang, L. Wang, An estimation of distribution algorithm-based memetic algorithm for
the distributed assembly permutation flow-shop scheduling problem. IEEE Trans. Syst. Man
Cybern. Syst. 46(1), 139–149 (2016)

185. E. Wanner, F. Guimarães, R. Takahashi, P. Fleming, Local search with quadratic approxima-
tions into memetic algorithms for optimization with multiple criteria. Evol. Comput. 16(2),
185–224 (2008)

186. E. Wanner, F. Guimarães, R. Takahashi, D. Lowther, J. Ramírez, Multiobjective memetic
algorithms with quadratic approximation-based local search for expensive optimization in
electromagnetics. IEEE Trans. Magn. 44(6), 1126–1129 (2008)

187. D. Whitley, Using reproductive evaluation to improve genetic search and heuristic discovery,
in Proceedings of the 2nd International Conference on Genetic Algorithms and their Applica-
tions, ed. by J. Grefenstette (Lawrence Erlbaum Associates, Cambridge, 1987), pp. 108–115

188. D. Whitley, V.S. Gordon, K. Mathias, Lamarckian evolution, the baldwin effect and function
optimization, in ed. by Parallel Problem Solving from Nature — PPSN III, ed. by Y. Davidor,
H.P. Schwefel, R. Männer (Springer, Berlin, 1994), pp. 5–15

189. P. Wiston, Artificial Intelligence (Addison-Wesley, Reading, 1984)
190. D. Wolpert, W. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Com-

put. 1(1), 67–82 (1997)
191. A.H. Wright, Genetic algorithms for real parameter optimization, in Proceedings of the First

Workshop on Foundations of Genetic Algorithms, ed. by G.J.E. Rawlins (Morgan Kaufmann,
Burlington, 1990), pp. 205–218

192. Q. Yuan, F. Qian, W. Du, A hybrid genetic algorithm with the baldwin effect. Inf. Sci. 180(5),
640–652 (2010)

193. Z. Zhen, Z. Wang, Z. Gu, Y. Liu, A novel memetic algorithm for global optimization based
on PSO and SFLA, in 2nd International Symposium on Advances in Computation and Intel-
ligence, ed. by L. Kang, Y. Liu, S.Y. Zeng. Lecture Notes in Computer Science, vol. 4683
(Springer, Berlin, 2007), pp. 127–136

194. Z. Zhou, Y.S. Ong, M.H. Lim, B.S. Lee, Memetic algorithm using multi-surrogates for com-
putationally expensive optimization problems. Soft. Comput. 11(10), 957–971 (2007)

195. E. Zitzler, M. Laumanns, S. Bleuler, A Tutorial on Evolutionary Multiobjective Optimization,
in Metaheuristics for Multiobjective Optimisation, ed. by X. Gandibleux et al. Lecture Notes
in Economics and Mathematical Systems, vol. 535 (Springer, Berlin, 2004)

Chapter 10
Ant Colony Optimization: Overview and
Recent Advances

Marco Dorigo and Thomas Stützle

Abstract Ant Colony Optimization (ACO) is a metaheuristic that is inspired by the
pheromone trail laying and following behavior of some ant species. Artificial ants in
ACO are stochastic solution construction procedures that build candidate solutions
for the problem instance under concern by exploiting (artificial) pheromone infor-
mation that is adapted based on the ants’ search experience and possibly available
heuristic information. Since the proposal of Ant System, the first ACO algorithm,
many significant research results have been obtained. These contributions focused
on the development of high performing algorithmic variants, the development of a
generic algorithmic framework for ACO algorithm, successful applications of ACO
algorithms to a wide range of computationally hard problems, and the theoretical un-
derstanding of important properties of ACO algorithms. This chapter reviews these
developments and gives an overview of recent research trends in ACO.

10.1 Introduction

Ant Colony Optimization (ACO) [63, 66, 70] is a metaheuristic for solving
hard combinatorial optimization problems. The inspiring source of ACO is the
pheromone trail laying and following behavior of real ants, which use pheromones
as a communication medium. By analogy with the biological example, ACO is
based on indirect communication within a colony of simple agents, called (artifi-
cial) ants, mediated by (artificial) pheromone trails. The pheromone trails in ACO
serve as distributed, numerical information, which is used by the ants to probabilis-

M. Dorigo · T. Stützle (�)
IRIDIA, Université Libre de Bruxelles (ULB), Brussels, Belgium
e-mail: mdorigo@ulb.ac.be;stuetzle@ulb.ac.be

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_10

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_10&domain=pdf
mailto:mdorigo@ulb.ac.be; stuetzle@ulb.ac.be
https://doi.org/10.1007/978-3-319-91086-4_10

312 M. Dorigo and T. Stützle

tically construct solutions to the problem being solved and which they adapt during
the algorithm’s execution to reflect their search experience.

The first example of such an algorithm is Ant System (AS) [61, 67–69], which
was proposed using as application example the well known traveling salesman prob-
lem (TSP) [6, 110, 155]. Despite encouraging initial results, AS could not compete
with state-of-the-art algorithms for the TSP. Nevertheless, it had the important role
of stimulating further research both on algorithmic variants, which obtain much
better computational performance, and on applications to a large variety of different
problems. In fact, there exist now a considerable number of applications of such
algorithms where world class performance is obtained. Examples are applications
of ACO algorithms to problems such as sequential ordering [84], scheduling [20],
assembly line balancing [21], probabilistic TSP [7], 2D-HP protein folding [160],
DNA sequencing [27], protein–ligand docking [107], packet-switched routing in
Internet-like networks [52], and so on. The ACO metaheuristic provides a common
framework for the existing applications and algorithmic variants [63, 70]. Algo-
rithms which follow the ACO metaheuristic are called ACO algorithms.

The (artificial) ants in ACO implement a randomized construction heuristic
which makes probabilistic decisions as a function of artificial pheromone trails and
possibly available heuristic information based on the input data of the problem to be
solved. As such, ACO can be interpreted as an extension of traditional construction
heuristics, which are readily available for many combinatorial optimization prob-
lems. Yet, an important difference with construction heuristics is the adaptation of
the pheromone trails during algorithm execution to take into account the cumulated
search experience.

The rest of this chapter is organized as follows. In Sect. 10.2, we briefly overview
construction heuristics and local search algorithms. In Sect. 10.3, we present a spe-
cific version of the ACO metaheuristic that focuses on applications to NP-hard
problems. Section 10.4 outlines the inspiring biological analogy and describes the
historical developments leading to ACO. In Sect. 10.5, we illustrate how the ACO
metaheuristic can be applied to different types of problems and we give an overview
of its successful applications. Section 10.6 gives an overview of recent developments
in ACO and Sect. 10.7 concludes the chapter.

10.2 Approximate Approaches

Many important combinatorial optimization problems are hard to solve. The notion
of problem hardness is captured by the theory of computational complexity [88, 150]
and for many important problems it is well known that they are NP-hard, that is,
the time needed to solve an instance in the worst case grows exponentially with

10 Ant Colony Optimization: Overview and Recent Advances 313

procedure Greedy Construction Heuristic
sp = empty solution
while sp not a complete solution do

e = GreedyComponent(sp)
sp = sp ⊗ e

end
return sp

end Greedy Construction Heuristic

Fig. 10.1 Algorithmic skeleton of a greedy construction heuristic. The addition of component e
to a partial solution sp is denoted by the operator ⊗

the instance size. Often, approximate algorithms are the only feasible way to obtain
near optimal solutions at relatively low computational cost.

Most approximate algorithms are either construction algorithms or local search
algorithms.1 These two types of methods are significantly different, because con-
struction algorithms work on partial solutions trying to extend them in the best pos-
sible way to complete problem solutions, while local search methods move in the
search space of complete solutions.

10.2.1 Construction Algorithms

Construction algorithms build solutions to a problem under consideration in an in-
cremental way starting with an empty initial solution and iteratively adding appro-
priate solution components without backtracking until a complete solution is ob-
tained. In the simplest case, solution components are added in random order. Often
better results are obtained if a heuristic estimate of the myopic benefit of adding
solution components is taken into account. Greedy construction heuristics add at
each step a solution component that achieves the maximal myopic benefit as mea-
sured by some heuristic information. An algorithmic outline of a greedy construc-
tion heuristic is given in Fig. 10.1. The function GreedyComponent returns the
solution component e with the best heuristic estimate as a function of the current
partial solution sp. Solutions returned by greedy algorithms are typically of (much)
better quality than randomly generated solutions. Yet, a disadvantage of greedy con-
struction heuristics is that they typically generate only a limited number of different
solutions. Additionally, greedy decisions in early stages of the construction process
constrain the available possibilities at later stages, often causing very poor moves in
the final phases of the solution construction.

1 Other approximate methods are also conceivable. For example, when stopping exact methods,
like Branch and Bound, before completion [11, 104] (e.g., using some given time bound, or when
some guarantee on solution quality is obtained through the use of lower and upper bounds), we can
convert exact algorithms into approximate ones.

314 M. Dorigo and T. Stützle

procedure IterativeImprovement (s ∈ S)
s = Improve(s)
while s = s do

s = s

s = Improve(s)
end
return s

end IterativeImprovement

Fig. 10.2 Algorithmic skeleton of iterative improvement

As an example, consider a greedy construction heuristic for the TSP. In the TSP
we are given a complete weighted graph G = (N,A) with N being the set of vertices,
representing the cities, and A the set of edges fully connecting the vertices N. Each
edge is assigned a value di j, which is the length of edge (i, j) ∈ A. The TSP is the
problem of finding a minimum length Hamiltonian cycle of the graph, where an
Hamiltonian cycle is a closed tour visiting exactly once each of the n = |N| vertices
of G. For symmetric TSPs, the distances between the cities are independent of the
direction of traversing the edges, that is, di j = d ji for every pair of vertices. In the
more general asymmetric TSP (ATSP) at least for one pair of vertices i, j we have
di j �= d ji.

A simple rule of thumb to build a tour is to start from some initial city and to
always choose to go to the closest still unvisited city before returning to the start
city. This algorithm is known as the nearest neighbor tour construction heuristic.

Construction algorithms are typically the fastest approximate methods, but the
solutions they generate are often not of very high quality and they are not guaran-
teed to be optimal with respect to small changes; therefore, the results produced by
constructive heuristics can often be improved by local search algorithms.

10.2.2 Local Search Algorithms

Local search algorithms start from a complete initial solution and try to find a better
solution in an appropriately defined neighborhood of the current solution. In its most
basic version, known as iterative improvement, the algorithm searches the neighbor-
hood for an improving solution. If such a solution is found, it replaces the current
solution and the local search continues. These steps are repeated until no improv-
ing neighbor solution can be found and the algorithm ends in a local optimum. An
outline of an iterative improvement algorithm is given in Fig. 10.2. The procedure
Improve returns a better neighbor solution if one exists, otherwise it returns the
current solution, in which case the algorithm stops.

10 Ant Colony Optimization: Overview and Recent Advances 315

2−exchange

Fig. 10.3 Schematic illustration of a 2-exchange move. The proposed move reduces the total tour
length if we consider the Euclidean distance between the points

The choice of an appropriate neighborhood structure is crucial for the perfor-
mance of local search algorithms and has to be done in a problem specific way. The
neighborhood structure defines the set of solutions that can be reached from s in
one single step of the algorithm. An example of neighborhood for the TSP is the
k-exchange neighborhood in which neighbor solutions differ by at most k edges.
Figure 10.3 shows an example of a 2-exchange neighborhood. The 2-exchange
algorithm systematically tests whether the current tour can be improved by replac-
ing two edges. To fully specify a local search algorithm, it is necessary to designate
a particular neighborhood examination scheme that defines how the neighborhood
is searched and which neighbor solution replaces the current one. In the case of
iterative improvement algorithms, this rule is called the pivoting rule [188] and ex-
amples are the best-improvement rule, which chooses the neighbor solution giving
the largest improvement of the objective function, and the first-improvement rule,
which uses the first improved solution found when scanning the neighborhood to
replace the current one. A common problem with local search algorithms is that
they easily get trapped in local minima and that the result strongly depends on the
initial solution.

10.3 The ACO Metaheuristic

Artificial ants used in ACO are stochastic solution construction procedures that
probabilistically build a solution by iteratively adding solution components to par-
tial solutions by taking into account (1) heuristic information about the problem in-
stance being solved, if available, and (2) (artificial) pheromone trails which change
dynamically at run-time to reflect the agents’ acquired search experience.

A stochastic component in ACO allows the ants to build a wide variety of differ-
ent solutions and hence to explore a much larger number of solutions than greedy
heuristics. At the same time, the use of heuristic information, which is readily avail-
able for many problems, can guide the ants towards the most promising solutions.
More important, the ants’ search experience can be used to influence, in a way remi-
niscent of reinforcement learning [179], the solution construction in future iterations

316 M. Dorigo and T. Stützle

of the algorithm. Additionally, the use of a colony of ants can give the algorithm in-
creased robustness and in many ACO applications the collective interaction of a
population of agents is needed to efficiently solve a problem.

The domain of application of ACO algorithms is vast. In principle, ACO can
be applied to any discrete optimization problem for which some solution construc-
tion mechanism can be conceived. In the remainder of this section, we first define a
generic problem representation that the ants in ACO may exploit to construct solu-
tions, and then we define the ACO metaheuristic.

10.3.1 Problem Representation

Let us consider minimization problems2 and define a general model of a combina-
torial optimization problem.

Definition 1. A model P = (S,Ω , f) of a combinatorial optimization problem con-
sists of

• a search space S that is defined by a finite set of decision variables, each with a
finite domain, and a set Ω of constraints among the variables;

• an objective function f : S �→ IR+
0 that is to be minimized.

The search space is defined by a finite set of variables Xi, i = 1, . . . ,n, each having
an associated domain Di of values that can be assigned to it. An instantiation of a
variable consists in an assignment of a value v j

i ∈ Di to variable Xi and it is denoted
by Xi = v j

i . A feasible solution s∈ S is an assignment to each variable of a value in its
domain such that all the problem constraints in Ω are satisfied. If Ω is empty, then
the problem is unconstrained and each decision variable can take any value from
its domain, independent of the other variables. In this case, P is an unconstrained
problem model; otherwise it is called constrained. A feasible solution s∗ ∈ S is called
a global minimum of P if and only if f (s∗)≤ f (s) ∀s ∈ S. We denote by S∗ ⊆ S the
set of all global minima. �

This model of a combinatorial optimization problem can be directly used to de-
rive a generic pheromone model that is exploited by ACO algorithms. To see how, let
us call the instantiation of a variable Xi with a particular value v j

i of its domain a so-
lution component, which is denoted by c j

i . Ants then need to appropriately combine
solution components to form high-quality, feasible solutions. To do so, each solution
component c j

i will have an associated pheromone variable Ti j. We denote the set of
all solution components by C and the set of all pheromone variables by T. Each
pheromone variable Ti j has a pheromone value τi j; this value indicates the desir-

2 The adaptation to maximization problems is straightforward.

10 Ant Colony Optimization: Overview and Recent Advances 317

procedure ACO algorithm for combinatorial optimization problems
Initialization
while (termination condition not met) do

ConstructAntSolutions
ApplyLocalSearch % optional
GlobalUpdatePheromones

end
end ACO algorithm for combinatorial optimization problems

Fig. 10.4 Algorithmic skeleton for ACO algorithms applied to combinatorial optimization prob-
lems. The application of a local search algorithm is a typical example of a possible daemon action
in ACO algorithms

ability of choosing solution component c j
i . Note that, as said before, the pheromone

values are time-varying and therefore they are a function of the algorithm iteration
t. In what follows we will, however, omit the reference to the iteration counter and
write simply τi j instead of τi j(t).

As an example of this formalization, consider the TSP. In this case, the solution
components are the moves from one city to another one. This can be formalized by
associating one variable with each city. The domain of each variable Xi has then
n−1 values, j = 1, . . . ,n, j �= i. As a result, with each edge between a pair of cities
is associated one pheromone value τi j. An instantiation of the decision variables
corresponds to a feasible solution, if and only if the set of edges corresponding to
the values of the decision variables forms a Hamiltonian cycle. (Note that for the
TSP it is possible to guarantee that ants generate feasible solutions.) The objective
function f (·) computes for each feasible solution the sum of the edge lengths, that
is, the length of the Hamiltonian cycle.

10.3.2 The Metaheuristic

A general outline of the ACO metaheuristic for applications to static combinato-
rial optimization problems3 is given in Fig. 10.4. After initializing parameters and
pheromone trails, the main loop consists of three main steps. First, m ants construct
solutions to the problem instance under consideration, biased by the pheromone in-
formation and possibly by the available heuristic information. Once the ants have
completed their solutions, these may be improved in an optional local search phase.
Finally, before the start of the next iteration, the pheromone trails are adapted to
reflect the search experience of the ants. The main steps of the ACO metaheuristic
are explained in more detail in the following.

3 Static problems are those whose topology and costs do not change while they are being solved.
This is the case, for example, for the classic TSP, in which city locations and intercity distances
do not change during the algorithm’s run-time. In contrast, in dynamic problems the topology and
costs can change while solutions are built. An example of such a problem is routing in telecommu-
nications networks [52], in which traffic patterns change all the time.

318 M. Dorigo and T. Stützle

Initialization. At the start of the algorithm, parameters are set and all
pheromone variables are initialized to a value τ0, which is a parameter of the algo-
rithm.

ConstructAntSolutions.A set of m ants constructs solutions to the prob-
lem instance being tackled. To do so, each ant starts with an initially empty solu-
tion sp = /0. At each construction step, an ant extends its current partial solution
sp by choosing one feasible solution component c j

i ∈ N (sp) ⊆ C and adding it to
its current partial solution. N (sp) is the set of solution components that may be
added while maintaining feasibility and is defined implicitly by the solution con-
struction process that the ants implement. If a partial solution cannot be extended
while maintaining feasibility, it depends on the particular construction mechanism
whether the solution construction is abandoned or an infeasible, complete solution
is constructed. In the latter case, infeasible solutions may be penalized depending
on the degree of violation of the problem constraints.

The choice of the solution component to add is done probabilistically at each
construction step. Various ways for defining the probability distributions have been
considered. The most widely used rule is that of Ant System (AS) [69]:

p(c j
i |sp) =

τα
i j · [η(c j

i)]
β

∑cl
i∈N (sp)

τα
il · [η(cl

i)]
β , ∀c j

i ∈N (sp) (10.1)

where η(·) is a function that assigns a heuristic value ηi j to each feasible solu-
tion component c j

i ∈ N (sp), which is usually called the heuristic information. Pa-
rameters α and β determine the relative influence of the pheromone trails and the
heuristic information and have the following influence on the algorithm behavior. If
α = 0, the selection probabilities are proportional to [ηi j]

β and a solution compo-
nent with a high heuristic value will more likely be selected: this case corresponds
to a stochastic greedy algorithm. If β = 0, only pheromone amplification is at work.

ApplyLocalSearch. Once complete candidate solutions are obtained, these
may further be improved by applying local search algorithms. In fact, for a wide
range of combinatorial optimization problems, ACO algorithms reach best perfor-
mance when coupled with local search algorithms [66]. More generally, local search
is one example of what have been called daemon actions [63, 70]. These are used
to implement problem specific or centralized actions that cannot be performed by
individual ants.

GlobalUpdatePheromones. The pheromone update is intended to make
solution components belonging to good solutions more desirable for the following
iterations. There are essentially two mechanisms that are used to achieve this goal.
The first is pheromone deposit, which increases the level of the pheromone of so-
lution components that are associated with a chosen set Supd of good solutions. The
goal is to make these solution components more attractive for ants in the following
iterations. The second is pheromone trail evaporation, which is the mechanism that
decreases over time the pheromone deposited by previous ants. From a practical
point of view, pheromone evaporation is needed to avoid a too rapid convergence

10 Ant Colony Optimization: Overview and Recent Advances 319

of the algorithm towards a sub-optimal region. It implements a useful form of for-
getting, favoring the exploration of new areas of the search space. The pheromone
update is commonly implemented as:

τi j = (1−ρ)τi j + ∑
s∈Supd|c j

i ∈s

g(s) (10.2)

where Supd is the set of solutions that are used to deposit pheromone, ρ ∈ (0,1]
is a parameter called evaporation rate, g(·) : S �→ IR+ is a function such that f (s)<
f (s′) ⇒ g(s) ≥ g(s′). It determines the quality of a solution and it is commonly
called evaluation function.

ACO algorithms typically differ in the way pheromone update is implemented:
different specifications of how to determine Supd result in different instantiations of
the update rule given in Eq. (10.2). Typically, Supd is a subset of Siter ∪{sgb}, where
Siter is the set of all solutions constructed in the current iteration of the main loop
and sgb is the best solution found since the start of the algorithm (gb stands for
global-best).

10.4 History

The first ACO algorithm to be proposed was Ant System (AS). AS was applied to
some rather small TSP instances with up to 75 cities. It was able to reach the perfor-
mance of other general-purpose heuristics like evolutionary computation [61, 69].
Despite these initial encouraging results, AS did not prove to be competitive with
state-of-the-art algorithms specifically designed for the TSP. Therefore, a substan-
tial amount of research in ACO has focused on ACO algorithms which show better
performance than AS when applied, for example, to the TSP. In the remainder of this
section, we first briefly introduce the biological metaphor by which AS and ACO
are inspired, and then we present a brief history of the early developments that have
led from the original AS to more performing ACO algorithms.

10.4.1 Biological Analogy

In many ant species, individual ants may deposit a pheromone (a chemical that ants
can smell) on the ground while walking [48, 89]. By depositing pheromone, ants
create a trail that is used, for example, to mark the path from the nest to food sources
and back. Foragers can sense the pheromone trails and follow the path to food dis-
covered by other ants. Several ant species are capable of exploiting pheromone trails
to determine the shortest among the available paths leading to the food.

Deneubourg and colleagues [48, 89] used a double bridge connecting a nest of
ants and a food source to study the pheromone trail laying and following behavior

320 M. Dorigo and T. Stützle

in controlled experimental conditions.4 They ran a number of experiments in which
they varied the length of the two branches of the bridge. For our purposes, the most
interesting of these experiments is the one in which one branch was longer than the
other. In this experiment, at the start the ants were left free to move between the nest
and the food source and the percentage of ants that chose one or the other of the
two branches was observed over time. The outcome was that, although in the initial
phase random oscillations could occur, in most experiments all the ants ended up
using the shorter branch.

This result can be explained as follows. When a trial starts there is no pheromone
on the two branches. Hence, the ants do not have a preference and they select with
the same probability either of the two branches. It can be expected that, on average,
half of the ants choose the short branch and the other half the long branch, although
stochastic oscillations may occasionally favor one branch over the other. However,
because one branch is shorter than the other, the ants choosing the short branch
are the first to reach the food and to start their travel back to the nest.5 But then,
when they must make a decision between the short and the long branch, the higher
level of pheromone on the short branch biases their decision in its favor.6 Therefore,
pheromone starts to accumulate faster on the short branch, which will eventually be
used by the great majority of the ants.

It should be clear by now how real ants have inspired AS and later algorithms:
the double bridge was substituted by a graph, and pheromone trails by artificial
pheromone trails. Also, because we wanted artificial ants to solve problems more
complicated than those solved by real ants, we gave artificial ants some extra ca-
pacities, like a memory (used to implement constraints and to allow the ants to
retrace their solutions without errors) and the capacity for depositing a quantity of
pheromone proportional to the quality of the solution produced (a similar behavior
is observed also in some real ants species in which the quantity of pheromone de-
posited while returning to the nest from a food source is proportional to the quality
of the food source [10]).

In the next section we will see how, starting from AS, new algorithms have been
proposed that, although retaining some of the original biological inspiration, are less
and less biologically inspired and more and more motivated by the need of making
ACO algorithms better or at least competitive with other state-of-the-art algorithms.
Nevertheless, many aspects of the original Ant System remain: the need for a colony,
the role of autocatalysis, the cooperative behavior mediated by artificial pheromone
trails, the probabilistic construction of solutions biased by artificial pheromone trails
and local heuristic information, the pheromone updating guided by solution quality,
and the evaporation of pheromone trail are present in all ACO algorithms.

4 The experiment described was originally executed using a laboratory colony of Argentine ants
(Iridomyrmex humilis). It is known that these ants deposit pheromone both when leaving and when
returning to the nest [89].
5 In the ACO literature, this is often called differential path length effect.
6 A process like this, in which a decision taken at time t increases the probability of making the
same decision at time T > t is said to be an autocatalytic process. Autocatalytic processes exploit
positive feedback.

10 Ant Colony Optimization: Overview and Recent Advances 321

10.4.2 Historical Development

As said, AS was the first ACO algorithm to be proposed in the literature. In fact,
AS was originally a set of three algorithms called ant-cycle, ant-density, and ant-
quantity. These three algorithms were proposed in Dorigo’s doctoral dissertation
[61] and first appeared in a technical report [67, 68] that was published a few years
later in the IEEE Transactions on Systems, Man, and Cybernetics [69]. Other early
publications are [36, 37].

While in ant-density and ant-quantity the ants updated the pheromone directly
after a move from a city to an adjacent one, in ant-cycle the pheromone update was
only done after all the ants had constructed the tours and the amount of pheromone
deposited by each ant was set to be a function of the tour quality. Because ant-cycle
performed better than the other two variants, it was later called simply Ant System
(and in fact, it is the algorithm that we will present in the following subsection),
while the other two algorithms were no longer studied.

The major merit of AS, whose computational results were promising but not
competitive with other more established approaches, was to stimulate a number of
researchers, mostly in Europe, to develop extensions and improvements of its basic
ideas so as to produce better performing, and often state-of-the-art, algorithms.

10.4.2.1 The First ACO Algorithm: Ant System and the TSP

The TSP is a paradigmatic NP-hard combinatorial optimization problem, which
has attracted an enormous amount of research effort [6, 103, 110]. The TSP is a
very important problem also in the context of Ant Colony Optimization because it
is the problem to which the original AS was first applied [61, 67–69], and it has later
often been used as a benchmark to test new ideas and algorithmic variants.

In AS each ant is initially put on a randomly chosen city and has a memory, which
stores the partial solution it has constructed so far (initially the memory contains
only the start city). Starting from its start city, an ant iteratively moves from city to
city, which corresponds to adding iteratively solution components as explained in
Sect. 10.3.2. When being at a city i, an ant k chooses to go to an as yet unvisited
city j with a probability given by Eq. (10.1). The heuristic information is given by
ηi j = 1/di j and N (sp) is the set of cities that ant k has not visited yet.

The solution construction ends after each ant has completed a tour, that is, after
each ant has constructed a sequence of length n, corresponding to a permutation of
the city indices. Next, the pheromone trails are updated. In AS this is done by using
Eq. (10.2), where we have

Supd = Siter (10.3)

and
g(s) = 1/ f (s), (10.4)

322 M. Dorigo and T. Stützle

where f (s) is the length of the tour s. Hence, the shorter the ant’s tour is, the more
pheromone is received by edges (solution components) belonging to the tour.7 In
general, edges which are used by many ants and which are contained in shorter
tours receive more pheromone and therefore are also more likely to be chosen in
future iterations of the algorithm.

10.4.2.2 Ant System and Its Extensions

As previously stated, AS was not competitive with state-of-the-art algorithms for
the TSP. Researchers then started to extend it to try to improve its performance.

A first improvement, called the elitist strategy, was introduced in [61, 69]. It con-
sists of giving the best tour since the start of the algorithm (called sgb) a strong addi-
tional weight. In practice, each time the pheromone trails are updated by Eq. (10.2),
we have that Supd = Siter ∪ {sgb}, and g(s),s �= sgb, is given by Eq. (10.4) and
g(sgb) = e/ f (sgb), where e is a positive integer. Note that this type of pheromone
update is a first example of a daemon action as described in Sect. 10.3.2.

Other improvements reported in the literature are rank-based Ant System
(ASrank), MAX–MIN Ant System (MMAS), and Ant Colony System (ACS).
ASrank [32] is in a sense an extension of the elitist strategy: it sorts the ants accord-
ing to the lengths of the tours they generated and, after each tour construction phase,
only the (w−1) best ants and the global-best ant are allowed to deposit pheromone.
The rth best ant of the colony contributes to the pheromone update with a weight
given by max{0,w− r} while the global-best tour reinforces the pheromone trails
with weight w. This can easily be implemented by an appropriate choice of Supd and
g(s) in Eq. (10.2).

MMAS [172, 175, 176] introduces upper and lower bounds to the values of the
pheromone trails, as well as a different initialization of their values. In practice, the
allowed range of the pheromone trail strength in MMAS is limited to the interval
[τmin,τmax], that is, τmin ≤ τi j ≤ τmax ∀τi j, and the pheromone trails are initialized to
the upper trail limit, which causes a higher exploration at the start of the algorithm.
In [172, 176] it is discussed how to set the upper and lower pheromone trail limits.
Pheromone updates are performed using a strong elitist strategy: only the best solu-
tion generated is allowed to update pheromone trails. This can be the iteration-best
solution, that is, the best in the current iteration, or the global-best solution. The
amount of pheromone deposited is then given by g(sb) = 1/ f (sb), where sb is either
sib, the iteration-best solution, or sgb. In fact, the iteration-best ant and the global-
best ant can be used alternately in the pheromone update. Computational results
have shown that best results are obtained when pheromone updates are performed
using the global-best solution with increasing frequency during the algorithm exe-
cution [172, 176]. As an additional means for increasing the explorative behavior
of MMAS (and of ACO algorithms, in general), occasional pheromone trail reini-

7 Note that, when applied to symmetric TSPs, the edges are considered to be bidirectional and
edges (i, j) and (j, i) are both updated. This is different for the ATSP, where edges are directed; in
this case, an ant crossing edge (i, j) will update only this edge and not edge (j, i).

10 Ant Colony Optimization: Overview and Recent Advances 323

tialization is used. MMAS has been improved also by the addition of local search
routines that take the solution generated by ants to their local optimum just before
the pheromone update.

ACS [64, 65, 83] improves over AS by increasing the importance of exploita-
tion of information collected by previous ants with respect to exploration of the
search space.8 This is achieved via two mechanisms. First, a strong elitist strategy
is used to update pheromone trails. Second, ants choose a solution component (that
is, the next city in the TSP case) using the so-called pseudo-random proportional
rule [65]: with probability q0, 0 ≤ q0 < 1, they move to the city j for which the
product between pheromone trail and heuristic information is maximum, that is,
j = argmax

c j
i ∈N (sp)

{τi j ·ηβ
i j}, while with probability 1− q0 they operate a biased

exploration in which the probability pi j(t) is the same as in AS (see Eq. (10.1)). The

Table 10.1 Overview of the main ACO algorithms for NP-hard problems that have been proposed
in the literature

ACO algorithm Main references Year TSP

Ant system [61, 67, 69] 1991 Yes
Elitist AS [61, 67, 69] 1992 Yes
Ant-Q [82] 1995 Yes
Ant colony system [64, 65, 83] 1996 Yes
MMAS [174–176] 1996 Yes
Rank-based AS [31, 32] 1997 Yes
ANTS [124, 125] 1998 No
Best-worst AS [38, 39] 2000 Yes
Population-based ACO [92] 2002 Yes
Beam-ACO [19, 20] 2004 No

Given are the ACO algorithm name, the main references where these algorithms are described, the
year they were first published, and whether they were tested on the TSP or not

value q0 is a parameter: when it is set to a value close to 1, as it is the case in most
ACS applications, exploitation is favored over exploration. Obviously, when q0 = 0
the probabilistic decision rule becomes the same as in AS.

Also, as in MMAS, only the best ant (the global-best or the iteration-best ant)
is allowed to add pheromone after each iteration of ACS; the former is the most
common choice in applications of ACS. The amount of pheromone deposited is
then given by g(sb) = ρ/ f (sgb), where ρ is the pheromone evaporation.

8 ACS was an offspring of Ant-Q [82], an algorithm intended to create a link between reinforce-
ment learning [179] and Ant Colony Optimization. Computational experiments have shown that
some aspects of Ant-Q, in particular the pheromone update rule, could be strongly simplified with-
out affecting performance. It is for this reason that Ant-Q was abandoned in favor of the simpler
and equally good ACS.

324 M. Dorigo and T. Stützle

Finally, ACS also differs from most ACO algorithms because ants update the
pheromone trails while building solutions (as in ant-quantity and in ant-density).
In practice, ACS ants remove some of the pheromone trail on the edges they visit.
This has the effect of decreasing the probability that the same path is used by all
ants (that is, it favors exploration, counterbalancing the other two above-mentioned
modifications that strongly favor exploitation of the collected knowledge about the
problem). Similarly to MMAS, ACS also usually exploits local search to improve
its performance.

We could continue by enumerating the modifications that have been proposed
in various other ACO algorithms that have been reported in the literature. Instead,
we give an overview of the various developments on ACO algorithms for NP-hard
problems in Table 10.1. There we give for each of the main ACO variants that have
been proposed, the main references to these algorithms, the year in which they have
been proposed and whether they have been tested on the TSP. In fact, (published)
tests of most ACO variants have been done on the TSP, which again confirms the
central role of this problem in ACO research.

10.4.2.3 Applications to Dynamic Network Routing Problems

The application of ACO algorithms to dynamic problems, that is, problems whose
characteristics change while being solved, is among the main success stories in
ACO. The first such application [159] was concerned with routing in circuit-
switched networks (e.g., classical telephone networks). The proposed algorithm,
called ABC, was demonstrated on a simulated version of the British Telecom net-
work. The main merit of ABC was to stimulate the interest of ACO researchers
in dynamic problems. In fact, only rather limited comparisons were made between
ABC and state-of-the-art algorithms, so that it is not possible to judge on the quality
of the results obtained.

A very successful application of ACO to dynamic problems is the AntNet al-
gorithm, proposed by Di Caro and Dorigo [50–53] and discussed in Sect. 10.5.3.
AntNet was applied to routing in packet-switched networks (e.g., the Internet). It
contains a number of innovations with respect to AS and it has been shown ex-
perimentally to outperform a whole set of state-of-the-art algorithms on numerous
benchmark problems. Later, AntNet has also been extended to routing problems in
mobile ad-hoc networks, obtaining again excellent performance [74].

10.4.2.4 Towards the ACO Metaheuristic

Given the initial success of ACO algorithms in the applications to NP-hard prob-
lems as well as to dynamic routing problems in networks, Dorigo and Di Caro [63]
made the synthesis effort that led to the definition of a first version of the ACO meta-
heuristic (see also [63, 66, 70]). In other words, the ACO metaheuristic was defined
a posteriori with the goal of providing a common characterization of a new class
of algorithms and a reference framework for the design of new instances of ACO
algorithms.

10 Ant Colony Optimization: Overview and Recent Advances 325

The first version of the ACO metaheuristic was aimed at giving a comprehensive
framework for ACO algorithm applications to “classical” NP-hard combinatorial
optimization problems and to highly dynamic problems in network routing applica-
tions. As such, this early version of the ACO metaheuristic left very large freedom
to the algorithm designer in the definition of the solution components, construc-
tion mechanism, pheromone update, and ants’ behavior. This more comprehensive
variant of the ACO metaheuristic is presented in many publications on this topic
[63, 66, 70]. The version of the ACO metaheuristic described in Sect. 10.3 is targeted
towards the application of ACO algorithms to NP-hard problems and therefore it is
also more precise with respect to the definition of the solution components and so-
lution construction procedure. It follows mainly the versions presented in Chapter 3
of [66] or [23, 24].

10.5 Applications

The versatility and the practical use of the ACO metaheuristic for the solution of
combinatorial optimization problems is best illustrated via example applications to
a number of different problems.

The ACO application to the TSP has already been illustrated in the previous
section. Here, we additionally discuss applications to two NP-hard optimization
problems, the single machine total weighted tardiness problem (SMTWTP), and
the set covering problem (SCP). We have chosen these problems since they are in
several aspects different from the TSP. Although the SMTWTP is also a permutation
problem, it differs from the TSP in the interpretation of the permutations. In the SCP
a solution is represented as a subset of the available solution components.

Applications of ACO to dynamic problems focus mainly on routing in data net-
works. To give a flavor of these applications, as a third example, we present the
AntNet algorithm [52].

10.5.1 Example 1: The Single Machine Total Weighted Tardiness
Scheduling Problem (SMTWTP)

In the SMTWTP n jobs have to be processed sequentially without interruption on
a single machine. Each job has an associated processing time p j, a weight w j, and
a due date d j and all jobs are available for processing at time zero. The tardiness
of job j is defined as Tj = max{0,Cj − d j}, where Cj is its completion time in the
current job sequence. The goal in the SMTWTP is to find a job sequence which
minimizes the sum of the weighted tardiness given by ∑n

i=1 wi ·Ti.
For the ACO application to the SMTWTP, we can have one variable Xi for each

position i in the sequence and each variable has n associated values j = 1, . . . ,n. The
solution components model the assignment of a job j to position i in the sequence.

326 M. Dorigo and T. Stützle

The SMTWTP was tackled in [47] using ACS (ACS-SMTWTP). In ACS-
SMTWTP, the positions of the sequence are filled in their canonical order, that
is, first position one, next position two, and so on, until position n. At each con-
struction step, an ant assigns a job to the current position using the pseudo-random-
proportional action choice rule, where the feasible neighborhood of an ant is the
list of yet unscheduled jobs. Pheromone trails are therefore defined as follows: τi j

refers to the desirability of scheduling job j at position i. This definition of the
pheromone trails is, in fact, used in many ACO applications to scheduling prob-
lems [9, 47, 136, 170]. Concerning the heuristic information, the use of three pri-
ority rules allowed to define three different types of heuristic information for the
SMTWTP [47]. The investigated priority rules were: (1) the earliest due date rule,
which puts the jobs in non-decreasing order of the due dates d j, (2) the modi-
fied due date rule which puts the jobs in non-decreasing order of the modified
due dates given by mdd j = max{C + p j,d j} [9], where C is the sum of the pro-
cessing times of the already sequenced jobs, and (3) the apparent urgency rule
which puts the jobs in non-decreasing order of the apparent urgency [144], given
by au j = (w j/p j) · exp(−(max{d j −Cj,0})/kp), where k is a parameter. In each
case, the heuristic information was defined as ηi j = 1/h j, where h j is either d j,
mdd j, or au j, depending on the priority rule used.

The global and the local pheromone updates are carried out as in the standard
ACS described in Sect. 10.4.2, where in the global pheromone update, g(sgb) is the
total weighted tardiness of the global best solution.

In [47], ACS-SMTWTP was combined with a powerful local search algorithm.
The final ACS algorithm was tested on a benchmark set available from ORLIB at
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html. Within the computation
time limits given,9 ACS reached a very good performance and could find in each
single run the optimal or best known solutions on all instances of the benchmark set
[47].

10.5.2 Example 2: The Set Covering Problem (SCP)

In the set covering problem (SCP) we are given a finite set A = {a1, . . . ,an} of
elements and a set B = {B1, . . . ,Bl} of subsets, Bi ⊆ A, that covers A, that is, we
have

⋃l
i=1 Bi = A. We say that a set Bi covers an element a j, if a j ∈ Bi. Each set Bi

has an associated cost ci. The goal in the SCP is to choose a subset C of the sets in
B such that (1) every element of A is covered and that (2) C has minimum total cost,
that is, the sum of the costs of the subsets in C is minimal.

ACO can be applied in a very straightforward way to the SCP. A binary variable
Xi is associated with every set Bi and a solution component c1

i indicates that Bi is
selected for set C (i.e., Xi = 1), while a solution component c0

i indicates that it is not
selected (i.e., Xi = 0). Each solution component c1

i is associated with a pheromone

9 The maximum time for the largest instances was 20 min on a 450 MHz Pentium III PC with
256 MB RAM. Programs were written in C++ and the PC was run under Red Hat Linux 6.1.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html

10 Ant Colony Optimization: Overview and Recent Advances 327

trail τi and a heuristic information ηi that indicate the learned and the heuristic
desirability of choosing subset Bi. (Note that no pheromone trails are associated
with solution components c0

i .) Solutions can be constructed as follows. Each ant
starts with an empty solution and then adds at each step one subset until a cover is
completed. A solution component c1

i is chosen with probability

pi(sp) =
τα

i · [ηi(sp)]
β

∑l∈N (sp) τα
l · [ηl(sp)]β

, ∀c1
i ∈N (sp) (10.5)

where N (sp) consists of all subsets that cover at least one still uncovered element
of A. The heuristic information ηi(sp) can be chosen in several different ways. For
example, a simple static information could be used, taking into account only the
subset cost: ηi = 1/ci. A more sophisticated approach would be to consider the total
number of elements di covered by a set Bi and to set ηi = di/ci. These two ways of
defining the heuristic information do not depend on the partial solution. Typically,
more accurate heuristics can be developed taking into account the partial solution
of an ant. In this case, it can be defined as ηi(sp) = ei(sp)/ci, where ei(sp) is the so-
called cover value, that is, the number of additional elements covered when adding
subset Bi to the current partial solution sp. In other words, the heuristic information
measures the unit cost of covering one additional element.

An ant ends the solution construction when all the elements of A are covered. In
a post-optimization step, an ant can remove redundant subsets—subsets that only
cover elements that are already covered by other subsets in the final solution—or
apply some additional local search to improve solutions. The pheromone update
can be carried out in a standard way as described in earlier sections.

When applying ACO to the SCP one difference with the previously presented
applications is that the number of solution components in the ant’s solutions may
differ among the ants and, hence, the solution construction only ends when all the
ants have terminated their corresponding walks.

There have been a few applications of ACO algorithms to the SCP [4, 42, 100,
112, 156]. The best results of these ACO algorithms are obtained by the variants
tested by Lessing et al. [112]. In their article, they compared the performance of a
number of ACO algorithms with and without the usage of a local search algorithm
based on 3-flip neighborhoods [186]. The best performance results were obtained,
as expected, when including local search and for a large number of instances the
computational results were competitive with state-of-the-art algorithms for the SCP.

10.5.3 Example 3: AntNet for Network Routing Applications

Given a graph representing a telecommunications network, the problem solved by
AntNet is to find the minimum cost path between each pair of vertices of the graph.
It is important to note that, although finding a minimum cost path on a graph is an
easy problem (it can be efficiently solved by algorithms having polynomial worst

328 M. Dorigo and T. Stützle

case complexity [13]), it becomes extremely difficult when the costs on the edges
are time-varying stochastic variables. This is the case of routing in packet-switched
networks, the target application for AntNet.

Here we briefly describe a simplified version of AntNet (the interested reader
should refer to [52], where the AntNet approach to routing is explained and eval-
uated in detail). As stated earlier, in AntNet each ant searches for a minimum cost
path between a given pair of vertices of the network. To this end, ants are launched
from each network vertex towards randomly selected destination vertices. Each ant
has a source vertex s and a destination vertex d, and moves from s to d hopping
from one vertex to the next until vertex d is reached. When ant k is in vertex i, it
chooses the next vertex j to move to according to a probabilistic decision rule which
is a function of the ant’s memory and of local pheromone and heuristic information
(very much like AS, for example).

Unlike AS, where pheromone trails are associated with edges, in AntNet phero-
mone trails are associated with edge-destination pairs. That is, each directed edge
(i, j) has n−1 associated trail values τi jd ∈ [0,1], where n is the number of vertices
in the graph associated with the routing problem. In other words, there is one trail
value τi jd for each possible destination vertex d an ant located in vertex i can have.
In general, it will hold that τi jd �= τ jid . Each edge also has an associated heuristic
value ηi j ∈ [0,1] independent of the final destination. The heuristic values can be
set for example to the values ηi j = 1−qi j/∑l∈Ni

qil , where qi j is the length (in bits
waiting to be sent) of the queue of the link connecting vertex i with its neighbor j:
links with a shorter queue have a higher heuristic value.

Ants choose their way probabilistically, using as probability a functional compo-
sition of the local pheromone trails τi jd and heuristic values ηi j. While building the
path to their destinations, ants move using the same link queues as data packets and
experience the same delays. Therefore, the time Tsd elapsed while moving from the
source vertex s to the destination vertex d can be used as a measure of the quality
of the path they built. The overall quality of a path is evaluated by a heuristic func-
tion of the trip time Tsd and of a local adaptive statistical model maintained in each
vertex. In fact, paths need to be evaluated relative to the network status because a
trip time T judged of low quality under low congestion conditions could be an ex-
cellent one under high traffic load. Once the generic ant k has completed a path, it
deposits on the visited vertices an amount of pheromone Δτk(t) proportional to the
quality of the path. To deposit pheromone after reaching its destination vertex, the
ant moves back to its source vertex along the same path but backward and using
high priority queues, to allow a fast propagation of the collected information. The
pheromone trail intensity of each edge li j used by the ant while it was moving from
s to d is increased as follows: τi jd(t)← τi jd(t)+Δτk(t). After the pheromone trail
on the visited edges has been updated, the pheromone value of all the outgoing con-
nections of the same vertex i, relative to destination d, evaporates in such a way that
the pheromone values are normalized and can continue to be used as probabilities:
τi jd(t)← τi jd(t)/(1+Δτk(t)), ∀ j ∈Ni, where Ni is the set of neighbors of vertex i.

AntNet was compared with many state-of-the-art algorithms on a large set of
benchmark problems under a variety of traffic conditions. It always compared fa-

10 Ant Colony Optimization: Overview and Recent Advances 329

vorably with competing approaches and it was shown to be very robust with respect
to varying traffic conditions and parameter settings. More details on the experimen-
tal results can be found in [52].

10.5.4 Applications of the ACO Metaheuristic

ACO has raised a lot of interest in the scientific community. There are now hun-
dreds of successful implementations of the ACO metaheuristic applied to a wide
range of different combinatorial optimization problems. The vast majority of these
applications concern NP-hard combinatorial optimization problems.

Many successful ACO applications to NP-hard problems use local search algo-
rithms to improve the ants’ solutions. Another common feature of many success-
ful ACO applications is that they use one of the advanced ACO algorithms such
as ACS, MMAS, etc. In fact, AS has been abandoned by now in favor of more
performing variants. Finally, for problems for which ACO algorithms reach very
high performance, the available ACO algorithms are fine-tuned to the problem un-
der consideration. Apart from fine-tuning parameter settings, this typically involves
the exploitation of problem knowledge, for example, through the use of appropriate
heuristic information, informed choices for the construction mechanism, or the use
of fine-tuned local search algorithms. For a complete overview of ACO applications
until the year 2004 we refer to [66]. Pointers to some early, successful applications
of ACO algorithms to challenging “static” optimization problems are also given in
Table 10.2.

Another large class of applications of ACO algorithms is routing problems where
some system properties such as the availability of links or the cost of traversing
links is time-varying. This is a common case in telecommunications networks. As
said before, the first ACO applications have been to telephone like networks [159],
which are circuit-switched, and to packet switched networks such as the Internet
[52]. Ant-based algorithms have given rise to several other routing algorithms, en-
hancing performance in a variety of wired network scenarios, see [49, 161] for a
survey. Later applications of these strategies involved the more challenging class
of mobile ad hoc networks (MANETs). Even though the straightforward applica-
tion of the ACO algorithms developed for wired networks has proven unsuccessful
due to the specific characteristics of MANETs (very high dynamics, link asymme-
try) [190], Ducatelle et al. [54, 74] were able to propose an ACO algorithm which
is competitive with state-of-the-art routing algorithms for MANETs, while at the
same time offering better scalability. For an exhaustive list of references on ACO
applications to dynamic network routing problems we refer to [75, 78].

The above mentioned applications are mainly early examples of successful ACO
applications. They have motivated other researchers to either consider ACO-based
algorithms for a wide range of different applications or to advance some aspects of
ACO algorithms on widely studied benchmark problems. As a result, the number

330 M. Dorigo and T. Stützle

Table 10.2 Some early applications of ACO algorithms

Problem type Problem name Authors Year References

Routing Traveling salesman Dorigo et al. 1991, 1996 [68, 69]
Dorigo and Gambardella 1997 [65]
Stützle and Hoos 1997, 2000 [175, 176]

TSP with time windows López Ibáñez et al. 2009 [121]
Sequential ordering Gambardella and Dorigo 2000 [84]
Vehicle routing Gambardella et al. 1999 [85]

Reimann et al. 2004 [154]
Favoretto et al. 2007 [79]
Fuellerer et al. 2009 [81]

Multicasting Hernández and Blum 2009 [101]
Assignment Quadratic assignment Maniezzo 1999 [125]

Stützle and Hoos 2000 [176]
Frequency assignment Maniezzo and Carbonaro 2000 [126]
Course timetabling Socha et al. 2002, 2003 [166, 167]
Graph coloring Costa and Hertz 1997 [41]

Scheduling Project scheduling Merkle et al. 2002 [137]
Weighted tardiness den Besten et al. 2000 [47]

Merkle and Middendorf 2000 [135]
Flow shop Stützle 1997 [170]

Rajendran, Ziegler 2004 [152]
Open shop Blum 2005 [20]
Car sequencing Solnon 2008 [168]

Subset Set covering Lessing et al. 2004 [112]
l-cardinality trees Blum and Blesa 2005 [22]
Multiple knapsack Leguizamón and Michalewicz 1999 [111]
Maximum clique Solnon, Fenet 2006 [169]

Machine Classification rules Parpinelli et al. 2002 [151]
learning Martens et al. 2006 [127]

Otero et al. 2008 [148]
Bayesian networks Campos, Fernández-Luna 2002 [44, 45]
Neural networks Socha, Blum 2007 [163]

Bioinformatics Protein folding Shmygelska and Hoos 2005 [160]
Docking Korb et al. 2006 [106, 107]
DNA sequencing Blum et al. 2008 [27]
Haplotype inference Benedettini et al. 2008 [12]

Applications are listed according to problem types

of applications of ACO and, thus, also the number of articles focusing on ACO has
increased a lot, reaching the level of several hundreds of articles listed annually in
the Scopus database. In particular, Fig. 10.5 gives the number of articles that are
published annually based on a search of the terms ant system, ant colony system,
or ant colony optimization in article titles. In particular, since the publication of the
1996 journal article by Dorigo et al. [69], the number of articles published annually
has increased strongly until ca. the year 2010 and since then has maintained a high
level of more than 400 articles each year.

10 Ant Colony Optimization: Overview and Recent Advances 331

Fig. 10.5 Development of the number of publications containing the terms “ant system,” “ant
colony system” or “ant colony optimization” in the title from the years 1996 to 2016; source:
Scopus publication database

10.5.5 Main Application Principles

ACO algorithms have been applied to a large number of different combinatorial
optimization problems. Based on this experience, one can identify some basic issues
that need to be addressed when attacking a new problem. These issues are discussed
in the following.

10.5.5.1 Definition of Solution Components and Pheromone Trails

Of crucial importance in ACO applications is the definition of the solution compo-
nents and of the pheromone model. Consider, for example, the differences in the
definition of solution components in the TSP and the SMTWTP. Although both
problems represent solutions as permutations, the definition of solution components
(and, hence, the interpretation of the pheromone trails), is very different. In the TSP
case, a solution component refers to the direct successor relationship between ele-
ments, while in the SMTWTP it refers to the allocation of a job to a specific position
in the permutation. This is intuitively due to the different role that permutations have
in the two problems. In the TSP, only the relative order of the solution components
is important and a permutation π = (1 2 . . . n) has the same tour length as the per-
mutation π ′ = (n 1 2 . . . n−1)—it represents the same tour. On the contrary, in the
SMTWTP (as well as in many other scheduling problems), π and π ′ would repre-
sent two different solutions with most probably very different costs; in this case the
position information is very important.

In some applications, the role of the pheromone trail definition has been inves-
tigated in more depth. Blum and Sampels compare different ways of defining the
pheromone model for job shop scheduling problems [25]. In [24], Blum and Dorigo

332 M. Dorigo and T. Stützle

show that the choice of an inappropriate pheromone model can result in an un-
desirable performance degradation over time. Fortunately, in many applications the
solution components used in high performing constructive algorithms, together with
the correct choice of the pheromone model, typically result in high performing algo-
rithms. However, finding the best pheromone model is not always a straightforward
task. Examples of some more complex or unusual choices are the ACO application
to the shortest common supersequence problem [140] or the application of ACO to
protein–ligand docking [107].

10.5.5.2 Balancing Exploration and Exploitation

Any effective metaheuristic algorithm has to achieve an appropriate balance be-
tween the exploitation of the search experience gathered so far and the exploration of
unvisited or relatively unexplored search space regions. In ACO several ways exist
for achieving such a balance, typically through the management of the pheromone
trails. In fact, the pheromone trails induce a probability distribution over the search
space and determine which parts of the search space are effectively sampled, that is,
in which part of the search space the constructed solutions are located with higher
frequency.

The best performing ACO algorithms typically use an elitist strategy in which
the best solutions found during the search contribute strongly to pheromone trail
updating. A stronger exploitation of the “learned” pheromone trails can be achieved
during solution construction by applying the pseudo-random proportional rule of
ACS, as explained in Sect. 10.4.2.2. These exploitation features are then typically
combined with some means to ensure enough search space exploration trying to
avoid convergence of the ants to a single path, corresponding to a situation of search
stagnation. There are several ways to try to avoid such stagnation situations. For ex-
ample, in ACS the ants use a local pheromone update rule during solution construc-
tion to make the path they have taken less desirable for subsequent ants and, thus, to
diversify the search. MMAS introduces an explicit lower limit on the pheromone
trail value so that a minimal level of exploration is always guaranteed. MMAS also
uses a reinitialization of the pheromone trails, which is a way of enforcing search
space exploration. Finally, an important role in the balance of exploration and ex-
ploitation is played by the parameters α and β in Eq. (10.1). Consider, for example,
the influence of parameter α . (Parameter β has an analogous influence on the ex-
ploitation of the heuristic information). For α > 0, the larger the value of α the
stronger the exploitation of the search experience; for α = 0 the pheromone trails
are not taken into account at all; and for α < 0 the most probable choices taken
by the ants are those that are less desirable from the point of view of pheromone
trails. Hence, varying α could be used to shift from exploration to exploitation and
conversely.

10 Ant Colony Optimization: Overview and Recent Advances 333

10.5.5.3 ACO and Local Search

In many applications to NP-hard combinatorial optimization problems, ACO algo-
rithms perform best when coupled with local search algorithms. Local search algo-
rithms locally optimize the ants’ solutions and these locally optimized solutions are
used in the pheromone update.

The use of local search in ACO algorithms can be very interesting since the two
approaches are complementary. In fact, ACO algorithms perform a rather coarse-
grained search, and the solutions they produce can then be locally fine-tuned by an
adequate local search algorithm. On the other side, generating appropriate initial
solutions for local search algorithms is not an easy task. In practice, ants probabilis-
tically combine solution components which are part of the best locally optimal solu-
tions found so far and generate new, promising initial solutions for the local search.
Experimentally, it has been found that such a combination of a probabilistic, adap-
tive construction heuristic with local search can yield excellent results [28, 65, 175].
Particularly good results are obtained when the integration of the local search in the
ACO algorithm is well designed. To reach highest performance when very power-
ful local search algorithms are available or when problem instances are very large,
modifications of the ACO algorithm may also be beneficial in some cases as shown
by Gambardella et al. [86].

Despite the fact that the use of local search algorithms has been shown to be cru-
cial for achieving state-of-the-art performance in many ACO applications, it should
be noted that ACO algorithms also show very good performance when local search
algorithms cannot be applied easily [52, 140].

10.5.5.4 Heuristic Information

The possibility of using heuristic information to direct the ants’ probabilistic solu-
tion construction is important because it gives the possibility of exploiting problem
specific knowledge. This knowledge can be available a priori (this is the most fre-
quent situation in NP-hard problems) or at run-time (this is the typical situation in
dynamic problems).

For most NP-hard problems, the heuristic information η can be computed at
initialization time and then it remains the same throughout the whole algorithm’s
run. An example is the use, in the TSP applications, of the length di j of the edge
connecting cities i and j to define the heuristic information ηi j = 1/di j. However, the
heuristic information may also depend on the partial solution constructed so far and
therefore be computed at each step of an ant’s solution construction. This determines
a higher computational cost that may be compensated by the higher accuracy of the
computed heuristic values. For example, in the ACO applications to the SMTWTP
and the SCP the use of such “adaptive” heuristic information was found to be crucial
for reaching very high performance.

334 M. Dorigo and T. Stützle

Finally, it should be noted that while the use of heuristic information is rather
important for a generic ACO algorithm, its importance is strongly reduced if local
search is used to improve solutions. This is due to the fact that local search takes
into account information about the cost to improve solutions in a more direct way.

10.6 Developments

In this section, we review recent research trends in ACO. These include (1) the
application of ACO algorithms to non-standard problems; (2) the development of
ACO algorithms that are hybridized with other metaheuristics or techniques from
mathematical programming; (3) the parallel implementation of ACO algorithms;
and (4) theoretical results on ACO algorithms.

10.6.1 Non-standard Applications of ACO

We review here applications of ACO to problems that involve complicating factors
such as multiple objective functions, time-varying data and stochastic information
about objective values or constraints. In addition, we review some recent applica-
tions of ACO to continuous optimization problems.

10.6.1.1 Multi-Objective Optimization

Frequently, in real-world applications, various solutions are evaluated as a function
of multiple, often conflicting objectives. In simple cases, objectives can be ordered
with respect to their importance, or they can be combined into a single-objective by
using a weighted sum approach. An example of the former approach is the applica-
tion of a two-colony ACS algorithm for the vehicle routing problem with time win-
dows [85]; an example of the latter is given by Doerner et al. [56] for a bi-objective
transportation problem.

If a priori preferences or weights are not available, the usual option is to ap-
proximate the set of Pareto-optimal solutions—a solution s is Pareto optimal if no
other solution has a better value than s for at least one objective and is not worse
than s for the remaining objectives. The first general ACO approach targeted to such
problems is due to Iredi et al. [102], who discussed various alternatives to apply
ACO to multi-objective problems and presented results with a few variants for a
bi-objective scheduling problem. Since then, several algorithmic studies have tested
various alternative approaches. These possible approaches differ in whether they use
one or several pheromone matrices (one for each objective), one or several heuristic
information, how solutions are chosen for pheromone deposit, and whether one or
several colonies of ants are used. Several combinations of these possibilities have

10 Ant Colony Optimization: Overview and Recent Advances 335

been studied, for example, in [3, 120]. For a detailed overview of available multi-
objective ACO algorithms we refer to the review articles by García-Martínez [87],
which also contains an experimental evaluation of some proposed ACO approaches,
and by Angus and Woodward [5].

A different approach to develop multi-objective ACO algorithms has been pro-
posed by López-Ibáñez and Stützle [118, 119]. They have analyzed carefully the
various existing ACO approaches to tackle multi-objective problems and proposed
a generalized multi-objective ACO (MOACO) structure from which most of the then
available approaches could be instantiated but also new variants be generated. Ex-
ploring the resulting design space of MOACO algorithms through a novel method-
ology for generating automatically multi-objective optimizers, they could generate
new MOACO algorithms that clearly outperformed all previously proposed ACO
algorithms for multi-objective optimization [118]. Such framework may also be fur-
ther extended to consider more recent ACO approaches to many-objective problems
such as those proposed by Falcón-Cardona and Coello Coello [77].

10.6.1.2 Dynamic Versions of NP-hard Problems

As said earlier, ACO algorithms have been applied with significant success to dy-
namic problems in the area of network routing [52, 54]. ACO algorithms have also
been applied to dynamic versions of classical NP-hard problems. Examples are
the applications to dynamic versions of the TSP, where the distances between cities
may change or where cities may appear or disappear [76, 91, 92, 130]. More recent
work in this area includes the explicit usage of local search algorithms to improve
the ACO performance on dynamic problems [133]. Applications of ACO algorithms
to dynamic vehicle routing problems are reported in [60, 131, 143], showing good
results on both academic instances and real-world instances. For a recent review of
swarm intelligence algorithms for dynamic optimization problems, including ACO,
we refer to [132].

10.6.1.3 Stochastic Optimization Problems

In many optimization problems data are not known exactly before generating a so-
lution. Rather, what is available is stochastic information on the objective function
value(s), on the decision variable values, or on the constraint boundaries due to un-
certainty, noise, approximation or other factors. ACO algorithms have been applied
to a few stochastic optimization problems. The first stochastic problem to which
ACO was applied is the probabilistic TSP (PTSP), where for each city the probabil-
ity that it requires a visit is known and the goal is to find an a priori tour of minimal
expected length over all the cities. The first to apply ACO to the PTSP were Bianchi
et al. [14], who used an adaptation of ACS. This algorithm was improved by Branke
and Guntsch and by Balaprakash et al. [7], resulting in a state-of-the-art algorithm
for the PTSP. Other applications of ACO include the vehicle routing problem with

336 M. Dorigo and T. Stützle

uncertain demands [15], the vehicle routing problem with uncertain demands and
customers [8], and the selection of optimal screening policies for diabetic retinopa-
thy [30], which builds on the S-ACO algorithm by Gutjahr [95]. For an overview of
the application of metaheuristics, including ACO algorithms, to stochastic combi-
natorial optimization problems we refer to [16].

10.6.1.4 Continuous Optimization

Although ACO was proposed for combinatorial problems, researchers started to
adapt it to continuous optimization problems.10 The simplest approach for apply-
ing ACO to continuous problems would be to discretize the real-valued domain of
the variables. This approach has been successfully followed when applying ACO
to the protein–ligand docking problem [107], where it was combined with a local
search that was, however, working on the continuous domain of the variables. ACO
algorithms that handle continuous parameters natively have been proposed [162].
An example is the ACOR algorithm by Socha and Dorigo [165], where the prob-
ability density functions that are implicitly built by the pheromone model in clas-
sic ACO algorithms are explicitly represented by Gaussian kernel functions. Other
early references on this subject are [162, 181, 183]. ACOR has been refined by Liao
et al. using an increasing population size and integrating powerful local search al-
gorithms [113]; additional refinements were later reported by Kumar et al. [109].
A unified framework for ACO applications to continuous optimization is proposed
by Liao et al. [114]. In their approach, many variants of ACOR can be instantiated
by choosing specific algorithm components and by setting freely a large number
of algorithm parameters. Using the help of an automated algorithm configuration
tool called irace [122], the unified framework proved to be able to generate con-
tinuous ACO algorithms superior to those previously proposed in the literature. An
extension of ACOR to multi-modal optimization is presented by Yang et al. [187].
Finally, the ACOR approach has also been extended to mixed-variable—continuous
and discrete–problems [115, 164].

10.6.2 Algorithmic Developments

In the early years of ACO research, the focus was in developing ACO variants with
modified pheromone update rules or solution generation mechanisms to improve
the algorithmic performance. More recently, researchers have explored combina-
tions of ACO with other algorithmic techniques. Here, we review some of the most
noteworthy developments.

10 There have been several proposals of ant-inspired algorithms for continuous optimization [17,
73, 142]. However, these differ strongly from the underlying ideas of ACO (for example, they use
direct communication among ants) and therefore cannot be considered as algorithms falling into
the framework of the ACO metaheuristic.

10 Ant Colony Optimization: Overview and Recent Advances 337

10.6.2.1 Hybridizations of ACO with Other Metaheuristics

The most straightforward hybridization of ACO is with local improvement heuris-
tics, which are used to fine-tune the solutions constructed by the ants. Often simple
iterative improvement algorithms are used. However, in various articles, other meta-
heuristic algorithms have been used as improvement methods. One example is the
use of tabu search to improve the ants’ solutions for the quadratic assignment prob-
lem [176, 180]. Interestingly, other, more sophisticated hybridizations have been
proposed. A first one is to let the ants start the solution construction not from scratch
but from partial solutions that are obtained either by removing solution components
from an ant’s complete solution [185, 189] or by taking partial solutions from other
complete solutions [1, 2, 182]. Two important advantages of starting the solution
construction from partial solutions are that (1) the solution construction process is
much faster and (2) good parts of solutions may be exploited directly. Probably the
most straightforward of these proposals is the iterated ants [185], which uses ideas
from the iterated greedy (IG) metaheuristic [158]. Once some initial solution has
been generated, IG iterates over construction heuristics by first removing solution
components of a complete solution s, resulting in a partial solution sp. From sp a
complete solution is then rebuilt using some construction mechanism. In the iter-
ated ants algorithm, this mechanism is simply the standard solution construction
of the underlying ACO algorithm. Computational results suggest that this idea is
particularly useful if no effective local search is available.

10.6.2.2 Hybridizations of ACO with Branch-and-Bound Techniques

The integration of tree search techniques into constructive algorithms is an appeal-
ing possibility of hybridization since the probabilistic solution construction of ants
can be seen as the stochastic exploration of a search tree. Particularly attractive are
combinations of ACO with tree search techniques from mathematical programming
such as branch-and-bound. A first algorithm is the approximate nondeterministic
tree search (ANTS) algorithm by Maniezzo [125]. The most important innovation
of ANTS is the use of lower bound estimates as the heuristic information for rat-
ing the attractiveness of adding specific solution components. Additionally, lower
bound computations allow the method to prune feasible extensions of partial so-
lutions if the estimated solution cost is larger than that of the best solution found
so far. An additional innovation of ANTS consists of computing an initial lower
bound to influence the order in which solution components are considered in the
solution construction. Computational results obtained with ANTS for the quadratic
assignment and the frequency assignment problems are very promising [125, 126].

BeamACO, the combination of ACO algorithms with beam-search, was proposed
by Blum [20]. Beam-search is a derivative of branch-and-bound algorithms that
keeps at each iteration a set of at most fw nodes in a search tree and expands each of
them in at most bw directions according to a selection based on lower bounds [149].
At each extension step applied to the fw current partial solutions, fw ·bw new partial

338 M. Dorigo and T. Stützle

solutions are generated and the fw best ones are kept (where best is rated with re-
spect to a lower bound). BeamACO takes from beam-search the parallel exploration
of the search tree and replaces the beam-search’s deterministic solution extension
mechanism by that of ACO. The results with BeamACO have been very good so
far. For example, it is a state-of-the-art algorithm for open shop scheduling [20], for
some variants of assembly line balancing [21], and for the TSP with time windows
[117].

10.6.2.3 Combinations of ACO with Constraint and Integer Programming
Techniques

For problems that are highly constrained and for which it is difficult to find feasible
solutions, an attractive possibility is to integrate constraint programming techniques
into ACO. A first proposal in this direction can be found in [139]. In particular, the
authors integrate a constraint propagation mechanism into the solution construction
of the ants to identify earlier in the construction process whether specific solutions
extensions would lead to infeasible solutions. Computational tests on a highly con-
strained scheduling problem have shown the high potential of this approach. More
recently, Khichane et al. [105] have examined the integration of an ACO algorithm
into a constraint solver. Massen et al. [128] have considered the usage of ACO mech-
anisms in a column generation approach to vehicle routing problems with black-box
feasibility constraints. The ACO-based approach is used as a heuristic to generate
candidate routes for the vehicles, which correspond to the columns in the integer
programming model; an “optimal” combination of the generated candidate routes
is then found by an integer programming technique. A further analysis of the pa-
rameters of this method is proposed by Massen et al. [129], which resulted in some
improved solutions to various benchmark instances.

10.6.3 Parallel Implementations

The very nature of ACO algorithms lends them to be parallelized in the data or
population domains. In particular, many parallel models used in other population-
based algorithms can be easily adapted to ACO. Most early parallelization strategies
can be classified into fine-grained and coarse-grained strategies. Characteristics of
fine-grained parallelization are that very few individuals are assigned to one single
processor and that frequent information exchange among the processors takes place.
On the contrary, in coarse grained approaches, larger subpopulations or even full
populations are assigned to single processors and information exchange is rather
rare. We refer, for example, to [34] for an overview.

Fine-grained parallelization schemes have been investigated early when multi-
core CPUs and shared memory architectures were not available or not common.
The first fine-grained parallelization schemes were studied with parallel versions of

10 Ant Colony Optimization: Overview and Recent Advances 339

AS for the TSP on the Connection Machine CM-2 by attributing a single processing
unit to each ant [29]. Experimental results showed that communication overhead can
be a major problem, since ants ended up spending most of their time communicating
the modifications they made to pheromone trails. Similar negative results have also
been reported in [33, 153].

As shown by several researches [29, 33, 123, 141, 171], coarse grained par-
allelization schemes are much more promising for ACO; such schemes are also
still relevant in the context of modern architectures. When applied to ACO, coarse
grained schemes run p subcolonies in parallel, where p is the number of available
processors. Even though independent runs of the p subcolonies in parallel have
shown to be effective [123, 171], often further improved performance may be ob-
tained by a well-designed information exchange among the subcolonies. In this case,
a policy defines the kind of information to be exchanged, how migrants between
the subcolonies are selected, to which colonies the information is sent, when infor-
mation is sent and what is to be done with the received information. We refer to
Middendorf et al. [141] or Twomey et al. [184] for comprehensive studies of this
subject. With the wide-spread availability of multi-core CPUs and shared memory
architectures, thread-level parallelism is nowadays the option of choice to speed-up
a single run of an ACO algorithm. Nevertheless, if high solution quality is desired,
the above mentioned coarse-grained schemes can easily be implemented also on
such architectures. Recent work on the parallelization of ACO algorithms evaluates
them on various platforms [90] and studies the exploitation of graphics processor
units to speed them up [35, 43, 46].

10.6.4 Theoretical Results

The initial, experimentally driven research on ACO has established it as an interest-
ing algorithmic technique. After this initial phase, researchers have started to obtain
insights into fundamental properties of ACO algorithms.

The first question was whether an ACO algorithm, if given enough time, will
eventually find an optimal solution. This is an interesting question, because the
pheromone update could prevent ACO algorithms from ever reaching an optimum.
The first convergence proofs were presented by Gutjahr in [93]. He proved con-
vergence with probability 1− ε to the optimal solution of Graph-Based Ant Sys-
tem (GBAS), an ACO algorithm whose empirical performance is unknown. Later,
he proved convergence to any optimal solution [94] with probability one for two
extended versions of GBAS. Interestingly, convergence proofs for two of the top
performing ACO algorithms in practice, ACS and MMAS, could also be obtained
[66, 173].

Unfortunately, these convergence proofs do not say anything about the speed
with which the algorithms converge to the optimal solution. A more detailed analy-
sis would therefore consider the expected runtime when applying ACO algorithms
to specific problems. In fact, a number of results have been obtained in that direc-

340 M. Dorigo and T. Stützle

tion. The first results can be found in [96] and since then a number of additional
results have been obtained [58, 59, 98, 99, 145, 146]. Due to the difficulty of the
theoretical analysis, most of these results, however, have been obtained consider-
ing idealized, polynomially solvable problems. While often these include simple
pseudo-Boolean functions, in [147] a theoretical runtime analysis is carried out for
a basic combinatorial problem, the minimum spanning tree problem, while Sudholt
and Thyssen study the shortest path problem [178]. More recently, Lissov and Witt
have considered the analysis of MMAS for dynamic shortest path problems, study-
ing, in particular, the impact of the population size on optimization performance as a
function of the type of dynamic variations [116]. For an early review of this research
direction, we refer to [97].

Other research in ACO theory has focused on establishing formal links between
ACO and other techniques for learning and optimization. One example relates ACO
to the fields of optimal control and reinforcement learning [18], while another ex-
amines the connections between ACO algorithms and probabilistic learning algo-
rithms such as the stochastic gradient ascent and the cross-entropy method [138].
Zlochin et al. [191] have proposed a unifying framework for so-called model-based
search algorithms. Among other advantages, this framework allows a better under-
standing of what are important parts of an algorithm and it could lead to a better
cross-fertilization among algorithms.

While convergence proofs give insight into some mathematically relevant prop-
erties of algorithms, they usually do not provide guidance to practitioners for the
implementation of efficient algorithms. More relevant for practical applications are
research efforts aimed at a better understanding of the behavior of ACO algorithms.
Blum and Dorigo [24] have shown that ACO algorithms in general suffer from first
order deception in the same way as genetic algorithms suffer from deception. They
further introduced the concept of second order deception, which occurs, for ex-
ample, in situations where some solution components receive updates from more
solutions on average than others they compete with [26]. The first to study the be-
havior of ACO algorithms by analyzing the dynamics of the pheromone model were
Merkle and Middendorf [134]. For idealized permutation problems, they showed
that the bias introduced on decisions in the construction process (due to constraints
on the feasibility of solutions) leads to what they call a selection bias. When apply-
ing ACO to the TSP, the solution construction can be seen as a probabilistic version
of the nearest neighbor heuristic. However, Kötzing et al. show that different con-
struction rules result in better performance at least from a theoretical perspective
[108].

A discussion of recent theoretical results on ACO including those on the expected
run-time analysis can be found in a tutorial on the theory of swarm intelligence
algorithms [177]. A review paper on early advancements in ACO theory is [62].

10 Ant Colony Optimization: Overview and Recent Advances 341

10.7 Conclusions

Since the proposal of the first ACO algorithms in 1991, the field of ACO has at-
tracted a large number of researchers and nowadays a large number of research
results of both experimental and theoretical nature exist. By now ACO is a well
established metaheuristic. The importance of ACO is exemplified by (1) the bian-
nual conference ANTS (International conference on Ant Colony Optimization and
Swarm Intelligence; http://www.swarm-intelligence.eu/), where researchers meet to
discuss the properties of ACO and other ant algorithms, both theoretically and ex-
perimentally; (2) the IEEE Swarm Intelligence Symposium series; (3) various con-
ferences on metaheuristics and evolutionary algorithms, where ACO is a central
topic; and (4) a number of journal special issues [40, 57, 71, 72]. More informa-
tion on ACO can also be found on the Ant Colony Optimization web page: www.
aco-metaheuristic.org. Additionally, a moderated mailing list dedicated to the ex-
change of information related to ACO is accessible at: www.aco-metaheuristic.org/
mailing-list.html.

The majority of the currently published articles on ACO are clearly on its ap-
plication to computationally challenging problems. While most researches here are
on academic applications, it is noteworthy that companies have started to use ACO
algorithms for real-world applications [157]. For example, the company AntOptima
(www.antoptima.com) plays an important role in promoting the real-world appli-
cation of ACO. Furthermore, the company Arcelor-Mittal uses ACO algorithms to
solve several of the optimization problems arising in their production sites [55, 80].
In real-world applications, features such as time-varying data, multiple objectives
or the availability of stochastic information about events or data are rather common.
Interestingly, applications of ACO to problems that show such characteristics are
receiving increased attention. In fact, we believe that ACO algorithms are particu-
larly useful when they are applied to such “ill-structured” problems for which it is
not clear how to apply local search, or to highly dynamic domains where only local
information is available.

Acknowledgements This work was supported by the COMEX project, P7/36, within the In-
teruniversity Attraction Poles Programme of the Belgian Science Policy Office. Marco Dorigo and
Thomas Stützle acknowledge support from the Belgian F.R.S.-FNRS, of which they are Research
Directors.

References

1. A. Acan, An external memory implementation in ant colony optimization, in Ant Colony
Optimization and Swarm Intelligence: 4th International Workshop, ANTS 2004, ed. by
M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, T. Stützle. Lecture Notes
in Computer Science, vol. 3172 (Springer, Heidelberg, 2004), pp. 73–84

http://www.swarm-intelligence.eu/
www.aco-metaheuristic.org
www.aco-metaheuristic.org
www.aco-metaheuristic.org/mailing-list.html
www.aco-metaheuristic.org/mailing-list.html
www.antoptima.com

342 M. Dorigo and T. Stützle

2. A. Acan, An external partial permutations memory for ant colony optimization, in Evolution-
ary Computation in Combinatorial Optimization, ed. by G. Raidl, J. Gottlieb. Lecture Notes
in Computer Science, vol. 3448 (Springer, Heidelberg, 2005), pp. 1–11

3. I. Alaya, C. Solnon, K. Ghédira, Ant colony optimization for multi-objective optimization
problems, in 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI
2007), vol. 1 (IEEE Computer Society, Los Alamitos, 2007), pp. 450–457

4. D.A. Alexandrov, Y.A. Kochetov, The behavior of the ant colony algorithm for the set cover-
ing problem, in Operations Research Proceedings 1999, ed. by K. Inderfurth, G. Schwö-
diauer, W. Domschke, F. Juhnke, P. Kleinschmidt, G. Wäscher (Springer, Berlin, 2000),
pp. 255–260

5. D. Angus, C. Woodward, Multiple objective ant colony optimization. Swarm Intell. 3(1),
69–85 (2009)

6. D. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The Traveling Salesman Problem: A Com-
putational Study (Princeton University Press, Princeton, 2006)

7. P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, M. Dorigo, Estimation-based ant colony
optimization algorithms for the probabilistic travelling salesman problem. Swarm Intell. 3(3),
223–242 (2009)

8. P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, M. Dorigo, Estimation-based metaheuris-
tics for the single vehicle routing problem with stochastic demands and customers. Comput.
Optim. Appl. 61(2), 463–487 (2015)

9. A. Bauer, B. Bullnheimer, R.F. Hartl, C. Strauss, An ant colony optimization approach for the
single machine total tardiness problem, in Proceedings of the 1999 Congress on Evolutionary
Computation (CEC’99) (IEEE Press, Piscataway, 1999), pp. 1445–1450

10. R. Beckers, J.-L. Deneubourg, S. Goss, Modulation of trail laying in the ant Lasius niger
(hymenoptera: Formicidae) and its role in the collective selection of a food source. J. Insect
Behav. 6(6), 751–759 (1993)

11. R. Bellman, A.O. Esogbue, I. Nabeshima, Mathematical Aspects of Scheduling and Applica-
tions (Pergamon Press, New York, 1982)

12. S. Benedettini, A. Roli, L. Di Gaspero, Two-level ACO for haplotype inference under pure
parsimony, in Ant Colony Optimization and Swarm Intelligence, 6th International Workshop,
ANTS 2008, ed. by M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, A.F.T. Winfield.
Lecture Notes in Computer Science, vol. 5217 (Springer, Heidelberg, 2008), pp. 179–190

13. D. Bertsekas, Network Optimization: Continuous and Discrete Models (Athena Scientific,
Belmont, 1998)

14. L. Bianchi, L.M. Gambardella, M. Dorigo, An ant colony optimization approach to the proba-
bilistic traveling salesman problem, in Parallel Problem Solving from Nature – PPSN VII: 7th
International Conference, J.J. Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernández-
Villacanas, H.-P. Schwefel. Lecture Notes in Computer Science, vol. 2439 (Springer, Heidel-
berg, 2002), pp. 883–892

15. L. Bianchi, M. Birattari, M. Manfrin, M. Mastrolilli L. Paquete, O. Rossi-Doria, T. Schi-
avinotto, Hybrid metaheuristics for the vehicle routing problem with stochastic demands. J.
Math. Model. Algorithms 5(1), 91–110 (2006)

16. L. Bianchi, L.M. Gambardella, M. Dorigo, W. Gutjahr, A survey on metaheuristics for
stochastic combinatorial optimization. Nat. Comput. 8(2), 239–287 (2009)

17. G. Bilchev, I.C. Parmee, The ant colony metaphor for searching continuous design spaces, in
Evolutionary Computing, AISB Workshop, ed. by T.C. Fogarty. Lecture Notes in Computer
Science, vol. 993 (Springer, Heidelberg, 1995), pp. 25–39

18. M. Birattari, G. Di Caro, M. Dorigo, Toward the formal foundation of ant programming, in
Ant Algorithms: Third International Workshop, ANTS 2002, ed. by M. Dorigo, G. Di Caro,
M. Sampels. Lecture Notes in Computer Science, vol. 2463 (Springer, Heidelberg, 2002),
pp. 188–201

19. C. Blum, Theoretical and practical aspects of ant colony optimization, PhD thesis, IRIDIA,
Université Libre de Bruxelles, Brussels, 2004

20. C. Blum, Beam-ACO—hybridizing ant colony optimization with beam search: an application
to open shop scheduling. Comput. Oper. Res. 32(6), 1565–1591 (2005)

10 Ant Colony Optimization: Overview and Recent Advances 343

21. C. Blum, Beam-ACO for simple assembly line balancing. INFORMS J. Comput. 20(4), 618–
627 (2008)

22. C. Blum, M.J. Blesa, New metaheuristic approaches for the edge-weighted k-cardinality tree
problem.Comput. Oper. Res. 32(6), 1355–1377 (2005)

23. C. Blum, M. Dorigo, The hyper-cube framework for ant colony optimization. IEEE Trans.
Syst. Man Cybern. B 34(2), 1161–1172 (2004)

24. C. Blum, M. Dorigo, Search bias in ant colony optimization: on the role of competition-
balanced systems. IEEE Trans. Evol. Comput. 9(2), 159–174 (2005)

25. C. Blum, M. Sampels, Ant colony optimization for FOP shop scheduling: a case study on
different pheromone representations, in Proceedings of the 2002 Congress on Evolutionary
Computation (CEC’02) (IEEE Press, Piscataway, 2002), pp. 1558–1563

26. C. Blum, M. Sampels, M. Zlochin, On a particularity in model-based search, in Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2002), ed. by W.B.
Langdon et al. (Morgan Kaufmann Publishers, San Francisco, 2002), pp. 35–42

27. C. Blum, M. Yabar, M.J. Blesa, An ant colony optimization algorithm for DNA sequencing
by hybridization.Comput. Oper. Res. 35(11), 3620–3635 (2008)

28. K.D. Boese, A.B. Kahng, S. Muddu, A new adaptive multi-start technique for combinatorial
global optimization. Oper. Res. Lett. 16(2), 101–113 (1994)

29. M. Bolondi, M. Bondanza, Parallelizzazione di un algoritmo per la risoluzione del prob-
lema del commesso viaggiatore, Master’s thesis, Dipartimento di Elettronica, Politecnico di
Milano, Italy, 1993

30. S.C. Brailsford, W.J. Gutjahr, M.S. Rauner, W. Zeppelzauer, Combined discrete-event sim-
ulation and ant colony optimisation approach for selecting optimal screening policies for
diabetic retinopathy. Comput. Manag. Sci. 4(1), 59–83 (2006)

31. B. Bullnheimer, R.F. Hartl, C. Strauss, A new rank based version of the Ant System — a
computational study, Technical report, Institute of Management Science, University of Vi-
enna, 1997

32. B. Bullnheimer, R.F. Hartl, C. Strauss, A new rank-based version of the Ant System: a com-
putational study. Cent. Eur. J. Oper. Res. Econ. 7(1), 25–38 (1999)

33. B. Bullnheimer, G. Kotsis, C. Strauss, Parallelization strategies for the Ant System, in High
Performance Algorithms and Software in Nonlinear Optimization, ed. by R. De Leone,
A. Murli, P. Pardalos, G. Toraldo. Kluwer Series of Applied Optmization, vol. 24 (Kluwer
Academic Publishers, Dordrecht, 1998), pp. 87–100

34. E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms (Kluwer Academic Pub-
lishers, Boston, 2000)

35. J.M. Cecilia, J.M. García, A. Nisbet, M. Amos, M. Ujaldón, Enhancing data parallelism for
ant colony optimization on GPUs. J. Parallel Distrib. Comput. 73(1), 52–61 (2013)

36. A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies, in Proceed-
ings of the First European Conference on Artificial Life, ed. by F.J. Varela, P. Bourgine (MIT,
Cambridge, 1992), pp. 134–142

37. A. Colorni, M. Dorigo, V. Maniezzo, An investigation of some properties of an ant algorithm,
in Parallel Problem Solving from Nature – PPSN II, ed. by R. Männer, B. Manderick (North-
Holland, Amsterdam, 1992), pp. 509–520

38. O. Cordón, I. Fernández de Viana, F. Herrera, L. Moreno, A new ACO model integrating
evolutionary computation concepts: the best-worst Ant System, in Abstract proceedings of
ANTS 2000 – From Ant Colonies to Artificial Ants: Second International Workshop on Ant
Algorithms, ed. by M. Dorigo, M. Middendorf, T. Stützle (IRIDIA, Université Libre de Brux-
elles, Brussels, 2000), pp. 22–29

39. O. Cordón, I. Fernández de Viana, F. Herrera, Analysis of the best-worst Ant System and its
variants on the TSP. Mathw. Soft Comput. 9(2–3), 177–192 (2002)

40. O. Cordón, F. Herrera, T. Stützle, Special issue on ant colony optimization: models and ap-
plications. Mathw. Soft Comput. 9(2–3), 137–268 (2003)

41. D. Costa, A. Hertz, Ants can colour graphs. J. Oper. Res. Soc. 48(3), 295–305 (1997)
42. B. Crawford, R. Soto, E. Monfroy, F. Paredes, W. Palma, A hybrid ant algorithm for the set

covering problem. Int. J. Phys. Sci. 6(19), 4667–4673 (2011)
43. L. Dawson, I.A. Stewart, Improving ant colony optimization performance on the GPU us-

ing CUDA, in Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2013
(IEEE Press, Piscataway, 2013), pp. 1901–1908

344 M. Dorigo and T. Stützle

44. L.M. de Campos, J.M. Fernández-Luna, J.A. Gámez, J.M. Puerta, Ant colony optimization
for learning Bayesian networks. Int. J. Approx. Reason. 31(3), 291–311 (2002)

45. L.M. de Campos, J.A. Gamez, J.M. Puerta, Learning Bayesian networks by ant colony opti-
misation: searching in the space of orderings. Mathw. Soft Comput. 9(2–3), 251–268 (2002)

46. A. Delvacq, P. Delisle, M. Gravel, M. Krajecki, Parallel ant colony optimization on graphics
processing units. J. Parallel Distrib. Comput. 73(1), 52–61 (2013)

47. M.L. den Besten, T. Stützle, M. Dorigo, Ant colony optimization for the total weighted tardi-
ness problem, in Proceedings of PPSN-VI, Sixth International Conference on Parallel Prob-
lem Solving from Nature, ed. by M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J.
Merelo, H.-P. Schwefel. Lecture Notes in Computer Science, vol. 1917 (Springer, Heidel-
berg, 2000), pp. 611–620

48. J.-L. Deneubourg, S. Aron, S. Goss, J.-M. Pasteels, The self-organizing exploratory pattern
of the Argentine ant. J. Insect Behav. 3(2), 159–168 (1990)

49. G. Di Caro, Ant Colony Optimization and its application to adaptive routing in telecommu-
nication networks, PhD thesis, IRIDIA, Université Libre de Bruxelles, Brussels, 2004

50. G. Di Caro, M. Dorigo, AntNet: a mobile agents approach to adaptive routing, Technical
Report IRIDIA/97-12, IRIDIA, Université Libre de Bruxelles, Brussels, 1997

51. G. Di Caro, M. Dorigo, Ant colonies for adaptive routing in packet-switched communications
networks, in Proceedings of PPSN-V, Fifth International Conference on Parallel Problem
Solving from Nature, ed. by A. E. Eiben, T. Bäck, M. Schoenauer, H.-P. Schwefel. Lecture
Notes in Computer Science, vol. 1498 (Springer, Heidelberg, 1998), pp. 673–682

52. G. Di Caro, M. Dorigo, AntNet: distributed stigmergetic control for communications net-
works. J. Artif. Intell. Res. 9, 317–365 (1998)

53. G. Di Caro, M. Dorigo, Mobile agents for adaptive routing, in Proceedings of the 31st Inter-
national Conference on System Sciences (HICSS-31), ed. by H. El-Rewini. (IEEE Computer
Society Press, Los Alamitos, 1998), pp. 74–83

54. G. Di Caro, F. Ducatelle, L.M. Gambardella, AntHocNet: an adaptive nature-inspired al-
gorithm for routing in mobile ad hoc networks. Eur. Trans. Telecommun. 16(5), 443–455
(2005)

55. D. Díaz, P. Valledor, P. Areces, J. Rodil, M. Suárez, An ACO algorithm to solve an extended
cutting stock problem for scrap minimization in a bar mill, in Swarm Intelligence, 9th Inter-
national Conference, ANTS 2014, ed. by M. Dorigo, M. Birattari, S. Garnier, H. Hamann,
M. Montes de Oca, C. Solnon, T. Stützle. Lecture Notes in Computer Science, vol. 8667
(Springer, Heidelberg, 2014), pp. 13–24

56. K.F. Doerner, R.F. Hartl, M. Reimann, Are CompetAnts more competent for problem solv-
ing? the case of a multiple objective transportation problem. Cent. Eur. J. Oper. Res. Econ.
11(2), 115–141 (2003)

57. K.F. Doerner, D. Merkle, T. Stützle, Special issue on ant colony optimization. Swarm Intell.
3(1), 1–2 (2009)

58. B. Doerr, F. Neumann, D. Sudholt, C. Witt, On the runtime analysis of the 1-ANT ACO al-
gorithm, in Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings
(ACM press, New York, 2007), pp. 33–40

59. B. Doerr, F. Neumann, D. Sudholt, C. Witt, Runtime analysis of the 1-ant ant colony opti-
mizer. Theor. Comput. Sci. 412(17), 1629–1644 (2011)

60. A.V. Donati, R. Montemanni, N. Casagrande, A.E. Rizzoli, L.M. Gambardella, Time de-
pendent vehicle routing problem with a multi ant colony system. Eur. J. Oper. Res. 185(3),
1174–1191 (2008)

61. M. Dorigo, Optimization, Learning and Natural Algorithms (in Italian), PhD thesis, Diparti-
mento di Elettronica, Politecnico di Milano, Italy, 1992

62. M. Dorigo, C. Blum, Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2–
3), 243–278 (2005)

63. M. Dorigo, G. Di Caro, The Ant Colony Optimization meta-heuristic, in New Ideas in Opti-
mization, ed. by D. Corne, M. Dorigo, F. Glover (McGraw Hill, London, 1999), pp. 11–32

64. M. Dorigo, L.M. Gambardella, Ant colonies for the traveling salesman problem. BioSystems
43(2), 73–81 (1997)

10 Ant Colony Optimization: Overview and Recent Advances 345

65. M. Dorigo, L.M. Gambardella, Ant Colony System: a cooperative learning approach to the
traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

66. M. Dorigo, T. Stützle, Ant Colony Optimization (MIT Press, Cambridge, 2004)
67. M. Dorigo, V. Maniezzo, A. Colorni, The Ant System: an autocatalytic optimizing process,

Technical Report 91-016 Revised, Dipartimento di Elettronica, Politecnico di Milano, Italy,
1991

68. M. Dorigo, V. Maniezzo, A. Colorni, Positive feedback as a search strategy, Technical Report
91–016, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991

69. M. Dorigo, V. Maniezzo, A. Colorni, Ant System: optimization by a colony of cooperating
agents. IEEE Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)

70. M. Dorigo, G. Di Caro, L.M. Gambardella, Ant algorithms for discrete optimization.Artif.
Life 5(2), 137–172 (1999)

71. M. Dorigo, G. Di Caro, T. Stützle (eds.), Special issue on “Ant Algorithms”. Futur. Gener.
Comput. Syst. 16(8), 851–956 (2000)

72. M. Dorigo, L.M. Gambardella, M. Middendorf, T. Stützle (eds.), Special issue on “Ant Al-
gorithms and Swarm Intelligence”. IEEE Trans. Evol. Comput. 6(4), 317–365 (2002)

73. J. Dréo, P. Siarry, Continuous interacting ant colony algorithm based on dense heterarchy.
Futur. Gener. Comput. Syst. 20(5), 841–856 (2004)

74. F. Ducatelle, G. Di Caro, L.M. Gambardella, Using ant agents to combine reactive and proac-
tive strategies for routing in mobile ad hoc networks. Int. J. Comput. Intell. Appl. 5(2), 169–
184 (2005)

75. F. Ducatelle, G. Di Caro, L.M. Gambardella, Principles and applications of swarm intelli-
gence for adaptive routing in telecommunications networks. Swarm Intell. 4(3), 173–198
(2010)

76. C.J. Eyckelhof, M. Snoek, Ant systems for a dynamic TSP: ants caught in a traffic jam, in
Ant Algorithms: Third International Workshop, ANTS 2002, ed. by M. Dorigo, G. Di Caro,
M. Sampels. Lecture Notes in Computer Science, vol. 2463 (Springer, Heidelberg, 2002),
pp. 88–99

77. J.G. Falcón-Cardona, C.A. Coello Coello, A new indicator-based many-objective ant colony
optimizer for continuous search spaces. Swarm Intell. 11(1), 71–100 (2017)

78. M. Farooq, G. Di Caro, Routing protocols for next-generation intelligent networks inspired
by collective behaviors of insect societies, in Swarm Intelligence: Introduction and Appli-
cations, ed. by C. Blum, D. Merkle. Natural Computing Series (Springer, Berlin, 2008),
pp. 101–160

79. D. Favaretto, E. Moretti, P. Pellegrini, Ant colony system for a VRP with multiple time
windows and multiple visits. J. Interdiscip. Math. 10(2), 263–284 (2007)

80. S. Fernández, S. Álvarez, D. Díaz, M. Iglesias, B. Ena, Scheduling a galvanizing line by ant
colony optimization, in Swarm Intelligence, 9th International Conference, ANTS 2014, ed.
by M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon, T. Stützle.
Lecture Notes in Computer Science, vol. 8667 (Springer, Heidelberg, 2014), pp. 146–157

81. G. Fuellerer, K.F. Doerner, R.F. Hartl, M. Iori, Ant colony optimization for the two-
dimensional loading vehicle routing problem. Comput. Oper. Res. 36(3), 655–673 (2009)

82. L.M. Gambardella, M. Dorigo, Ant-Q: a reinforcement learning approach to the travel-
ing salesman problem. in Proceedings of the Twelfth International Conference on Machine
Learning (ML-95), ed. by A. Prieditis, S. Russell (Morgan Kaufmann Publishers, Palo Alto,
1995), pp. 252–260

83. L.M. Gambardella, M. Dorigo, Solving symmetric and asymmetric TSPs by ant colonies,
in Proceedings of the 1996 IEEE International Conference on Evolutionary Computation
(ICEC’96) (IEEE Press, Piscataway, 1996), pp. 622–627

84. L.M. Gambardella, M. Dorigo, Ant Colony System hybridized with a new local search for
the sequential ordering problem. INFORMS J. Comput. 12(3), 237–255 (2000)

85. L.M. Gambardella, É.D. Taillard, G. Agazzi, MACS-VRPTW: a multiple ant colony sys-
tem for vehicle routing problems with time windows, in New Ideas in Optimization, ed. by
D. Corne, M. Dorigo, F. Glover (McGraw Hill, London, 1999), pp. 63–76

346 M. Dorigo and T. Stützle

86. L.M. Gambardella, R. Montemanni, D. Weyland, Coupling ant colony systems with strong
local searches. Eur. J. Oper. Res. 220(3), 831–843 (2012)

87. C. García-Martínez, O. Cordón, F. Herrera, A taxonomy and an empirical analysis of multiple
objective ant colony optimization algorithms for the bi-criteria TSP. Eur. J. Oper. Res. 180(1),
116–148 (2007)

88. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness (Freeman, San Francisco, 1979)

89. S. Goss, S. Aron, J.L. Deneubourg, J.M. Pasteels, Self-organized shortcuts in the Argentine
ant. Naturwissenschaften 76(12), 579–581 (1989)

90. G.D. Guerrero, J.M. Cecilia, A. Llanes, J.M. García, M. Amos, M. Ujaldón, Comparative
evaluation of platforms for parallel ant colony optimization. J. Supercomput. 69(1), 318–329
(2014)

91. M. Guntsch, M. Middendorf, Pheromone modification strategies for ant algorithms applied
to dynamic TSP, in Applications of Evolutionary Computing: Proceedings of EvoWorkshops
2001, ed. by E.J.W. Boers, J. Gottlieb, P.L. Lanzi, R.E. Smith, S. Cagnoni, E. Hart, G.R.
Raidl, H. Tijink. Lecture Notes in Computer Science, vol. 2037 (Springer, Heidelberg, 2001),
pp. 213–222

92. M. Guntsch, M. Middendorf, A population based approach for ACO, in Applications of Evo-
lutionary Computing, Proceedings of EvoWorkshops2002: EvoCOP, EvoIASP, EvoSTim, ed.
by S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, G.R. Raidl. Lecture Notes in Computer
Science, vol. 2279 (Springer, Heidelberg, 2002), pp. 71–80

93. W.J. Gutjahr, A Graph-based Ant System and its convergence. Futur. Gener. Comput. Syst.
16(8), 873–888 (2000)

94. W.J. Gutjahr, ACO algorithms with guaranteed convergence to the optimal solution. Inf.
Process. Lett. 82(3), 145–153 (2002)

95. W.J. Gutjahr, S-ACO: an ant-based approach to combinatorial optimization under uncer-
tainty, in Ant Colony Optimization and Swarm Intelligence: 4th International Workshop,
ANTS 2004, ed. by M. Dorigo, L. Gambardella, F. Mondada, T. Stützle, M. Birratari,
C. Blum. Lecture Notes in Computer Science, vol. 3172 (Springer, Heidelberg, 2004),
pp. 238–249

96. W.J. Gutjahr, On the finite-time dynamics of ant colony optimization. Methodol. Comput.
Appl. Probab. 8(1), 105–133 (2006)

97. W.J. Gutjahr, Mathematical runtime analysis of ACO algorithms: survey on an emerging
issue. Swarm Intell. 1(1), 59–79 (2007)

98. W.J. Gutjahr, First steps to the runtime complexity analysis of ant colony optimization. Com-
put. Oper. Res. 35(9), 2711–2727 (2008)

99. W.J. Gutjahr, G. Sebastiani, Runtime analysis of ant colony optimization with best-so-far
reinforcement. Methodol. Comput. Appl. Probab. 10(3), 409–433 (2008)

100. R. Hadji, M. Rahoual, E. Talbi, V. Bachelet, Ant colonies for the set covering problem, in
Abstract proceedings of ANTS 2000 – From Ant Colonies to Artificial Ants: Second Interna-
tional Workshop on Ant Algorithms, ed. by M. Dorigo, M. Middendorf, T. Stützle (Université
Libre de Bruxelles, Brussels, 2000), pp. 63–66

101. H. Hernández, C. Blum, Ant colony optimization for multicasting in static wireless ad-hoc
networks. Swarm Intell. 3(2), 125–148 (2009)

102. S. Iredi, D. Merkle, M. Middendorf, Bi-criterion optimization with multi colony ant al-
gorithms, in First International Conference on Evolutionary Multi-Criterion Optimization,
(EMO’01), ed. by E. Zitzler, K. Deb, L. Thiele, C.A. Coello Coello, and D. Corne. Lecture
Notes in Computer Science, vol. 1993 (Springer, Heidelberg, 2001), pp. 359–372

103. D.S. Johnson, L.A. McGeoch, The travelling salesman problem: a case study in local opti-
mization, in Local Search in Combinatorial Optimization, ed. by E.H.L. Aarts, J.K. Lenstra
(Wiley, Chichester, 1997), pp. 215–310

104. M. Jünger, G. Reinelt, S. Thienel, Provably good solutions for the traveling salesman prob-
lem. Z. Oper. Res. 40(2), 183–217 (1994)

10 Ant Colony Optimization: Overview and Recent Advances 347

105. M. Khichane, P. Albert, C. Solnon, Integration of ACO in a constraint programming lan-
guage, in Ant Colony Optimization and Swarm Intelligence, 6th International Conference,
ANTS 2008, ed. by M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, A.F.T. Winfield.
Lecture Notes in Computer Science, vol. 5217 (Springer, Heidelberg, 2008), pp. 84–95

106. O. Korb, T. Stützle, T.E. Exner, Application of ant colony optimization to structure-based
drug design, in Ant Colony Optimization and Swarm Intelligence, 5th International Work-
shop, ANTS 2006, ed. by M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, A.F.T. Win-
field. Lecture Notes in Computer Science, vol. 4150 (Springer, Heidelberg, 2006), pp. 247–
258

107. O. Korb, T. Stützle, T.E. Exner, An ant colony optimization approach to flexible protein-
ligand docking. Swarm Intell. 1(2), 115–134 (2007)

108. T. Kötzing, F. Neumann, H. Röglin, C. Witt, Theoretical analysis of two ACO approaches
for the traveling salesman problem. Swarm Intell. 6(1), 1–21 (2012)

109. U. Kumar, Jayadeva, S. Soman, Enhancing IACOR local search by Mtsls1-BFGS for con-
tinuous global optimization, in Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2015, ed. by S. Silva, A.I. Esparcia-Alcázar (ACM Press, New York,
2015), pp. 33–40

110. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, The Travelling Salesman
Problem (Wiley, Chichester, 1985), pp. 33–40

111. G. Leguizamón, Z. Michalewicz, A new version of Ant System for subset problems, in Pro-
ceedings of the 1999 Congress on Evolutionary Computation (CEC’99) (IEEE Press, Piscat-
away, 1999), pp. 1459–1464

112. L. Lessing, I. Dumitrescu, T. Stützle, A comparison between ACO algorithms for the set
covering problem, in Ant Colony Optimization and Swarm Intelligence: 4th International
Workshop, ANTS 2004, ed. by M. Dorigo, L. Gambardella, F. Mondada, T. Stützle, M. Bir-
ratari, C. Blum. Lecture Notes in Computer Science, vol. 3172 (Springer, Heidelberg, 2004),
pp. 1–12

113. T. Liao, M. Montes de Oca, D. Aydin, T. Stützle, M. Dorigo, An incremental ant colony algo-
rithm with local search for continuous optimization, in Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO 2011, ed. by N. Krasnogor, P.L. Lanzi (ACM
Press, New York, 2011), pp. 125–132

114. T. Liao, M. Montes de Oca, T. Stützle, M. Dorigo, A unified ant colony optimization algo-
rithm for continuous optimization. Eur. J. Oper. Res. 234(3), 597–609 (2014)

115. T. Liao, K. Socha, M. Montes de Oca, T. Stützle, M. Dorigo, Ant colony optimization for
mixed-variable optimization problems. IEEE Trans. Evol. Comput. 18(4), 503–518 (2014)

116. A. Lissovoi, C. Witt, Runtime analysis of ant colony optimization on dynamic shortest path
problems. Theor. Comput. Sci. 561, 73–85 (2015)

117. M. López-Ibáñez, C. Blum, Beam-ACO for the travelling salesman problem with time win-
dows. Comput. Oper. Res. 37(9), 1570–1583 (2010)

118. M. López-Ibáñez, T. Stützle, The automatic design of multi-objective ant colony optimization
algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

119. M. López-Ibáñez, T. Stützle, An experimental analysis of design choices of multi-objective
ant colony optimization algorithms. Swarm Intell. 6(3), 207–232 (2012)

120. M. López-Ibáñez, L. Paquete, T. Stützle, On the design of ACO for the biobjective quadratic
assignment problem, in ANTS’2004, Fourth International Workshop on Ant Algorithms and
Swarm Intelligence, ed. by M. Dorigo, L. Gambardella, F. Mondada, T. Stützle, M. Birratari,
C. Blum. Lecture Notes in Computer Science, vol. 3172 (Springer, Heidelberg, 2004), pp.
214–225

121. M. López-Ibáñez, C. Blum, D. Thiruvady, A.T. Ernst, B. Meyer, Beam-ACO based on
stochastic sampling for makespan optimization concerning the TSP with time windows, in
Evolutionary Computation in Combinatorial Optimization, ed. by C. Cotta, P. Cowling. Lec-
ture Notes in Computer Science, vol. 5482 (Springer, Heidelberg, 2009), pp. 97–108

122. M. López-Ibáñez, J. Dubois-Lacoste, L. Perez Cáceres, T. Stützle, M. Birattari, The irace
package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–
58 (2016)

348 M. Dorigo and T. Stützle

123. M. Manfrin, M. Birattari, T. Stützle, M. Dorigo, Parallel ant colony optimization for the
traveling salesman problem, in ed. by Ant Colony Optimization and Swarm Intelligence: 5th
International Workshop, ANTS 2006, ed. by M. Dorigo, L.M. Gambardella, M. Birattari,
A. Martinoli, R. Poli, T. Stützle. Lecture Notes in Computer Science, vol. 4150 (Springer,
Heidelberg, 2006), pp. 224–234

124. V. Maniezzo, Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem, Technical Report CSR 98-1, Scienze dell’Informazione, Uni-
versitá di Bologna, Sede di Cesena, Italy, 1998

125. V. Maniezzo, Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem. INFORMS J. Comput. 11(4), 358–369 (1999)

126. V. Maniezzo, A. Carbonaro, An ANTS heuristic for the frequency assignment problem. Fu-
tur. Gener. Comput. Syst. 16(8), 927–935 (2000)

127. D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, B. Baesens, Classification
with ant colony optimization. IEEE Trans. Evol. Comput. 11(5), 651–665 (2007)

128. F. Massen, Y. Deville, P. van Hentenryck, Pheromone-based heuristic column generation for
vehicle routing problems with black box feasibility, in Integration of AI and OR Techniques
in Contraint Programming for Combinatorial Optimization Problems, CPAIOR 2012, ed.
by N. Beldiceanu, N. Jussien, E. Pinson. Lecture Notes in Computer Science, vol. 7298
(Springer, Berlin, 2012), pp. 260–274

129. F. Massen, M. López-Ibá nez, T. Stützle, Y. Deville, Experimental analysis of pheromone-
based heuristic column generation using irace, in Hybrid Metaheuristics, ed. by M. J. Blesa,
C. Blum, P. Festa, A. Roli, M. Sampels. Lecture Notes in Computer Science, vol. 7919
(Springer, Berlin, 2013), pp. 92–106

130. M. Mavrovouniotis, S. Yang, Ant colony optimization with immigrants schemes for the dy-
namic travelling salesman problem with traffic factors. Appl. Soft Comput. 13(10), 4023–
4037 (2013)

131. M. Mavrovouniotis, S. Yang, Ant algorithms with immigrants schemes for the dynamic ve-
hicle routing problem. Inf. Sci. 294, 456–477 (2015)

132. M. Mavrovouniotis, C. Li, S. Yang, A survey of swarm intelligence for dynamic optimiza-
tion: algorithms and applications. Swarm Evol. Comput. 33, 1–17 (2017)

133. M. Mavrovouniotis, F. Martins Müller, S. Yang, Ant colony optimization with local search
for dynamic traveling salesman problems. IEEE Trans. Cybern. 47(7), 1743–1756 (2017)

134. D. Merkle, M. Middendorf, Modeling the dynamics of ant colony optimization. Evol. Com-
put. 10(3), 235–262 (2002)

135. D. Merkle, M. Middendorf, Ant colony optimization with global pheromone evaluation for
scheduling a single machine. Appl. Intell. 18(1), 105–111 (2003)

136. D. Merkle, M. Middendorf, H. Schmeck, Ant colony optimization for resource-constrained
project scheduling, in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2000), ed. by D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, H.-G.
Beyer (Morgan Kaufmann Publishers, San Francisco, 2000), pp. 893–900

137. D. Merkle, M. Middendorf, H. Schmeck, Ant colony optimization for resource-constrained
project scheduling. IEEE Trans. Evol. Comput. 6(4), 333–346 (2002)

138. N. Meuleau, M. Dorigo, Ant colony optimization and stochastic gradient descent. Artif. Life
8(2), 103–121 (2002)

139. B. Meyer, A. Ernst, Integrating ACO and constraint propagation, in Ant Colony Optimization
and Swarm Intelligence, 4th International Workshop, ANTS 2004, M. Dorigo, M. Birattari,
C. Blum, L.M. Gambardella, F. Mondada, T. Stützle. Lecture Notes in Computer Science,
vol. 3172 (Springer, Heidelberg, 2004), pp. 166–177

140. R. Michel, M. Middendorf, An ACO algorithm for the shortest supersequence problem, in
New Ideas in Optimization, ed. by D. Corne, M. Dorigo, F. Glover (McGraw Hill, London,
1999), pp. 51–61

141. M. Middendorf, F. Reischle, H. Schmeck, Multi colony ant algorithms. J. Heuristics 8(3),
305–320 (2002)

142. N. Monmarché, G. Venturini, M. Slimane, On how Pachycondyla apicalis ants suggest a new
search algorithm. Futur. Gener. Comput. Syst. 16(8), 937–946 (2000)

10 Ant Colony Optimization: Overview and Recent Advances 349

143. R. Montemanni, L.M. Gambardella, A.E. Rizzoli, A.V. Donati, Ant colony system for a
dynamic vehicle routing problem. J. Comb. Optim. 10(4), 327–343 (2005)

144. T.E. Morton, R.M. Rachamadugu, A. Vepsalainen, Accurate myopic heuristics for tardi-
ness scheduling, GSIA Working Paper 36-83-84, Carnegie Mellon University, Pittsburgh,
PA, 1984

145. F. Neumann, D. Sudholt, C. Witt, Analysis of different MMAS ACO algorithms on unimodal
functions and plateaus. Swarm Intell. 3(1), 35–68 (2009)

146. F. Neumann, C. Witt, Algorithmica 54, 243 (2009). https://doi.org/10.1007/
s00453-007-9134-2

147. F. Neumann, C. Witt, Ant colony optimization and the minimum spanning tree problem.
Theor. Comput. Sci. 411(25), 2406–2413 (2010)

148. F.E.B. Otero, A.A. Freitas, C.G. Johnson, cAnt-Miner: an ant colony classification algorithm
to cope with continuous attributes, in Ant Colony Optimization and Swarm Intelligence, 6th
International Workshop, ANTS 2008, ed. by M. Dorigo, M. Birattari, C. Blum, M. Clerc,
T. Stützle, A.F.T. Winfield. Lecture Notes in Computer Science, vol. 5217 (Springer, Heidel-
berg, 2008), pp. 48–59

149. P.S. Ow, T.E. Morton, Filtered beam search in scheduling. Int. J. Prod. Res. 26(1), 297–307
(1988)

150. C.H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, 1994)
151. R.S. Parpinelli, H.S. Lopes, A.A. Freitas, Data mining with an ant colony optimization algo-

rithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)
152. C. Rajendran, H. Ziegler, Ant-colony algorithms for permutation flowshop scheduling to

minimize makespan/total flowtime of jobs. Eur. J. Oper. Res. 155(2), 426–438 (2004)
153. M. Randall, A. Lewis, A parallel implementation of ant colony optimization. J. Parallel Dis-

trib. Comput. 62(9), 1421–1432 (2002)
154. M. Reimann, K. Doerner, R.F. Hartl, D-ants: savings based ants divide and conquer the ve-

hicle routing problems. Comput. Oper. Res. 31(4), 563–591 (2004)
155. G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applications. Lecture

Notes in Computer Science, vol. 840 (Springer, Heidelberg, 1994)
156. Z.-G. Ren, Z.-R. Feng, L.-J. Ke, Z.-J. Zhang, New ideas for applying ant colony optimization

to the set covering problem. Comput. Ind. Eng. 58(4), 774–784 (2010)
157. A.E. Rizzoli, R. Montemanni, E. Lucibello, L.M. Gambardella, Ant colony optimization for

real-world vehicle routing problems. From theory to applications. Swarm Intell. 1(2), 135–
151 (2007)

158. R. Ruiz, T. Stützle, A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)

159. R. Schoonderwoerd, O. Holland, J. Bruten, L. Rothkrantz, Ant-based load balancing in
telecommunications networks. Adapt. Behav. 5(2), 169–207 (1996)

160. A. Shmygelska, H.H. Hoos, An ant colony optimisation algorithm for the 2D and 3D hy-
drophobic polar protein folding problem. BMC Bioinf. 6, 30 (2005)

161. K.M. Sim, W.H. Sun, Ant colony optimization for routing and load-balancing: Survey and
new directions. IEEE Trans. Syst. Man Cybern. Syst. Hum. 33(5), 560–572 (2003)

162. K. Socha, ACO for continuous and mixed-variable optimization, in Ant Colony Optimiza-
tion and Swarm Intelligence: 4th International Workshop, ANTS 2004, ed. by M. Dorigo,
L. Gambardella, F. Mondada, T. Stützle, M. Birratari, C. Blum. Lecture Notes in Computer
Science, vol. 3172 (Springer, Heidelberg, 2004), pp. 25–36

163. K. Socha, C. Blum, An ant colony optimization algorithm for continuous optimization: an
application to feed-forward neural network training. Neural Comput. Appl. 16(3), 235–248
(2007)

164. K. Socha, M. Dorigo, Ant colony optimization for mixed-variable optimization problems,
Technical Report TR/IRIDIA/2007-019, IRIDIA, Université Libre de Bruxelles, Brussels,
2007

165. K. Socha, M. Dorigo, Ant colony optimization for continuous domains. Eur. J. Oper. Res.
185(3), 1155–1173 (2008)

https://doi.org/10.1007/s00453-007-9134-2
https://doi.org/10.1007/s00453-007-9134-2

350 M. Dorigo and T. Stützle

166. K. Socha, J. Knowles, M. Sampels, A MAX −MIN Ant System for the university course
timetabling problem, in Ant Algorithms: Third International Workshop, ANTS 2002, ed.
by M. Dorigo, G. Di Caro, M. Sampels. Lecture Notes in Computer Science, vol. 2463
(Springer, Heidelberg, 2002), pp. 1–13

167. K. Socha, M. Sampels, M. Manfrin, Ant algorithms for the university course timetabling
problem with regard to the state-of-the-art, in Applications of Evolutionary Computing, Pro-
ceedings of EvoWorkshops 2003, ed. by G.R. Raidl, J.-A. Meyer, M. Middendorf, S. Cagnoni,
J.J.R. Cardalda, D.W. Corne, J. Gottlieb, A. Guillot, E. Hart, C.G. Johnson, E. Marchiori.
Lecture Notes in Computer Science, vol. 2611 (Springer, Heidelberg, 2003), pp. 334–345

168. C. Solnon, Combining two pheromone structures for solving the car sequencing problem
with ant colony optimization. Eur. J. Oper. Res. 191(3), 1043–1055 (2008)

169. C. Solnon, S. Fenet, A study of ACO capabilities for solving the maximum clique problem.
J. Heuristics 12(3), 155–180 (2006)

170. T. Stützle, An ant approach to the flow shop problem, in Proceedings of the Sixth European
Congress on Intelligent Techniques & Soft Computing (EUFIT’98), vol. 3 (Verlag Mainz,
Wissenschaftsverlag, Aachen, 1998), pp. 1560–1564

171. T. Stützle, Parallelization strategies for ant colony optimization, in Proceedings of PPSN-V,
Fifth International Conference on Parallel Problem Solving from Nature, ed. by A.E. Eiben,
T. Bäck, M. Schoenauer, H.-P. Schwefel. Lecture Notes in Computer Science, vol. 1498
(Springer, Heidelberg, 1998), pp. 722–731

172. T. Stützle, Local Search Algorithms for Combinatorial Problems: Analysis, Improvements,
and New Applications. Dissertationen zur künstlichen Intelligenz, vol. 220 (Infix, Sankt Au-
gustin, 1999)

173. T. Stützle, M. Dorigo, A short convergence proof for a class of ACO algorithms. IEEE Trans.
Evol. Comput. 6(4), 358–365 (2002)

174. T. Stützle, H.H. Hoos, Improving the Ant System: A detailed report on the MAX–MIN
Ant System, Technical Report AIDA–96–12, FG Intellektik, FB Informatik, TU Darmstadt,
1996

175. T. Stützle, H.H. Hoos, The MAX–MIN Ant System and local search for the traveling
salesman problem, in Proceedings of the 1997 IEEE International Conference on Evolution-
ary Computation (ICEC’97), ed. by T. Bäck, Z. Michalewicz, X. Yao (IEEE Press, Piscat-
away, 1997), pp. 309–314

176. T. Stützle, H.H. Hoos, MAX–MIN Ant System. Futur. Gener. Comput. Syst. 16(8), 889–
914 (2000)

177. D. Sudholt, Theory of swarm intelligence: tutorial at GECCO 2017, in Genetic and Evolu-
tionary Computation Conference, Berlin, July 15–19, 2017, Companion Material Proceed-
ings, ed. by P.A.N. Bosman (ACM Press, New York, 2017), pp. 902–921

178. D. Sudholt, C. Thyssen, Running time analysis of ant colony optimization for shortest path
problems. J. Discret. Algorithms 10, 165–180 (2012)

179. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge,
1998)

180. E.-G. Talbi, O.H. Roux, C. Fonlupt, D. Robillard, Parallel ant colonies for the quadratic
assignment problem. Futur. Gener. Comput. Syst. 17(4), 441–449 (2001)

181. S. Tsutsui, Ant colony optimisation for continuous domains with aggregation pheromones
metaphor, in Proceedings of the 5th International Conference on Recent Advances in Soft
Computing (RASC-04), Nottingham (2004), pp. 207–212

182. S. Tsutsui, cAS: ant colony optimization with cunning ants, in Parallel Problem Solving
from Nature–PPSN IX, 9th International Conference, ed. by T.P. Runarsson, H.-G. Beyer,
E.K. Burke, J.J. Merelo Guervós, L.D. Whitley, X. Yao. Lecture Notes in Computer Science,
vol. 4193 (Springer, Heidelberg, 2006), pp. 162–171

183. S. Tsutsui, An enhanced aggregation pheromone system for real-parameter optimization in
the ACO metaphor, in Ant Colony Optimization and Swarm Intelligence: 5th International
Workshop, ANTS 2006, ed. by M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli,
R. Poli, T. Stützle. Lecture Notes in Computer Science, vol. 4150 (Springer, Berlin, 2006),
pp. 60–71

10 Ant Colony Optimization: Overview and Recent Advances 351

184. C. Twomey, T. Stützle, M. Dorigo, M. Manfrin, M. Birattari, An analysis of communica-
tion policies for homogeneous multi-colony ACO algorithms. Inf. Sci. 180(12), 2390–2404
(2010)

185. W. Wiesemann, T. Stützle, Iterated ants: an experimental study for the quadratic assignment
problem. in Ant Colony Optimization and Swarm Intelligence: 5th International Workshop,
ANTS 2006, ed. by M. Dorigo, L.M. Gambardella, M. Birattari, A. Martinoli, R. Poli, T. Stüt-
zle. Lecture Notes in Computer Science, vol. 4150 (Springer, Heidelberg, 2006), pp. 179–190

186. M. Yagiura, M. Kishida, T. Ibaraki, A 3-flip neighborhood local search for the set covering
problem. Eur. J. Oper. Res. 172(2), 472–499 (2006)

187. Q. Yang, W.-N. Chen, Z. Yu, T. Gu, Y. Li, H. Zhang, J. Zhang, Adaptive multimodal contin-
uous ant colony optimization. IEEE Trans. Evol. Comput. 21(2), 191–205 (2017)

188. M. Yannakakis, Computational complexity, in Local Search in Combinatorial Optimization,
ed. by E.H.L. Aarts, J.K. Lenstra (Wiley, Chichester, 1997), pp. 19–55

189. Z. Yuan, A. Fügenschuh, H. Homfeld, P. Balaprakash, T. Stützle, M. Schoch, Iterated greedy
algorithms for a real-world cyclic train scheduling problem, in Hybrid Metaheuristics, 5th
International Workshop, HM 2008, ed. by M.J. Blesa, C. Blum, C. Cotta, A.J. Fernández,
J.E. Gallardo, A. Roli, M. Sampels. Lecture Notes in Computer Science, vol. 5296 (Springer,
Heidelberg, 2008), pp. 102–116

190. Y. Zhang, L.D. Kuhn, M.P.J. Fromherz, Improvements on ant routing for sensor networks, in
Ant Colony Optimization and Swarm Intelligence: 4th International Workshop, ANTS 2004,
ed. by M. Dorigo, L.M. Gambardella, F. Mondada, T. Stützle, M. Birattari, C. Blum. Lecture
Notes in Computer Science, vol. 3172 (Springer, Heidelberg, 2004), pp. 154–165

191. M. Zlochin, M. Birattari, N. Meuleau, M. Dorigo, Model-based search for combinatorial
optimization: a critical survey. Ann. Oper. Res. 131(1–4), 373–395 (2004)

Chapter 11
Swarm Intelligence

Xiaodong Li and Maurice Clerc

Abstract Swarm Intelligence (SI) is an Artificial Intelligence (AI) discipline that
studies the collective behaviours of artificial and natural systems such as those of
insects or animals. SI is seen as a new concept of AI and is becoming increasingly
accepted in the literature. SI techniques are typically inspired by natural phenomena,
and they have exhibited remarkable capabilities in solving problems that are often
perceived to be challenging to conventional computational techniques. Although an
SI system lacks a centralized control, the system at the swarm (or population) level
reveals remarkable complex and self-organizing behaviours, often as the result of
local interactions among individuals in the swarm as well as individuals with the
environment, based on very simple interaction rules.

11.1 Introduction

Swarm Intelligence refers to a family of modern Artificial Intelligence techniques
that are inspired by the collective behaviours exhibited by social insects and ani-
mals, as well as human societies. Many such phenomena can be observed in na-
ture, such as ant foraging behaviours, bird flocking, fish schooling, animal herding,
and many more. Even though individual ants are simple insects and do not exhibit
sophisticated behaviour, many ants working together can achieve fairly complex
tasks. An SI system typically consists of a population of individuals. These indi-

X. Li (�)
School of Science (Computer Science), RMIT University, Melbourne, VIC, Australia
e-mail: xiaodong.li@rmit.edu.au

M. Clerc
Independent Consultant, Groisy, France
e-mail: maurice.clerc@writeme.com

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_11

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_11&domain=pdf
mailto:xiaodong.li@rmit.edu.au
mailto:maurice.clerc@writeme.com
https://doi.org/10.1007/978-3-319-91086-4_11

354 X. Li and M. Clerc

viduals are usually very simple agents that on their own do not exhibit complex
behaviours. However, complex global patterns may emerge from interactions be-
tween these agents and the agents with the environment. An intriguing property of
an SI system is its ability to behave in a complex and self-organized way without
any specific individual taking control of everything. In other words, even without
any teleological principle, a common goal may nevertheless be reached.

One definition on Swarm Intelligence provided by Kennedy [44], the inventor of
Particle Swarm Optimization (PSO), captures very nicely the essence of SI:

“Swarm intelligence refers to a kind of problem-solving ability that emerges
in the interactions of simple information processing units. The concept of a
swarm suggests multiplicity, stochasticity, randomness, and messiness, and
the concept of intelligence suggests that the problem-solving method is some-
how successful. The information processing units that compose a swarm can
be animate, mechanical, computational, or mathematical; they can be insects,
birds, or human beings; they can be array elements, robots, or standalone
workstations; they can be real or imaginary. Their coupling can have a wide
range of characteristics, but there must be interaction among the units.”

SI techniques are problem solving techniques emulating this sort of social be-
haviours that are observed in nature. In essence, the problem solving ability of an SI
technique is derived from the interactions among many simple information process-
ing units (or agents). Given the distributed nature of the system, SI techniques tend
to be more robust and scalable than conventional techniques. The term of Swarm
Intelligence was first coined by Beni and Wang [1] in the context of cellular robotic
systems. Since then, this term has been adopted in much broader research areas
[9, 10].

The purpose of this chapter is to provide an introduction to SI and how it comple-
ments the traditional definition of Artificial Intelligence. Several biological exam-
ples as inspirations for SI techniques will be presented, as well as the SI metaphor of
the human society. The application of SI principles to optimization is in particular
prevalent among its many application areas. This chapter will focus on providing
a detailed account on one of the most popular SI techniques, Particle Swarm Op-
timization (PSO). In particular, the chapter will present the canonical PSO and its
variants, and provide an illustration of swarm dynamics through a simplified PSO.
The chapter will also discuss several popular PSO application areas and its recent
theoretical developments.

Traditionally intelligence has been considered as a trait of an individual. Kennedy
et al. remarked [46]:

11 Swarm Intelligence 355

“The early AI researchers had made an important assumption, so fundamen-
tal that it was never stated explicitly nor consciously acknowledged. They
assumed that cognition is something inside an individuals head. An AI pro-
gram was modeled on the vision of a single disconnected person, processing
information inside his or her brain, turning the problem this way and that,
rationally and coolly.”

Fig. 11.1 The double-bridge experiment: ants find the shorter path of the two between the nest and
the food source; (a) at the start, (b) after some period, more ants choose the shorter path

Fig. 11.2 Biological examples: flock of birds in flight (top left); fish schools (top right); domes
built by termites (bottom left); and honey bees (bottom right)

356 X. Li and M. Clerc

SI can be regarded as a broader concept of intelligence since it emphasizes the
fact that intelligence should be modeled in a social context, as a result of interaction
with one another. Intelligence should be seen as a collective entity rather than a
single isolated one.

11.2 Biological Examples

There is an abundance of social behaviour examples among insects and animals in
nature that exhibit emergent intelligent properties [9]. A few examples include:

Ants exhibit interesting path-finding behaviours as they go out searching for
food. A well known biological example is the double-bridge experiment, where two
bridges of different lengths are placed between the ant nest and the food source
(Fig. 11.1). The ants are set out to reach the food source and bring the food back to
the nest. Since ants leave pheromone trails as they move around, the path with more
ants crossing it will have a higher intensity level of pheromone than the other one.
Although at the start of foraging, there is no pheromone on the two paths and there
is a probability of 50% of going along either of the two bridges (Fig. 11.1a), after
a certain period of time, as more ants come back via the shorter path, the intensity
level of pheromone on the shorter path increases. Because ants tend to follow the
path with a higher intensity level of pheromone, there will be more and more ants
choosing the shorter path to reach the food source. Eventually almost all ants would
converge onto the shorter path (Fig. 11.1b). It is remarkable that though no single
ant knows about how to find the shorter path, many ants working together manage
to achieve the task.

Birds fly in flocks to increase their chance of survival, finding food sources,
and avoiding predators. By staying in a flock (Fig. 11.2 top left), birds gain several
benefits. One major benefit is the so called “safety-in-numbers”, since if a predator
approaches the flock, it is more likely to be seen by at least some of the birds in the
flock than if a bird is just on its own. The alarm message can be quickly passed onto
other birds in the vicinity, and soon to the entire flock. Staying in a flock also serves
as a distraction, as the predator may struggle to single out any specific bird. Birds in
a flock are more efficient in foraging—if any bird spots the food location and dive
towards it, this information can be passed onto others quickly, thus the whole flock
benefits. Flying in a flock following a certain pattern also improves the efficiency of
the flight, due to better aerodynamics.

Many species of fish swim in schools so as to minimize their energy con-
sumption and to escape from predators’ attack. Fish schooling (Fig. 11.2 top
right) often refers to the fact that fish swim in groups in a highly coordinated man-
ner, e.g., in the same direction. A fish school may appear to have a life of its own,
as they move in unison like one single entity. It is amazing to see the direction or
speed of hundreds of fish change almost at the same exact instant. By staying in a
school, each individual fish can look out for one another, helping them to avoid a

11 Swarm Intelligence 357

predator’s attack. By swimming in a certain formation following one another, fish
can reduce their body friction with the water thereby keeping energy consumption
at a very low level.

Termites build sophisticated domed structures as a result of decentralized
control. Individual termites participate in building a dome by following some very
simple rules (Fig. 11.2 bottom left). For example, termites carry dirt in their mouths,
and move in the direction of the strongest pheromone intensity, and then deposit the
dirt where the smell is the strongest. Initially termites move randomly and only a
number of small pillars are built. These pillars also happen to be the places visited
by a larger number of termites, thereby the pheromone intensity is higher there. As
more termites deposit their loads in a place, the more attractive this place is to other
termites, resulting in a positive feedback loop. Since the deposit tends to be made on
the inner side of the pillars, more and more build-up is formed on the inward facing
side, eventually resulting in an arch.

Honey bees perform waggle dances to inform other bees about the good sites
of food sources. Honey bees use dance as a mechanism to convey information about
the direction and distance of the food source (Fig. 11.2 bottom right). Dancing honey
bees adjust both the duration and vigor of the dance to inform other bees about good
sites of the food sources. The duration of the dance is measured by the number of
waggle phases, while the vigor is measured by the time interval between waggle
phases. The larger number of waggle phases, the more profitable the food source is,
hence more bees will be attracted to it.

In human society we learn from each other. SI can be also observed in the
human society. People learn from each other. Knowledge spreads from person to
person. Culture emerges from populations. Human society has this remarkable abil-
ity to self-organize and adapt. A city like New York has several hundreds of bakeries
to supply bread on a daily basis. No one dictates where exactly these bakeries should
be located. Yet, these bakeries manage to do a good job of catering to the people liv-
ing there. As a psychologist, Kennedy et al. [46] mention that the human society
operates at three different levels, from individuals, to groups, and to cultures: (1) In-
dividuals learn locally from their neighbours. People interact with their neighbours
and share insights with each other; (2) Group-level processes emerge as a result of
the spread of knowledge through social learning. Regularities in beliefs, attitudes
and behaviours across populations can be observed. A society is a self-organizing
entity, and its global properties cannot be predicted from its constituent individu-
als; (3) Culture optimizes cognition. Locally formed insights and innovations are
transported by culture to faraway individuals. Combinations of various knowledge
results in even more innovations.

SI principles have been applied to a wide range of problems, among which the
most prominent one is probably optimization, SI has been the inspiration for devel-
oping many new optimization algorithms [8], including the two most representative
examples, Particle Swarm Optimization [46] and Ant Colony Optimization [29].
The application of SI principles goes beyond just optimization though, e.g., in data
mining [58] and swarm robotics [72]. As a new research field inspired by SI, swarm
robotics studies physical robots which are designed in such a way that they can

358 X. Li and M. Clerc

collaboratively achieve tasks that are beyond the capability of any individual robot.
This chapter will mainly focus on Particle Swarm Optimization (PSO), perhaps one
of most well-known nature-inspired SI optimization technique. In addition, we will
also briefly describe SI applications in data mining and swarm robotics. Readers in-
terested in further more general SI techniques can find a wealth of information from
some classic readings on the topic [9, 10, 46].

11.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was originally proposed by Kennedy and Eber-
hart [45]. PSO is a meta-heuristic technique inspired by the social behaviours ob-
served in animals, insects and humans. Since its inception, PSO has enjoyed a
widespread acceptance among researchers and practitioners as a robust and effi-
cient technique for solving various optimization problems. PSO was also based on
a key insight into human social behaviours and cognition, as remarked by Kennedy:
“people learn to make sense of the world by talking with other people about it”
[44]. This simple observation allowed Kennedy and Eberhart to go on to design a
computer program that encodes a population of candidate solutions that iteratively
improve through interactions, that is, by sharing information with their neighbours
and by making appropriate adjustments.

In PSO, each individual particle of a swarm represents a potential solution, which
moves through the problem space, seeking to improve its own position by taking
advantage of information collected by itself and its neighbours. The fact that, on
the whole, the swarm often converges to an optimal solution (though not always)
which is an emergent consequence of the interaction among particles. Basically the
particles broadcast their current positions to neighbouring particles. Through some
random perturbation, each particle adjusts its position according to its velocity (i.e.,
rate of change) and the difference between its current position and the best position
found so far by its neighbours, as well as the best position found so far by the
particle itself. As the PSO model iterates, the swarm converges towards an area of
the search space containing high-quality solutions. The swarm as a whole mimics a
flock of birds collectively searching for food. As time goes on, the flock gradually
converges onto the food location. Locating a good solution in the search space is
achieved by the collective effort of many particles interacting with each other.

Each particle’s velocity is updated iteratively through its personal best position
(i.e., the best position found so far by the particle) and the best position found by the
particles in its neighbourhood. As a result, each particle searches around a region
defined by its personal best position and the best position in its neighbourhood.
If we use vector vi to denote the velocity of the i-th particle in the swarm, xi its
position, pi its personal best position, and pg the best position found by particles in
its neighbourhood (or the entire swarm), vi and xi in the original PSO algorithm are
updated according to the following two equations [45]:

11 Swarm Intelligence 359

vNEW
i ← vi +ϕ1 ⊗ (pi −xi)+ϕ2 ⊗ (pg −xi), (11.1)

xNEW
i ← xi +vNEW

i , (11.2)

where ϕ1 = c1R1 and ϕ2 = c2R2. R1 and R2 are two separate functions, each re-
turning a vector of random values uniformly generated in the range [0, 1]. c1 and c2

are acceleration coefficients. The symbol ⊗ denotes component-wise vector multi-
plication. Equation (11.1) shows that the velocity term vi of a particle is determined
by three components, the “momentum”, “cognitive” and “social” parts. The “mo-

Fig. 11.3 Neighbourhood topologies: fully-connected, ring, and star (from left to right)

Algorithm 1 The PSO algorithm, assuming maximization
Randomly generate an initial population
REPEAT

FOR each particle i
IF f (xi)> f (pi) THEN pi ← xi;
pg ← max(pneighbors);
Update velocity (Eq. (11.1));
Update position (Eq. (11.2));

END
UNTIL termination criterion is met;

mentum” term vi, represents the previous velocity term which is used to carry the
particle in the direction it has travelled so far; the “cognitive” part, ϕ1 ⊗ (pi − xi),
represents the tendency of the particle to return to the best position it has found
so far; and finally the “social” part, ϕ2 ⊗ (pg − xi), represents the tendency of the
particle to be attracted towards the best position found by the entire swarm.

In practice, randomness is obtained with a Random Number Generator (RNG),
but the same algorithm may perform differently depending on the chosen RNG.
Furthermore, the best performance is not always obtained using the “best” generator.
A detailed discussion and how to cope with this issue can be found in [24].

Neighbourhood topologies used in the “social” component can be exploited to
control the speed of information propagation among particles. Representative ex-
amples of neighbourhood topologies include ring, star, and von Neumann (see
Fig. 11.3). Restricted information propagation as a result of using small neighbour-

360 X. Li and M. Clerc

hood topologies, such as von Neumann usually works better on complex multi-
modal problems, whereas larger neighbourhoods would perform better on simpler
unimodal problems [59]. A PSO algorithm choosing its pg from within a restricted
local neighbourhood is usually called a lbest PSO, whereas a PSO choosing pg

without any restriction (hence from the entire swarm) is commonly referred to as
a gbest PSO. Algorithm 1 summarizes a basic PSO algorithm, where f (.) refers to
the fitness function, and function max(pneighbors) returns the best position among all
the personal bests in the i-th particle’s neighbourhood.

Note that the Algorithm 1 is a classical asynchronous model, usually the most
efficient one. However, synchronous updates are also possible. In the case of parallel

Fig. 11.4 The next movement of particle xi is determined by three components, i.e., its previous
velocity, its “cognitive” component, and the “social” component

computation, for example, one may use synchronous updates, in which all pi are
saved first, before updating pg, and then updating all particles’ velocity and position
values.

Figure 11.4 shows that particle position xi is updated to its next position x′i (de-
noted by a dashed circle), based on three components: the “momentum” term, i.e.,
the previous vi scaled by the inertia weight w, the “cognitive” and “social” compo-
nents. It is apparent that the new position x′i is generated by a linear combination of
these three vectors. The particle is shown to have moved to a position somewhere
in the vicinity of the mean of the cognitive component pi and social component
pg. Note that due to the random coefficient used for each dimension, the “cogni-
tive” and “social” components in Eq. (11.4) may be weighted differently for each
dimension. This is indicated by the shaded areas in the figure. Note also that the
inertia coefficient w is used to scale the previous velocity term, normally to reduce
the “momentum” of the particle. More discussion on w will be provided in the next
section.

11 Swarm Intelligence 361

Earlier studies showed that the velocity as defined in Eq. (11.1) has a tendency
to diverge to a large value, resulting in particles flying past the boundaries of the
search space, i.e., violating the boundary constraints. This is more likely to happen
when a particle is far from its pg or pi. To overcome this problem, a velocity clamp-
ing method can be adopted to clamp the maximum velocity value to Vmax in each
dimension of vi. This method does not necessarily prevent particles from leaving the
search space, nor to converge. However, it does limit the particle step size, therefore
restricting particles from further divergence.

Note there are many ways to take boundary constraints into account [22, 37].
When a particle tends to leave the search space, we can force it to go back, randomly
or not, or to stop it at the boundary. We can even let it fly, but without re-evaluating
its position outside the search space. As its memorised previous best position pi is
inside it, we are sure that it will be back, sooner or later [13].

11.3.1 Inertia Weighted and Constricted PSOs

The two most widely-used PSO models are probably the inertia weighted PSO and
the constricted PSO, both representing a further refinement of the original PSO de-
scribed in the previous section. Note that the pi and pg in Eq. (11.1) can be collapsed
into a single term p without losing any information:

vNEW
i ← vi +ϕ ⊗ (p−xi), (11.3)

where p =
ϕ1⊗pi+ϕ2⊗pg

ϕ1+ϕ2
, and ϕ = ϕ1 + ϕ2. Note that the division operator is a

component-wise operator here. The vector p represents the stochastically weighted
average of pi and pg. Each particle oscillates around the point p as a result of
Eq. (11.3), when its velocity vi is adjusted at each iteration. As the particle gets
farther away from p, vi becomes smaller until it reverses its direction (since vi is
iteratively reduced, and then increased in magnitude but in the opposite direction),
and the particle then heads in the opposite direction. Note that the movement of the
particle does not strictly follow a cyclic pattern, given that p is a stochastic average.
This sort of stochasticity provides the needed variations that allow the particle to
find new and better points.

The coefficient vector ϕ1 = c1R1 (or ϕ2 = c2R2) is a vector of randomly gener-
ated numbers in the range [0, c1]. Thus, if a coefficient is equal to 0, the associated
p (or pg) has no effect. If both coefficients are equal to 0, the velocity vi will not
change from its previous value. When both coefficients are close to 1, then vi is
likely to be greatly affected.

From Eq. (11.1) it can be seen that the previous velocity term vi tends to keep the
particle moving in the same direction. A coefficient inertia weight, w, can be used
to control this influence on the new velocity. The velocity update in Eq. (11.1) can
now be revised as:

vNEW
i ← wvi +ϕ1 ⊗ (pi −xi)+ϕ2 ⊗ (pg −xi) (11.4)

362 X. Li and M. Clerc

This so-called inertia weighted PSO can converge under certain conditions even
without using Vmax [25]. For w > 1, velocities increase over time causing particles
to eventually diverge beyond the boundaries of the search space. For 0 < w < 1,
velocities decrease over time eventually reaching 0, thus resulting in convergence.
Eberhart and Shi suggested to use a time-varying inertia weight that gradually de-
creases from 0.9 to 0.4 (with ϕ = 4.0) [30].

A more general PSO model employing a constriction coefficient χ was intro-
duced by Clerc and Kennedy [25]. Several variants were suggested, among which
Constriction Type 1 PSO is shown to be algebraically equivalent to the inertia-
weighted PSO. In Constriction Type 1 PSO, the velocity update in Eq. (11.4) can
be rewritten as:

vNEW
i ← χ(vi +ϕ1 ⊗ (pi −xi)+ϕ2 ⊗ (pg −xi)), (11.5)

where χ = 2∣∣∣2−ϕ ′−
√

ϕ ′2−4ϕ ′
∣∣∣ , and ϕ ′ = c1 + c2,ϕ ′ > 4 (note that ϕ ′ is a scaler). If ϕ ′

is set to 4.1, and c1 = c2 = 2.05, then the constriction coefficient χ will be 0.7298.
Applying χ in Eq. (11.5) results in the previous velocity to be scaled by 0.7298 and
the “cognitive” and “social” parts multiplied by 1.496 (i.e., 0.7298 multiplied by
2.05). Both theoretical and empirical results suggest that the above configuration
using a constriction coefficient χ = 0.7298 ensures convergent behaviour [30] with-
out using Vmax. However, early empirical studies by Eberhart and Shi suggested that
it may still be a good idea to use velocity clamping together with the constriction
coefficient, which showed improved performance on certain problems.

11.3.2 Memory-Swarm vs. Explorer-Swarm

In PSO, interactions among particles have a significant impact on the particles’ be-
haviour. A distinct feature of PSO, which sets it apart from a typical evolutionary
algorithm, is that each particle has its own memory, i.e., its personal best pi. As re-
marked by Clerc [23], a swarm can be viewed as comprising two sub-swarms with
different functionalities. The first group, explorer-swarm, is composed of particles
moving around in large step sizes and more frequently, each strongly influenced
by its velocity and its previous position (see Eqs. (11.2) and (11.1)). The explorer-
swarm explores the search space more broadly. The second group, memory-swarm,
consists of the personal bests of all particles. This memory-swarm is more stable
than the explorer-swarm because personal bests represent the best positions found
so far by individual particles. The memory-swarm is more effective in retaining the
best positions found so far by the swarm as a whole. Meanwhile, each of these
positions can be further improved by the more exploratory particles in the explorer-
swarm.

11 Swarm Intelligence 363

We can use a “graph of influence” to illustrate the sender and receiver of in-
fluence for each particle in a swarm. A swarm of seven particles following a ring
neighbourhood topology is shown in Fig. 11.5. Here, a particle that informs another
particle is called an “informant”. The explorer-swarm consists of particles labeled
from 1 to 7, and the memory-swarm consists of particles labeled from m1 to m7,
which are the personal bests of particles 1–7. Each particle has three informants: the
memories of two neighbouring particles and its own memory. The memory of each
particle has also three informants: the two neighbouring particles and the particle
itself.

Fig. 11.5 Graphs of influence for a swarm of seven particles on a ring topology [23]; (a) each
particle interacting directly with its immediate left and right-sided neighbours plus itself; (b) still
the same swarm as in (a), but showing both the explorer-swarm (not shaded) and the memory
swarm (shaded)

11.3.3 Particle Dynamics Through a Simplified Example

It is worth noting that the interactions among particles have a huge impact on the
performance of the PSO model. To gain a better understanding of the consequences
of such interactions, we study a simplified PSO in this section, where a swarm is
reduced to only one or two particles, with just one dimension. We then examine the
dynamics of this simplified PSO. Although it is a very simple model, we hope to
provide a glimpse of how and why PSO works. We use an example based on [23] to
demonstrate the dynamics of such a simplified PSO.

In this simplified PSO, we assume that there is no stochastic component, only
one dimension, and the initial position and velocity are pre-specified. With these

364 X. Li and M. Clerc

assumptions, Eqs. (11.4) and (11.2) can be simplified as follows:

vNEW
i ← wvi + c1(pi − xi)+ c2(pg − xi), (11.6)

xNEW
i ← xi + vNEW

i . (11.7)

Note that the subscript i can also be removed in the above equations when there is
only one particle. In the following case studies, we also set w, c1 and c2 to 0.7 for
simplification purposes.

100

150

200

250

300

350

400

450

-25 -20 -15 -10 -5 0

fit
ne

ss

x

(a)

0

2

4

6

8

-4 -3 -2 -1 0 1 2 3 4

fit
ne

ss

x

(b)

Fig. 11.6 The dynamics of the system is different depending on the initial x and v values: (a) when
x =−20 and v = 3.2, the particle prematurely converges to one point, which is not the minimum;
(b) when x = −2 and v = 6.4, the particle oscillates around the minimum several times before
converging to it

11.3.3.1 One Particle

Let us first assume that there is only a single particle in the swarm. Note that even
when there is only one particle, we actually know the information about two posi-
tions, its current position x and its personal best position p (since there is only one
particle, pg is the same as p). Let us now consider a simple minimization problem
using the one-dimensional Parabola function: f (x) = x2, where x ∈ [−20,20]. If the
initial x and v values are provided, then the future x values can be computed de-
terministically by iteratively calling Eqs. (11.6) and (11.7). There are two possible
scenarios:

• Case 1: the initial x and v positions are on the same side of the minimum, e.g.,
when x =−20, v = 3.2 (see Fig. 11.6a);

• Case 2: The initial x and v positions are on both sides of the minimum, e.g.,
x =−2, v = 6.4 (see Fig. 11.6b).

Figure 11.6 shows two startling different dynamics depending on the initial x and
v values. In Fig. 11.6a, it can be noted that p is always equal to x, essentially turning
Eq. (11.6) into v ← wv. Since w=0.7, v gradually approaches 0 over iterations. As a

11 Swarm Intelligence 365

result, with increasingly small step sizes, x prematurely converges to a point which
is insufficient to reach the minimum. In contrast, Fig. 11.6b shows that when the
particle oscillates around the minimum, it manages to converge very closely to the
minimum. This time, the iteratively updated p is not always equal to x, resulting in
a much better convergence behaviour.

The better convergence behaviour of the particle can be further illustrated in
Fig. 11.7 in the phase spaces of v and x. Figure 11.7b shows that the particle os-
cillates around the minimum with several changes in the direction of velocity v,
before the particle converges to the minimum following a spiral trajectory. In con-
trast, Fig. 11.7a shows that the prematurely converged particle never manages to
change the direction of its velocity v.

0

0.5

1

1.5

2

2.5

3

3.5

-25 -20 -15 -10 -5

ve
lo

ci
ty

x

(a)

-4

-2

0

2

4

6

8

-4 -3 -2 -1 0 1 2 3 4

ve
lo

ci
ty

x

(b)

Fig. 11.7 Phase spaces for the two examples used in Fig. 11.6: (a) velocity v approaches 0 from
a positive number; (b) velocity v takes both positive and negative values, approaching 0 through a
spiral trajectory

0

50

100

150

200

250

300

350

400

-25 -20 -15 -10 -5 0 5 10

fit
ne

ss

x

(a)

0

1

2

3

4

5

6

7

8

9

-4 -3 -2 -1 0 1 2 3

fit
ne

ss

x

(b)

Fig. 11.8 A swarm of two particles based on two different cases: x = −20, v = 3.2 and x = −2,
v = 6.4. Now the two particles interact with each other: (a) particle 1’s convergence benefits from
the information provided by particle 2; (b) particle 2’s convergence behaviour is unaffected, since
no useful information comes from particle 1

366 X. Li and M. Clerc

11.3.3.2 Two Particles

Now, let us consider a swarm of two particles. In this case, we know four positions:
the two particles’ current positions and their two personal bests (i.e., memories).
Here, each particle informs only its memory, but gets informed by both its own
memory and the other particle’s memory.

Figure 11.8 shows the convergence behaviours of the two interacting particles in
a swarm. In this example, m2 is always better than m1, hence particle 2 does not
benefit from the presence of particle 1. The convergence behaviour of particle 2 as
shown in Fig. 11.8b is unaffected and is identical to the case illustrated in Fig. 11.6b.
On the other hand, the trajectory of particle 1 in Fig. 11.8a shows that it benefits
from the presence of particle 2. Since m2 is better than m1, this information is used
to improve the convergence behaviour of particle 1 towards the minimum.

0

5

10

15

20

25

30

35

40

-8 -6 -4 -2 0 2 4

fit
ne

ss

x

(a)

0

5

10

15

20

25

-6 -4 -2 0 2 4

fit
ne

ss

x

(b)

Fig. 11.9 A swarm of two particles both benefiting from interaction with each other. (a) particle
1’s convergence trajectory; (b) particle 2’s convergence trajectory

Figure 11.9 shows a more general case where each particle is influenced by the
memory of the other. Both particles benefit from receiving the memory to the other
particle. Improved convergence for each particle is evident.

11.4 PSO Variants

Apart from the canonical PSO models such as the inertia weighted and constric-
tion based PSO, a few other PSO variants have been increasingly accepted in the
optimization research community.

11 Swarm Intelligence 367

11.4.1 Fully Informed PSO

It can be noted that Eq. (11.3) suggests that a particle tends to converge towards a
point determined by p =

ϕ1⊗pi+ϕ2⊗pg
ϕ1+ϕ2

, where ϕ = ϕ1 +ϕ2. In the Fully Informed
Particle Swarm (FIPS) proposed by Mendes et al. [59], p can be further generalized
to any number of terms:

p =
∑k∈Ni

R[0, cmax
|Ni|]⊗pk

∑k∈Ni
ϕk

, (11.8)

where pk denotes the best position found by the k-th particle in Ni, which is a set of
neighbours that includes the particle i, and cmax denotes the acceleration coefficient
which is usually shared among all |Ni| neighbours. R[0, cmax

|Ni|] is a function returning
a vector of numbers randomly and is uniformly generated in the range [0, cmax

|Ni|]. Note
again that the division is a component-wise operator.

If we set k = 2 and p1 = pi, and p2 = pg, with both pi,pg ∈ Ni, then the Constric-
tion Type 1 PSO is just a special case of the more general PSO— FIPS defined in
Eq. (11.8). A significant implication of Eq. (11.8) is that it allows us to think more
freely about other terms of influence than just pi and pg [43, 59].

11.4.2 Bare-Bones PSO

Kennedy proposed a PSO variant which does not use the velocity term vi, so called
bare-bones PSO [42]. Each dimension d = 1, . . . ,D of the new position of a particle
is randomly selected from a Gaussian distribution, with a mean defined by the av-
erage of pi,d and pg,d and a standard deviation set to the distance between pi,d and
pg,d :

xi,d ← N(
pi,d + pg,d

2
, ||pi,d − pg,d ||). (11.9)

Note that no velocity term is used in Eq. (11.9). The new particle position is sim-
ply generated via the Gaussian distribution. Other sampling distributions may also
be employed [23, 70]. For example, Richer and Blackwell [70] employed a Lévy
distribution instead of the Gaussian. The Lévy distribution is also bell-shaped like
the Gaussian but with fatter tails. A parameter α can be tuned to obtain a series of
different shapes between the Cauchy and Gaussian distributions. Richer and Black-
well found that the bare-bones PSO using the Lévy distribution with α = 1.4 was
able to reproduce the performance of the canonical PSO [70].

368 X. Li and M. Clerc

11.4.3 Binary PSO

Although the canonical PSO was designed for continuous optimization, it can be
extended to operate on binary search spaces. Kennedy et al. [46] developed a simple
binary PSO by using a sigmoid function s(.) to transform the velocity term in the
canonical PSO into a probability threshold to determine if the d-th element of a
binary string representing xi should be 0 or 1:

s(vid) =
1

1+ exp(−vid)
, (11.10)

and

xid =

{
1 if R ≤ s(vid)

0 otherwise
. (11.11)

That is, if a uniformly drawn random number R from [0, 1] is smaller than s(vid),
then xid is set to 1, otherwise it is set to 0. Equation (11.10) is iterated over each
dimension for each particle to see if xid results in a better fitness than pid , and if so,
pid is updated.

Fig. 11.10 The points x′i and x′′i are chosen at random inside two hyper-parallelepipeds parallel to
the coordinate axes

11.4.4 Discrete PSO

PSO can also be extended to solve discrete or mixed (continuous and discrete) opti-
mization problems such as knapsack, quadratic assignment, and traveling salesman
problems. PSO can be adapted to work with discrete variables by simply discretiz-
ing the values obtained after computing the velocity and position update equations,
or using combinatorial methods (what is usually done for knapsack, quadratic as-

11 Swarm Intelligence 369

signment, and traveling salesman problems) [21, 23]. In the latter case, designing
a domain specific velocity operator following the general PSO principle is critical,
i.e., each particle has a velocity, has knowledge of the best position visited so far,
and the best position in the swarm (Fig. 11.4). For example, Goldbarg et al. [34] used
customized local search operators (e.g., swap operator) and the path-relinking pro-
cedure for effectively solving the traveling salesman problem. An empirical study
on several such discrete PSOs on the traveling salesman problem [57] shows that
they can be competitive with ACO algorithms.

11.4.5 SPSO-2011

A major shortcoming of both inertia weighted and constricted PSO is that they are
not “rotation invariant” [74, 75], meaning that their performances depend on the ori-
entation of the coordinate axes. Note that it is rarely the case in real-world situations
that we need to rotate the search space of a problem. But, the appeal of such a “rota-
tion invariant” algorithm is that its behaviour does not depend on the orientation of
the search space, hence it is more likely to perform more consistently. The rotation
of the search space here merely introduces variable interaction, often making the
problem more difficult to handle.

Figure 11.10 provides an example to illustrate this issue with the canonical PSO.
Here, the cognitive and social components of PSO (c.f., either Eq. (11.4) or (11.5))
can be seen as parts of the following two hyper-parallelepipeds (each is the Eu-
clidean product of D real intervals):

x′i =
D⊗

d=1

[xi,d ,xi,d + c(pi,d − xi,d)], (11.12)

x′′i =
D⊗

d=1

[xi,d ,xi,d + c(li,d − xi,d)], (11.13)

where li,d denotes the neighbourhood best for the i-th particle. Its new position at
the next iteration will then be:

xNEW
i ← wvi +(x′i −xi)+(x′′i −xi). (11.14)

As can be seen in Fig. 11.10, both x′i and x′′i are sampled uniformly from the two
hyper-parallelepipeds with their sides parallel to the coordinate axes. It shows that
the newly generated position xNEW

i depends on the orientation of the coordinate
axes. If we consider the distribution of all possible next positions (DNPP), its sup-
port is a D-rectangle whose density is not uniform (denser near the center). A more
complete analysis of this phenomenon is given in [75].

To address this problem, Clerc proposed SPSO-2011 [20], where the velocity
term is modified in a “geometrical” way that does not depend on the system of
coordinates. The key idea is to define the center of gravity Gi from three existing

370 X. Li and M. Clerc

points: the current position xi, a point a bit beyond the best personal best position
p′

i, and a point a bit beyond the best local neighbourhood point l′i, as follows:

Gi =
xi +p′

i + l′i
3

, (11.15)

where p′
i = xi + c1ϕ1 ⊗ (pi −xi) and l′i = xi + c1ϕ1 ⊗ (li −xi).

A random point x′i can then be selected (may be according to a uniform distribu-
tion) in the hypersphere Hi(Gi, ||Gi−xi||) of center Gi with a radius ||Gi−xi||. The
velocity update equation is now:

vNEW
i ← wvi +x′i −xi, (11.16)

and the position update equation is:

xNEW
i ← wvNEW

i +x′i (11.17)

Figure 11.11 shows how such a new point x′i is selected from the hypersphere Hi,
which is now rotation invariant.

Fig. 11.11 The points x′i is chosen at random inside the hypersphere Hi(Gi, ||Gi − xi||)

SPSO-2011 also adopts an adaptive random topology (which was previously de-
fined in SPSO-2006 [23]). It means that at the beginning, and after each unsuccessful
iteration (no improvement of the best known fitness value), the graph of influence is
modified: each particle informs at random K particles, including itself. The parame-
ter K is usually set to 3, but may follow some distribution to allow occasionally the
selection of a larger number of particles. Thus, on average, each particle is informed
by K other particles, but may be informed by a much larger number of particles
(possibly the entire swarm) with a small probability.

11 Swarm Intelligence 371

SPSO-2011 represents a major enhancement to PSO. The incorporation of these
two features, i.e., adaptive random topology and rotational invariance, has resulted
in competitive performances against other state-of-the-art meta-heuristic algorithms
on the CEC’2013 real-parameter optimization test function suite [84].

11.4.6 Other PSO Variants

Many PSO variants have been developed since it was first introduced. In particu-
lar, to tackle the problem of premature convergence often encountered when using
the canonical PSO, several PSO variants incorporate some diversity maintenance
mechanisms. For example, ARPSO (attractive and repulsive PSO) uses a diversity
measure to trigger alternating phases of attraction and repulsion [71]; a PSO with
self-organized criticality was also developed [56]; another PSO variant based on
fitness-distance-ratio (FDR-PSO) was developed to encourage interactions among
particles with high fitness and close to each other [80]. This FDR-PSO can be seen
as using a dynamically defined neighbourhood topology. Various neighbourhood
topologies have been adopted to restrict particle interactions. In particular, the von
Neumann neighbourhood topology has been shown to provide good performance
across a range of test functions [59, 76]. In [40], a H-PSO (Hierarchical PSO) was
proposed, where a hierarchical tree structure is adopted to restrict the interactions
among particles. Each particle is influenced only by its own personal best position
and by the best position of the particle that is directly above it in the hierarchy.
Another highly successful PSO variant is CLPSO (Comprehensive Learning PSO)
[55], where more historical information about particles’ personal best is harnessed
through a learning method to better preserve swarm diversity. The Gaussian distri-
bution was employed as a mutation operator to create more diversity in a hybrid
PSO variant [38]. A cooperative PSO, similar to coevolutionary algorithms, was
also proposed in [78]. It should be noted that many more PSO variants can be found
in the literature.

11.5 PSO Applications

One of the earliest PSO applications was the optimization of neural network struc-
tures [46], where PSO replaced the traditional back-propagation learning algorithm
in a multilayer Perceptron. Due to the fast convergence property of PSO, using it to
train a neural network can potentially save a considerable amount of computational
time as compared to other optimization methods. There are numerous examples of
PSO applications for a wide range of optimization problems, from classical prob-
lems such as scheduling, traveling salesman problem, neural network training, to
highly specialized problem domains such as reactive power and voltage control [83],
biomedical image registration [81], and even music composition [4]. PSO is also a

372 X. Li and M. Clerc

popular choice for multiobjective optimization [69] dynamic optimization [63], and
multimodal optimization problems [49], which will be described in more detail in
the subsequent sections.

11.5.1 Multiobjective Optimization

Multiobjective optimization problems represent an important class of real-world
problems. Typically such problems involve trade-offs. For example, a car manufac-
turer wants to maximize its profit, but at the same time wants to minimize its pro-
duction cost. These objectives are usually conflicting with each other, e.g., a higher
profit would increase the production cost. Generally speaking, there is no single op-
timal solution. Often the manufacturer needs to consider many possible “trade-off”
solutions before choosing the one that suits its need. The curve or surface (for more
than two objectives) describing the optimal trade-off solutions between objectives
is known as the Pareto front. A multiobjective optimization algorithm is required to
locate solutions as closely as possible to the Pareto front, and at the same time main-
taining a good spread of these solutions along the Pareto front. Several questions
must first be answered before one can apply PSO to multiobjective optimization:

• How to choose pg (i.e., a swarm leader) for each particle? The PSO model needs
to favor non-dominated particles over dominated ones, and propels the swarm to
spread towards different parts of the Pareto front, not just towards a single point.
This would require particles to be led by different swarm leaders.

• How to identify non-dominated particles with respect to all particles’ current
positions and personal best positions? and how to retain these solutions during
the search? One strategy is to combine all particles’ personal best positions (pi)
and current positions (xi), and then extract the non-dominated solutions from this
combined population.

• How to maintain particle diversity so that a set of well-distributed solutions can
be found along the Pareto front? Some classic niching methods (e.g., crowding
[27] or sharing [33]) can be adopted for this purpose.

The earliest work on PSO for solving multiobjective optimization was proposed
by Moore and Chapman [60], where an lbest PSO was used, and pg was chosen
from a local neighbourhood using a ring topology. All personal best positions were
kept in an archive. At each particle update, the current position is compared with
solutions in this archive to see if the current position can be considered as a non-
dominated solution. Then the archive is subsequently updated (at each iteration) to
ensure it retains only non-dominated solutions.

It was not until 2002 that the next research work on multiobjective PSO
appeared—Coello and Lechuga [26] proposed MOPSO (Multiobjective PSO) which

11 Swarm Intelligence 373

also uses an external archive to store non-dominated solutions. The diversity of so-
lutions is maintained by keeping only one solution within each hypercube specified
by the user in the objective space. Parsopoulos and Vrahatis adopted the classical
weighted-sum approach in [65]. By using a set of gradually changing weights, their
approach was able to find a diverse set of solutions along the Pareto front. In [32],
Fieldsend and Singh proposed a PSO using a dominated tree structure to store
non-dominated solutions. The selection of leaders was also based on this structure.
To maintain a better diversity, a turbulence operator was adopted to function as a
‘mutation’ operator in order to perturb the velocity value of a particle. To make
effective extraction of non-dominated solutions from a PSO population, NSPSO
(Non-dominated Sorting PSO) was proposed in [47], which follows the main idea
of the well-known genetic algorithm NSGA II [28]. In NSPSO, instead of com-
paring solely a particle’s personal best with its new position, all particles’ personal
bests and their new positions are first combined to form a temporary population.
The dominance comparisons are performed over all individuals in this temporary
population. This strategy allows more non-dominated solutions to be discovered
and in a much faster way than early multiobjective PSO algorithms.

Many more multiobjective PSO algorithms have been proposed over the years.
A survey in 2006 showed that there were 25 different PSO variants at that time for
handling multiobjective optimization problems [69]. Multiobjective PSO has also
been combined with classic MCDM (Multi-Criteria Decision Making) user prefer-

1.0

0.5f1

0.0
0.0 0.5

δ = 0.05

δ = 0.1

δ = 0.05

δ = 0.01

(0.5, 0.5)

(0.2, 0.9)

f0 f1

(a) (b)

1.0

0.0

0.5

1.0

f0

f2

0.5

RP

RP

1.00.0

AP

0.5
1.0

Fig. 11.12 Particles of a multiobjective PSO model have converged only around the preferred
regions (of the Pareto front), as indicated by the reference points supplied by a decision maker,
e.g., points (0.2, 0.9) and (0.5, 0.5) in the 2-objective space, as shown in (a); and AP (Aspiration
Point) and RP (Reservation Point) in the 3-objective space, as shown in (b). Note that δ denotes a
control parameter specifying the coverage of the preferred region

ences based techniques to allow a decision maker to specify a preferred region of
convergence before running the algorithm. By using this preference information,

374 X. Li and M. Clerc

a multiobjective PSO can focus its search effort more effectively on the preferred
region in the objective space [82]. This could save a substantial amount of com-
putational time especially when the number of objectives is large. An example of
convergence to a preferred region of the Pareto-front by this multiobjective PSO
is presented in Fig. 11.12. This multiobjective PSO has also been shown to be an
efficient optimizer for a practical aerodynamic design problem [17, 18].

11.5.2 Optimization in Dynamic Environments

Many real-world optimization problems are dynamic by nature, and require opti-
mization algorithms to adapt to the changing optima over time. For example, traffic
conditions in a city change dynamically and continuously. What might be regarded
as an optimal route at one time might not be optimal a bit later. In contrast to opti-
mization towards a static optimum, the goal in a dynamic environment is to track as
closely as possible the dynamically changing optima.

A defining characteristic of PSO is its fast convergent behaviour and inherent
adaptability. Particles can adaptively adjust their positions based on their dynamic
interactions with other particles in the population. This makes PSO especially ap-
pealing as a potential solution to dynamic optimization problems. Several studies
showed that the canonical PSO must be adapted to meet the additional challenges
of dynamic optimization problems [5, 6, 15, 16, 31, 39, 51, 63]. In particular, the
following questions need to be answered: (1) How do we detect that a change has
actually occurred? (2) Which response strategies are appropriate once a change is
detected? (3) How do we handle the issue of “out-of-date” memory as particles per-
sonal best positions become invalid once the environment has changed? (4) How do
we handle the trade-off issue between convergence (in order to locate optima) and
diversity (in order to relocate changed optima)?

An early work on the application of PSO for dynamic optimization was carried
out by Eberhart and Shi [31], where an inertia-weighted PSO was used to track
the optimum of a unimodal parabolic function whose maxima changed at regular
interval. It was found that, under certain circumstances, the performance of PSO
was comparable to or even better than that of evolutionary algorithms.

To detect changes, one could use a randomly chosen sentry particle at each it-
eration [15]. The sentry particle can be evaluated before each iteration, comparing
its fitness with its previous fitness value. If the two values are different, suggesting
that the environment has changed, then the whole swarm gets alerted and several
possible responses can then be triggered. Another simple strategy is to re-evaluate
pg and a second-best particle to detect if a change has occurred [39].

Various response strategies have been proposed. To deal with the issue of “out-
of-date” memory as the environment changes, we can periodically replace all per-
sonal best positions by their corresponding current positions when a change has
been detected [16]. This allows particles to forget their past experience and use only
up-to-date knowledge about the new environment. Re-randomizing different propor-

11 Swarm Intelligence 375

tions of the swarm was also suggested in order to maintain some degree of diversity
and better track the optima after a change [39]. However, this approach suffers from
possible information loss since the re-randomized portion of the population does not
retain any, potentially useful, information from the past iterations. Another idea is
to introduce the so called “charged swarms” [3], where mutually repelling charged
particles orbit around the nucleus of neutral particles (conventional PSO particles)
[6, 53]. Whereas charged particles allow the swarm to better adapt to changes in the
environment, neutral particles are used to converge towards the optimum.

A multi-population based approach can be promising if used with charged parti-
cles. The multi-swarm PSO [53] aims at maintaining multiple swarms on different
peaks. These swarms are prevented from converging to the same optimum by ran-
domizing the worse of two swarms that come too close. The multi-swarm PSO also
replaces the charged particles with quantum particles, whose positions are solely
based on a probability function centered around the swarm attractor. This multi-
swarm approach is particularly attractive because of its improved adaptability in a
more complex multimodal dynamic environment where multiple peaks exist and
need to be tracked. Along this line of research, a species-based PSO was also devel-
oped to locate and track multiple peaks in a dynamic environment [48, 63], where
a speciation algorithm [66] was incorporated into PSO and a local “species seed”
was used to provide the local pg to particles whose positions are within a user-
specified radius of the seed. This encourages swarms to converge toward multiple
local optima instead of a single global optimum, hence performing search with mul-

200

(a) (b)

1

0.5

0

-0.5

-1
10

108
86

64
42 2

100

0

-100

-200

-300
10

105
50

0-5 -5
-10 -10

Fig. 11.13 Two multi-modal test functions from the CEC 2013 multi-modal optimization bench-
mark test function suite [54]: (a) Shubert 2D function and (b) Vincent 2D function

tiple swarms in parallel. It was also demonstrated in [7] that the quantum particle
model can be integrated into the species-based PSO to improve its optima-tracking
performance for the moving peaks problem [12].

376 X. Li and M. Clerc

11.5.3 Multimodal Optimization

The two canonical PSOs, inertia weighted PSO and constricted PSO, were designed
for locating a single global solution. The swarm typically converges to one final so-
lution by the end of an optimization run. However, many real-world problems are
“multimodal” by nature, that is, multiple satisfactory solutions exist. For such an op-
timization problem, it may be desirable to locate all global optima and/or some local
optima which are considered to be sufficiently good. Figure 11.13 shows the fit-
ness landscapes of two multi-modal test functions, each with multiple global peaks
(or solutions). In the early development of genetic algorithms during the 1970s
and 1980s, several techniques have been designed specifically for locating multi-
ple optima (global or local), which are commonly referred to as “niching” methods.
The most well-known niching methods include fitness sharing [33] and crowding
[27]. Subsequently, other niching methods were also developed, including restricted
tournament selection [36], clearing [66], and speciation [52]. Since PSO is also
population-based, a niching method can be easily incorporated into PSO, to promote
formation of multiple subpopulations within a swarm, allowing multiple optima to
be found in the search space.

One early PSO niching model was based on a “stretching method” proposed by
Parsopoulos and Vrahatis [64], where a potentially good solution is isolated once
it is found. Then, the fitness landscape is “stretched” to keep other particles away
from this area of the search space. The isolated particle is checked to see if it is
a global optimum, and if it is below the desired threshold, a small population is
generated around this particle to allow a finer search in this area. The main swarm
continues its search in the rest of the search space for other potential global optima.
Another early PSO niching method NichePSO was proposed by Brits et al. [14]. It
uses multiple subswarms produced from a main swarm to locate multiple optimal
solutions. Subswarms can merge together, or absorb particles from the main swarm.
NichePSO monitors the fitness of a particle by tracking its variance over a number of
iterations. If there is little change in a particle’s fitness over a number of iterations,
a subswarm is created with the particle’s closest neighbour.

A speciation-based PSO (SPSO) model based on the notion of species was de-
veloped in [48]. Here, the definition of species depends on a parameter rs, which
denotes the radius measured in Euclidean distance from the center of a species to its
boundary. The center of a species, the so-called species seed, is always the best-fit
individual in the species. All particles that fall within distance rs from the species
seed are classified as the same species. A procedure for determining species seeds
can be applied at each iteration step. As a result, different species seeds are identified
for multiple species, with each seed adopted as the pg (similar to a neighbourhood
best in an lbest PSO) of a different species. In SPSO, a niche radius must be spec-
ified in order to define the size of a niche (or species). Since this knowledge may
not always be available a priori, it may be difficult to apply this algorithm to some
real-world problems. To tackle this problem, population statistics or a time-based
convergence measure could also be used for adaptively determining the niching pa-
rameters during a run [2].

11 Swarm Intelligence 377

A simple ring neighbourhood topology could be also used for designing a PSO
niching method [49]. This PSO niching method (which belongs to the class of lbest
PSOs) makes use of the inherent characteristics of PSO and does not require pre-
specification of the niching parameters, hence may offer advantages over previous
methods. The ring topology-based niching PSO algorithm makes use of its individ-
ual particles’ local memories (i.e., the memory-swarm) to form a stable network
retaining the best positions found so far, while still allowing these particles to ex-
plore the search space more broadly. Given a reasonably large population uniformly
distributed in the search space, the ring topology-based niching PSO is able to form
stable niches across different local neighbourhoods, eventually locating multiple
global/local optima. Of course, the neighbourhood is not necessarily defined only in
the topological space. For example, LIPS (Locally Informed PSO) induces a nich-
ing effect by using information on the nearest neighbours to each particle’s personal
best, as measured in the decision space [68].

It is noteworthy here that the intrinsic properties of PSO can be harnessed to de-
sign highly competitive niching algorithms. In particular, local memory and slow
communication topology seem to be two key components for constructing a com-
petent PSO niching method. Further information on PSO niching methods can be
found in [50].

11.6 PSO Theoretical Works

Since PSO was first introduced by Kennedy and Eberhart [45], several studies have
been carried out on understanding the convergence properties of PSO. Although
particles in isolation and the update rules are simple, the dynamics of the whole
swarm of multiple interacting particles can be rather complex. A direct analysis of
the convergence behavior of a swarm would be a very challenging task. As a result,
many of these works focused on studying the convergence behavior of a simplified
PSO system.

Kennedy [41] provided the first analysis of a simplified particle behavior, where
particle trajectories for a range of variable choices were given. Ozcan and Mohan
[61] showed that the behaviour of one particle in a one-dimensional PSO system,
with its pi, pg, ϕ1 and ϕ2 kept constant, follows the path of a sinusoidal wave, where
the amplitude and frequency of the wave are randomly generated.

A formal theoretical analysis of the convergence properties of a simplified PSO
was provided by Clerc and Kennedy [25], by assuming that the system consists of
only one particle, which is one-dimensional, with the best positions being stagnant,
and deterministic. The PSO was represented as a dynamic system in state-space
form. By simplifying the PSO to a deterministic dynamic system (i.e., removing
all its stochastic components), its convergence can be shown based on the eigenval-
ues of the state transition matrix. If the eigenvalue is less than 1, the particle will
converge to equilibrium. Through this study, Clerc and Kennedy were able to de-
rive a general PSO model which employs a constriction coefficient (see Eq. (11.5)).

378 X. Li and M. Clerc

The original PSO and the inertia weighted PSO can be treated as special cases of
this general PSO model. This study also led to suggestions of PSO parameter set-
tings that would guarantee convergence. A similar work was also carried out by van
den Bergh [77] where regions of the parameter space that guarantee convergence
are identified. The conditions for convergence derived from both studies [25, 77]
are: w < 1 and w > 1

2 (c1 + c2)− 1. In another work by van den Bergh and Engel-
brecht [79], the above analysis was generalized by including the inertia weight w. A
more formal convergence proof of particles was provided using this representation.
Furthermore, the particle trajectory was examined with a relaxed assumption that al-
lowed stochastic values for ϕ1 and ϕ2. They demonstrated that a particle can exhibit
a combination of convergent and divergent behaviors with different probabilities
when different values of ϕ1 and ϕ2 are used.

In another important theoretical work, Poli [67] suggested a method to build
Markov chain models of stochastic optimizers and approximate them on continu-
ous problems to any degree of precision. By using discretization, it allows an easy
computation of the transition matrix and represents more precisely the behaviour of
PSO at each iteration. Poli [67] was able to overcome the limitations of previous
theoretical PSO studies and model the bare-bones PSO without any simplification,
that is, the stochastic elements as well as the dynamics of a population of particles
are included in the model.

It is worth noting that many analyses are still based on a stagnation assumption,
i.e., the best positions are not supposed to move. Although one recent work does
not make this assumption [11], the best positions in this case move according to a
probabilistic distribution whose expectation is known, which is not more realistic
than stagnation (it depends on the problem and may not even exist, e.g., when Lévy
flights are used). Hence, although of theoretical interest, this approach cannot yet
derive better parameter guidelines than the previous work. Nevertheless, along with
a theoretical analysis, recent works also suggest a useful empirical approach [19].

11.7 Other SI Applications

There are many SI applications apart from just optimization. Below we provide two
such examples.

11.7.1 Swarm Robotics

Swarm robotics is a new emerging SI research area concerned with the design, con-
trol and coordination of multi-robot systems, especially when the number of robots
is large. The focus is on the physical embodiment of SI individuals and their interac-
tions with each others and with the environment in a realistic setting. A more formal
definition of swarm robotics is provided below [72]:

11 Swarm Intelligence 379

“Swarm robotics is the study of how a large number of relatively simple phys-
ically embodied agents can be designed such that a desired collective behavior
emerges from the local interactions among agents and between the agents and
the environment.”

A swarm robotic system should exhibit the following three functional proper-
ties observed in nature: robustness, flexibility, and scalability. Robustness refers to
the system still being able to function despite disturbances from the environment
or some individuals being malfunctional; flexibility means that individuals of the
swarm can coordinate their behaviours to tackle various tasks; finally scalability
means that the swarm is able to operate under different group sizes and with a large
number of individuals.

One successful demonstration of the above characteristics of a swarm robotic
system is provided in a swarm-bot study [35], where a swarm-bot consists of multi-
ple mobile robots capable of self-assembling into task-oriented teams to accomplish
tasks that individual robots would not be able to achieve independently. These team-
oriented tasks include “crossing a hole”, “object transport”, and “navigation over a
hill” [35]. Readers are referred to [73] for further information on swarm robotics
and many application examples.

11.7.2 Swarm Intelligence in Data Mining

Apart from being used as optimization methods, SI techniques can be also used for
typical data mining tasks. Data instances in the feature space can be checked and
sorted by swarms so that similar data instances are grouped into suitable clusters.

Popular SI techniques such as ACO (Ant Colony Optimization) and PSO have
been extensively studied for their capabilities to do data mining tasks. A survey
by Martens et al. [58] shows that ACO has been used for both supervised learning
such as classification tasks as well as unsupervised learning such as clustering. One
most notable example is AntMiner [62], which is an ant-colony-based data miner
capable of extracting classification rules from data. In AntMiner, a directed graph
is constructed to allow each variable to have multiple paths, each leading to one
node associated with one possible value for that variable. Multiple variables in se-
quence form the entire directed graph. Ants build their paths by sequencing the vari-
ables, and by doing so they implicitly construct a rule. Compared with GA-based
approaches, rules produced by AntMiner are simpler and can be better understood
than other machine learning methods such as neural networks or support vector ma-
chines.

380 X. Li and M. Clerc

11.8 Conclusion

This chapter provides an introduction to Swarm Intelligence (SI), a research
paradigm that has shown tremendous growth and popularity in the past decade.
SI techniques have been successfully applied to many application domains. In par-
ticular, many SI techniques have been developed for solving optimization problems
which are challenging for conventional computational and mathematical tech-
niques. Two representative examples are Particle Swarm Optimization (PSO) and
Ant Colony Optimization (ACO). This chapter focused on the canonical PSOs,
their variants, and their common application areas. There is a growing list of new
real-world applications based on SI techniques. Nevertheless, SI is still a relatively
young field as compared with classic Artificial Intelligence techniques. There is
still a huge potential for developing better and more efficient SI algorithms. Many
open research questions still remain. Clerc’s PSO book [23] provides many pointers
to hot research topics on PSO. Blum and Merkle’s edited book [9] provides some
interesting examples of SI applications. Readers are encouraged to look at the refer-
ences listed in the bibliography section to gain more in-depth understanding of this
fast growing research field.

Acknowledgements The authors would like to thank Prof. Jean-Yves Potvin for his valuable
feedback, which has substantially improved the quality of this chapter.

References

1. G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, in Robots and Biological
Systems: Towards a New Bionics? ed. by P. Dario, G. Sandini, P. Aebischer (Springer, Berlin,
1993), pp. 703–712

2. S. Bird, X. Li, Adaptively choosing niching parameters in a PSO, in Proceedings of Genetic
and Evolutionary Computation Conference, July 2006, ed. by M. Cattolico (ACM Press, New
York, 2006), pp. 3–10

3. T.M. Blackwell, P. Bentley, Dynamic search with charged swarms, in Proceedings of Work-
shop on Evolutionary Algorithms Dynamic Optimization Problems (2002), pp. 19–26

4. T.M. Blackwell, P.J. Bentley, Improvised music with swarms, in Proceedings of Congress on
Evolutionary Computation, ed. by D.B. Fogel, M.A. El-Sharkawi, X. Yao, G. Greenwood,
H. Iba, P. Marrow, M. Shackleton (IEEE Press, Piscataway, 2002), pp. 1462–1467

5. T.M. Blackwell, J. Branke, Multi-swarm optimization in dynamic environments, in Applica-
tions of Evolutionary Computing, LNCS 3005 (Springer, Berlin, 2004), pp. 489–500

6. T.M. Blackwell, J. Branke, Multi-swarms, exclusion and anti-convergence in dynamic envi-
ronments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

7. T.M. Blackwell, J. Branke, X. Li, Particle swarms for dynamic optimization problems, in
Swarm Intelligence: Introduction and Applications, ed. by C. Blum, D.D. Merkle (Springer,
Berlin, 2008), pp. 193–217

8. C. Blum, X. Li, Swarm intelligence in optimization, in Swarm Intelligence: Introduction and
Applications, ed. by C. Blum, D. Merkle (Springer, Berlin, 2008), pp. 43–85

9. C. Blum, D. Merkle, Swarm Intelligence: Introduction and Applications. Natural Computing
Series (Springer, Berlin, 2008)

11 Swarm Intelligence 381

10. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Sys-
tems (Oxford University Press, New York, 1999)

11. M.R. Bonyadi, Z. Michalewicz, Stability analysis of the particle swarm optimization without
stagnation assumption. IEEE Trans. Evol. Comput. 20(5), 814–819 (2016)

12. J. Branke, Evolutionary Optimization in Dynamic Environments (Kluwer Academic, Norwell,
2002)

13. D. Bratton, J. Kennedy, Defining a standard for particle swarm optimization, in IEEE Swarm
Intelligence Symposium (June 2007), pp. 120–127

14. R. Brits, A.P. Engelbrecht, F. van den Bergh, A niching particle swarm optimizer, in Proceed-
ings of 4th Asia-Pacific Conference on Simulated Evolution and Learning (2002), pp. 692–696

15. A. Carlisle, G. Dozier, Adapting particle swarm optimization to dynamic environments, in
Proceedings of International Conference on Artificial Intelligence, Las Vegas, NV (2000), pp.
429–434

16. A. Carlisle, G. Dozier, Tracking changing extrema with adaptive particle swarm optimizer, in
Proceedings of World Automation Congress, Orlando, FL (2002), pp. 265–270

17. R. Carrese, X. Li, Preference-based multiobjective particle swarm optimization for airfoil de-
sign, in Springer Handbook of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz
(Springer, Berlin, 2015), pp. 1311–1331

18. R. Carrese, A. Sobester, H. Winarto, X. Li, Swarm heuristic for identifying preferred solu-
tions in surrogate-based multi-objective engineering design. Am. Inst. Aeronaut. Astronaut. J.
49(7), 1437–1449 (2011)

19. C.W. Cleghorn, Particle Swarm Optimization: Empirical and Theoretical Stability Analysis,
Ph.D. thesis, University of Pretoria, 2017

20. M. Clerc, Standard particle swarm optimisation. 15 pages (2012)
21. M. Clerc, Discrete particle swarm optimization, illustrated by the traveling salesman problem,

in New Optimization Techniques in Engineering (Springer, Heidelberg, 2004), pp. 219–239
22. M. Clerc, Confinements and biases in particle swarm optimisation, Technical report, Open

archive HAL (2006). http://hal.archives-ouvertes.fr/, ref. hal-00122799
23. M. Clerc, Particle Swarm Optimization (ISTE Ltd, Washington, DC, 2006)
24. M. Clerc, Guided Randomness in Optimization (ISTE (International Scientific and Technical

Encyclopedia)/Wiley, Washington, DC/Hoboken, 2015)
25. M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidi-

mensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
26. C.A.C. Coello, M. Salazar Lechuga, MOPSO: a proposal for multiple objective particle swarm

optimization, in Proceedings of Congress on Evolutionary Computation, Piscataway, NJ, May
2002, vol. 2, pp. 1051–1056

27. K.A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D.
thesis, University of Michigan, 1975

28. K. Deb, A. Pratap, S. Agrawal, T. Meyarivan, A fast and elitist multiobjective genetic algo-
rithm: NSGA II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

29. M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating
agents. Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)

30. R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm
optimization, in Proceedings of IEEE International Conference Evolutionary Computation
(2000), pp. 84–88

31. R.C. Eberhart, Y. Shi, Tracking and optimizing dynamic systems with particle swarms, in
Proceedings of Congress on Evolutionary Computation (IEEE Press, 2001), pp. 94–100

32. J.E. Fieldsend, S. Singh, A multi-objective algorithm based upon particle swarm optimisation,
an efficient data structure and turbulence, in Proceedings of U.K. Workshop on Computational
Intelligence, Birmingham, September 2002, pp. 37–44

33. D.E. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal function opti-
mization, in Proceedings of Second International Conference on Genetic Algorithms, ed. by
J.J. Grefenstette, pp. 41–49 (1987)

http://hal.archives-ouvertes.fr/

382 X. Li and M. Clerc

34. E.F.G. Goldbarg, G.R. De Souza, M.C. Goldbarg, Particle swarm for the traveling salesman
problem, in Evolutionary Computation in Combinatorial Optimization: Proceedings of the
6th European Conference, EvoCOP 2006, ed. by J. Gottlieb, G. Raidl, R. Günther. LNCS,
vol. 3906 (Springer, Berlin, 2006), pp. 99–110

35. R. Groß, M. Bonani, F. Mondada, M. Dorigo, Autonomous self-assembly in swarm-bots. IEEE
Trans. Robot. 22(6), 1115–1130 (2006)

36. G.R. Harik, Finding multimodal solutions using restricted tournament selection, in Proceed-
ings of Sixth International Conference on Genetic Algorithms, ed. by L. Eshelman (Morgan
Kaufmann, San Francisco, 1995), pp. 24–31

37. S. Helwig, R. Wanka, Particle swarm optimization in high-dimensional bounded search
spaces, in Proceedings of IEEE Swarm Intelligence Symposium, April 2007 (IEEE Press, Hon-
olulu, 2007), pp. 198–205

38. N. Higashi, H. Iba, Particle swarm optimization with Gaussian mutation, in Proceedings of
IEEE Swarm Intelligence Symposium (2003), pp. 72–79

39. X. Hu, R.C. Eberhart, Adaptive particle swarm optimisation: detection and response to dy-
namic systems, in Proceedings of Congress on Evolutionary Computation (2002), pp. 1666–
1670

40. S. Janson, M. Middendorf, A hierarchical particle swarm optimizer and its adaptive variant.
IEEE Trans. Syst. Man Cybern. B 35(6), 1272–1282 (2005)

41. J. Kennedy, The behaviour of particle, in Proceedings of 7th Annual Conference Evolutionary
Programming, San Diego, CA (1998), pp. 581–589

42. J. Kennedy, Bare bones particle swarms, in Proceedings of IEEE Swarm Intelligence Sympo-
sium, Indianapolis, IN (2003), pp. 80–87

43. J. Kennedy, In search of the essential particle swarm, in Proceedings of IEEE Congress on
Evolutionary Computation (IEEE Press, 2006), pp. 6158–6165

44. J. Kennedy, Swarm intelligence, in Handbook of Nature-Inspired and Innovative Computing:
Integrating Classical Models with Emerging Technologies, ed. by A.Y. Zomaya (Springer,
Boston, 2006), pp. 187–219

45. J. Kennedy, R.C. Eberhart, Particle swarm optimization, in Proceedings of IEEE International
Conference on Neural Networks, vol. 4 (IEEE Press, Piscataway, 1995), pp. 1942–1948

46. J. Kennedy, R.C. Eberhart, Y. Shi, Swarm Intelligence (Morgan Kaufmann, San Francisco,
2001)

47. X. Li, A non-dominated sorting particle swarm optimizer for multiobjective optimization,
in Proceedings of Genetic and Evolutionary Computation Conference, Part I, ed. by Erick
Cantú-Paz et al. LNCS, vol. 2723 (Springer, Berlin, 2003), pp. 37–48

48. X. Li, Adaptively choosing neighbourhood bests using species in a particle swarm optimizer
for multimodal function optimization, in Proceedings of Genetic and Evolutionary Computa-
tion Conference, ed. by K. Deb. LNCS, vol. 3102 (2004), pp. 105–116

49. X. Li, Niching without niching parameters: particle swarm optimization using a ring topology.
IEEE Trans. Evol. Comput. 14(1), 150–169 (2010)

50. X. Li, Developing niching algorithms in particle swarm optimization, in Handbook of Swarm
Intelligence ed. by B. Panigrahi, Y. Shi, M.-H. Lim. Adaptation, Learning, and Optimization,
vol. 8 (Springer, Berlin, 2011), pp. 67–88

51. X. Li, K.H. Dam, Comparing particle swarms for tracking extrema in dynamic environments,
in Proceedings of Congress on Evolutionary Computation (2003), pp. 1772–1779

52. J.P. Li, M.E. Balazs, G.T. Parks, P.J. Clarkson, A species conserving genetic algorithm for
multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)

53. X. Li, J. Branke, T. Blackwell, Particle swarm with speciation and adaptation in a dynamic
environment, in Proceedings of Genetic and Evolutionary Computation Conference, ed. by
M. Cattolico (ACM Press, New York, 2006), pp. 51–58

54. X. Li, A. Engelbrecht, M.G. Epitropakis, Benchmark functions for CEC’2013 special session
and competition on niching methods for multimodal function optimization, Technical report,
Evolutionary Computation and Machine Learning Group, RMIT University, 2013

11 Swarm Intelligence 383

55. J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm op-
timizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3),
281–295 (2006)

56. M. Lovbjerg, T. Krink, Extending particle swarm optimizers with self-organized criticality, in
Proceedings of Congress on Evolutionary Computation (IEEE Press, 2002), pp. 1588–1593

57. A. Mah, S.I. Hossain, S. Akter, A comparative study of prominent particle swarm optimization
based methods to solve traveling salesman problem. Int. J. Swarm Intell. Evol. Comput. 5(3),
1–10 (2016)

58. D. Martens, B. Baesens, T. Fawcett, Editorial survey: swarm intelligence for data mining.
Mach. Learn. 82(1), 1–42 (2011)

59. R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better.
IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

60. J. Moore, R. Chapman, Application of Particle Swarm to Multiobjective Optimization (De-
partment of Computer Science and Software Engineering, Auburn University, 1999)

61. E. Ozcan, C.K. Mohan, Analysis of a simple particle swarm optimization system, in Intelligent
Engineering Systems through Artificial Neural Networks (1998), pp. 253–258

62. R.S. Parpinelli, H.S. Lopes, A.A. Freitas, Data mining with an ant colony optimization algo-
rithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)

63. D. Parrott, X. Li, Locating and tracking multiple dynamic optima by a particle swarm model
using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

64. K. Parsopoulos, M. Vrahatis, Modification of the particle swarm optimizer for locating all
the global minima, in Artificial Neural Networks and Genetic Algorithms, ed. by V. Kurkova,
N. Steele, R. Neruda, M. Karny (Springer, Berlin, 2001), pp. 324–327

65. K. Parsopoulos, M. Vrahatis, Particle swarm optimization method in multiobjective problems,
in Proceedings of ACM Symposium on Applied Computing, Madrid (ACM Press, New York,
2002), pp. 603–607

66. A. Pétrowski, A clearing procedure as a niching method for genetic algorithms, in Proceedings
of 3rd IEEE International Conference on Evolutionary Computation (1996), pp. 798–803

67. R. Poli, Mean and variance of the sampling distribution of particle swarm optimizers during
stagnation. IEEE Trans. Evol. Comput. 13(4), 712–721 (2009)

68. B.Y. Qu, P.N. Suganthan, S. Das, A distance-based locally informed particle swarm model for
multimodal optimization. IEEE Trans. Evol. Comput. 17(3), 387–402 (2013)

69. M. Reyes-Sierra, C.A.C. Coello, Multi-objective particle swarm optimizers: a survey of the
state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)

70. T. Richer, T. Blackwell, The Lévy particle swarm, in Proceedings of Congress on Evolutionary
Computation (2006), pp. 808– 815

71. J. Riget, J. Vesterstroem, A diversity-guided particle swarm optimizer - the ARPSO, Technical
Report 2002-02, Department of Computer Science, University of Aarhus, 2002

72. E. Şahin, Swarm robotics: from sources of inspiration to domains of application, in Swarm
Robotics: SAB 2004 International Workshop (Revised Selected Papers), ed. by E. Şahin, W.M.
Spears (Springer, Berlin, 2005), pp. 10–20

73. E. Şahin, S. Girgin, L. Bayindir, A.E. Turgut, Swarm robotics, in Swarm Intelligence: Intro-
duction and Applications, ed. by C. Blum, D. Merkle (Springer, Berlin, 2008), pp. 87–100

74. R. Salomon, Re-evaluating genetic algorithm performance under coordinate rotation of bench-
mark functions - a survey of some theoretical and practical aspects of genetic algorithms.
Biosystems 39(3), 263–278 (1996)

75. W.M. Spears, D.T. Green, D.F. Spears, Biases in particle swarm optimization. Int. J. Swarm.
Intell. Res. 1(2), 34–57 (2010)

76. P.N. Suganthan, Particle swarm optimiser with neighbourhood operator, in Congress on Evo-
lutionary Computation (CEC 1999), Washington (1999), pp. 1958–1962

77. F. van den Bergh, Analysis of Particle Swarm Optimizers, Ph.D. thesis, Department of Com-
puter Science, University of Pretoria, Pretoria, 2002

78. F. van den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm optimization.
IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

384 X. Li and M. Clerc

79. F. van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajecto-
ries. Inform. Sci. 176, 937–971 (2006)

80. K. Veeramachaneni, T. Peram, C. Mohan, L. Osadciw, Optimization using particle swarm
with near neighbor interactions, in Proceedings of Genetic and Evolutionary Computation
Conference, Chicago, IL (2003), pp. 110 – 121

81. M. Wachowiak, R. Smolikova, Y. Zheng, J. Zurada, A. Elmaghraby, An approach to multi-
modal biomedical image registration utilizing particle swarm optimization. IEEE Trans. Evol.
Comput. 8(3), 289–301 (2004)

82. U.K. Wickramasinghe, X. Li, Using a distance metric to guide PSO algorithms for many-
objective optimization, in Proceedings of Genetic and Evolutionary Computation Conference
(ACM Press, New York, 2009), pp. 667–674

83. H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, A particle swarm opti-
mization for reactive power and voltage control considering voltage security assessment. IEEE
Trans. Power Syst. 15(4), 1232–1239 (2001)

84. M. Zambrano-Bigiarini, M. Clerc, R. Rojas, Standard particle swarm optimisation 2011 at
CEC-2013: a baseline for future PSO improvements, in Proceedings of Congress on Evolu-
tionary Computation (2013), pp. 2337–2344

Chapter 12
Metaheuristic Hybrids

Günther R. Raidl, Jakob Puchinger, and Christian Blum

Abstract Over the last decades, so-called hybrid optimization approaches have be-
come increasingly popular for addressing hard optimization problems. In fact, when
looking at leading applications of metaheuristics for complex real-world scenarios,
many if not most of them do not purely adhere to one specific classical metaheuristic
model but rather combine different algorithmic techniques. Concepts from different
metaheuristics are often hybridized with each other, but they are also often combined
with other optimization techniques such as tree-search, dynamic programming and
methods from the mathematical programming, constraint programming, and SAT-
solving fields. Such combinations aim at exploiting the particular advantages of the
individual components, and in fact well-designed hybrids often perform substan-
tially better than their “pure” counterparts. Many very different ways of hybridizing
metaheuristics are described in the literature, and unfortunately it is usually difficult
to decide which approach(es) are most appropriate in a particular situation. This
chapter gives an overview on this topic by starting with a classification of meta-
heuristic hybrids and then discussing several prominent design templates which are
illustrated by concrete examples.

G. R. Raidl (�)
Institute of Logic and Computation, TU Wien, Vienna, Austria
e-mail: raidl@ac.tuwien.ac.at

J. Puchinger
Laboratoire Genie Industriel, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France

Institut de Recherche Technologique SystemX, Palaiseau, France
e-mail: jakob.puchinger@centralesupelec.fr

C. Blum
Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, Bellaterra, Spain
e-mail: christian.blum@iiia.csic.es

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_12

385

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_12&domain=pdf
mailto:raidl@ac.tuwien.ac.at
mailto:jakob.puchinger@centralesupelec.fr
mailto:christian.blum@iiia.csic.es
https://doi.org/10.1007/978-3-319-91086-4_12

386 G. R. Raidl et al.

12.1 Introduction

Most of the other chapters of this book illustrate the existence of a large number
of different metaheuristics. Simulated annealing, tabu search, iterated local search,
variable neighborhood search, the greedy randomized adaptive search procedure,
evolutionary algorithms such as genetic and memetic algorithms, ant colony op-
timization, scatter search, and path relinking are—among others—prominent ex-
amples. Each of them has an individual historical background, follows certain
paradigms and philosophies, and puts one or more particular strategic concepts in
the foreground.

Over the last years a large number of algorithms were reported that do not purely
follow the concepts of one single traditional metaheuristic, but combine various
algorithmic ideas, often originating from other branches of optimization and soft-
computing. These approaches are commonly referred to as metaheuristic hybrids or
hybrid metaheuristics. For hybrids involving mathematical programming models or
techniques, the name matheuristics also is frequently used. Note that the lack of a
precise definition of these terms is sometimes subject to criticism. In our opinion,
however, the relatively open nature of these terms is rather helpful, as strict border-
lines between related fields of research are often a hindrance for creative thinking
and the exploration of new research directions.

The motivation behind hybridizations of different algorithmic concepts is usually
to obtain better performing systems that exploit and unite advantages of the individ-
ual pure strategies; i.e. such hybrids are believed to benefit from synergy. In fact,
today it seems that choosing an adequate combination of multiple algorithmic con-
cepts is the key for achieving top performance in solving most challenging optimiza-
tion problems of combinatorial nature. The vastly increasing number of reported ap-
plications of metaheuristic hybrids and dedicated scientific events such as the Work-
shops on Hybrid Metaheuristics (see the proceedings of the 2016 edition [14]), the
Workshops on Matheuristics (see the proceedings of the 2016 edition [76]), and the
conferences on the Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems (see the proceedings of the 2016
edition [102]) document the popularity, success, and importance of this specific line
of research.

The idea of hybridizing metaheuristics is not new but dates back to their origins.
At the beginning, however, such combinations were not very popular since several
relatively strongly separated and sometimes competing communities of researchers
existed who tended to consider “their” favorite class of metaheuristics generally su-
perior to others and dogmatically followed their specific philosophies. For example
the evolutionary computation community grew up relatively isolated and followed
quite strictly the biologically inspired thinking. The situation changed, according to
many researchers, with the no free lunch theorems [124] when people recognized
that there cannot exist a general optimization strategy which is always better than
any other. In fact, solving a specific problem most effectively almost always requires
a particularly tuned algorithm made of an adequate combination of sometimes very
problem specific parts often originating from different metaheuristics and other al-

12 Metaheuristic Hybrids 387

gorithmic techniques. Exploiting problem specific knowledge in the best possible
ways, picking the right algorithmic components, and combining them in the most
appropriate way are key ingredients for leading optimization algorithms.

Unfortunately, developing a highly effective hybrid approach is in general a dif-
ficult task and sometimes even considered an art. Nevertheless, there are several
strategies that have proven successful on many occasions, and they can provide some
guidance. In the next section, we will start with a general classification of meta-
heuristic hybrids. The following sections will discuss the most prominent algorith-
mic templates of combinations and illustrate them with selected examples from the
literature. For in-depth reading and comprehensive reviews on hybrid metaheuris-
tics, we recommend the books by Blum and Raidl [22], Talbi [116, 117], and Blum
et al. [23]. Hybrid metaheuristics for multiobjective optimization are specifically
treated in [41] and for continuous—i.e., real-parameter—optimization in [80].

12.2 Classification

Several classifications and taxonomies of hybrid metaheuristics can be found in the
literature. Here we primarily follow the classification from Raidl [104] that com-
bines aspects of the taxonomy introduced by Talbi [115] with the points-of-view
from Cotta [32] and Blum and Roli [18]. Differentiations with regard to parallel
metaheuristics and hybridization of metaheuristics with exact optimization tech-
niques are adopted from El-Abd and Kamel [42] and from Puchinger and Raidl [98],
respectively. Figure 12.1 illustrates our classification.

We primarily distinguish hybrid metaheuristics according to four criteria, namely
the kinds of algorithms that are hybridized, the level of hybridization, the order of
execution, and the control strategy.

Hybridized algorithms. First, one may combine (components of) different me-
taheuristics (MH). Second, highly problem specific algorithms, such as entire
simulations for evaluating candidate solutions, are sometimes used in conjunc-
tion with metaheuristics. As a third class we consider the combination of meta-
heuristics with other more general techniques coming from fields like operations
research (OR) and artificial intelligence (AI). Here, we can further distinguish
between combinations with exact techniques or with other heuristics and soft-
computing methods. Prominent examples for exact techniques that are often suc-
cessfully combined with metaheuristics are tree-search-based methods such as
branch-and-bound (B&B), dynamic programming, linear programming (LP) and
mixed integer programming (MIP) methods as well as nonlinear programming
techniques, constraint programming (CP), and SAT-solving. For a survey dedi-
cated to combinations of metaheuristics with MIP techniques see [106], for an
overview on combinations of local search based methods with CP see [37, 51],
and for a review on combinations of local search methods with exact techniques
see [40]. Examples of other heuristic and soft-computing techniques include neu-
ral networks, fuzzy logic, and diverse statistical techniques. As a fourth class we

388 G. R. Raidl et al.

Fig. 12.1 Classification of metaheuristic (MH) hybrids based on Raidl [104]

12 Metaheuristic Hybrids 389

want to mention the combination of metaheuristics with human interaction com-
ponents, called human guided search. In particular for problems where it is dif-
ficult to quantify the quality of solutions in mathematically precise ways, where
candidate solutions can be well visualized, and where human intuition and intelli-
gence present an advantage, such interactive systems are often highly appreciated
in practice [72].

Level of hybridization. Hybrid metaheuristics can further be differentiated ac-
cording to the level (or strength) at which the individual algorithms are coupled:
High-level combinations retain in principle the individual identities of the origi-
nal algorithms and cooperate over a relatively well defined interface; there is no
direct, substantial relationship of the internal workings of the algorithms. On the
contrary, algorithms in low-level combinations strongly depend on each other;
individual components or functions of the algorithms are mixed.

Order of execution. In the simplest case, the batch execution, the individual al-
gorithms are performed in a sequential way and the results of one algorithm
are used as input for the next one. More sophisticated approaches apply the in-
dividual algorithms in an intertwined or even parallel way, and information is
exchanged more frequently, usually in a bidirectional way. Parallel metaheuris-
tics are an important research area by themselves and independent classifications
of hybrid parallel approaches have been proposed in [6, 42]. They distinguish the
following major criteria: (a) the architecture (SIMD: single instruction, multiple
data streams versus MIMD: multiple instructions, multiple data streams), (b) the
granularity of parallelization (fine- or coarse-grained), (c) the hardware (homo-
geneous or heterogeneous), (d) the memory (shared or distributed), (e) task and
data allocation (static or dynamic), and (f) whether the parallel processes run
asynchronously or are synchronized in some way.

Control strategy. Last but not least, we distinguish metaheuristic hybrids accord-
ing to their control strategy, which can be either integrative (coercive) or collab-
orative (cooperative).
In the extremely popular integrative case, one algorithm is the subordinate, em-
bedded component of another. Examples include the local improvement of can-
didate solutions by an inner optimization algorithm (as in memetic algorithms,
see also Sect. 12.3), special techniques for searching large neighborhoods (see
Sect. 12.9.1), indirect or incomplete representations relying on decoders (see
Sect. 12.5), and intelligent merging (recombination) of solutions (see Sect. 12.6).
In contrast, in collaborative approaches the individual algorithms exchange infor-
mation but are not part of each other. For example, the popular island model [30]
for parallelizing evolutionary algorithms (EAs) is of this type. Collaborative ap-
proaches can further be classified into homogeneous approaches, where sev-
eral instances of one and the same algorithm are performed (as in traditional
island models), and heterogeneous approaches. An example for the latter are
asynchronous teams (A-Teams) [118]: An A-Team consists of a collection of
agents and memories connected into a strongly cyclic directed network. Each of

390 G. R. Raidl et al.

these agents is an optimization algorithm that works asynchronously on the target
problem, on a relaxation of it, i.e. a superproblem, or on a subproblem. Informa-
tion is exchanged via shared memory. Denzinger and Offermann [36] presented
a similar multi-agent approach for achieving cooperation between search algo-
rithms following different search paradigms, such as B&B and EAs. Especially
in collaborative combinations, a particular question is which search spaces are
actually explored by the individual algorithms. Implicit decomposition results
from different initial solutions, parameter settings, or random decisions, while
an explicit decomposition is obtained when each algorithm works on its indi-
vidually defined subspace. Effectively decomposing large problems is often an
important issue in practice. Occasionally, problems decompose in a relatively
natural way (see Sects. 12.4 and 12.9), but most often finding a strong decompo-
sition into weakly related or even unrelated subproblems is a difficult task, and
(self-)adaptive schemes are sometimes applied.

Starting with the next section, we will consider several templates for implement-
ing metaheuristic hybrids, which have successfully been applied on many occasions.

12.3 Finding Initial or Improved Solutions by Embedded
Methods

The most natural way of hybridizing two optimization algorithms is probably to
embed one algorithm into another for obtaining either promising starting solutions
or for possibly improving intermediate solutions.

Problem-specific construction heuristics are often used for finding initial solu-
tions which are then further improved by local search or metaheuristics. A fre-
quently applied and more general strategy for obtaining initial solutions is to solve a
relaxation of the original problem, such as the LP relaxation, and repair the obtained
solution in some heuristic way, e.g., by rounding. Examples to such approaches can
also be found in Sect. 12.7.

The greedy randomized adaptive search procedure (GRASP) [45] systematically
extends the principle of locally improving a starting solution by iterating a ran-
domized construction process, and each of the resulting solutions is then used as a
starting point for local search.

The so-called proximate optimality principle (POP) was first mentioned by
Glover and Laguna in the context of tabu search [54]. It refers to the general in-
tuition that good solutions are likely to have a similar structure and can therefore
be found close to each other in the search space. Fleurent and Glover transferred
this principle in [50] from complete to partial solutions in the context of GRASP.
They suggested that mistakes introduced during the construction process may be
undone by applying local search during (and not only at the end of) the GRASP
construction phase. They proposed a practical implementation of POP in GRASP
by applying local search at a few stages of the construction phase only.

12 Metaheuristic Hybrids 391

Often local search procedures or more sophisticated improvement algorithms are
applied within an outer metaheuristic for “fine-tuning” intermediate candidate solu-
tions. While the outer metaheuristic is responsible for diversification, the inner im-
provement algorithm focuses on intensification. For example, memetic algorithms
[81] typically rely on this principle: The outer metaheuristic is an EA, and inter-
mediate candidate solutions are locally improved. If each intermediate solution is
always turned into a local optimum, the EA exclusively searches the space of local
optima (w.r.t. the neighborhood structure of the inner local improvement procedure)
only. Memetic algorithms are often more successful than simple EAs, because inten-
sification is typically considered a weakness of traditional EAs. By adjusting how
much effort is spent in the local improvement, one can tune the balance between
intensification and diversification. Note that the inner local improvement does not
always have to be just a simple local search. Occasionally, more sophisticated strate-
gies like tabu search or even exact techniques for solving a restricted problem are
applied. This also leads to the related large neighborhood search methods, which
we will consider in Sect. 12.9.1.

Another example is variable neighborhood search (VNS) [61], where each can-
didate solution undergoes some kind of local improvement and a sequence of differ-
ent neighborhood structures is utilized. Especially in general variable neighborhood
search, a more sophisticated variable neighborhood descent is uses as the inner lo-
cal improvement procedure, which makes use of its own, typically systematically
searched sequence of different neighborhood structures.

Considering exact techniques, B&B approaches strongly rely on good upper and
lower bounds in order to prune the search tree as strongly as possible. Metaheuristic
techniques are frequently applied to obtain a promising initial solution or to improve
intermediate solutions in order to find tight(er) bounds. Sects. 12.6 and 12.8 contain
several examples such as [35, 57, 111] that also fall into this category.

12.4 Multi-Stage Approaches

Some optimization approaches consist of multiple sequentially performed stages,
and different techniques are applied at the individual stages.

In many complex real-world applications, the problem naturally decomposes into
multiple levels. If the decision variables associated with the lower level(s) have a
significantly weaker impact on the objective or the whole solution than the higher-
level variables or if the impact of these variable sets is only loosely correlated, it is
a very reasonable approach to optimize the individual levels in a strictly sequential
manner. This corresponds to a kind-of top-down solution construction. Different
techniques can be applied at the individual levels yielding simple but often very
effective hybrid approaches.

For example, for vehicle routing applications where the aim is to deliver goods
to customers, it is a meaningful approach to first partition the customers into groups
which are then independently treated by finding appropriate delivery tours. Such

392 G. R. Raidl et al.

approaches are called cluster-first route-second methods [49]. In contrast, it is also
perfectly reasonable to start by finding a giant tour (ordering) over all customers
and partition this tour into feasible subtours in the second stage; these methods are
called route-first cluster second or order-first split-second approaches [97]. While
such two-staged methods are often relatively fast, they typically only yield solutions
of moderate quality due to the neglected dependency of the decision making in the
two phases. Such methods, however, can also be further embedded in more rigor-
ous (hybrid) metaheuristic search frameworks and thus combined with other design
patterns. In case of vehicle routing, order-first split-second approaches have been
very successful recently when applied within a hybrid genetic algorithm following
a decoder-based strategy, which we will explain in Sect. 12.5.

Another example are job scheduling problems, for which it is often natural to first
assign the jobs to machines and then independently optimize the schedules for each
machine. For large communication network design problems it may be wise to first
optimize a possibly redundant backbone infrastructure, then design the individual
local access network structures, and finally decide about the concrete cable laying
and technical parameters such as the capacities of the individual links.

We remark that in practice such multi-stage approaches will usually not lead to
optimal solutions, as the sequentially solved subproblems are typically not inde-
pendent. However, for many complicated real-world problems of large size, as for
example when designing a communication infrastructure for a larger city, a multi-
stage approach is the only viable choice. Furthermore, multi-stage approaches are
often very useful to find relatively quickly first approximate solutions. Therefore,
they are frequently used in practice.

Multi-stage approaches are sometimes even applied when such a problem de-
composition is not so obvious but results in algorithmic advantages. Classical pre-
processing techniques, where the problem is usually reduced to a hard-to-solve core
by applying certain problem specific simplification strategies, are an example.

A more general, systematic approach is based on tools from the field of parame-
terized complexity. It offers both a framework of complexity analysis and toolkits
for algorithm design. One of the tools for algorithm design is known as problem
kernelization. The idea is to reduce a given problem instance in polynomial time to
a so-called problem kernel such that an optimal solution to the problem kernel can,
in polynomial time, be transformed into an optimal solution to the original problem
instance. In [53], Gilmour and Dras propose different ways of using the informa-
tion given by the kernel of a problem instance for making ant colony system more
efficient for solving the minimum vertex cover problem. The most intuitive version
applies the ant colony system directly to the problem kernel and subsequently trans-
forms the best solution obtained for the kernel into a solution to the original problem
instance.

Multi-level refinement strategies [123] can also be considered a special class of
multi-stage approaches. They involve a recursive coarsening to create a series of ap-
proximations to the original problem. An initial solution is identified for the coarsest
level and is then iteratively refined at each level—coarsest to finest—typically by us-
ing some kind of (meta-)heuristic. Solution extension operators transfer the solution

12 Metaheuristic Hybrids 393

from one level to the next. In iterated multi-level algorithms, solutions are not just
refined but occasionally also re-coarsened, and the whole process is iterated. These
strategies have been successfully applied on several problems including multilevel
graph partitioning, graph coloring, very large traveling salesman problems, vehicle
routing, and DNA sequencing.

Variable fixing strategies where variables of the original problem are fixed to
certain values (according to some, usually heuristic, criterion) to perform the op-
timization over a restricted search space are also related to the above mentioned
strategies. Examples of effective variable fixing strategies are the core concepts for
knapsack problems [93, 101].

Some approaches determine a set of (complete) initial solutions by a first stage
method and apply one (or even more) other technique(s) for further improving upon
them. For example, occasionally a metaheuristic is used for finding a pool of diverse
high-quality solutions, and merging is performed to identify a single final solution
combining the particularly beneficial properties of the intermediate solutions. We
will consider merging in more detail in Sect. 12.6.

In [120], Vasquez and Hao present a two-stage approach for tackling the 0-1
multi-dimensional knapsack problem (MKP). Given n items and m resources, each
object has an associated profit ci and resource consumptions ai, j, ∀i = 1, . . . ,n, ∀ j =
1, . . . ,m, and each resource has a capacity b j. The goal of the MKP is to choose a
subset of the n objects such that its total profit is maximized without violating the
capacity constraints. In the ILP formulation of the MKP, a binary variable xi ∈ {0,1}
is defined for each object. In the first stage of the proposed hybrid solution method
a series of LP relaxations with additional constraints is solved. They are of the form
∑n

i=1 xi = k where k ∈ {kmin, . . . ,kmax}, i.e. the number of items to be selected is
fixed to k. Each setting of k defines an LP that is solved to optimality. In the second
stage of the process, tabu search is used to search for better solutions around the
usually non-integral optimal solutions of the kmax − kmin +1 LPs. The approach has
been improved in [121] by additional variable fixing.

A general multistage approach is implemented in the context of the so-called
generate-and-solve (GS) framework [83], which decomposes the original optimiza-
tion problem into two conceptually different levels. One of the two levels makes use
of a component called solver of reduced instances (SRI), in which an exact method
is applied to sub-instances of the original problem instance that maintain the con-
ceptual structure of the original instance, that is, any solution to the sub-instance is
also a solution to the original instance. At the other level, a metaheuristic component
deals with the problem of generating sub-instances that contain high quality solu-
tions. In GS, the metaheuristic component is called generator of reduced instances
(GRI). Feedback is provided from the SRI component to the GRI component, for
example, by means of the objective function value of the best solution found in a
sub-instance. This feedback serves for guiding the search process of the GRI com-
ponent. Application examples in which the GRI component makes use of EAs and
simulated annealing can be found in [34, 90, 91].

394 G. R. Raidl et al.

12.5 Decoder-Based Approaches

The hybrid metaheuristic design template considered in this section is particularly
popular for problems where solutions must fulfill certain constraints and a fast con-
struction heuristic yielding feasible solutions exists. In decoder-based approaches,
a candidate solution is represented in an indirect or incomplete way and a problem
specific decoding algorithm is applied for transforming the encoded solution into a
complete feasible solution. This principle is often applied in EAs, where encoded
solutions are denoted as genotypes and the decoded counterparts are called pheno-
types [56].

A prominent, quite generic way of indirectly representing solutions is by means
of permutations of solution attributes. The decoder is then usually a greedy con-
struction heuristic which composes a solution by considering the solution attributes
in the order given by the permutation, i.e. the order of an attribute in the permuta-
tion is the greedy criterion. Cutting and packing problems are examples where such
decoder-based methods are frequently used [70]. The overall performance obviously
depends strongly on the quality and the speed of the decoder. Such approaches are
often straightforward and relatively easy to implement, in particular as standard
metaheuristics with traditional neighborhoods for permutations can directly be ap-
plied. On the downside, more elaborate metaheuristics based on direct encodings
and tuned problem specific operators are often likely to achieve better performance,
as they may exploit problem specific features in better ways.

Especially attractive are decoder-based approaches where the decoder is a more
sophisticated algorithm rather than a simple construction procedure. For example,
a mixed integer linear programming problem can be approached by splitting the
variables into the integral and continuous parts. One can then apply a metaheuristic
to optimize the integer part only; for each candidate solution, corresponding optimal
fractional variable values are efficiently determined by solving the remaining LP.
Such approaches are described in conjunction with GRASP by Neto and Pedroso
[84] and in conjunction with tabu search by Pedroso [87].

Besides problem specific heuristics and LP solvers, other efficient techniques are
sometimes used as a decoder to augment incompletely represented solutions. For
example, Hu and Raidl [65] consider the generalized traveling salesman problem in
which a clustered graph is given and a shortest tour visiting exactly one node from
each cluster is requested. Their approach is based on VNS and represents a candi-
date solution in two orthogonal ways: On the one hand, a permutation of clusters
is given, representing the order in which the clusters are to be visited. A dynamic
programming procedure is used as decoder to derive a corresponding optimal se-
lection of particular nodes. On the other hand, only the unordered set of selected
nodes from each cluster is given, and the classical chained Lin-Kernighan heuristic
for the traveling salesman problem is used as a decoder to obtain a corresponding
high-quality tour. The VNS uses several types of neighborhood structures for each
representation.

More recently, Biesinger et al. [13] have proposed a related VNS for the gener-
alized vehicle routing problem with stochastic demands. Again, a clustered graph

12 Metaheuristic Hybrids 395

is given and exactly one node from each cluster needs to be visited. Now, however,
stochastic customer demands are additionally given and due to the vehicle’s lim-
ited capacity, restocking trips back to the depot must also be considered. The VNS
employs a permutation of the clusters as incomplete solution representation. For se-
lecting optimal nodes from the clusters to be visited and the expected tour lengths,
an exact but time-consuming dynamic programming approach is described. As ex-
act objective values are not always needed in the VNS to possibly recognize and
discard inferior solutions, an efficient multi-level evaluation scheme is used.

An impressive example of a quite general decoder-based approach is the uni-
fied hybrid genetic search (UHGS) framework for solving a large variety of vehicle
routing type problems [122]. It is based on the order-first split-second principle
as presented in Sect. 12.4. The authors propose a component-based method, where
problem specifics are treated in the route evaluation component. Route evaluation is
the major building block of a problem independent split procedure, allowing to con-
struct a generic hybrid GA. The UHGS framework is applied to 29 vehicle routing
variants matching or outperforming most of the state-of-the-art problem specific al-
gorithms. This example shows the strength of decoder-based approaches from an
algorithm engineering point of view. Problem specifics are efficiently treated in
clearly defined subparts of the metaheuristic allowing to solve a large variety of
problem classes without giving away solution quality and algorithmic efficiency.

Besides permutations, random keys are another versatile indirect solution repre-
sentation technique making fundamental use of decoders. Originally, they were pro-
posed by Bean in the context of genetic algorithms [9], and more recently Gonçalves
and Resende [58] applied refined variants to a larger number of problems. A solution
is represented by a vector of real values associated again with the solution elements.
For initial solutions, these values are typically independently set to random values
of a certain interval, e.g. [0,1)—therefore the name “random keys”. The decoder
sorts all solution elements according to their random keys and then performs as in
a permutation-based method in a problem-specific way. The main advantage of this
approach is that the metaheuristic’s search space is even more basic (i.e., [0,1)n for
n solution elements) and standard operators like uniform crossover and mutation
where randomly selected keys are set to new random values can be used, which are
entirely independent of the targeted problem.

Decoder-based approaches have also been used in the context of ant colony opti-
mization (ACO). For example, Blum and Blesa [19] present a decoder-based ACO
for the general k-cardinality tree problem. Given an undirected graph, this problem
involves finding among all trees with exactly k edges a tree such that a certain objec-
tive function is minimized. In contrast to a standard ACO algorithm that constructs
trees (i.e. solutions) with exactly k edges, the decoder-based approach of [19] builds
l-cardinality trees, where l > k. Subsequently, an efficient dynamic programming
algorithm is applied for finding the best k-cardinality tree that is contained in the l-
cardinality tree. Results show that this approach has clear advantages over standard
ACO approaches.

396 G. R. Raidl et al.

12.6 Solution Merging

The basic idea of solution merging is to derive a new, hopefully better solution from
the attributes appearing in two or more promising input solutions. The observation
that high-quality solutions usually have many attributes in common is exploited.

In the simplest form, this operation corresponds to the classical recombination
(crossover) which is considered the primary operator in GAs: Usually two parent
solutions are selected and an offspring is constructed by inheriting attributes from
both of them based on naive random decisions. While such an operation is compu-
tationally cheap, created offspring are often worse than the respective parents, and
many repetitions are typically necessary for achieving strong improvements.

Alternatively, one can put more effort into the determination of such offspring.
An established technique is path relinking [55]. It traces a path in the search space
from one parent to a second by always exchanging only a single attribute (or more
generally by performing a move in a simple neighborhood structure towards the tar-
get parent). An overall best solution found on this path is finally taken as offspring.

This concept can further be extended by considering not just solutions on an in-
dividual path between two parents, but the whole subspace of solutions defined by
the joined attributes appearing in a set of two or more input solutions. An optimal
merging operation returns a best solution from this subspace, i.e. it identifies a best
possible combination of the ancestors’ features that can be attained without intro-
ducing new attributes. Depending on the underlying problem, identifying such an
optimal offspring is often a hard optimization problem on its own, but due to the
limited number of different properties appearing in the parents, it can sometimes be
solved in reasonable time in practice. Frequently, this underlying problem also is
only solved by means of a sub-(meta-)heuristic, yielding a near-optimal merging.

Applegate et al. [8] were among the first to apply more sophisticated merging in
practice. For the traveling salesman problem, they derive a set of different tours by
a series of runs of the chained Lin-Kernighan iterated local search algorithm. The
sets of edges of all these solutions are merged and the traveling salesman problem is
finally solved to optimality on this strongly restricted graph. Solutions are achieved
that are typically superior to the best ones obtained by the iterated local search.

Besides the one-time application of merging in the above way, variants of merg-
ing can also replace classical recombination in evolutionary and memetic algo-
rithms. Aggarwal et al. [1] originally suggested such an approach for the indepen-
dent set problem. The subproblem of identifying the largest independent set in the
union of two parental independent sets is solved exactly by an efficient algorithm.
Ahuja et al. [2] apply this concept to a GA for the quadratic assignment problem.
As the optimal recombination problem is more difficult in this case, they use a
matching-based heuristic that quickly finds high-quality offspring solutions. Opti-
mal merging is also used by Blum [16] in the context of an EA for the k-cardinality
tree problem. The individuals are trees with k edges. Crossover first combines two
parent trees, producing hereby a larger l-cardinality tree. Dynamic programming is
then used to reduce this tree to the best feasible subtree with k edges.

12 Metaheuristic Hybrids 397

Eremeev [43] studies the computational complexity of producing a best possi-
ble offspring from two parents for binary representations from a theoretical point of
view. He concludes that the optimal recombination problem is polynomially solv-
able for the maximum weight set packing problem, the minimum weight set parti-
tion problem, and linear Boolean programming problems with at most two variables
per inequality. On the other hand, determining an optimal offspring is NP-hard for
0/1 integer programming with three or more variables per inequality, like the knap-
sack, set covering, and p-median problems, among others.

Solution merging is also the underlying idea of the general construct, merge,
solve & adapt (CMSA) algorithm [24] which is suited for problems in which a so-
lution corresponds to a subset of components from a larger base set. CMSA main-
tains a so-called incumbent sub-instance of the original problem in which only a
part of the base set of all components is considered. Initially, this incumbent sub-
instance is empty. In each iteration of CMSA, a randomized greedy heuristic is used
to generate a set of solutions to the tackled problem. The components of all these
solutions are then collected and added to the incumbent sub-instance, and an exact
technique like a MIP solver is used to find, if possible within an allotted computa-
tion time, a best solution to this sub-instance. The CMSA framework not only adds
solution components to the incumbent sub-instance at each iteration, but also con-
tains a mechanism to dispose of seemingly useless solution components. Apart from
applications to the minimum common string partition and the minimum weighted
arborescence problem in the original paper [24], CMSA has also been successfully
applied to problems such as the repetition-free longest common subsequence prob-
lem [20] and the MKP [21].

Cotta and Troya [33] discuss merging in the light of a general framework for hy-
bridizing B&B and evolutionary algorithms. They show the usefulness of applying
B&B for identifying optimal offspring on various benchmarks.

For mixed integer programming, Rothberg [111] suggests a tight integration of
an EA in a branch-and-cut-based MIP solver. At regular intervals the evolution-
ary algorithm is applied as a B&B tree node heuristic. Optimal recombination is
performed by first fixing all variables that are common in the selected parental solu-
tions and by applying the MIP solver to the reduced subproblem. Mutation selects
one parent, fixes a randomly chosen subset of variables, and calls the MIP solver for
determining optimal values for the remaining variables. Since the number of vari-
ables to be fixed is a critical parameter, an adaptive scheme is applied to control it.
This method is integrated in the commercial MIP solver CPLEX1 since version 10.
See also [74] for further heuristic mechanisms embedded within CPLEX.

Hachemi et al. [59] studied different methods to heuristically integrate (i.e.,
merge) candidate solutions of a rich multi-depot periodic vehicle routing problem.
In particular the authors distinguish between restriction- and incentive-based ap-
proaches. In their restriction-based methods they fix critical characteristics of the
solutions, while in the incentive-based approaches incentive terms are added to the
objective function of the integration-subproblem. The authors conclude that inte-

1 http://www-01.ibm.com/software/info/ilog.

398 G. R. Raidl et al.

gration operators fixing critical characteristics for which a consensus exist in all
input solutions outperform the others when used as stand-alone procedures. In the
context of cooperative search (UHGS framework from [122]), however, a mixture
also involving the incentive-based methods appears to be more fruitful. Overall, the
proposed solution integration procedures exhibit substantial advantages on the per-
formance of the heuristic search.

Parragh and Schmid [86] propose a hybridization of large neighbourhood search
and column generation for solving the dial-a-ride problem (DARP). Based on a
heuristically obtained initial feasible solution a set covering based column genera-
tion scheme is started where new reduced-cost columns are generated using VNS
applied on the existing columns (routes). At a certain interval large neighbourhood
search is used to improve the current best solution. All routes generated during the
LNS phase are added as new columns to the set covering column pool. This ap-
proach can be viewed from a solution merging perspective because the routes of
multiple solutions are merged into a single DARP solution by combining them opti-
mally using a set covering problem. The obtained computational results are improv-
ing the state-of-the-art. In general, heuristic approaches generating multiple solu-
tions for problems that can be decomposed in such a way can strongly benefit from
applying a set covering approach for merging them optimally.

12.7 Strategic Guidance of Metaheuristics by Other Techniques

Many successful hybrid metaheuristics use other optimization techniques for guid-
ing the search process. This may be done by either using information gathered by
applying other algorithms such as optimal solutions to problem relaxations; or this
may be done by directly enhancing the functionality of a metaheuristic with algorith-
mic components originating from other techniques. In the following two subsections
we give examples for both variants.

12.7.1 Using Information Gathered by Other Algorithms

Guiding metaheuristics using information gathered by applying other algorithms
is often a very successful approach that is commonly used. Problem relaxations,
where some or all constraints of a problem are loosened or omitted, are often used
to efficiently obtain bounds and approximate (not necessarily feasible) solutions
to the original problem. The gathered information can be utilized for guiding the
search, since an optimal solution to a relaxation often indicates in which parts of the
original problem’s search space good or even optimal solutions may be found.

Sometimes an optimal solution to a relaxation can be repaired by a problem spe-
cific procedure in order to make it feasible for the original problem and to use it
as a promising starting point for a subsequent metaheuristic (or exact) search; see

12 Metaheuristic Hybrids 399

also Sect. 12.3. For example, Raidl [103] applies this idea in a GA for the MKP.
The MKP’s LP relaxation is solved and a randomized rounding procedure derives
an initial population of diverse solutions from the LP-optimum. Furthermore, the
LP-optimum is also exploited for guiding the repair of infeasible candidate solu-
tions and for local improvement. The variables are sorted according to increasing
LP values. The greedy repair procedure considers the variables in this order and
removes items from the knapsack until all constraints are fulfilled. In the greedy
improvement procedure, items are considered in reverse order and included in the
knapsack as long as no constraint is violated. Many similar examples for exploiting
LP solutions—also including the biasing of operators such as recombination and
mutation in EAs—exist.

Plateau et al. [94] combine interior point methods and metaheuristics for solving
the MKP. In a first step an interior point method is performed with early termina-
tion. By rounding and applying several different ascent heuristics, a population of
different feasible candidate solutions is generated. This set of solutions is then the
initial population for a path relinking/scatter search.

Puchinger and Raidl [100] suggest a new variant of VNS: relaxation guided vari-
able neighborhood search. It is based on the general VNS scheme and a new em-
bedded variable neighborhood descent (VND) strategy utilizing different types of
neighborhood structures. For a current incumbent solution, the order in which the
neighborhoods are searched is determined dynamically by first solving relaxations
of them. The objective values of these relaxations are used as indicators for the
potential gains of searching the corresponding neighborhoods, and more promis-
ing neighborhoods are searched first. The proposed approach has been tested on
the MKP but is more generally applicable. Computational experiments involving
several types of ILP-based neighborhoods show that the adaptive neighborhood or-
dering is beneficial for the heuristic search, improving obtained results.

Occasionally, dual variable information of LP solutions is also exploited. Chu
and Beasley [28] make use of it in their GA for the MKP by calculating so-called
pseudo-utility ratios for the primal variables and using them in similar ways as de-
scribed above for the primal solution values. For the MKP, these pseudo-utility ra-
tios tend to be better indicators for the likeliness of the corresponding items to be
included in an optimal integer solution than the primal variable values and several
other heuristic measures (a more detailed analysis is given in [101]).

Other relaxations besides the LP relaxation are occasionally also exploited in
conjunction with metaheuristics. A successful example is the hybrid Lagrangian
GA for the prize collecting Steiner tree problem from Haouari and Siala [62]. It
is based on a Lagrangian decomposition of a minimum spanning tree-like ILP for-
mulation of the problem. The volume algorithm is used for solving the Lagrangian
dual. After its termination, the GA is started and exploits results obtained from the
volume algorithm in several ways: (a) The volume algorithm creates a sequence of
intermediate spanning trees as a by-product. All edges appearing in these intermedi-
ate trees are marked, and only this reduced edge set is further considered by the GA;
i.e. a core of edges is derived from the intermediate primal results when solving the
Lagrangian dual. (b) A subset of diverse initial solutions is created by a Lagrangian

400 G. R. Raidl et al.

heuristic, which greedily generates solutions based on the reduced costs appearing
as intermediate results in the volume algorithm. (c) Instead of the original objec-
tive function, an alternate one, based on the reduced costs that are obtained by the
volume algorithm, is used. The idea is to focus the search even more on regions of
the search space around the results of the Lagrangian heuristic, where also better
solutions with respect to the original objective function are likely to be found.

Pirkwieser et al. [92] describe a similar combination of Lagrangian decomposi-
tion and a GA for the knapsack constrained maximum spanning tree problem. The
problem is decomposed into a minimum spanning tree and a 0–1 knapsack problem.
Again, the volume algorithm is employed to solve the Lagrangian dual. While graph
reduction takes place as before, the objective function remains unchanged. Instead,
final reduced costs are exploited for biasing the initialization, recombination, and
mutation operators. In addition, the best feasible solution obtained from the volume
algorithm is used as a seed in the GA’s initial population. Results indicate that the
volume algorithm alone is already able to find solutions of high quality even for
large instances. These solutions are polished by the GA, and, remarkably, in most
cases proven optimal solutions are finally obtained.

Dowsland et al. [38] propose an approach where bounding information avail-
able from partial solutions is used to guide an EA. An indirect, order-based rep-
resentation of candidate solutions is applied. Phenotypes are derived by a specific
decoding procedure which is a construction heuristic that is also able to calculate
upper bounds for intermediate partial solutions (considering a maximization prob-
lem). Given a certain target value, which is e.g. the objective value of the so far best
solution, a bound point is determined for each candidate solution in the population:
It is the first position in the genotype for which the corresponding partial solution
has a bound that is worse than the target value. A modified one-point crossover is
then guided by this bound information. That is, the crossover point must be chosen
in the part of the first chromosome before its bound point. In this way, recombi-
nations definitely leading to worse offspring are avoided. The authors tested this
concept on a pallet loading and a two-dimensional packing problem.

12.7.2 Enhancing the Functionality of Metaheuristics

One of the basic ingredients of an optimization technique is a mechanism for ex-
ploring the search space. An important class of algorithms tackles an optimization
problem by exploring the search space along a so-called search tree. This class of
algorithms comprises approximate as well as complete techniques. A prominent ex-
ample of a complete method belonging to this class is B&B. An interesting heuristic
derivative of breadth-first B&B is beam search [85]. While B&B (implicitly) con-
siders all nodes at a certain level in the search tree, beam search restricts the search
to a certain number of nodes based on bounding information.

One relatively recent line of research deals with the incorporation of algorithmic
components originating from deterministic B&B derivatives such as beam search

12 Metaheuristic Hybrids 401

into construction-based metaheuristics. Examples are the so-called Beam-ACO al-
gorithms [15, 17] and approximate and non-deterministic tree search (ANTS) pro-
cedures [75]. Note that Beam-ACO can be seen as a generalization of ANTS. In
Beam-ACO, artificial ants perform a probabilistic beam search in which the exten-
sion of partial solutions is done in the ACO fashion rather than deterministically.
The existence of an accurate—and computationally inexpensive—lower bound for
the guidance of the ACO’s search process is crucial for the success of Beam-ACO.

Another example concerns the use of CP techniques for restricting the search per-
formed by an ACO algorithm to promising regions of the search space. The motiva-
tion for this type of hybridization is as follows. Generally, ACO algorithms are com-
petitive with other optimization techniques when applied to problems that are not
overly constrained. However, when highly constrained problems such as scheduling
or timetabling are considered, the performance of ACO algorithms frequently de-
grades. Note that this is usually also the case for other metaheuristics. The reason
is to be found in the structure of the search space: On the one side, when a problem
is not overly constrained, it is usually not difficult to find feasible solutions. The
difficulty rather lies in the optimization part, namely the search for good feasible
solutions. On the other side, when a problem is highly constrained the difficulty is
rather in finding any feasible solution. This is where CP comes into play, because
these problems are the typical target problems for CP applications. Meyer and Ernst
[79] introduced the incorporation of CP into ACO in an application to the single
machine job scheduling problem.

Raidl and Hu in [107] proposed to enhance a GA by a so-called trie-based com-
plete solution archive, which is in fact a hybridization of a GA with B&B. This
relatively general approach is particularly useful for problems with a compact so-
lution representation but expensive solution evaluation, such as methods relying on
costly decoders or rigorous simulations. The central idea is to store all created candi-
date solutions of the GA efficiently in a special trie data structure, which essentially
corresponds to an explicitly stored B&B tree. Doing so allows to efficiently check if
a created candidate solution has already been considered before. If this is the case,
the archive further provides an efficient way to transform the candidate solution into
a different but usually similar one, which is guaranteed not to have been considered
before. Thus, the solution archive can also be seen as an “intelligent mutation” oper-
ator effectively avoiding any re-visits. This even implies that the GA is in principle
turned into an exact optimization technique that is guaranteed to find an optimal
solution in limited time. In practice, however, the approach will typically still be
terminated early, i.e., before the whole space of solutions has been covered. This
approach was tested in [107] on royal road functions and NK-landscapes with clas-
sical binary representations as proof of concept. Later, the usefulness of this hybrid
was also shown on a variety of other, practically more relevant problems with differ-
ent representations, including the generalized minimum spanning tree problem, the
discrete (r|p) centroid problem [11], and other competitive facility location prob-
lems [12]. The latter works exploit the solution archive also within an embedded
local search component turning it into a special kind of tabu search. Furthermore,
the principle is extended by also occasionally calculating dual bounds on partial

402 G. R. Raidl et al.

solutions, effectively including the bounding mechanism of classical B&B [66] in
order to prune larger parts of the search space. We refer the reader to [10] for more
details on trie-based solution archives.

12.8 Strategic Guidance of Other Techniques by Metaheuristics

Many metaheuristics are based on the principle of local search, i.e. starting from
an initial solution, a certain neighborhood around it is investigated, and if a better
solution can be identified, it becomes the new incumbent solution; this process is
then repeated. Thus, the central idea is to focus the search for better solutions on
regions of the search space nearby already identified good solutions.

In comparison, most classical B&B algorithms choose the next B&B tree node
to be processed by a best-first strategy: assuming minimization, a node with small-
est lower bound is always selected, since it is considered the most promising for
reaching an optimal solution. This approach is often the best strategy for minimiz-
ing the total number of nodes that need to be explored until finding an optimum
and proving its optimality. However, good complete solutions—and thus also tight
upper bounds—are often found late during this search. The best-first node selection
strategy typically “hops around” in the search tree and in the search space, and does
not stay focused on subregions. When no strong primal heuristic is applied for deter-
mining promising complete solutions, the best-first strategy is often combined with
an initial diving, in which a depth-first strategy is used at the beginning until some
feasible solution is obtained. In depth-first search, the next node to be processed is
always the one that has been most recently created by branching.

In the last two decades, several more sophisticated concepts have been proposed
with the aim to intensify B&B-search in an initial phase to neighborhoods of promis-
ing incumbents in order to quickly identify high-quality approximate solutions. In
some sense, we can consider these strategies to “virtually” execute a local search or
even a metaheuristic.

Danna et al. [35] describe guided dives, which are a minor, but effective modifica-
tion of the already mentioned simple diving by temporarily switching to depth-first
search. The branch to be processed next in case of guided dives is always the one
in which the branching variable is allowed to take the value it has in an incumbent
solution. Diving is therefore biased towards the neighborhood of this solution. In-
stead of performing only a single dive at the beginning, guided dives are repeatedly
applied at regular intervals during the whole optimization process. This strategy is
trivial to implement, and experimental results indicate significant advantages over
standard node selection strategies.

Fischetti and Lodi [47] proposed local branching, an exact approach introducing
the classical k-OPT local search idea in a generic branch-and-cut-based MIP solver.
The whole problem is partitioned into a k-OPT neighborhood of an initial solution
and the remaining part of the search space by applying a local branching constraint
and its inverse, respectively. The MIP solver is then forced to completely solve the k-

12 Metaheuristic Hybrids 403

OPT neighborhood before considering the remainder of the problem. If an improved
solution has been found in the k-OPT neighborhood, a new subproblem correspond-
ing to the k-OPT neighborhood of this new incumbent is split off and solved in the
same way; otherwise, a larger k may be tried. The process is repeated until no fur-
ther improvement can be achieved. Finally, the remaining problem corresponding to
all parts of the search space not yet considered is processed in a standard way.

Hansen et al. [61] present a variant of local branching in which they follow the
classical VNS strategy, especially for adapting the neighborhood parameter k. Im-
proved results are reported. Another variant of the original local branching scheme
is described by Fischetti et al. in [48]. They consider problems in which the set of
variables can be naturally partitioned into two levels and fixing the values of the
first-level variables yields substantially easier subproblems; cf. Sect. 12.4.

Danna et al. [35] further suggest an approach called relaxation induced neighbor-
hood search (RINS) for exploring the neighborhoods of promising MIP solutions
more intensively. The main idea is to occasionally devise a sub-MIP at a node of
the B&B tree that corresponds to a special neighborhood of an incumbent solution.
First, variables having the same values in the incumbent and in the current solution
of the LP relaxation are fixed. Second, an objective cutoff based on the objective
value of the incumbent is set. Third, a sub-MIP is solved on the remaining vari-
ables. The time for solving this sub-MIP is limited. If a better incumbent is found
during this process, it is given to the global MIP-search which is resumed after the
sub-MIP’s termination. In the authors’ experiments, CPLEX is the MIP solver, and
RINS is compared to standard CPLEX, local branching, combinations of RINS and
local branching, and guided dives. Results indicate that RINS often performs best.
CPLEX includes RINS as a standard strategy for quickly obtaining good heuristic
solutions since version 10. Recently, Gomes et al. [57] suggested an extension of
RINS that explicitly explores pre-processing techniques. Their method systemati-
cally searches for a suitable number of variable fixings to produce subproblems of
controlled size, which are explored in a variable-neighborhood-descent fashion.

The nested partitioning method proposed by Shi and Ólafsson [112] is another
example where a metaheuristic provides strategic guidance to another technique.
At each iteration the search focuses on a part of the search space called the most
promising region. The remaining part of the search space is called the surrounding
region. The most promising region may, for example, be characterized by a number
of fixed variables. At each step, the most promising region is divided into a fixed
number of subregions. This may be done, for example, by choosing one of the free
variables and creating a subregion for each of the variable’s possible domain value.
Each of the subregions as well as the surrounding region is then sampled. The best
objective function value obtained for each region is called the promising index. The
region with the best index becomes the most promising region of the next iteration.
The latter is thus nested within the current most promising region. When the sur-
rounding region is found to be the best, the method backtracks to a larger region.
The approach may be divided into four main steps: partitioning, sampling, selecting
a promising region, and backtracking. Each of these steps may be implemented in a
generic fashion, but can also be defined in a problem specific way. In particular the

404 G. R. Raidl et al.

sampling phase may benefit from the use of metaheuristics instead of performing a
naive random sampling. In a sense, metaheuristics can be seen as enhancements for
guiding the search process of the method. In [5], for example, ant colony optimiza-
tion is applied for sampling, whereas in [113] local search is used for this purpose.

A very different paradigm is followed in constraint-based local search [63]. It
combines the flexibility of CP concepts such as rich modeling, global constraints,
and search abstractions with the efficiency of local search. The Comet programming
language allows the modeling of combinatorial optimization problems in a relatively
natural way.

Note that the construct, merge, solve & adapt (CMSA) framework [24] previ-
ously described in Sect. 12.6 in the context of solution merging, can also be seen
as a technique in which heuristic elements provide guidance for an exact approach.
This is because the reduced sub-instances of the tackled problem instances—which
are solved by an exact technique—are generated by iteratively applying a greedy
heuristic in a probabilistic way.

Guidance of a complete technique by means of the information gathered by a
metaheuristic can also be found in the context of CP. An example is the work of
Khichane et al. [71] in which the pheromone information of an ACO algorithm is
used for value ordering during CP branching.

12.9 Decomposition Approaches

Problem decomposition approaches are another category of powerful techniques for
combining different optimization techniques. Usually, a very hard-to-solve problem
is decomposed into parts which can be dealt with more effectively. Some of the
multi-stage approaches in Sect. 12.4 already follow this basic idea. Large neighbor-
hood search, heuristic cut and column generation in mixed integer programming,
and constraint propagation by means of metaheuristics are three other prominent in-
stances of successful decomposition techniques, which we consider in the following
in more detail.

12.9.1 Exploring Large Neighborhoods

A frequently applied approach in more sophisticated local search based metaheuris-
tics is to search neighborhoods not by naive enumeration but by clever, more effi-
cient algorithms. If the neighborhoods are chosen appropriately, they can be quite
large and nevertheless an efficient search for a best (or almost best) neighboring
solution is still possible in short time. Such techniques are commonly known as
very large-scale neighborhood search [4] or just large neighborhood search [110].
Many of today’s combinations of local search based metaheuristics with dynamic
programming or MIP techniques follow this scheme. In the following, we present

12 Metaheuristic Hybrids 405

some examples. For further details we refer to the separate chapter in this book
specifically dedicated to large neighborhood search.

A frequently found general design principle for large neighborhoods is to select
a set of the problem’s variables for re-optimization and to fix all remaining variables
as they appear in the current incumbent solution. Clearly, the number of variables to
be optimized in each iteration and the way to select them have a substantial impact
on the performance of the search. Usually variables are selected randomly, but typi-
cally in a way to favor the joint selection of strongly related variables that determine
certain solution characteristics or to favor variables involved in constraint violations.
Different types of large neighborhoods can be obtained through different strategies
for variable selection and for re-optimization of the resulting subproblems. Methods
for the latter can range from basic greedy heuristics over dynamic programming to
MIP or CP solvers.

Numerous applications exist in which large neighborhoods are described in
the form of MIPs and a MIP-solver is applied for finding a good—or a best—
neighboring solution. Examples of MIP-based large neighborhood search can be
found in Duarte et al. [39], where an iterated local search framework is applied to
a real-world referee assignment problem, and in Prandtstetter and Raidl [96] where
several different MIP-based neighborhoods are searched within a VNS framework
for a car sequencing problem. Toledo et al. [119] describe an effective MIP-based
“relax-and-fix with fix-and-optimize” heuristic for multi-level lot-sizing problems.

As it is sometimes difficult to decide which large neighborhood is the best to
apply at a certain time, adaptive schemes that increase or decrease the probability to
apply each neighborhood structure according to its past performance have also been
useful. For example Ropke and Pisinger [110] proposed an adaptive large neigh-
borhood search (ALNS) for the pickup and delivery problem with time windows,
Muller et al. [82] applied an ALNS with MIP neighborhoods to a lot-sizing problem
with setup times, and Pereira et al. [88] described such an approach for a probabilis-
tic maximal covering location-allocation problem.

In Dynasearch [31] exponentially large neighborhoods are explored by dynamic
programming. A neighborhood consists of all possible combinations of mutually
independent simple search steps, and one Dynasearch move corresponds to a set
of such simple steps that are executed in parallel in a single local search iteration.
The required independence in the context of Dynasearch means that the individual
simple moves do not interfere with each other; in this case, dynamic programming
can be used to find a best combination. Ergun and Orlin [44] investigated several
such neighborhoods in particular for the traveling salesman problem.

Other types of large neighborhoods that can also be efficiently searched by dy-
namic programming are cyclic and path exchange neighborhoods [3, 4]. They are
often applied to problems where items need to be partitioned into disjoint sets. Ex-
amples of such problems are vehicle routing, capacitated minimum spanning tree,
and parallel machine scheduling. In these neighborhoods, a series of items is ex-
changed between an arbitrary number of sets in a cyclic or path-like fashion, and a
best move is determined by a shortest path-like algorithm.

406 G. R. Raidl et al.

Pesant and Gendreau [89] describe a generic framework for combining CP and
local search. They view and model the original problem as well as the (large) neigh-
borhoods as CP problems. Each of the neighborhoods is solved via a CP-based B&B
that preserves solution feasibility. The framework allows for a relatively generic
problem modeling while providing the advantages of local search. The authors solve
a physician scheduling problem as well as the traveling salesman problem with time
windows, and they approach them by tabu search in which large neighborhoods are
searched by means of the CP-based B&B. More recent examples of CP-based LNS
concern applications to a dial-and-ride problem [68] and a post enrolment-based
course timetabling problem [27]. A general modeling language and a hybrid solver
specially designed for LNS, called GELATO, was proposed in [29].

Hu et al. [67] describe a VNS for the generalized minimum spanning tree prob-
lem. The approach uses two dual types of representations and exponentially large
neighborhood structures. Best neighbors are identified by means of dynamic pro-
gramming algorithms, and—in case of the so-called global subtree optimization
neighborhood—by solving an ILP formulation with CPLEX.

A way of defining large neighborhoods in the context of a decomposition ap-
proach is proposed in a general framework called POPMUSIC (Partial OPtimiza-
tion Metaheuristic Under Special Intensification Conditions) [114]. POPMUSIC is
thought for the application to generally large-scale optimization problems in which
solutions have the property to be composed of parts that can be optimized relatively
independently. The basic idea is to identify and to optimize these parts a posteriori
once an initial solution to the problem under consideration is obtained. The sub-
problem solved at each iteration re-shapes at most r parts, where r is a parameter
of the algorithm, in the best possible way. This can be seen as a large neighborhood
based on soft fixing as it is known, for example, from other techniques such as local
branching [47], cf. Sect. 12.8. Exact solvers often come into play. A recent example
is the application of POPMUSIC to a berth allocation problem [73].

Note also that large neighborhood search and POPMUSIC are strongly related
to variable neighborhood decomposition search [60], where neighborhoods are
searched only for selected parts of an incumbent solution.

12.9.2 Hybrids Based on MIP Decomposition Techniques

Mathematical programming decomposition techniques are methods for solving a
large problem by considering a series of smaller problems and appropriately com-
bining the solutions. Lagrangian decomposition, Benders decomposition, and col-
umn generation are particularly well known and are used in many state-of-the-art ex-
act and heuristic solution approaches for different combinatorial optimization prob-
lems [125]. In fact, these decomposition techniques may also be interpreted as more
general metaheuristic frameworks themselves, see [26]. Frequently, these methods
can be considerably accelerated with the help of (meta-)heuristics, sometimes even
retaining completeness, or combined in fruitful ways with metaheuristics in order

12 Metaheuristic Hybrids 407

to guide them. See [105] for a survey on such decomposition based hybrids meta-
heuristics. The possibilities in this context are manifold. Here, we just want to give
a few ideas that have already been proven successful in several applications.

12.9.2.1 Lagrangian Decomposition

With respect to Lagrangian decomposition (LD), we have already considered the
works from Haouari and Siala [62] and Pirkwieser et al. [92] in Sect. 12.7.1, which
cleverly exploit the information gathered from LD in various ways within a GA.
More generally, LD is in principle only a method for obtaining a lower bound. To get
a feasible solution, it typically relies on some further heuristic method that usually
exploits the Lagrangian dual.

12.9.2.2 Column Generation

In column generation (CG) one usually aims at solving a MIP model with a huge
number of variables. Such models frequently resemble a kind of set covering or set
partitioning model and are attractive because they provide a strong LP relaxation.
For example, a vehicle routing problem may be modeled in a way where any feasi-
ble route corresponds to a variable, and a subset of all routes is sought that covers
all customers. Clearly, there are exponentially many routes, and thus variables, and
such a model cannot be solved directly in practice. Column generation starts with
a reduced model containing only a small set of initial variables, which are for ex-
ample derived from an initial solution provided by a heuristic. This reduced model
is then iteratively solved and augmented by further variables (i.e., columns in the
matrix notation of the MIP) that may lead in the next iteration to an improved so-
lution. The subproblem of identifying a new variable whose inclusion will yield an
improvement is called the pricing problem and is often difficult to solve on its own.
Applying fast (meta-)heuristics for this purpose is sometimes a very meaningful
option.

For example, Filho and Lorena [46] apply a heuristic CG approach to graph col-
oring. A GA is used to generate initial columns and to solve the pricing problem at
every iteration. Column generation is performed as long as the GA finds columns
with negative reduced costs. The master problem is solved using CPLEX. Puchinger
and Raidl [99] describe an exact branch-and-price approach for the three-stage two-
dimensional bin packing problem. Fast CG is performed by applying a chain of four
methods: (a) a greedy heuristic, (b) an EA, (c) solving a restricted form of the pric-
ing problem using CPLEX, and finally (d) solving the complete pricing problem
using CPLEX. Massen et al. [78] use ant colony optimization for heuristic CG to
solve a black-box vehicle routing problem.

Alvelos et al. [7] describe a general hybrid strategy called SearchCol where CG
and a metaheuristic are iteratively performed and information is exchanged between
them. The metaheuristic works in a problem-independent way trying to find a best

408 G. R. Raidl et al.

integral solution by searching over combinations of variables identified by CG,
while the CG is perturbed in each iteration based on the metaheuristic’s result by
fixing subproblem variables with special constraints.

12.9.2.3 Benders Decomposition

Benders decomposition (BD) has been originally suggested for solving large MIPs
involving “complicating” integer variables. The basic principle is to project the MIP
into the space of complicating integer variables only; real variables and the con-
straints involving them are replaced by corresponding inequalities on the integer
variables. These inequalities, however, are not directly available but are dynami-
cally separated as cuts. According to the classical BD, an optimal solution to the
relaxed master problem (including only the already separated cuts) is needed and an
LP involving this solution must be solved in order to separate a single new cut.

Rei et al. [109] improved classical BD by introducing phases of local branch-
ing on the original problem in order to obtain multiple feasible heuristic solutions
quickly. These solutions provide improved upper bounds on one hand, but also allow
the derivation of multiple additional cuts before the relaxed master problem needs
to be solved again. Poojari and Beasley [95] describe such an approach for solving
general MIPs in which a GA together with a feasibility pump heuristic are applied
to the master problem. The authors argue that a population based metaheuristic like
a genetic algorithm is particularly useful as it provides multiple solutions in each
iteration giving rise to more Benders cuts. Boland et al. [25] use a proximity search
to drive a BD for two-stage mixed-integer linear stochastic programming models.

Extensions of classical BD exist in which the subproblems can contain also in-
teger variables and may be difficult on their own. Especially in these cases, CP and
metaheuristics have a great potential for speeding up the overall approach by pro-
viding helpful cuts much faster. For example [64] describes a logic-based BD in
which subproblems are solved by CP. The approach substantially outperforms pure
MIP and pure CP approaches on a large class of planning and scheduling problems.

Raidl et al. [108] proposed an exact logic-based BD approach for a bi-level ca-
pacitated vehicle routing problem. The authors were able to speed it up considerably
by first solving all instances of the master problem as well as all subproblems with a
fast variable neighborhood search heuristic. Invalid Benders cuts possibly cutting off
feasible solutions may be created. In a second phase, all these heuristically gener-
ated Benders cuts undergo a validity check by re-solving exactly the corresponding
subproblems with a MIP solver, yielding possibly corrected cuts that replace the in-
valid ones. When the master problem is solved exactly and no further Benders cuts
can be derived, a proven optimal solution is obtained.

12 Metaheuristic Hybrids 409

12.9.3 Using Metaheuristics for Constraint Propagation

In CP the mechanism of constraint propagation is used to reduce the domains of the
variables at each node of a tree search. Similarly to cut generation in mixed integer
programming, the search space is reduced by propagating constraints from the cur-
rent state of the search. Usually specialized and standard combinatorial algorithms
are used [77] for this purpose. An example of the use of (meta-)heuristic methods
in the context of constraint propagation is local probing [69].

Galinier et al. [52] presents a tabu search procedure to speed up filtering for
generalized all-different constraints. That is:

SomeDifferent(X ,D,E) = {(x1, . . . ,xn) ∈ D | xi �= x j ∀(i, j) ∈ E}

is defined over variables X = (x1, . . . ,xn) with respective domains D = (D1, . . . ,Dn)
and a graph G = (X ,E) with edge set E specifying pairs of variables that must
be assigned different values. The satisfiability of the constraint can be tested by
solving a special graph coloring problem. Tabu search is first applied to see if it
can color the graph. If it does not find a solution, an exact method is applied. In
a second step a similar tabu search procedure is used to determine a large set of
variable/value combinations that are feasible. Finally an exact filtering is applied to
the remaining variable/value pairs checking if some of them can be excluded from
the variable domains. Computational experiments show that the hybrid approach is
comparable to the state-of-the-art on data from a real-world work-force management
problem and is significantly faster on random graph instances for the SomeDifferent
constraint. The authors suppose that the idea of combining fast metaheuristics with
exact procedures can speed up filtering procedures for other hard constraints as well.

12.10 Summary and Conclusions

We have reviewed a large number of different approaches for combining traditional
metaheuristic strategies with each other or with algorithmic techniques from other
fields. All these possibilities have their individual pros and cons, but the common
underlying motivation is to exploit the advantages of the individual techniques in
order to obtain a more effective hybrid system, benefiting from synergy. In fact,
history clearly shows that focusing on a single metaheuristic is rather restrictive for
advancing the state-of-the-art when tackling difficult optimization problems. Thus,
designing hybrid systems for complex optimization problems is nowadays a natural
process.

On the downside, metaheuristic hybrids are usually significantly more complex
than classical “pure” strategies. The necessary development and tuning effort may
be substantially higher than when using a straightforward out-of-the-box strategy.
One should further keep in mind that a more complex hybrid algorithm does not
automatically perform better—an adequate design and appropriate tuning is always

410 G. R. Raidl et al.

mandatory, and the effort increases with the system’s complexity. Einstein’s advice
of “keeping things as simple as possible, but not simpler” therefore is especially
true also for metaheuristic hybrids.

We started by presenting a classification of metaheuristic hybrids in which we
pointed out the different basic characteristics. Then we discussed several commonly
used design templates. Note that these templates are not meant as a clear catego-
rization of existing hybrid approaches: Many of the referenced examples from the
literature can be argued to follow more than one design template, and occasionally
the boundaries are fuzzy.

Finding initial or improved solutions by embedded methods may be the most
commonly applied approach. Multi-stage combinations are sometimes straightfor-
ward for problems that naturally decompose into multiple levels and are also other-
wise popular as they are typically easier to tune than more intertwined hybrids. The
concept of decoder-based metaheuristics is also quite popular, because they can of-
ten be implemented quickly, once an appropriate construction heuristic is available.
The next design template that we discussed was solution merging for which numer-
ous successful examples exist. Then we considered cases where metaheuristics are
strategically guided by other techniques. In particular, solutions to relaxations of
the original problem are frequently exploited in various ways. The reverse, strate-
gic guidance of other techniques by metaheuristics, has been particularly successful
in the field of mixed integer programming, where such strategies can help to find
good approximate solutions early within an exact B&B-based method. Last but not
least, there are several different decomposition approaches: Exploring large neigh-
borhoods by specialized algorithms has become particularly popular over the last
years, and occasionally metaheuristics are applied to speed up Lagrangian decom-
position, column generation, and Benders decomposition.

As an important final advice for the development of well-performing metaheuris-
tic hybrids, the authors would like to recommend (1) the careful search of the litera-
ture for the most successful optimization approaches for the problem at hand or for
similar problems, and (2) the study of clever ways of combining the most interesting
features of the identified approaches. We hope this chapter provides a starting point
and some useful references for this purpose.

Acknowledgements Günther R. Raidl is supported by the Austrian Science Fund (FWF) under
grants P27615 and W1260.

12 Metaheuristic Hybrids 411

References

1. C. Aggarwal, J. Orlin, R. Tai, Optimized crossover for the independent set problem. Oper.
Res. 45(2), 226–234 (1997)

2. R. Ahuja, J. Orlin, A. Tiwari, A greedy genetic algorithm for the quadratic assignment prob-
lem. Comput. Oper. Res. 27(10), 917–934 (2000)

3. R.K. Ahuja, J. Orlin, D. Sharma, Multi-exchange neighborhood search algorithms for the
capacitated minimum spanning tree problem. Math. Program. 91(1), 71–97 (2001)

4. R.K. Ahuja, Ö Ergun, J.B. Orlin, A.P. Punnen, A survey of very large-scale neighborhood
search techniques. Discret. Appl. Math. 123(1-3), 75–102 (2002)

5. S. Al-Shihabi, Ants for sampling in the nested partition algorithm, in Proceedings of HM
2004 – First International Workshop on Hybrid Metaheuristics, ed. by C. Blum, A. Roli,
M. Sampels, Valencia, Spain (2004), pp. 11–18

6. E. Alba, Parallel Metaheuristics: A New Class of Algorithms (Wiley, Hoboken, 2005)
7. F. Alvelos, A. de Sousa, D. Santos, Combining column generation and metaheuristics, in

Hybrid Metaheuristics, ed. by E.G. Talbi. Studies in Computational Intelligence, vol. 434
(Springer, Berlin, 2013), pp. 285–334

8. D.L. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, On the solution of the traveling salesman
problem. Doc. Math. Extra Volume ICM III, 645–656 (1998)

9. J.C. Bean, Genetic algorithms and random keys for sequencing and optimization. ORSA J.
Comput. 6(2), 154–160 (1994)

10. B. Biesinger, Complete solution archives for evolutionary combinatorial optimization: appli-
cation to a competitive facility location and stochastic vehicle routing problem, Ph.D. thesis,
TU Wien, Institute of Computer Graphics and Algorithms, Vienna, Austria, 2016

11. B. Biesinger, B. Hu, G. Raidl, A hybrid genetic algorithm with solution archive for the dis-
crete (r|p)-centroid problem. J. Heuristics 21(3), 391–431 (2015)

12. B. Biesinger, B. Hu, G. Raidl, Models and algorithms for competitive facility location prob-
lems with different customer behavior. Ann. Math. Artif. Intell. 76(1), 93–119 (2015)

13. B. Biesinger, B. Hu, G.R. Raidl, A variable neighborhood search for the generalized vehicle
routing problem with stochastic demands, in Evolutionary Computation in Combinatorial
Optimization – EvoCOP 2015, ed. by G. Ochoa, F. Chicano. Lecture Notes in Computer
Science, vol. 9026 (Springer, Cham, 2015), pp. 48–60

14. M.J. Blesa, C. Blum, A. Cangelosi, V. Cutello, A.G. Di Nuovo, M. Pavone, E. Talbi (eds.),
Proceedings of HM 2016 – Tenth International Workshop on Hybrid Metaheuristics. Lecture
Notes in Computer Science, vol. 9668 (Springer, 2016)

15. C. Blum, Beam-ACO: hybridizing ant colony optimization with beam search: an application
to open shop scheduling. Comput. Oper. Res. 32(6), 1565–1591 (2005)

16. C. Blum, A new hybrid evolutionary algorithm for the k-cardinality tree problem, in Proceed-
ings of the Genetic and Evolutionary Computation Conference 2006 (ACM Press, 2006), pp.
515–522

17. C. Blum, Beam-ACO for simple assembly line balancing. INFORMS J. Comput. 20(4), 618–
627 (2008)

18. C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual
comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

19. C. Blum, M. Blesa, Combining ant colony optimization with dynamic programming for solv-
ing the k-cardinality tree problem, in Proceedings of IWANN 2005 – 8th International Work-
Conference on Artificial Neural Networks, Computational Intelligence and Bioinspired Sys-
tems. Lecture Notes in Computer Science, vol. 3512 (Springer, 2005), pp. 25–33

20. C. Blum, M.J. Blesa, Construct, merge, solve and adapt: application to the repetition-free
longest common subsequence problem, in Proceedings of EvoCOP 2007 – 16th European
Conference on Evolutionary Computation in Combinatorial Optimization, no. 9595, ed. by
F. Chicano, B. Hu, P. García-Sánchez. Lecture Notes in Computer Science (Springer, 2016),
pp. 46–57

412 G. R. Raidl et al.

21. C. Blum, J. Pereira, Extension of the CMSA algorithm: an LP-based way for reducing sub-
instances, in Proceedings of GECCO 2016 – Genetic and Evolutionary Computation Con-
ference (ACM, 2016), pp. 285–292

22. C. Blum, G.R. Raidl, Hybrid metaheuristics – powerful tools for optimization, in Artificial
Intelligence: Foundations, Theory, and Algorithms (Springer, Cham, 2016)

23. C. Blum, M.J. Blesa Aguilera, A. Roli, M. Sampels (eds.), Hybrid Metaheuristics –
An Emerging Approach to Optimization. Studies in Computational Intelligence, vol. 114
(Springer, Berlin, 2008)

24. C. Blum, P. Pinacho, M. López-Ibáñez, J.A. Lozano, Construct, merge, solve & adapt: a new
general algorithm for combinatorial optimization. Comput. Oper. Res. 68, 75–88 (2016)

25. N. Boland, M. Fischetti, M. Monaci, M. Savelsbergh, Proximity benders: a decomposition
heuristic for stochastic programs. J. Heuristics 22(2), 181–198 (2015).

26. M. Boschetti, V. Maniezzo, M. Roffilli, Decomposition techniques as metaheuristic frame-
works, in Matheuristics – Hybridizing Metaheuristics and Mathematical Programming, ed.
by V. Maniezzo, T. Stützle, S. Voss. Annals of Information Systems, vol. 10 (Springer, New
York, 2009), pp. 135–158

27. H. Cambazard, E. Hebrard, B. O’Sullivan, A. Papadopoulos, Local search and constraint
programming for the post enrolment-based course timetabling problem. Ann. Oper. Res.
194(1), 111–135 (2012)

28. P.C. Chu, J.E. Beasley, A genetic algorithm for the multidimensional knapsack problem. J.
Heuristics 4, 63–86 (1998)

29. R. Cipriano, L. Di Gaspero, A. Dovier, A hybrid solver for large neighborhood search: mix-
ing gecode and easylocal++, in Proceedings of HM 2009 – 6th International Workshop
on Hybrid Metaheuristics, no. 5818, ed. by M.J. Blesa, C. Blum, L. Di Gaspero, A. Roli,
M. Sampels, A. Schaerf. Lecture Notes in Computer Science (Springer, 2009), pp. 141–155

30. J. Cohoon, S. Hegde, W. Martin, D. Richards, Punctuated equilibria: a parallel genetic algo-
rithm, in Proceedings of the Second International Conference on Genetic Algorithms, ed. by
J. Grefenstette (Lawrence Erlbaum Associates, 1987), pp. 148–154

31. R.K. Congram, C.N. Potts, S.L. van de Velde, An iterated dynasearch algorithm for the
single-machine total weighted tardiness scheduling problem. INFORMS J. Comput. 14(1),
52–67 (2002)

32. C. Cotta, A study of hybridisation techniques and their application to the design of evolu-
tionary algorithms. AI Commun. 11(3–4), 223–224 (1998)

33. C. Cotta, J.M. Troya, Embedding branch and bound within evolutionary algorithms. Appl.
Intell. 18(2), 137–153 (2003)

34. D. Coudert, N. Nepomuceno, H. Rivano, Power-efficient radio configuration in fixed broad-
band wireless networks. Comput. Commun. 33(8), 898–906 (2010)

35. E. Danna, E. Rothberg, C. Le Pape, Exploring relaxation induced neighborhoods to improve
MIP solutions. Math. Program. Ser. A 102(71), 71–90 (2005)

36. J. Denzinger, T. Offermann, On cooperation between evolutionary algorithms and other
search paradigms, in Proceedings of the 1999 Congress on Evolutionary Computation
(CEC), ed. by W. Porto, et al., vol. 3 (IEEE Press, 1999), pp. 2317–2324

37. L. Di Gaspero, Integration of metaheuristics and constraint programming, in Springer Hand-
book of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz (Springer, Berlin, 2015),
pp. 1225–1237

38. K.A. Dowsland, E.A. Herbert, G. Kendall, E. Burke, Using tree search bounds to enhance
a genetic algorithm approach to two rectangle packing problems. Eur. J. Oper. Res. 168(2),
390–402 (2006)

39. A.R. Duarte, C.C. Ribeiro, S. Urrutia, A hybrid ILS heuristic to the referee assignment
problem with an embedded MIP strategy, in Proceedings of HM 2007 – Fourth Interna-
tional Workshop on Hybrid Metaheuristics, ed. by T. Bartz-Beielstein, M.J. Blesa Aguilera,
C. Blum, B. Naujoks, A. Roli, G. Rudolph, M. Sampels. Lecture Notes in Computer Science,
vol. 4771 (Springer, 2007), pp. 82–95

12 Metaheuristic Hybrids 413

40. I. Dumitrescu, T. Stützle, Combinations of local search and exact algorithms, in Applica-
tions of Evolutionary Computation, ed. by S. Cagnoni, C.G. Johnson, J.J. Romero Cardalda,
E. Marchiori, D.W. Corne, J.A. Meyer, J. Gottlieb, M. Middendorf, A. Guillot, G.R. Raidl,
E. Hart. Lecture Notes in Computer Science, vol. 2611 (Springer, Berlin, 2003), pp. 211–223

41. M. Ehrgott, X. Gandibleux, Hybrid metaheuristics for multi-objective combinatorial op-
timization, in Hybrid Metaheuristics – An Emerging Approach to Optimization, ed. by
C. Blum, M.J. Blesa Aguilera, A. Roli, M. Sampels. Studies in Computational Intelligence,
vol. 114 (Springer, Berlin, 2008), pp. 221–259

42. M. El-Abd, M. Kamel, A taxonomy of cooperative search algorithms, in Proceedings of
HM 2005 – Second International Workshop on Hybrid Metaheuristics, ed. by M.J. Blesa
Aguilera, C. Blum, A. Roli, M. Sampels. Lecture Notes in Computer Science, vol. 3636
(Springer, Berlin, 2005), pp. 32–41

43. A.V. Eremeev, On complexity of optimal recombination for binary representations of solu-
tions. Evol. Comput. 16(1), 127–147 (2008)

44. O. Ergun, J.B. Orlin, A dynamic programming methodology in very large scale neighborhood
search applied to the traveling salesman problem. Discret. Optim. 3(1), 78–85 (2006)

45. T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim.
6, 109–133 (1995)

46. G.R. Filho, L.A.N. Lorena, Constructive genetic algorithm and column generation: an ap-
plication to graph coloring, in Proceedings of APORS 2000, the Fifth Conference of the
Association of Asian-Pacific Operations Research Societies within IFORS, ed. by L.P. Chuen
(2000)

47. M. Fischetti, A. Lodi, Local branching. Math. Program. Ser. B 98(1), 23–47 (2003)
48. M. Fischetti, C. Polo, M. Scantamburlo, Local branching heuristic for mixed-integer pro-

grams with 2-level variables, with an application to a telecommunication network design
problem. Networks 44(2), 61–72 (2004)

49. M.L. Fisher, R. Jaikumar, A generalized assignment heuristic for vehicle routing. Networks
11(2), 109–124 (1981)

50. C. Fleurent, F. Glover, Improved constructive multistart strategies for the quadratic assign-
ment problem using adaptive memory. INFORMS J. Comput. 11(2), 198–204 (1999)

51. F. Focacci, F. Laburthe, A. Lodi, Local search and constraint programming: LS and CP illus-
trated on a transportation problem, in Constraint and Integer Programming, ed. by M. Mi-
lano. Towards a Unified Methodology (Kluwer Academic, Berlin, 2004), pp. 293–329

52. P. Galinier, A. Hertz, S. Paroz, G. Pesant, Using local search to speed up filtering algorithms
forăsome np-hard constraints. Ann. Oper. Res. 184(1), 121–135 (2011)

53. S. Gilmour, M. Dras, Kernelization as heuristic structure for the vertex cover problem, in
Proceedings of ANTS 2006 – 5th International Workshop on Ant Colony Optimization and
Swarm Intelligence,ed. by M. Dorigo, L.M. Gambardella, M. Birattari, A. Martinoli, R. Poli,
T. Stützle. Lecture Notes in Computer Science, vol. 4150 (Springer, 2006), pp. 452–459

54. F. Glover, Surrogate constraints. Oper. Res. 16(4), 741–749 (1968)
55. F. Glover, M. Laguna, R. Martí, Fundamentals of scatter search and path relinking. Control.

Cybern. 39(3), 653–684 (2000)
56. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Learning (Addison-Wesley,

Reading, 1989)
57. T.M. Gomes, H.G. Santos, J.F. Souza, A pre-processing aware RINS based MIP heuristic, in

Proceedings of HM 2013 – Eighth International Workshop on Hybrid Metaheuristics, ed. by
M.J. Blesa, C. Blum, P. Festa, A. Roli, M. Sampels. Lecture Notes in Computer Science, vol.
7919 (Springer, 2013), pp. 1–11

58. J.F. Gonçalves, M.G.C. Resende, Biased random-key genetic algorithms forăcombinatorial
optimization. J. Heuristics 17(5), 487–525 (2011)

59. N.E. Hachemi, T.G. Crainic, N. Lahrichi, W. Rei, T. Vidal, Solution integration in com-
binatorial optimization with applications to cooperative search and rich vehicle routing. J.
Heuristics 21(5), 663–685 (2015).

60. P. Hansen, N. Mladenovic, D. Perez-Britos, Variable neighborhood decomposition search. J.
Heuristics 7(4), 335–350 (2001)

61. P. Hansen, N. Mladenović, D. Urosević, Variable neighborhood search and local branching.
Comput. Oper. Res. 33(10), 3034–3045 (2006)

414 G. R. Raidl et al.

62. M. Haouari, J.C. Siala, A hybrid Lagrangian genetic algorithm for the prize collecting Steiner
tree problem. Comput. Oper. Res. 33(5), 1274–1288 (2006)

63. P.V. Hentenryck, L. Michel, Constraint-Based Local Search (MIT Press, Cambridge, 2005)
64. J.N. Hooker, Planning and scheduling by logic-based Benders decomposition. Oper. Res.

55(3), 588–602 (2007)
65. B. Hu, G.R. Raidl, Effective neighborhood structures for the generalized traveling salesman

problem, in Evolutionary Computation in Combinatorial Optimization – EvoCOP 2008, ed.
by J.I. van Hemert, C. Cotta. Lecture Notes in Computer Science, vol. 4972 (Springer, Berlin,
2008), pp. 36–47

66. B. Hu, G.R. Raidl, An evolutionary algorithm with solution archives and bounding exten-
sion for the generalized minimum spanning tree problem, in Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computation (GECCO) (ACM Press, Philadelphia,
2012), pp. 393–400

67. B. Hu, M. Leitner, G.R. Raidl, Combining variable neighborhood search with integer linear
programming for the generalized minimum spanning tree problem. J. Heuristics 14(5), 473–
499 (2008)

68. S. Jain, P. Van Hentenryck, Large neighborhood search for dial-a-ride problems, in Pro-
ceedings of CP 2011 – 17th International Conference Principles and Practice of Constraint
Programming, no. 6876, ed. by J. Lee. Lecture Notes in Computer Science (Springer, 2011),
pp. 400–413

69. O. Kamarainen, H.E. Sakkout, Local probing applied to scheduling, in Proceedings of CP
2002 – 8th International Conference on Principles and Practice of Constraint Programming,
no. 2470, ed. by P. Van Hentenryck. Lecture Notes in Computer Science (Springer, 2002),
pp. 155–171

70. H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems (Springer, Berlin, 2004)
71. M. Khichane, P. Albert, C. Solnon, Strong combination of ant colony optimization with con-

straint programming optimization, in Proceedings of CPAIOR 2010 – 7th International Con-
ference on the Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, no. 6140, ed. by A. Lodi, M. Milano, P. Toth. Lecture Notes
in Computer Science (Springer, 2010), pp. 232–245

72. G.W. Klau, N. Lesh, J. Marks, M. Mitzenmacher, Human-guided search. J. Heuristics 16(3),
289–310 (2010)

73. E. Lalla-Ruiz, S. Voß, POPMUSIC as a matheuristic for the berth allocation problem. Ann.
Math. Artif. Intell. 76(1), 173–189 (2016)

74. A. Lodi, The heuristic (dark) side of MIP solvers, in Hybrid Metaheuristics, ed. by E.G.
Talbi. Studies in Computational Intelligence, vol. 434 (Springer, Berlin, 2013), pp. 273–284

75. V. Maniezzo, Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem. INFORMS J. Comput. 11(4), 358–369 (1999)

76. V. Maniezzo, T. Stützle, Matheuristics 2016 – Proceedings of the Sixth International Work-
shop on Model-based Metaheuristics, Technical Report TR/IRIDIA/2016-007, IRIDIA, Uni-
versité libre de Bruxelles, Belgium, 2016

77. K. Marriott, P.J. Stuckey, Introduction to Constraint Logic Programming (MIT Press, Cam-
bridge, 1998)

78. F. Massen, Y. Deville, P.V. Hentenryck, Pheromone-based heuristic column generation for
vehicle routing problems with black box feasibility, in Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems – CPAIOR 2012, ed.
by N. Beldiceanu, N. Jussien, É. Pinson. Lecture Notes in Computer Science, vol. 7298
(Springer, 2012), pp. 260–274

79. B. Meyer, A. Ernst, Integrating ACO and constraint propagation, in Proceedings of ANTS
2004 – Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence,
ed. by M. Dorigo, M. Birattari, C. Blum, L.M. Gambardella, F. Mondada, T. Stützle. Lecture
Notes in Computer Science, vol. 3172 (Springer, 2004), pp. 166–177

80. Z. Michalewicz, P. Siarry, Special issue on adaptation of discrete metaheuristics to continu-
ous optimization. Eur. J. Oper. Res. 185(3), 1060–1273 (2008)

12 Metaheuristic Hybrids 415

81. P. Moscato, Memetic algorithms: a short introduction, in New Ideas in Optimization, ed. by
D. Corne, M. Dorigo, F. Glover, D. Dasgupta, P. Moscato, R. Poli, K.V. Price (McGraw-Hill,
Maidenhead, 1999), pp. 219–234

82. L.F. Muller, S. Spoorendonk, D. Pisinger, A hybrid adaptive large neighborhood search
heuristic for lot-sizing with setup times. Eur. J. Oper. Res. 218(3), 614–623 (2012)

83. N. Nepomuceno, P. Pinheiro, A.L.V. Coelho, A hybrid optimization framework for cutting
and packing problems, in Recent Advances in Evolutionary Computation for Combinatorial
Optimization, ed. by C. Cotta, J. van Hemert. Studies in Computational Intelligence, vol. 153
(Springer, Berlin, 2008), pp. 87–99

84. T. Neto, J.P. Pedroso, GRASP for linear integer programming, in Metaheuristics: Computer
Decision Making, ed. by J.P. Sousa, M.G.C. Resende. Combinatorial Optimization Book
Series (Kluwer Academic, Dordrecht, 2003), pp. 545–574

85. P.S. Ow, T.E. Morton, Filtered beam search in scheduling. Int. J. Prod. Res. 26(1), 297–307
(1988)

86. S.N. Parragh, V. Schmid, Hybrid column generation and large neighborhood search for the
dial-a-ride problem. Comput. Oper. Res. 40(1), 490–497 (2013)

87. J.P. Pedroso, Tabu search for mixed integer programming, in Metaheuristic Optimization via
Memory and Evolution, ed. by C. Rego, B. Alidaee. Operations Research/Computer Science
Interfaces Series, vol. 30 (Springer, Boston, 2005), pp. 247–261

88. M.A. Pereira, L.C. Coelho, L.A.N. Lorena, L.C. de Souza, A hybrid method for the proba-
bilistic maximal covering location–allocation problem. Comput. Oper. Res. 57, 51–59 (2015)

89. G. Pesant, M. Gendreau, A constraint programming framework for local search methods. J.
Heuristics 5(3), 255–279 (1999)

90. P.R. Pinheiro, A.L.V. Coelho, A.B. de Aguiar, T.O. Bonates, On the concept of density con-
trol and its application to a hybrid optimization framework: investigation into cutting prob-
lems. Comput. Ind. Eng. 61(3), 463–472 (2011)

91. P.R. Pinheiro, A.L.V. Coelho, A.B. de Aguiar, A. de Menezes Sobreira Neto, Towards aid by
generate and solve methodology: application in the problem of coverage and connectivity in
wireless sensor networks. Int. J. Distrib. Sens. Netw. 2012 (2012); Article ID 790459

92. S. Pirkwieser, G.R. Raidl, J. Puchinger, Combining Lagrangian decomposition with an evo-
lutionary algorithm for the knapsack constrained maximum spanning tree problem, in Evo-
lutionary Computation in Combinatorial Optimization – EvoCOP 2007, ed. by C. Cotta, J.I.
van Hemert. Lecture Notes in Computer Science, vol. 4446 (Springer, Berlin, 2007), pp.
176–187

93. D. Pisinger, Core problems in knapsack algorithms. Oper. Res. 47(4), 570–575 (1999)
94. A. Plateau, D. Tachat, P. Tolla, A hybrid search combining interior point methods and meta-

heuristics for 0–1 programming. Int. Trans. Oper. Res. 9(6), 731–746 (2002)
95. C.A. Poojari, J.E. Beasley, Improving Benders decomposition using a genetic algorithm. Eur.

J. Oper. Res. 199(1), 89–97 (2009)
96. M. Prandtstetter, G.R. Raidl, An integer linear programming approach and a hybrid variable

neighborhood search for the car sequencing problem. Eur. J. Oper. Res. 191(3), 1004–1022
(2008)

97. C. Prins, P. Lacomme, C. Prodhon, Order-first split-second methods for vehicle routing prob-
lems: a review. Transp. Res. C 40, 179–200 (2014)

98. J. Puchinger, G.R. Raidl, Combining metaheuristics and exact algorithms in combinatorial
optimization: a survey and classification, in Proceedings of the First International Work-
Conference on the Interplay Between Natural and Artificial Computation, Part II. Lecture
Notes in Computer Science, vol. 3562 (Springer, 2005), pp. 41–53

99. J. Puchinger, G.R. Raidl, Models and algorithms for three-stage two-dimensional bin pack-
ing. Eur. J. Oper. Res. 183(3), 1304–1327 (2007)

100. J. Puchinger, G.R. Raidl, Bringing order into the neighborhoods: relaxation guided variable
neighborhood search. J. Heuristics 14(5), 457–472 (2008)

101. J. Puchinger, G.R. Raidl, U. Pferschy, The core concept for the multidimensional knapsack
problem, in Evolutionary Computation in Combinatorial Optimization – EvoCOP 2006, ed.
by J. Gottlieb, G.R. Raidl. Lecture Notes in Computer Science, vol. 3906 (Springer, Berlin,
2006), pp. 195–208

416 G. R. Raidl et al.

102. C.G. Quimper (ed.), in Proceedings of CPAIOR 2016 – 13th International Conference on the
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems. Lecture Notes in Computer Science, vol. 9676 (Springer, 2016)

103. G.R. Raidl, An improved genetic algorithm for the multiconstrained 0–1 knapsack problem,
in Proceedings of the 1998 IEEE International Conference on Evolutionary Computation,
ed. by D.B. Fogel, et al. (IEEE Press, 1998), pp. 207–211

104. G.R. Raidl, A unified view on hybrid metaheuristics, in Proceedings of HM 2006 – Third
International Workshop on Hybrid Metaheuristics, ed. by F. Almeida, M.J. Blesa Aguilera,
C. Blum, J.M. Moreno Vega, M.P. Pérez, A. Roli, M. Sampels. Lecture Notes in Computer
Science, vol. 4030 (Springer, 2006), pp. 1–12

105. G.R. Raidl, Decomposition based hybrid metaheuristics. Eur. J. Oper. Res. 244(1), 66–76
(2015)

106. G.R. Raidl, J. Puchinger, Combining (integer) linear programming techniques and meta-
heuristics for combinatorial optimization, in Hybrid Metaheuristics – An Emerging Approach
to Optimization, ed. by C. Blum, M.J. Blesa Aguilera, A. Roli, M. Sampels. Studies in Com-
putational Intelligence, vol. 114 (Springer, Berlin, 2008), pp. 31–62

107. G.R. Raidl, B. Hu, Enhancing genetic algorithms by a TRIE-based complete solution
archive, in Evolutionary Computation in Combinatorial Optimization – EvoCOP 2010, ed.
by P. Cowling, P. Merz. Lecture Notes in Computer Science, vol. 6022 (Springer, Berlin,
2010), pp. 239–251

108. G.R. Raidl, T. Baumhauer, B. Hu, Speeding up logic-based Benders’ decomposition by a
metaheuristic for a bi-level capacitated vehicle routing problem, in Proceedings of HM 2014
– Ninth International Workshop on Hybrid Metaheuristics, ed. by M.J. Blesa, C. Blum,
S. Voss. Lecture Notes in Computer Science, vol. 8457 (Springer, 2014), pp. 183–197

109. W. Rei, J.F. Cordeau, M. Gendreau, P. Soriano, Accelerating benders decomposition by local
branching. INFORMS J. Comput. 21(2), 333–345 (2008)

110. S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

111. E. Rothberg, An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS J. Comput. 19(4), 534–541 (2007)

112. L. Shi, S. Ólafsson, Nested partitions method for global optimization. Oper. Res. 48(3), 390–
407 (2000)

113. L. Shi, S. Ólafsson, Q. Chen, An optimization framework for product design. Manag. Sci.
47(12), 1681–1692 (2001)

114. É.D. Taillard, S. Voß, POPMUSIC: partial optimization metaheuristic under special intensi-
fication conditions, in Essays and Surveys in Metaheuristics, ed. by C.C. Ribeiro, P. Hansen
(Kluwer Academic, Dordrecht, 2001), pp. 613–629

115. E.G. Talbi, A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–565 (2002)
116. E.G. Talbi, Metaheuristics: from design to implementation (Wiley, Hoboken, 2009)
117. E.G. Talbi (ed.), Hybrid Metaheuristics. Studies in Computational Intelligence, vol. 434

(Springer, Berlin, 2013)
118. S. Talukdar, L. Baeretzen, A. Gove, P. de Souza, Asynchronous teams: cooperation schemes

for autonomous agents. J. Heuristics 4(4), 295–321 (1998)
119. C.F.M. Toledo, M.d.S. Arantes, M.Y.B. Hossomi, P.M. França, , K. Akartunalı, A relax-and-

fix with fix-and-optimize heuristic applied to multi-level lot-sizing problems. J. Heuristics
21(5), 687–717 (2015).

120. M. Vasquez, J.K. Hao, A hybrid approach for the 0–1 multidimensional knapsack problem,
in Proceedings of the 17th International Joint Conference on Artificial Intelligence, IJCAI
2001, ed. by B. Nebel (Morgan Kaufman, Seattle, 2001), pp. 328–333

121. M. Vasquez, Y. Vimont, Improved results on the 0–1 multidimensional knapsack problem.
Eur. J. Oper. Res. 165(1), 70–81 (2005)

122. T. Vidal, T.G. Crainic, M. Gendreau, C. Prins, A unified solution framework for multi-
attribute vehicle routing problems. Eur. J. Oper. Res. 234(3), 658–673 (2014)

12 Metaheuristic Hybrids 417

123. C. Walshaw, Multilevel refinement for combinatorial optimisation: boosting metaheuristic
performance, in Hybrid Metaheuristics – An Emerging Approach to Optimization, ed. by
C. Blum, M.J. Blesa Aguilera, A. Roli, M. Sampels. Studies in Computational Intelligence,
vol. 114 (Springer, Berlin, 2008), pp. 261–289

124. D. Wolpert, W. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Com-
put. 1(1), 67–82 (1997)

125. L.A. Wolsey, Integer Programming (Wiley, Hoboken, 1998)

Chapter 13
Parallel Metaheuristics and Cooperative
Search

Teodor Gabriel Crainic

Abstract The chapter presents a general view of parallel metaheuristics for op-
timization. It recalls the main concepts and strategies in designing parallel meta-
heuristics and identifies trends and promising research directions. The focus is on
cooperation-based strategies, which display remarkable performances, in particular
strategies based on asynchronous exchanges and the creation of new information
out of exchanged data to enhance the global guidance of the search.

13.1 Introduction

The development of metaheuristics that take advantage of parallel computing aims
for two major goals. The first is common to all parallel computing development
efforts: solve larger problem instances, faster. That is, address larger problem in-
stances than what is achievable by sequential methods, and do this in reasonable
computing times. The second is proper to approximate solution methods, e.g., sim-
ple heuristics, metaheuristics, and matheuristics, and it concerns the method’s so-
called robustness, that is, its capability to offer a consistently high level of perfor-
mance over a wide variety of problem settings and instance characteristics. In ap-
propriate settings, e.g., the cooperative multi-search strategies (Sect. 13.6), parallel
metaheuristics proved to be much more robust than sequential versions. Moreover,
they also generally require less extensive, and expensive, parameter-calibration ef-
forts.

T. G. Crainic (�)
CIRRELT - Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation,
Montréal, QC, Canada

School of Management, Université du Québec à Montréal, Montréal, QC, Canada
e-mail: TeodorGabriel.Crainic@cirrelt.net

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_13

419

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_13&domain=pdf
mailto:TeodorGabriel.Crainic@cirrelt.net
https://doi.org/10.1007/978-3-319-91086-4_13

420 T. G. Crainic

The objective of this chapter is to present an overview of the parallel metaheuris-
tics field in a unified manner. It thus recalls the main concepts and general strategies
for the design of parallel metaheuristics, including the main approaches to instan-
tiate them for neighborhood- and population-based metaheuristics. Note that the
chapter focuses on the design of the new class of algorithms parallel metaheuristics
create, and, thus, not on their implementation on particular computing architectures.
We do, however, identify new trends, challenges, and opportunities that some of the
new computing-platform developments bring to the field. We complete the chapter
with a number of major open questions and research challenges.

As the chapter follows and updates a previous publication [27], it focuses on
more recent developments (typically, from 2005 to 2017) and, in particular, on
cooperation-based strategies, which display remarkable performances for a broad
range of optimization problems. In addition to the references provided in the fol-
lowing sections, the reader may consult a number of surveys, taxonomies, and syn-
theses, e.g., [1, 2, 19, 20, 23, 27, 35, 71, 80, 95].

The chapter is organized as follows. Section 13.2 is dedicated to a general dis-
cussion of the potential for parallel computing in metaheuristics, a brief descrip-
tion of performance indicators for parallel metaheuristics, and the taxonomy used to
structure the presentation. Section 13.3 addresses strategies focusing on accelerating
computing-intensive tasks without modifying the basic algorithmic design. Methods
based on the explicit separation of the search space are treated in Sect. 13.4, while
strategies based on the simultaneous exploration of the search space by several in-
dependent metaheuristics constitutes the topic of Sect. 13.5. Cooperation principles
and strategies are discussed in Sect. 13.6 and are detailed in Sects. 13.6.1, 13.6.2,
and 13.7. We conclude in Sect. 13.8.

13.2 Metaheuristics and Parallelism

This section is dedicated to a brief overview of the main potential sources for parallel
computing in metaheuristics, followed by a discussion of performance indicators for
parallel metaheuristics. The section concludes with the criteria used in this paper to
describe and classify parallelization strategies for metaheuristics.

13.2.1 Sources of Parallelism

Parallel/distributed/concurrent computing means that several processes work simul-
taneously on several processors addressing a given problem instance and aiming to
identify the best (or a) solution for that instance. Parallelism thus follows from a
decomposition of the total computational load and the distribution of the resulting
tasks to available processors. According to how “small” or “large” the tasks are in
terms of algorithm work or search space, the parallelization is called fine- or coarse-
grained, respectively.

13 Parallel Metaheuristics and Cooperative Search 421

The decomposition may concern the algorithm, the search space, or the problem
structure. Functional parallelism (Sect. 13.3) corresponds to the first case, according
to which computing-intensive parts of the algorithm are decomposed into a number
of tasks (processes), working on the same data or on dedicated parts of the data,
are allocated to different processors and run in parallel, possibly exchanging infor-
mation. The concurrent execution of the innermost loop iterations, e.g., evaluating
neighbors, computing the fitness of individuals, or having ants forage concurrently,
provides the main source of functional parallelism for metaheuristics This is often
also the only source of readily available parallelism in metaheuristics, the execution
of most other steps in the algorithm depending on the status of the search, e.g., what
has been performed so far and the values of the decision variables, which requires ei-
ther the computation of the previous steps to be completed, or the synchronization of
computations; and synchronization generally yields significant delays, which may
make such parallel computation non relevant. Traditionally, functional parallelism
was therefore interesting as a low-level component of hierarchical parallelization
strategies, or when addressing problem settings requiring a significant part of the
computing effort to be spent in inner-loop algorithmic components. The rapid de-
velopment in the utilization of the graphical processing units (GPU), ubiquitous
within most computers, is changing this statement as very impressive reductions in
computing times may be obtained (Sect. 13.3).

Search space separation, constitutes a second major class of parallel strategies.
We find under this umbrella the two other cases mentioned above, i.e., the search
space and the problem structure. The general idea is to decompose the problem do-
main, or the associated search space (for brevity reasons and without loss of general-
ity, the latter term is used in this chapter), and to address the problem on each of the
resulting components using a particular solution methodology. Indeed, there are no
data dependencies between the evaluation functions of different solutions and, thus,
these may be computed in parallel. Moreover, theoretically, the parallelism in the
solution or search space is as large as the space itself when a processor is assigned
to each solution. Obviously, the latter strategy is not practical and the search space
is separated into subspaces assigned to different processors. Such a separation still
leaves a search space for each processor too large for explicit enumeration, however,
and, thus, an exact or heuristic search method is required to implicitly explore it.

Space separation is exploited in many of the strategies described in this chapter,
but raises a number of issues with respect to an overall metaheuristic search strat-
egy, e.g., how to separate; how to control an overall search conducted separately
on several components of the original space; how to create a complete solution out
of the ones obtained on each component; how to allocate resources for an efficient
exploration avoiding, for example, regions with poor-quality solutions. The answers
to these questions yield several classes of algorithms described in the following sec-
tions. These may be grouped, however, into two main approaches: domain decompo-
sition and multi search. The former explicitly separates the space yielding a number
of subproblems to be addressed simultaneously, their solutions being then combined
into solutions to the original problem, while the latter performs the separation im-
plicitly, through concurrent explorations by several methods, named solvers in the
following, which may exchange information or not.

422 T. G. Crainic

The metaheuristic or exact solvers involved in a multi-search metaheuristic may
address either the complete problem at hand, or explore partial problems defined by
decomposing the initial problem through mathematical programming or attribute-
based heuristic approaches. In the former case, the decomposition method implic-
itly defines how a complete solution is built out of partial ones. In the latter case,
some processors work on the partial problems corresponding to the particular sets
of attributes defined in the decomposition, while others combine the resulting par-
tial solutions into complete solutions to the original problem. Multi-search strate-
gies, particularly those based on cooperation principles, are at the core of the most
successful developments in parallel metaheuristics and are the object of the later
sections of this chapter.

13.2.2 Performance Measures

The traditional goal when designing parallel solution methods is to reduce the
time required to “solve”, exactly or heuristically, given problem instances or to ad-
dress larger instances without increasing the computational effort. For exact solution
methods that run until the optimal solution is obtained, this translates into the well-
known speedup performance measure, computed as the ratio between the wall-clock
time required to solve the problem instance in parallel with p processors and the cor-
responding solution time of the best-known sequential algorithm. A somewhat less
restrictive measure replaces the latter with the time of the parallel algorithm run on a
single processor. See [5] for a detailed discussion of this issue, including additional
performance measures.

Speedup measures are more difficult to define when the optimal solution is not
guaranteed or the exact method is stopped before optimality is reached, which is
obviously also the case for metaheuristics. Moreover, most strategies to build par-
allel metaheuristics yield solutions that are different in value, composition, or both
from those of the sequential versions (when they exist). Hence, an equally important
objective for parallel metaheuristics is to what extend they outperform their sequen-
tial counterparts in terms of solution quality and, ideally, computational efficiency.
In other words, the parallel method should not require a higher overall computa-
tion effort than the sequential method or should justify the effort by higher quality
solutions.

Search robustness is another characteristic increasingly expected of parallel
heuristics. Robustness with respect to a problem setting is meant in the sense of
providing “equally” good solutions to a large and varied set of problem instances,
without excessive calibration, neither during initial development, nor when address-
ing new instances. Multi-search methods, particularly those based on cooperation,
generally display a behavior different from those of the sequential methods involved,

13 Parallel Metaheuristics and Cooperative Search 423

offering enhanced performances compared to sequential methods and other paral-
lelization strategies in terms of solution quality and method robustness (see [24, 25]
for a discussion of these issues). They are thus generally acknowledged as proper
metaheuristics [1].

13.2.3 Parallel Metaheuristics Strategies

We adopt the classification of [23], generalizing that of [29], to describe the different
parallel strategies for metaheuristics. This classification is sufficiently general to
encompass the principal parallel metaheuristic classes, while avoiding a level of
detail incompatible with the scope and dimension limits of the chapter.

The three dimensions of the classification define how the global problem-solving
process is controlled, how information is exchanged among processes and how,
eventually, new information is created, and the diversity of searches involved, re-
spectively. Table 13.1 synthesizes the dimensions and categories of the classifica-
tion, which are now detailed.

The first dimension, Search Control Cardinality, specifies whether the global
search is controlled by a single process or by several processes that may collabo-
rate or not. The two categories are identified as 1-control (1C) and p-control (pC),
respectively.

The second dimension, relative to the type of Search Control and Communi-
cations, addresses the issue of information exchanges and the utilization of the
exchanged information to control or guide the search. In parallel computing, one
generally refers to synchronous and asynchronous communications. In the former
case, all concerned processes stop and engage in some form of communication and
information exchange at moments (number of iterations, time intervals, specified
algorithmic stages, etc.) exogenously determined, either hard-coded or imposed by
a control (master) process. In the latter case, each process is in charge of its own
search, as well as of establishing communications with other processes, and the
global search terminates once all individual searches stop. Four categories are de-
fined to reflect the quantity and quality of the information exchanged and shared,
as well as the additional knowledge derived from these exchanges (if any); two for
synchronous settings, Rigid (RS) and Knowledge Synchronization (KS), and, sym-
metrically, two for asynchronous strategies, Collegial (C) and Knowledge Collegial
(KC).

Table 13.1 The parallel metaheuristics taxonomy

Dimension Categories

Control Cardinality 1C pC

Control and Communications RS KS C KC

Differentiation SPSS SPDS MPSS MPDS

424 T. G. Crainic

More than one solution method or variant (e.g., with different parameter set-
tings) may be involved in a parallel metaheuristic and such solvers may be
(meta-)heuristics or exact solution methods. The third dimension thus indicates
the Search Differentiation or diversity: do solvers start from the same or dif-
ferent solutions, and are they the same or not? Note that one characterizes two
solvers as “different” even when based on the same methodology (e.g., two tabu
searches or genetic algorithms) if they use different search strategies in terms of
components (e.g., neighborhoods or selection mechanism) or parameter values.
The four classes are: SPSS, Same initial Point/Population, Same search Strat-
egy; SPDS, Same initial Point/Population, Different search Strategies; MPSS,
Multiple initial Points/Populations, Same search Strategies; MPDS, Multiple
initial Points/Populations, Different search Strategies, where “point” relates to
neighborhood-based, single-solution methods, while “population” is used for
population-based ones.

13.3 Low-Level Parallelization Strategies

Functional-parallelism-based strategies, exploiting the potential for task decompo-
sition within the inner-loop computations of metaheuristics, aim to accelerate the
search, without modifying the algorithmic logic, the search space and behavior of
the sequential metaheuristic. Hence the label “low level” often associated with such
strategies. Typically, the exploration is initialized from a single solution or popula-
tion, and proceeds according to the sequential metaheuristic logic, while a number
of intensive-computation steps are decomposed and simultaneously performed by
several processors.

Most low-level parallel strategies belong to the 1C/RS/SPSS class and are usually
implemented according to the classical master-slave parallel programming model.
A “master” program executes the (1-control) sequential metaheuristic, separating
and dispatching computation-intensive tasks to be executed in parallel by “slave”
programs. Slaves perform the tasks and return the results to the master which, once
all the results are in, resumes the normal logic of the sequential metaheuristic. The
master thus has complete control on the algorithm execution; it decides the work al-
location for all other processors and initiates communications. No communications
take place among slave programs.

The neighborhood-evaluation procedure of the local search heuristics, used alone
or as component of neighborhood- or population-based metaheuristics (implement-
ing advanced “schooling” for offspring in the latter case) is generally targeted in
1C/RS/SPSS designs. The master groups the neighbors into tasks and sends them to
slaves. Each slave then executes the exploration/evaluation procedure on its respec-
tive part of the neighborhood, and sends back the best, or first improving, neigh-
bor found. The master waits for all slaves to terminate their computations, selects
the best move and proceeds with the search. The appropriate granularity of the de-
composition, that is, the size of the tasks, depends upon the particular problem and

13 Parallel Metaheuristics and Cooperative Search 425

computer architecture, but is generally computationally sensitive to inter-processor
communication times and work-load balancing. Thus, for example, [38] discusses
several decomposition policies for the permutation-based local search neighbor-
hood applied to the scheduling of dependent tasks on homogeneous processors, and
shows that the uniform partition usually called upon in the literature is not appro-
priate in this context characterized by neighborhoods of different sizes. The authors
also show that a fixed coarse-grained non-uniform decomposition, while offering
superior results, requires calibration each time the problem size or the number of
processors varies. The best performing strategy, called dynamic fine-grained by the
authors, defines each neighbor evaluation as a single task, the master dynamically
dispatching these on a first-available, first-served basis to slave processors as they
complete their tasks. The strategy partitions the neighborhood into a number of
components equal to the number of available processors, but of unequal size with
a content dynamically determined at each iteration. The dynamic fine-grained strat-
egy provides maximum flexibility and good load balancing, particularly when the
evaluation of neighbors is of uneven length. The uniform distribution appears more
appropriate when the neighbor evaluations are sensibly the same, or when the over-
head cost of the dynamic strategy for creating and exchanging tasks appears too
high.

Similar observations may be made regarding population-based metaheuristics.
In theory, all genetic-algorithm operators may be addressed through a 1C/RS/SPSS
design, and the degree of possible parallelism is equal to the population size. In
practice, the computations associated to most operators are not sufficiently heavy
to warrant parallelizing, while overhead costs may significantly reduce the degree
of parallelism and increase the granularity of the tasks. Consequently, the fitness
evaluation is often the target of 1C/RS/SPSS parallelism for genetic-evolutionary
methods, usually implemented using the master-slave model.

The 1C/RS/SPSS parallelism for ant-colony and, generally, swarm-based meth-
ods lies at the level of the individual ants. Ants share information indirectly through
the pheromone matrix, which is updated once all solutions have been constructed.
There are no modifications of the pheromone matrix during a construction cycle
and, thus, each individual ant performs its solution-construction procedure with-
out data dependencies on the progress of the other ants. Many parallel ant-colony
methods proposed in the literature implement some form of 1C/RS/SPSS strategy
according to the master-slave model (e.g., [41] and references herein). The master
builds tasks consisting of small colonies of one or a few ants, and distributes them
to the available processors. Slaves perform their construction heuristic and return
their solution(s) to the master, which updates the pheromone matrix, returns it to
the slaves, and so on. To further speed up computation, the pheromone update can
be partially computed at the slave level, each slave computing the update associated
to its solutions. This fine-grained version with central matrix update outperformed
the sequential version of the algorithm in most cases. It is acknowledged, however,
that it does not scale when implemented on “traditional” processors (i.e., exploiting
the central processing units—CPUs), and that, similarly to other metaheuristics, it
is outperformed by more advanced multi-search methods.

426 T. G. Crainic

Scatter search and path relinking implement different evolution strategies, where
a restricted number of elite solutions are combined, the result being enhanced
through a local search or a full-fledged metaheuristic, usually neighborhood-based.
Consequently, the 1C/RS/SPSS strategies discussed above apply straightforwardly
as in [46–48] for the p-median and the feature-selection problems. A different
1C/RS/SPSS strategy for scatter search may be obtained by running concurrently
the combination and improvement operators on several subsets of the reference set.
Here, the master generates tasks by extracting a number of solution subsets, which
are sent to slaves. Each slave then combines and improves its solutions, returning
its results to the master for the global update of the reference set. Each subset sent
to a slave may contain the exact number of solutions required by the combination
operator or a higher number. In the former case, the slave performs an “iteration”
of the scatter search algorithm [46–48]. In the latter case, several combination-
improvement sequences could be executed and solutions could be returned to the
master as they are found or all together at the end of all sequences. Load-balancing
capabilities should be added to the master to avoid differences in work quantity and
computing times between slaves.

To conclude, low level, 1-control parallel strategies are particularly attractive
when neighborhoods or populations are large, or the neighbor or individual eval-
uation is costly. Computing time gains may then be obtained, as illustrated by many
early contributions discussed in the surveys indicated in the Introduction. Even more
impressive gains may be obtained by taking advantage of the current computing
platforms integrating multi-core central processing units (CPUs—the “traditional”
processor) and graphical processing units (GPUs) enhanced with data streaming,
i.e., hardware data parallelism providing the means for each processor to perform
the same task on different parts of the distributed data (e.g., [10, 11]). This hard-
ware technology offers the possibility of extensive very low-level parallelization
reminiscent of the work performed for the massively parallel computers of the late
eighties. The neighborhood evaluation in local search heuristics, the fitness eval-
uation of evolutionary methods, and the evolution of individuals in swarms may
clearly benefit from such a hardware-oriented parallelization, spectacular speedups
having been observed (e.g., [10, 11, 14, 39, 72, 97, 107]). A number of remarks
are in order, however. First, the utilization of this technology is not straightforward,
and work must be dedicated to its conceptual, technical and experimental aspects.
Second, there is also the need to examine the sequential and parallel metaheuristic
designs to identify and valuate where this technology would bring the most benefits,
besides those already identified. The work of [84] is a step on this research path. Fi-
nally, as discussed in the following sections, more advanced multi-search strategies
outperform low-level strategies in most cases, in particular with respect to solution
quality. Consequently, hierarchical settings combining multi-search strategies and
1C/RS/SPSS evaluation procedures, all on CPU-based architectures, are generally
used currently. More research is needed in this area to account for the massively
parallel possibilities of GPUs.

13 Parallel Metaheuristics and Cooperative Search 427

13.4 Domain Decomposition

We group under this title the strategies that separate the search space explicitly.
The basic idea is intuitively simple and appealing: separate the search space into
smaller subspaces, address the resulting subproblems by applying the sequential
metaheuristic on each subspace, collect the respective partial solutions, and recon-
struct an entire solution out of the partial ones. This apparently simple idea may take
several forms, however, according to the type of separation performed, the permit-
ted links among the resulting subproblems, the possible iterative modification of the
separation and the type of control of the parallel metaheuristic.

Regarding the separation type, the resulting subspaces may constitute a parti-
tion of the complete space (disjoint subspaces, their union being the full space),
or a cover allowing a certain amount of overlap among the subspaces. Note that
covers may be defined implicitly by allowing the search within a given subspace to
reach out to some part of one or several other subspaces through, e.g., neighborhood
moves or individual crossovers.

The separation may be obtained by identifying a subset of variables, and corre-
sponding constraints, eventually, and by discarding or fixing the other variables and
constraints, the goal being to obtain smaller, easier to address subproblems. Note
that it is not always possible, even desirable, to discard. Thus, if one may easily
discard the customers in a Vehicle Routing Problem (VRP) that do not belong to
a given subspace (the depot must be included in each subspace) and solve the re-
sulting partial VRPs separately, doing the same is much more difficult to implement
when considering the commodities and arcs of a Multicommodity Capacitated Net-
work Design problem (MCND). Separation by variable fixing (and projection of the
corresponding constraints) appears more flexible as one still works on smaller sub-
problems, but considering the complete vector of decision variables, some of which
are fixed. It is also a more general approach, as we find it in advanced cooperative
search methods, e.g., [64].

Strict partitioning restricts the solvers to their subspaces, resulting in part of the
search space being unreachable and the loss of exploration quality for the paral-
lel metaheuristic. Covers, through explicit or implicit overlapping, partially address
this issue; indeed, to guarantee that all potential solutions are reachable, one must
make overlapping cover the entire search space, which would negate the benefits of
decomposition. To avoid these drawbacks, one can change the separation and start
again. This idea translates into a strategy encountered quite frequently in strict par-
titioning, where the separation is modified periodically, and the search is restarted
using the new decomposition. A complete-solution reconstruction feature is almost
always part of the procedure. Note that this approach provides also the opportu-
nity to define non-exhaustive separations, i.e., where the union of the subspaces is
smaller than the complete search space.

This strategy is naturally implemented using master-slave 1C/RS schemes, with
MPSS or MPDS search differentiation. The master process determines the sepa-
ration and sends partial subsets (or information to define them out of the initial
space—this reduces the communication overhead) to slaves, synchronizes them and

428 T. G. Crainic

collects their solutions, reconstructs complete solutions, modifies the separation,
and determines when stopping conditions are met. Slaves concurrently and inde-
pendently perform the search on their assigned subsets. Most implementations ad-
dressed problem settings for which a large number of iterations can be performed
in a relatively short time and restarting the method with a new decomposition does
not require an unreasonable computational effort (e.g., [52] for real-time ambulance
fleet management), a full-fledged metaheuristic being generally used on each sub-
space.

Explicit space separation may also be performed in a pC, collegial decision-
making, framework with MPSS or MPDS search-differentiation. The separation in
a pC/KS strategy is collegially decided and modified through information-exchange
phases (e.g., round-robin or many-to-many exchanges) activated at given synchro-
nization points. The KS label comes from exchanging not only the best solutions in
each subspace (e.g., routes in a VRP), but also from the so-called context informa-
tion (e.g., un-serviced customers and empty vehicles in a VRP [91]) that is used to
modify the separation. In the initial proposition by [91] for the VRP (simulated on a
sequential machine), the customer set was partitioned, vehicles were allocated to the
resulting regions, each subproblem was solved by an independent tabu search, syn-
chronization occurred after a number of iterations that varied according to the total
number of iterations already performed, and exchanges took place between adjacent
processors (corresponding to neighboring regions). The method allowed at the time
to address successfully a number of problem instances, but the synchronization in-
herent in the design of the strategy hindered its performance. A parallel ant-colony
approach for the VRP based on this idea was presented in [41] with good speedup
results when the number of customer increased.

Domain decomposition methods induce different search behavior and solution
quality compared to those of the sequential metaheuristic. Such methods appear
increasingly needed as the dimensions of the contemplated problem instances con-
tinue to grow. Given the increased complexity of the problem settings, work is also
required on how to best combine search-space separation and the other paralleliza-
tion strategies, cooperation in particular. The Integrative Cooperative Search [64] is
a step in this direction (see Sect. 13.7).

13.5 Independent Multi-Search

We dedicate a section to the Independent multi-search as it was among the first
parallelization strategies proposed in the literature, and is also the most simple and
straightforward p-control parallelization strategy, generally offering an interesting
performance.

Independent multi-search seeks to accelerate the exploration of the search space
toward a better solution (compared to sequential search) by initiating simultaneous
solvers from different initial points (with or without different search strategies). It
thus parallelizes the classical multi-start strategy by performing several searches

13 Parallel Metaheuristics and Cooperative Search 429

simultaneously on the entire search space, starting from the same or from different
initial solutions, and selecting at the end the best among the best solutions obtained
by all searches. Independent multi-search methods thus belong to the pC/RS class of
the taxonomy. No attempt is made to take advantage of the multiple solvers running
in parallel other than to identify the best overall solution at the final synchronization
step.

The efficiency of independent multi-search follows from the sheer quantity of
computing power it allows one to apply to a given problem [7, 90, 92, 98]. The sur-
veys identified in the Introduction describe numerous contributions of applying the
pC/RS independent multi-search strategy to a variety of combinatorial optimization
problems.

Independent multi-search offers an easy access to parallel metaheuristic compu-
tation, offering a tool when looking for a “good” solution without investment in
methodological development or coding. Such methods are generally outperformed
by cooperative strategies, however, through mechanisms enabling the independent
solvers to share, during the search, the information their exploration generates. As
explained in the following sections, this sharing and the eventual creation of new in-
formation out of the shared one, yields in most cases a collective output of superior
solutions compared to independent and sequential search.

13.6 Cooperative Search

Cooperative multi-search has emerged as one of the most successful metaheuristic
methodologies to address hard optimization problems (e.g., [1, 18, 19, 23, 26, 27,
94, 96]). While independent multi-search strategies seek to accelerate, compared to
sequential search, the exploration toward a better solution by initiating simultane-
ous searches from different initial points, cooperative search strategies go further
and integrate cooperation mechanisms to share, while the search is in progress, the
information obtained from this diversified exploration of the same problem instance.
The sharing and, eventually, creation of new information out of the exchanged data
(Sect. 13.7), yields in many cases a collective output with better solutions than a
parallel independent search.

Cooperative-search strategies are thus defined by the solver components en-
gaged in cooperation, their interaction mechanism, and the nature of the information
shared. The solvers define trajectories in the search space from possibly different ini-
tial points or populations, by using possibly different search strategies (including,
possibly exact methods). The information-sharing cooperation mechanism speci-
fies how these independent solvers interact, how the exchanged information is used
globally (if at all), and how each solver acts on the received information, using it
within its own search and, thus, transforming it before passing it to other solvers.

The information-sharing cooperation mechanism specifies how these indepen-
dent solvers interact, the global search behavior of the cooperative parallel meta-
heuristic emerging from the local interactions among them, which makes it a “new”

430 T. G. Crainic

metaheuristic in its own right [26]. The similarity between this behavior and that
of systems where decisions emerge from interactions among autonomous and equal
“colleagues” has inspired the name collegial control associated with cooperative-
search strategies in the taxonomy used in this chapter. The various cooperation
mechanisms proposed in the literature are described in the next sections.

Exchanged information must be meaningful and exchanges must be timely. The
goals are (1) to improve the performance of the receiving solvers, and (2) to cre-
ate as much as possible a global, “complete” image of the status of the cooperative
search to enable guiding it, through its participating solvers, toward a better per-
formance in terms of solution quality and computational efficiency than the simple
concatenation of results obtained by non-cooperating solvers. A list of questions
related to addressing this challenge was proposed in [100]. The list is still relevant
when designing cooperative parallel strategies: What information is exchanged? Be-
tween what processes is it exchanged? When is information exchanged? How is it
exchanged? How is the imported data used? Implicit in their taxonomy and explic-
itly stated in later papers, the issue of whether the information is modified during
exchanges or whether new information is created completes this list.

“Good” solutions are the most often exchanged type of information, usually tak-
ing the form of the overall best solution or the current-best solution of a solver being
sent to the others. It was observed, however, that sending out all current-best solu-
tions a solver identifies is often counter productive, particularly when the solver per-
forms a series of improving moves or generations, as solutions are generally “sim-
ilar” (particularly for neighborhood-based procedures), and the receiving solvers
have no chance to act on the in-coming information (unless special receiving mech-
anisms are embedded in all solvers) before receiving a new solution, or may embark
on explorations similar to that of the sending solver. It was also observed that al-
ways sending the overall best solution to all cooperating solvers is generally bad as
it rapidly decreases the diversity of the search, increasing the amount of worthless
computational work (many solvers will search in the same region) and bringing an
early “convergence” to a not-so-good solution. Sending out the local optima after
a series of improving moves, exchanging groups of solutions, and implementing
random selection procedures for the solutions to send out, the latter generally bi-
ased toward good or good-and-different solutions, are among the strategies aimed at
addressing these issues.

Context information may also be shared profitably when embedded in the mech-
anisms used to guide the search. Context information refers to data collected by a
solver during its own exploration, such as the statistical information relative to the
presence of particular solution elements in improving solutions (e.g., the medium
and long-term memories of tabu search), the impact of particular moves on the
search trajectory (e.g., the scores of the moves of large adaptive neighborhood
search), population diversity measures, individual resilience across generations, etc.
A limited number of studies indicate the interest of context-information exchanges
(see Sect. 13.7), but more research is needed on this topic.

Cooperating solvers may exchange information directly or indirectly. Direct ex-
changes of information occur either when the concerned solvers agree on a meeting

13 Parallel Metaheuristics and Cooperative Search 431

point in time to share information, or when a solver broadcasts its information to
one or several other solvers without prior mutual agreement. The latter case is to
be avoided as it requires solvers to include capabilities to store received informa-
tion without disturbing their own search trajectories until they are ready to consider
it. Failure to implement such mechanisms generally results in bad performances,
as observed for strategies combining uncontrolled broadcasting of information and
immediate acceptance of received data.

Indirect exchanges of information are performed through independent data struc-
tures that become shared resources of data solvers may access asynchronously and
according to their own internal logic to post and retrieve information. Such data
structures are called blackboard in the computer-science and artificial-intelligence
vocabulary, while memory, pool, and data warehouse (reference and elite set are
also sometimes used) are equivalent terms found in the parallel metaheuristic liter-
ature. The term memory is used in this chapter.

Centralized-memory mechanisms have been used in most parallel metaheuris-
tic contributions. They receive, eventually process, and post information received
from all cooperating solvers, which, in turn, may retrieve this information indepen-
dently. Distributed memory mechanisms may be contemplated, where a number of
memories are inter-connected, each servicing a number of solvers. Such hierarchi-
cal structures, with several layers of solvers and memories, appear interesting when
a large number of processors is involved, when computations are to take place on
grids or loosely coupled distributed systems, and for integrative cooperation strate-
gies. Issues related to data availability, redundancy, and integrity must then be ad-
dressed, as well as questions relative to the balancing of workloads and the volume
of information exchanged. More research is needed on this topic.

Communications proceed according to an interaction topology represented by a
communication graph specifying the processes that may engage in direct exchanges
and, thus, directing the flow of information within the cooperative search. Each
node of the graph represents a solver or a memory. Edges define pairs of solvers or
a solver-memory pair. The projection of this graph on the physical interconnection
topology of the parallel computer executing the parallel program is generally part
of the implementation design.

When and how information is shared specifies the frequency of cooperation ac-
tivities, who initiates them and when, and whether the concerned solvers must syn-
chronize, i.e., each stopping its activities and waiting for all others to be ready, or
not. These two cases are identified as synchronous and asynchronous communica-
tions, respectively, and are discussed in the following sections. A general observa-
tion for both cases, however, is that exchanges should not be too frequent to avoid
excessive communication overheads as well as premature “convergence” to local
optima [101, 102, 104, 105].

Two observations to conclude this general discussion about cooperation. First,
it is worth noticing that cooperation is somewhat biased toward intensifying the
search in regions of the space that have already been explored and where interest-
ing solutions have been identified. This is particularly true for “simple” cooperation
mechanisms based on synchronization or that exchange current-best solutions only.

432 T. G. Crainic

It is thus important to equip the cooperation mechanisms with diversification ca-
pabilities, e.g., probabilistic or diversity-driven selection of exchanged solutions as
proposed in [108], or creation of new solutions and guidance information [64].

Second, the main principles of cooperative parallelization are the same for
neighborhood- and population-based metaheuristics, even though denominations
and implementation approaches may differ. We thus structure the presentation that
follows based on these principles and general strategies, rather than by metaheuristic
class. The next two subsections discuss the classic synchronous and asynchronous
strategies, while the advanced methods based on creation of new information out of
the shared one are the topic of Sect. 13.7.

13.6.1 pC/KS Synchronous Cooperative Strategies

Synchronous cooperation follows a p-control (pC), knowledge synchronous (pC/K)
strategy, with any of the SPDS, MPSS or MPDS search differentiation approaches.
All participating solvers stop their activities at particular moments and engage in an
information-exchange phase, which must be completed before any solver can restart
its exploration from that synchronization point. Synchronization moments may be
determined by conditions imposed exogeneously to all solvers (e.g., number of it-
erations from the last synchronization point), or detected by an a priori designated
solver.

The goal of synchronous cooperative strategies is to re-create a state of complete
knowledge at particular points in the global search and, thus, to hopefully guide
it into a coordinated evolution toward the problem solution. This goal is generally
only partially attained, however, even though these strategies have generally outper-
formed the sequential versions as well as simpler parallelization strategies. More-
over, synchronization results in significant time inefficiencies as communications
are initiated only when the slowest search thread is ready to start. Asynchronous
information sharing thus intuitively appears more promising and, indeed, coopera-
tion based on asynchronous exchanges, described in the following sections, gener-
ally outperformed synchronous methods. Consequently, few contributions relying
on synchronous cooperation were proposed in recent years.

We therefore restrict this section to recalling the main concepts used in syn-
chronous cooperation, some of which found their way into more advanced strate-
gies, encouraging interested readers to consult the surveys indicated in the Intro-
duction for details and references.

Synchronization may use a complete communication graph or a more restricted,
less densely connected communication topology (e.g., ring, torus, and grid graph).
Global exchanges of information among all solvers take place in the former case,
while information follows a diffusion process through direct, local, exchanges
among neighboring processes in the latter.

In a restricted view of the concept, a number of proposed pC/KS cooperative
search metaheuristics based on global exchanges use a designated communication

13 Parallel Metaheuristics and Cooperative Search 433

master process, which may or not include one of the participating solvers. The com-
munication master manages the synchronization mechanism in a master-slave im-
plementation. It initiates the global search starting the solvers, stops all solvers at
synchronization points, gathers the information, updates the global data, verifies the
termination criteria of the search and, either effectively terminates it or distributes
the shared information (a good solution, generally, the overall best solution in many
cases) and sends a signal to the solvers to continue the search (e.g., [45, 82]). For
coarse-grained island implementations of cooperating genetic methods, synchro-
nization means the communication master initiates the migration operator to ex-
change among the independent populations the best or a small group of some of the
best individuals in each [36, 89]. For ant-colony systems, this strategy divides the
colony into several sub-colonies individually assigned to solvers, the master updat-
ing the pheromone matrix, and starting a new search phase, based on the received
solver results [42]. A more sophisticated approach was proposed in [76], where the
master dynamically adjusted the search parameters of cooperating tabu searches ac-
cording to the results each had obtained so far. The method performed well on the
0-1 Multi-dimensional Knapsack Problem, which is encouraging, as the idea of dy-
namic adjustment of the search parameters may be generalized to more sophisticated
cooperation mechanisms.

A truer global pC/KS cooperative scheme empowers solvers to initiate synchro-
nization. Once it reaches a pre-determined status, a solver thus sends the stopping
signal, broadcasts its data (current best solution or group of solutions, in most cases),
followed by similar broadcasts performed by the other solvers. Once all informa-
tion is shared, each solver performs its own import procedures on the received
data and proceeds with its exploration of the search space until the next synchro-
nization event. Most synchronous coarse-grained island parallelizations of genetic-
based evolutionary methods fall under this category, where migration operators are
applied at regular intervals [44, 59] ([59] implementing a hierarchical method with
the fitness computation performed at the second level through a master-slave imple-
mentation; the overhead due to the parallelization of the fitness became significant
for larger numbers of processors). For ant-colony application, where each colony
evolves its own pheromone matrix, global synchronization means that, after a fixed
number of iterations, colonies exchange elite solutions that are used to update the
pheromone matrix of the receiving colony [73, 74].

Synchronization based on global exchanges of information assumes that making
available to all solvers the entire information shared will result in superior perfor-
mances. Other than the often excessive communication overhead, the main draw-
back is that solvers relying heavily on the same information end up by exploring the
same regions of the search space, resulting in loss of diversity and efficiency. Two
approaches have been proposed to overcome this drawback.

First, do not share and use uniquely the local best solutions, as shown in the
pC/RS/MPDS iterated tabu search proposed for the VRP in [16]. In this work,
solvers synchronized after a number of consecutive iterations without improvement
within the individual improvement phases. Synchronization involved the exchange
of the good solutions obtained by the solvers and, then, each individual solver built

434 T. G. Crainic

a new starting solution by selecting routes probabilistically among those received
and its own. Computational results showed this method to be flexible and efficient
for several classes of routing settings with several depots, periodicity of demands,
and time windows.

The second approach is based on diffusion. In such strategies, direct communica-
tions at synchronization points are possible only with neighboring solvers, i.e., with
nodes adjacent in the sparse communication graph. The quantity of information each
solver processes and relies upon is thus significantly reduced. Information is still
shared between non-adjacent solvers but at the reduced diffusion speed of chains
of local exchanges and data modification by the intervening solvers. This idea was
less explored compared to the global-exchange strategy, even though synchronous
cooperative mechanisms based on local exchanges and diffusion have a less nega-
tive impact on the diversity of the search-space exploration and have yielded good
results (e.g., [74, 99]).

13.6.2 pC/C Asynchronous Cooperative Strategies

Historically, independent and synchronous cooperative methods were the first multi-
search approaches to be developed. The focus has shifted, however, to asynchronous
cooperation strategies, which may be considered as defining the “state-of-the-art” in
parallel multi-search metaheuristics.

A cooperation strategy is asynchronous when programs initiate cooperation ac-
tivities according to their own internal logic, without coordination with other solvers
or memories. Thus, e.g., a solver may make available its current best solution by
posting it on a memory, or may ask for an external solution when it failed to im-
prove the quality of its best solution for a certain number of iterations.

Asynchronous communications provide the means to build cooperation and in-
formation sharing among search threads without incurring the overheads associated
with synchronization. They also bring adaptability to cooperation strategies, to the
extent that the parallel cooperative metaheuristic may more easily react and dynam-
ically adapt to the exploration of the search space than independent or synchronous
search. These benefits come with potential issues one must care for. For example,
the information related to the global search that is available when a solver must
take an action may be less “complete” than in a synchronous environment. On the
other hand, too frequent data exchanges, combined with simple acceptance rules
for incoming information, may induce an erratic solver behavior, the corresponding
search trajectories becoming similar to random walks. Hence the interest for apply-
ing information-sharing based on quality, meaningfulness, and parsimony principles
[28, 29, 100].

Asynchronous cooperative strategies follow either pC/C or pC/KC collegial prin-
ciples, the main difference between the two being that in the latter “new” knowledge
is inferred on the basis of the information exchanged between solvers; pC/KC strate-
gies are addressed in the next section.

13 Parallel Metaheuristics and Cooperative Search 435

In most pC/C asynchronous strategies in the literature, the shared information
corresponds to a locally improving solution or individual(s), the most successful
contributions sharing local optima only. The principles mentioned above also re-
sulted in mechanisms to diversify the shared information [28]. Thus, always select-
ing the best available solution out of an elite set of good solutions, sent by potentially
different solvers, proved less efficient in terms of quality of the final solution than a
strategy that selected randomly, but biased by quality, among the same elite set.

When to initiate and perform cooperation activities, as well as how to use the
incoming information is particular to each type of metaheuristic. Most strategies
proposed in the literature follow the same idea, however, to send and request infor-
mation jointly. There is no need to do this, however, even though it can decrease
the amount of communication. It may thus be interesting for neighborhood-based
methods to make available right away their newly found local optima or improved
overall solutions, and not wait for the algorithmic step where examining external
information is appropriate. Similarly, population-based methods could migrate a
number of individuals when a significant improvement is observed in the quality
and diversity of their elite group of individuals. Regarding the request of external
information, it may be based on a pre-fixed number of iterations, but this approach
should be restricted to metaheuristics without search-diversification steps, e.g., tabu
search based on continuous diversification. In most other cases, the principle of par-
simonious communications implies selecting moments when the status of the search
changes significantly, e.g., when the best solution or the elite subpopulation did
not improve for a number of iterations. At such moments, solvers generally engage
into some form of search-diversification phase, e.g., diversification in tabu search,
change of neighborhood in variable neighborhood search, and complete or partial
re-generation of population in population-based metaheuristics, which involves the
choice or modification of the current solution to initiate a new phase. External infor-
mation, which generally includes at least one good solution, may prove particularity
interesting at that moment. How it is to be used depends on the particular logic of
the receiving solver; in may be used to initiate a diversification phase, to modify the
search trajectory through a combination with a “local” solution, or to modify the
solver behavior in the long run through an insertion in an elite set or population.
As already mentioned, however, one tries to avoid frequent imports followed by a
replacement of the current solution or population, which will result in a random
search.

Direct and indirect exchange pC/C strategies may be used with any metaheuris-
tic. Historically, however, most genetic-based evolutionary asynchronous coop-
erative metaheuristics relied on direct communications over complete communi-
cation graphs [12]. These methods generally implement a coarse-grained island
model, migration being triggered by conditions within individual populations, se-
lected migrant individuals being directed toward either all other populations or a
dynamically-selected subset. The work in [106] illustrates this approach, where mi-
gration is initiated by an island that identified a new best solution, which it sends to
all other islands. The migrant individual is accepted by the solver of another island
only when different from the local population and better than the worst individual in

436 T. G. Crainic

that population. We also mention the work of [60] who introduced genetic solvers
with different strategies, which was a novelty in the GA-island field (previously, all
island populations were evolved by the same algorithm), and observed significant
improvements compared to more traditional island-based pC/C models. The paral-
lelization of ant-colony methods may use the same approach, where partitions of the
initial colony play the role of islands. The contribution of [70] is interesting in this
context for a novel way of selecting the receiving subcolony (island). Here, a solver
initiates an exchange when the evolution of its colony becomes stagnant (no longer
improving) by selecting an exchange partner probabilistically based on the relative
distance (the most different best solution) and fitness (of the best solution); it then
requests the current best solution from the selected partner, and, upon reception,
updates its pheromone matrix and continues the search.

Notice that complete communication graphs are not compulsory. Indeed, one
could use particular graphs and information-diffusion processes tailored to the prob-
lem at hand. Yet, despite encouraging results, e.g., [88] proposing VNS pC/C strate-
gies over uni and bidirectional ring topologies, too few experiments have been re-
ported yet.

Historically, the sharing of information in most asynchronous cooperative search
strategies outside the genetic-evolutionary community is based on some form of
indirect communications through a centralized device—data repository/processor -,
often called central memory [18, 28, 29]. A solver involved in such a cooperation de-
posits good solutions, local optima generally, into the central memory, from where,
when needed, it also retrieves information sent by the other cooperating solvers.
Classical retrieval mechanisms are based on random selection, which may be uni-
form or biased to favor solutions with high rankings based on solution value and
diversity. The central memory accepts incoming solutions for as long as it is not
full, acceptance becoming conditional to the relative interest of the incoming solu-
tion compared to the “worst” solution in the memory, otherwise. Diversity criteria
are increasingly considered, a slightly worse solution being preferred if it increases
the diversity of solutions in the central memory. Population culling may also be
performed (deleting, e.g., the worst half of the solutions in memory).

Central-memory-based cooperative search strategies are described in the litera-
ture for most metaheuristic classes. To the best of our knowledge, the authors in [28]
were the first to propose a central-memory approach for asynchronous tabu search
in their comparative study for a multi-commodity location problem with balanc-
ing requirements. Their method, where individual tabu searches sent to the memory
their local-best solutions when improved, and imported a solution selected proba-
bilistically biased by rank before engaging in a diversification phase, outperformed
in terms of solution quality the sequential version as well as several synchronous
and broadcast-based asynchronous cooperative strategies. The same approach was
applied to the fixed cost, capacitated, multicommodity network design problem with
similar results [22].

pC/C with some form of central memory were proposed for a variety of problems,
including cutting [8], container loading [9], labor-constrained scheduling [13], and
VRP with time windows (VRPTW) [66]. On the other hand, several studies focused

13 Parallel Metaheuristics and Cooperative Search 437

on pC/C strategies with some form of central memory for particular classes of meta-
heuristics like simulated annealing (e.g., [4, 68, 86], the latter for multi-objective
problem settings), VNS (e.g., [30, 81], the latter proposing a self-adapting mech-
anism for the main search parameters based on recent performance, and solution
selection out of the ten best present in memory), GRASP with cooperation based on
applying path relinking to solutions from memory [83], and tabu search with mem-
ory hosting a reference set and long-term global memories built on short-term local
memories sent by solvers [61].

Notice that cooperating solvers need not belong to the same metaheuristic class.
The next section will show several examples where different metaheuristics collab-
orate within pC/KC strategies. We find, in the classical pC/C case, contributions
following the same broad strategy described above when calling sequentially on
metaheuristics belonging to different types. The two-phase approach of [49] for the
VRPTW is a typical example of such a method, where each solver first applies an
evolution strategy to reduce the number of vehicles, followed by a tabu search to
minimize the total distance traveled. A somewhat different two-phase pC/C paral-
lel strategy was proposed in [6] for the Steiner problem, where each phase, using
reactive tabu search and path relinking, respectively, implemented the pC/C asyn-
chronous central memory strategy, all processes switching from the first to the sec-
ond phase simultaneously.

Multi-level cooperative search proposes a different pC/C asynchronous coopera-
tive strategy based on controlled diffusion of information [103]. Solvers are arrayed
in a linear, conceptually vertical, communication graph and a local memory is as-
sociated with each. Each solver works on the original problem but at a different
level of aggregation or “coarsening”, the first-level solver working on the complete
original problem. It communicates exclusively with the two solvers directly above
and below, that is, at higher and lower aggregation levels, respectively. The local
memory is used to receive the information coming from the immediate neighbors
and to access it at moments dynamically determined according to the internal logic
of the solver. In the original implementation, solvers were exchanging improved so-
lutions, incoming solutions not being transmitted further until modified locally for
a number of iterations to enforce the controlled diffusion of information. Excellent
results have been obtained for various problem settings including graph and hyper-
graph partitioning [78, 79], network design [32], feature selection in biomedical data
[77], and covering design [37]. It is noteworthy that one can implement multi-level
cooperative search using a central memory by adequately defining the communica-
tion protocols. Although not yet fully defined and tested, this idea is interesting as it
opens the possibility of richer exchange mechanisms combining controlled diffusion
and general availability of global information.

The central-memory pC/C asynchronous cooperation strategy is generally of-
fering very good results, yielding high-quality solutions. It is also computationally
efficient as no overhead is incurred for synchronization. No broadcasting is taking
place and there is no need for complex mechanisms to select the solvers that will
receive or send information and to control the cooperation. It has also proved ef-
ficient in handling the issue of premature “convergence” in cooperative search, by

438 T. G. Crainic

diversifying the information received by the solvers through probabilistic selection
from the memory and by a somewhat large and diverse population of solutions in
the central memory; solvers may thus import different solutions even when their co-
operation activities are taking place within a short time span. The central memory
is thus an efficient algorithmic device that allows for a strict asynchronous mode
of exchange, with no predetermined connection pattern, where no solver is inter-
rupted by another for communication purposes, but where any solver may access at
all times the data previously sent out by the other solvers.

The performance of central-memory cooperation and the availability of ex-
changed information (kept in the memory) has brought the question of whether one
could design more advanced cooperation mechanisms taking advantage of the in-
formation exchanged among cooperating solvers. The pC/KC strategies described
in the next section are the result of this area of research.

13.7 pC/KC Cooperation Strategies: Creating New Knowledge

Cooperation, particularly in the central-memory asynchronous form, offers many
possibilities for algorithm development. Particularly noteworthy are the flexibility
in terms of the different metaheuristic and exact methods that can be combined, and
the population of elite solutions being hosted in the central memory and continu-
ously enhanced by the cooperating solvers. One can thus select cooperating methods
that complement each other, some of which heuristically construct new solutions,
execute neighborhood-based improving metaheuristics, evolve populations of solu-
tions, or perform post-optimization procedures on solutions in memory.

The study reported in [21] illustrates the interest of these ideas. The authors com-
bined a genetic solver and several solvers executing the pC/C tabu search for the
multicommodity location-allocation problem with balancing requirements of [28].
The tabu searches were aggressively exploring the search space, building the elite
solution set in the central memory, while the genetic method contributed toward
increasing the diversity, and hopefully the quality, of the solutions in the central
memory, which the cooperating tabu search methods would then import. The ge-
netic method was launched once a certain number of elite solutions identified by
the tabu searches were recorded in the central memory, using this memory as initial
population. Asynchronous migration subsequently transferred the best solution of
the genetic pool to the central memory, as well as solutions of the central memory
toward the genetic population. This strategy did perform well, especially on larger
instances. It also yielded an interesting observation: while the best overall solution
was never found by the genetic solver, its inclusion allowed the tabu search solvers
to find better solutions, more diversity among solutions in memory translating into
a more effective diversification of the global search.

Several studies, including [21], showed that it is beneficial not only to include
solvers of different types in the cooperation, but also to use the elite population built
by these solvers in memory to construct an approximate image of the status of the

13 Parallel Metaheuristics and Cooperative Search 439

global search, e.g., to learn about the parts of the search space already explored,
the relations between the values of certain decision variables (e.g., arcs in a VRP
or design solution) and the value of the corresponding solution, the performance
of the cooperating solvers on the particular instance given the information they re-
ceive from the central memory, etc. This information may then be used to create
new knowledge, new and diverse solutions, solution components, “ideal” target so-
lutions, etc., and guide the search. Population-based metaheuristics are particularly
appropriate to generate solutions that add quality and diversity to an elite set.

Cooperative strategies including mechanisms to create new information and solu-
tions based on the solutions exchanged belong to the p-control knowledge collegial
(pC/KC) class. Most contributions to this field have solvers work on the complete
problem and make the bulk of the section. We conclude the pC/KC section with a
discussion on recent developments targeting multi-attribute problem settings where
the problem at hand is decomposed and solvers work on particular parts of the prob-
lem or on integrating the resulting partial solutions into complete ones.

Historically, two main classes of pC/KC cooperative mechanisms are found in
the literature, both based on the idea of exploiting a set of elite solutions, and their
attributes, exchanged by cooperating solvers working on the complete problem, but
differing in the information kept in memory. Adaptive-memory methods [85] store
and score partial elements of good solutions and combine them to create new com-
plete solutions that are then improved by the cooperating solvers. Central-memory
methods exchange complete elite solutions among neighborhood and population-
based metaheuristics and use them to create new solutions and knowledge to guide
the cooperating solvers [18, 25, 28]. The latter method generalizes the former and,
the vocabulary used in the various papers not withstanding, the two approaches are
becoming increasingly unified.

The adaptive-memory terminology was coined in [85] proposing tabu search-
based heuristics for the VRP and the VRPTW that are still among the most effective
ones for both problems (see [3, 55, 93] for more on adaptive-memory concepts).
The main idea is to keep in memory the individual components (vehicle routes in
VRP) making up the elite solutions found by the cooperating solvers, together with
memories counting for each component its frequency of inclusion in the best so-
lutions encountered so far, as well as its score, and rank among the population in
memory, computed from the attribute values, in particular the objective value, of
its respective solutions. Solvers construct solutions out of probabilistically selected
(biased by rank) solution components in memory, enhance it (tabu search in the
initial contribution), and deposit their best solutions in the adaptive memory The
probabilistic selection yields, in almost all cases, a new solution made up of com-
ponents (routes) from different elite solutions, thus inducing a diversification effect.
A number of early developments provided insights into algorithmic design. Worth
mentioning are [87] for the VRPTW, where a set-covering heuristic is proposed to
select the solution components in memory used to generate the new initial solu-
tion of a cooperating solver, and [51], for real-time vehicle routing and dispatching,
actually implementing a hierarchical, two-level parallel scheme: a pC/KC/MPSS

440 T. G. Crainic

cooperating adaptive memory metaheuristic at the first level, while each individual
tabu-search solver implemented the route decomposition of [91] with the help of
several slave processors on the second level.

Generalizing the pC/C and adaptive-memory strategies, pC/KC central-memory
mechanisms keep full solutions, as well as attributes and context information
sent by the solvers involved in cooperation. Solvers, which indirectly exchange
complete elite solutions and context information though the central memory, may
perform constructive, improving and post-optimization heuristics [64, 66, 67],
neighborhood-based methods like tabu search [40, 62–64], population-based meth-
ods like genetic algorithms [40, 64, 66, 67] and path relinking [31], as well as exact
solution methods [58] on possibly restricted versions of the problem.

The particular solvers to include in cooperation depend on the application. They
should be efficient for the problem at hand, of course. Additionally, they should also
aim to cover different regions of the search space in such a way that they contribute
not only to the quality but also to the diversity of the elite population being built in
the central memory.

Other than the information received from the cooperating solvers, the central
memory keeps newly created information out of these exchanged data. Statistics-
building, information-extraction and learning, and new solution-creation mecha-
nisms provide this new “knowledge”. Memories recording the performance of in-
dividual solutions, solution components, and solvers may be added to the central
memory, and guidance mechanisms based on this knowledge may be gradually built.

Central-memory mechanisms thus perform two main tasks: data-warehousing
and communications with solvers, on the one hand, and information-creation and
search-guiding, on the other hand. To distinguish between the two, we single out
the latter as the Search Coordinator (SC). The simplest SC mechanism was used
in the pC/C strategies of the previous section, where solutions in memory were or-
dered and rank-biased randomly extracted to answer solver requests. The functions
of the SC in pC/KC methods include creating new solutions, extracting appropriate
solution elements, building statistics on the presence and performance of solutions,
solution elements, and solvers (these belong to the family of memories, well-known
in the metaheuristic community), creating the information to return when answering
solver requests, the latter being part of the so-called guidance mechanisms.

The cooperative metaheuristic proposed in [66] for the VRPTW used a simple
pC/KC mechanism, involving four solvers, two simple genetic algorithms with or-
der and edge recombination crossovers, respectively, and two tabu search methods
that perform well sequentially, Unified Tabu Search [17] and TABUROUTE [50]. The
cooperating solvers shared their respective best solutions identified so far. The SC
in central memory performed post-optimization (2-opt, 3-opt, Or-opt, and ejection-
chain procedures to reduce the number of vehicles and the total traveled distance) on
the received solutions before making them available for sharing. Solvers requested
solutions from the central memory when needed, i.e., the genetic algorithms for
crossover operations, the Unified Tabu at regular intervals, and TABUROUTE at di-
versification time. This algorithm, without any calibration or tailoring, proved to be
competitive with the best metaheuristics of its day in linear speedups.

13 Parallel Metaheuristics and Cooperative Search 441

A SC enhanced with an innovative learning and guidance mechanism was pro-
posed in [67]. The authors aimed for a mechanism that, not only returned mean-
ingful information to solvers, but was also independent of particular problem char-
acteristics, e.g., routes in their VRPTW application, and could be broadly applied
to network-based problem settings. The SC mechanism is thus based on an atomic
element in network optimization, the arc. Starting from the classical memory con-
cepts pioneered for tabu search [53, 54, 56], the authors combined two ideas: first,
that an arc appearing often in good solutions and less frequently in bad solutions
may be worthy of consideration for inclusion in a tentative solution, and vice versa,
and, second, that this worthiness increases when the behavior appear stable in time.
The authors thus considered the evolution of the frequency of inclusion of arcs in
solutions of different quality, that is, in the elite (e.g., the 10% best), average (be-
tween the 10% and 90% best), and worst (the last 10%) groups of solutions in the
central memory. Patterns of arcs were then defined representing subsets of arcs (not
necessarily adjacent) with similar frequencies of inclusion in particular population
groups. Guidance was obtained by transmitting arc patterns to the individual solvers
indicating whether the arcs in the pattern should be “fixed” or “prohibited” to inten-
sify or diversify the search, respectively. The solvers accounted for these instructions
by using the patterns to bias the selection of arcs for move or reproduction opera-
tions. A four-phase fixed schedule (two phases of diversification at the beginning
to broaden the search, followed by two intensification phases to focus the search
around promising regions) was used with excellent results in terms of solution qual-
ity and computing efficiency compared to the best-performing methods of the day
(see [65] for a dynamic version of this mechanism).

The pC/KC/MPDS method proposed in [58] for the VRP illustrates how spe-
cialized solvers may address different issues in a cooperative metaheuristic, includ-
ing the generation of new knowledge. Two types of solvers were defined. The so-
called heuristic solvers improved solutions received from the SC associated with
the central memory (called master in [58]), through a record-to-record metaheuris-
tic [15, 57, 69]. On completing the task, the solvers returned the 50 best solutions
found and the corresponding routes (a post-optimization procedure was first run
on each route). Simultaneously, exact solvers aimed to identify new solutions by
solving series of set covering problems starting from a limited set of routes. Each
time a set covering problem was solved, the solution was returned to the central
memory and the set of the current 10 best solutions was retrieved for the next run.
Set-covering solvers had also access to the ordered list of best routes in memory and
they selected within to complete their problems. The number of routes selected to
set up a set covering problem was dynamically modified during the search to con-
trol the corresponding computational effort. The method performed very well, both
in terms of solution quality and computational effort (an almost-linear speedup was
observed).

A different SC mechanism for a pC/KC metaheuristic with tabu search solvers
was proposed in [63] for the VRP. Data sharing was relatively simple; solvers pe-
riodically (after a number of iterations or when the solution did not improve for a
number of iterations) sent best solutions to the central memory, and received a so-

442 T. G. Crainic

lution back from it, the search being resumed from the received solution. The SC
mechanism aimed to identify and extract information from the solutions in memory
to guide solvers toward intensification and diversification phases. This was obtained
by dynamically (on reception) clustering solutions according to the number of edges
in common. Thus, solutions in a given cluster share a certain number of edges, this
cluster of edges and solutions being assumed to represent a region of the search
space. Search history indicators were associated with clusters giving the number of
solutions in the cluster and the quality of the solutions. This information was used to
infer how thoroughly the corresponding region had been explored and how promis-
ing it appeared. Clusters were sorted according to the average solution value of their
feasible solutions, and the cluster with the lowest value, that is, with the largest num-
ber of very good solutions, was selected for intensification, while the solution with
the lowest number of good solutions was selected for diversification. A solution was
then selected in the corresponding cluster and it was sent to the requesting solver.
Excellent results were obtained in terms of solution quality and computation effort
(an almost linear speedup was observed with up to 240 processors) compared to the
state-of-the-art methods of the day.

We complete this section by addressing recent developments targeting multi-
attribute, “rich”, problem settings where the problems at hand display a large num-
ber of attributes characterizing their feasibility and optimality structures. Tradition-
ally, such problems were simplified, or sequentially solved through a series of par-
ticular cases, where part of the overall problem was fixed or ignored, or both. The
general idea of the new generation of pC/KC metaheuristics is to decompose the
problem formulation along sets of decision variables, which is called decision-set
attribute decomposition in [64]. The goal of this decomposition is to obtain simpler
but meaningful problem settings, in the sense that efficient solvers, can be “easily”
obtained for the partial problems either by opportunistically using existing high-
performing methods or by developing new ones. The central-memory asynchronous
cooperative search framework then brings together these partial problems and their
associated solvers, together with integration mechanisms, reconstructing complete
solutions, and search-guidance mechanisms.

According to our best knowledge, the authors in [31] (see also [40]) were
the first to propose such a methodology in the context of designing wireless
networks, where seven attributes were considered simultaneously. The proposed
pC/KC/MPDS metaheuristic had tabu search solvers working on limited subsets
of attributes, the others being fixed, and a genetic method combining the partial so-
lutions generated by the tabu search procedures into complete solutions to the initial
problem.

The general method, called Integrative Cooperative Search ICS), was introduced
in [64] (see [33, 34] for initial developments) and illustrated through an applica-
tion to the multi-depot periodic vehicle routing problem (MDPVRP) [75, 108]. The
main components of ICS, to be instantiated for each application, are (1) the decom-
position rule; (2) the Partial Solver Groups (PSGs) addressing the partial problems
resulting from the decomposition; (3) the Integrators selecting partial solutions from
PSGs, combining them, and sending the resulting complete solutions to the Com-

13 Parallel Metaheuristics and Cooperative Search 443

plete Solver Group (CSG); and (4) the CSG, providing the central memory function-
alities of ICS. Notice that, in order to facilitate the cooperation, a unique solution
representation, obtained by fixing rather than eliminating variables when defining
partial problems, is used throughout ICS.

The selection of the decision-sets for decomposition is specific to each applica-
tion case, decision variables being clustered to yield known or identifiable optimiza-
tion problem settings. Thus, an opportunistic rule decomposed the MDPVRP along
the depot and period decision sets to create two partial problems, a periodic VRP
(PVRP) and a multi-depot VRP (MDVRP), high-quality solvers being available in
the literature for both problems.

The PSG may contain one or several solvers targeting particular subsets of at-
tributes. Thus, two PSGs were defined in [64], one for the PVRP and the other for
the MDVRP. Each PSG was organized according to the pC/KC paradigm and was
thus composed of a set of Partial Solvers, a central memory where elite solutions
were kept, and a Local Search Coordinator (LSC) managing the local central mem-
ory and interfacing with the Global Search Coordinator. Two algorithms were used
as partial solvers, the hybrid genetic algorithm HGSADC [108] and GUTS, a gen-
eralized version of the Unified Tabu Search [17].

Integrators build complete solutions by mixing partial solutions with promising
features obtained within the PSGs. Integrators aim for solution quality, the trans-
mission of critical features extracted from the partial solutions, and computational
efficiency. The simplest Integrator consists of selecting high-quality partial solu-
tions (with respect to solution value or the inclusion of particular decision combi-
nations) and passing them directly to the Complete Solver Group. Population-based
metaheuristics make natural integrators, as well as solvers of optimization formula-
tions combining solutions or solution elements (e.g., set covering for VRP) to yield
complete solutions to the problem at hand. The work of [43] belongs to the lat-
ter category, proposing particular optimization models for rich VRP settings, which
preserve desired critical variables (desired attributes), present in partial solutions,
when selecting and combining routes.

Several Integrators can be involved in an ICS metaheuristic, increasing the di-
versity of the population of complete solutions. Four Integrators were thus included
in the MDPVRP application, the simple one passing good solutions to the CSG,
the crossover and individual education (enhancement) operators of HGSADC, and
two of the methods proposed in [43], the first transmitting the attributes for which
there was “consensus” in the input solutions, while the second “promoted” them
only through penalties added to the objective function. The last three integrators
started from pairs of partial solutions randomly selected among the best 25% of the
solutions in the central memories of the two PSGs.

The Complete Solver Group includes the central memory, where the complete
solutions are stored, together with the context information and the guiding solutions
built by the Global Search Coordinator (GSC). Complete solutions are received from
Integrators and, when solvers are present in the CSG, these solutions are further en-
hanced. The GSC (1) builds the contextual information (e.g., the frequency of ap-
pearance of each (customer, depot, pattern) triplet in the complete solution set for

444 T. G. Crainic

the MDPVRP, together with the cost of the best solution containing it), (2) generates
new guiding solutions to orient the search toward promising features, and (3) mon-
itors the status of the solver groups, sending guiding instructions (solutions) when
necessary.

Monitoring is performed by following the evolution of the PSGs (e.g., the number
of improving solutions generated during a certain time period) to detect undesired
situations, such as loss of diversity in the partial or complete populations, stagnation
in improving the quality of the current best solution, awareness that some zones of
the solution space—defined by particular values for particular decision sets—have
been scarcely explored, etc. Whenever one of these situations is detected, the GSC
sends guidance “instructions” to the particular PSG. The particular type of guidance
is application specific, but one may inject new solutions or elements, modify the
values of the fixed attributes for the PSG to orient its search toward a different
area, change the attribute subset under investigation (i.e., change the decomposition
of the decision-set attributes), or modify/replace the solution method in a Partial
Solver or Integrator. The last two should not occur too frequently. In [64], guidance
took the form of three solutions, which were either randomly selected from the
complete solution set, or were built by the GSC out of promising solution elements
with respect to the search history.

The authors in [64] reported very good results even when compared to the state-
of-the-art metaheuristic. The experimental results also indicated that (1) one should
use solvers with similar time performances in order to have them contributing rea-
sonably equally to the cooperation; (2) when using genetic solvers in a PSG it is
preferable for long runs to define a local population for each such solver, while us-
ing the central memory as population for all cooperating genetic solvers appears
better for short runs; and (3) embedding good solvers in the CSG enhances slightly
the already excellent performance of the ICS parallel metaheuristic.

13.8 Conclusions

This chapter presented an overview and state-of-the-art survey of the main par-
allel metaheuristic ideas, discussing general concepts and algorithm design prin-
ciples and strategies. Four main classes of parallel metaheuristics strategies were
described: low-level decomposition of computing-intensive tasks with no modifi-
cation to the original algorithm, decomposition of the search space, independent
multi-search, and cooperative multi-search, the latter encompassing synchronous,
asynchronous collegial and knowledge-creating asynchronous collegial strategies.
It is noteworthy that this series also reflects the historical sequence of the develop-
ment of parallel metaheuristics, which are now acknowledged, cooperative search
strategies in particular, as making up their own class of metaheuristics.

It must be emphasized that each of these strategy classes fulfills a particular type
of task and all are needed at some time. Thus, the idea that everything seems to
be known regarding low-level parallelization strategies is not true. Most studies on

13 Parallel Metaheuristics and Cooperative Search 445

accelerating computing-intensive tasks targeted the evaluation of a population or
neighborhood in classic metaheuristic frameworks but, as a number of more recent
studies show, the best strategy to accelerate a local-search procedure may prove less
effective when the local search is embedded into a full metaheuristics or hierarchi-
cal solution method. On the other hand, the evolution of computing infrastructure, in
particular, the integration of graphical processing units within computing platforms,
opens up interesting but challenging perspectives. In both cases, more research is
needed to understand their behavior and identify the most appropriate combination
of strategies, particularly low-level and cooperative search, for various metaheuris-
tics, problem settings, and computing platforms.

Search-space decomposition also seems to have been thoroughly studied, and has
been overlooked in the last years, maybe due to the rapid and phenomenal increase
in the memory available and the speed of access. Let us not forget, however, that
most optimization problems of interest are complex and that the dimensions of the
instances one faces in practice keep increasing. Research challenges exist in dy-
namic search-space decomposition and the combination of cooperative search and
search-space decomposition. The Integrative Cooperative Search is a first answer in
this direction, but more research is needed.

Asynchronous cooperation, particularly when relying on memories as commu-
nication mechanisms, provides a powerful, flexible and adaptable framework for
parallel metaheuristics that consistently achieved good results in terms of comput-
ing efficiency and solution quality for many metaheuristic and problem classes. A
number of challenging research issues are worth investigating.

A first issue concerns the exchange and utilization of context data locally gener-
ated by the cooperating solvers, to infer an image of the status of the global search
and generate appropriate guiding instructions. Thus, contrasting the various local
context data may be used to identify regions of the search space that were neglected
or over explored. The information could also be used to evaluate the relative per-
formance of the solvers conducting, eventually, to adjust the search parameters of
particular solvers or even change the search strategy. So-called “strategic” decision
variables or parameters could thus be more easily identified, which could prove very
profitable in terms of search guidance.

A related issue concerns the learning processes and the creation of new infor-
mation out of the shared data. Important questions concern the identification of in-
formation that may be derived from the exchanged solutions and its usefulness in
inferring the status of the global search, and determining the appropriate guiding
information to be sent to solvers. Research in this direction is still at the very begin-
ning but has already proved its worth, in particular in the context of the integrative
cooperative methods.

A third broad issue concerns the cooperation of different types of metaheuris-
tics, as well as the cooperation of metaheuristics with exact solution methods.
The so-called hybrid and matheuristic methods, representing the former and lat-
ter types of method combination, respectively, are trendy in the sequential opti-
mization field. Very few studies explicitly target parallel methods, however. How
different methods behave when involved in cooperative search and how the latter

446 T. G. Crainic

behaves given various combinations of methods is an important issue that should
yield valuable insights into the design of parallel metaheuristic algorithms, coop-
erative ones in particular. A particularly challenging but fascinating direction for
cooperative search and ICS is represented by the multi-scenario representation of
stochastic optimization formulations, for which almost nothing beyond low-level
scenario-decomposition has been proposed yet. Transversal studies comparing the
behavior and performance of particular parallel metaheuristic strategies over differ-
ent problem classes, and of different parallel strategies and implementations for the
same problem class, would be very valuable in this context, as in the broader field
of parallel metaheuristics.

Acknowledgements The author wishes to acknowledge the contributions of colleagues and stu-
dents, in particular Professors Michel Gendreau, Université de Montréal, Canada, and Michel
Toulouse, the Vietnamese-German University, Vietnam, who collaborated over the years to the
work on parallel metaheuristics for combinatorial optimization. All errors are, however, solely and
entirely due to the author.

Partial funding for this project has been provided by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), through its Discovery Grant and the Discovery Accelerator
Supplements programs, and the Strategic Clusters program of the Fonds de Recherche Québé-
cois Nature et Technologies (FRQNT). The author thanks the two institutions for supporting this
research.

References

1. E. Alba (ed.), Parallel Metaheuristics: A New Class of Algorithms (Wiley, Hoboken, 2005)
2. E. Alba, G. Luque, S. Nesmachnow, Parallel metaheuristics: recent advances and new trends.

Int. Trans. Oper. Res. 20(1), 1–48 (2013)
3. P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, É.D. Taillard, A parallel tabu search heuris-

tic for the vehicle routing problem with time windows. Transp. Res. C: Emerg. Technol. 5(2),
109–122 (1997)

4. R. Banos, J. Ortega, C. Gil, A. Fernandez, F. de Toro, A simulated annealing-based parallel
multi-objective approach to vehicle routing problems with time windows. Exp. Syst. Appl.
40(5), 1696–1707 (2013)

5. R.S. Barr, B.L. Hickman, Reporting computational experiments with parallel algorithms:
issues, measures, and experts opinions. ORSA J. Comput. 5(1), 2–18 (1993)

6. M.P. Bastos, C.C. Ribeiro, Reactive tabu search with path-relinking for the steiner problem
in graphs, in Meta-Heuristics 98: Theory & Applications, ed. by S. Voß, S. Martello, C. Rou-
cairol, I.H. Osman (Kluwer Academic Publishers, Norwell, 1999), pp. 31–36

7. R. Battiti, G. Tecchiolli, Parallel based search for combinatorial optimization: genetic algo-
rithms and TABU. Microprocess. Microsyst. 16(7), 351–367 (1992)

8. J. Blazewicz, A. Moret-Salvador, R. Walkowiak, Parallel tabu search approaches for two-
dimensional cutting. Parallel Process. Lett. 14(1), 23–32 (2004)

9. A. Bortfeldt, H. Gehring, D. Mack, A parallel tabu search algorithm for solving the container
loading problem. Parallel Comput. 29(5), 641–662 (2003)

10. A.R. Brodtkorb, T.R. Hagen, C. Schulz, G. Hasle, GPU computing in discrete optimization.
Part I: introduction to the GPU. EURO J. Transp. Logist. 2(1–2), 129–157 (2013)

11. A.R. Brodtkorb, T.R. Hagen, C. Schulz, G. Hasle, GPU computing in discrete optimization.
Part II: survey focussed on routing problems. EURO J. Transp. Logist. 2(1–2), 159–186
(2013)

13 Parallel Metaheuristics and Cooperative Search 447

12. E. Cantú-Paz, Theory of parallel genetic algorithms, in Parallel Metaheuristics: A New Class
of Algorithms, ed. by E. Alba (Wiley, Hoboken, 2005), pp. 425–445

13. C.B.C. Cavalcante, V.F. Cavalcante, C.C. Ribeiro, M.C. Souza, Parallel cooperative ap-
proaches for the labor constrained scheduling problem, in Essays and Surveys in Meta-
heuristics, ed. by C.C. Ribeiro, P. Hansen (Kluwer Academic Publishers, Norwell, 2002),
pp. 201–225

14. J.M. Cecilia, J.M. Garciá, A. Nisbet, M. Amos, M. Ujaldón, Enhancing data parallelism for
ant colony optimization on GPUs. J. Parallel Distrib. Comput. 73(1), 42–51 (2013)

15. I.M. Chao, B.L. Golden, E.A. Wasil, An improved heuristic for the period vehicle routing
problem. Networks 26(1), 25–44 (1995)

16. J.-F. Cordeau, M. Maischberger, A parallel iterated tabu search heuristic for vehicle routing
problems. Comput. Oper. Res. 39(9), 2033–2050 (2012)

17. J.-F. Cordeau, G. Laporte, A. Mercier, A unified tabu search heuristic for vehicle routing
problems with time windows. J. Oper. Res. Soc. 52(8), 928–936 (2001)

18. T.G. Crainic, Parallel computation, co-operation, tabu search, in Metaheuristic Optimization
Via Memory and Evolution: Tabu Search and Scatter Search, ed. by C. Rego, B. Alidaee
(Kluwer Academic Publishers, Norwell, 2005), pp. 283–302

19. T.G. Crainic, Parallel solution methods for vehicle routing problems, in The Vehicle Routing
Problem: Latest Advances and New Challenges, ed. by B.L. Golden, S. Raghavan, E.A. Wasil
(Springer, New York, 2008), pp. 171–198

20. T.G. Crainic, Parallel meta-heuristic search, in Handbook of Heuristics, ed. by R. Marti, P.M.
Pardalos, M.G.C. Resende (Springer, New York, 2017)

21. T.G. Crainic, M. Gendreau, Towards an evolutionary method - cooperating multi-thread
parallel tabu search hybrid, in Meta-Heuristics 98: Theory & Applications, ed. by S. Voß,
S. Martello, C. Roucairol, I.H. Osman (Kluwer Academic Publishers, Norwell, 1999), pp.
331–344

22. T.G. Crainic, M. Gendreau, Cooperative parallel tabu search for capacitated network design.
J. Heuristics 8(6), 601–627 (2002)

23. T.G. Crainic, N. Hail, Parallel meta-heuristics applications, in Parallel Metaheuristics: A
New Class of Algorithms, ed. by E. Alba (Wiley, Hoboken, 2005), pp. 447–494

24. T.G. Crainic, M. Toulouse, Parallel metaheuristics, in Fleet Management and Logistics, ed.
by T.G. Crainic, G. Laporte (Kluwer Academic Publishers, Norwell, 1998), pp. 205–251

25. T.G. Crainic, M. Toulouse, Parallel strategies for meta-heuristics, in Handbook in Meta-
heuristics, ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Norwell, 2003),
pp. 475–513

26. T.G. Crainic, M. Toulouse, Explicit and emergent cooperation schemes for search algorithms,
in Learning and Intelligent Optimization, ed. by V. Maniezzo, R. Battiti, J.-P. Watson. Lec-
ture Notes in Computer Science, vol. 5315 (Springer, Berlin, 2008), pp. 95–109

27. T.G. Crainic, M. Toulouse, Parallel meta-heuristics, in Handbook of Metaheuristics, ed. by
M. Gendreau, J.-Y. Potvin, 2nd edn. (Springer, Berlin, 2010), pp. 497–541

28. T.G. Crainic, M. Toulouse, M. Gendreau, Parallel asynchronous tabu search for multicom-
modity location-allocation with balancing requirements. Ann. Oper. Res. 63, 277–299 (1996)

29. T.G. Crainic, M. Toulouse, M. Gendreau, Towards a taxonomy of parallel tabu search algo-
rithms. INFORMS J. Comput. 9(1), 61–72 (1997)

30. T.G. Crainic, M. Gendreau, P. Hansen, N. Mladenović, Cooperative parallel variable neigh-
borhood search for the p-median. J. Heuristics 10(3), 293–314 (2004)

31. T.G. Crainic, B. Di Chiara, M. Nonato, L. Tarricone, Tackling electrosmog in completely
configured 3G networks by parallel cooperative meta-heuristics. IEEE Wireless Commun.
13(6), 34–41 (2006)

32. T.G. Crainic, Y. Li, M. Toulouse, A first multilevel cooperative algorithm for the capacitated
multicommodity network design. Comput. Oper. Res. 33(9), 2602–2622 (2006)

33. T.G. Crainic, G.C. Crisan, M. Gendreau, N. Lahrichi, W. Rei, A concurrent evolutionary ap-
proach for cooperative rich combinatorial optimization, in Genetic and Evolutionary Com-
putation Conference - GECCO 2009, July 8–12, Montréal, Canada (ACM, New York, 2009).
CD-ROM

448 T. G. Crainic

34. T.G. Crainic, G.C. Crisan, M. Gendreau, N. Lahrichi, W. Rei, Multi-thread integrative coop-
erative optimization for rich combinatorial problems, in The 12th International Workshop on
Nature Inspired Distributed Computing - IDISC’09, 25–29 May, Rome (2009). CD-ROM

35. T.G. Crainic, T. Davidović, D. Ramljak, Designing parallel meta-heuristic methods, in
High Performance and Cloud Computing in Scientific Research and Education, ed. by M.
Despotovic-Zrakic, V. Milutinovic, A. Belic (IGI Global, Hershey, 2014), pp. 260–280

36. Z.J. Czech, A parallel genetic algorithm for the set partitioning problem, in 8th Euromicro
Workshop on Parallel and Distributed Processing (2000), pp. 343–350

37. C. Dai, B. Li, M. Toulouse, A multilevel cooperative tabu search algorithm for the covering
design problem. J. Comb. Math. Comb. Comput. 68, 35–65 (2009)

38. T. Davidović, T.G. Crainic, Parallel local search to schedule communicating tasks on identi-
cal processors. Parallel Comput. 48, 1–14 (2015)

39. A. Delévacq, P. Delisle, M. Gravel, M. Krajecki, Parallel ant colony optimization on graphics
processing units. J. Parallel Distrib. Comput. 73(1), 52–61 (2013)

40. B. Di Chiara, Optimum planning of 3G cellular systems: radio propagation models and co-
operative parallel meta-heuristics. Ph.D. thesis, Dipartimento di ingegneria dell’innovatione,
Universitá degli Studi di Lecce, Lecce, 2006

41. K.F. Doerner, R.F. Hartl, S. Benkner, M. Lucka, Cooperative savings based ant colony op-
timization - multiple search and decomposition approaches. Parallel Process. Lett. 16(3),
351–369 (2006)

42. H. Drias, A. Ibri, Parallel ACS for weighted MAX-SAT, in Artificial Neural Nets Problem
Solving Methods - Proceedings of the 7th International Work-Conference on Artificial and
Natural Neural Networks, ed. by J. Mira, J. Álvarez. Lecture Notes in Computer Science,
vol. 2686 (Springer, Heidelberg, 2003), pp. 414–421

43. N. El Hachemi, T.G. Crainic, N. Lahrichi, W. Rei, T. Vidal, Solution integration in com-
binatorial optimization with applications to cooperative search and rich vehicle routing. J.
Heuristics 21(5), 663–685 (2015)

44. C.D. Flores, B.B. Cegla, D.B. Caceres, Telecommunication network design with parallel
multi-objective evolutionary algorithms, in Proceedings of the 2003 IFIP/ACM Latin Amer-
ica Networking Conference - Towards a Latin American Agenda for Network Research
(ACM, New York, 2003), pp. 1–11

45. F. García-López, B. Melián-Batista, J.A. Moreno-Pérez, J.M. Moreno-Vega, The parallel
variable neighborhood search for the p-median problem. J. Heuristics 8(3), 375–388 (2002)

46. F. García-López, B. Melián-Batista, J.A. Moreno-Pérez, J.M. Moreno-Vega, Parallelization
of the scatter search for the p-median problem. Parallel Comput. 29, 575–589 (2003)

47. F. García-López, M. García Torres, B. Melián-Batista, J.A. Moreno-Pérez, J.M. Moreno-
Vega, Parallel scatter search, in Parallel Metaheuristics: A New Class of Metaheuristics (Wi-
ley, Hoboken, 2005), pp. 223–246

48. F. García-López, M. García Torres, B. Melián-Batista, J.A. Moreno-Pérez, J.M. Moreno-
Vega, Solving feature subset selection problem by a parallel scatter search. Eur. J. Oper. Res.
169(2), 477–489 (2006)

49. H. Gehring, J. Homberger, Parallelization of a two-phase metaheuristic for routing problems
with time windows. J. Heuristics 8(3), 251–276 (2002)

50. M. Gendreau, A. Hertz, G. Laporte, A tabu search heuristic for the vehicle routing problem.
Manag. Sci. 40(10), 1276–1290 (1994)

51. M. Gendreau, F. Guertin, J.-Y. Potvin, É.D. Taillard, Tabu search for real-time vehicle routing
and dispatching. Transp. Sci. 33(4), 381–390 (1999)

52. M. Gendreau, G. Laporte, F. Semet, A dynamic model and parallel tabu search heuristic for
real-time ambulance relocation. Parallel Comput. 27(12), 1641–1653 (2001)

53. F. Glover, Tabu search – Part I. ORSA J. Comput. 1(3), 190–206 (1989)
54. F. Glover, Tabu search – Part II. ORSA J. Comput. 2(1), 4–32 (1990)
55. F. Glover, Tabu search and adaptive memory programming – advances, applications and

challenges, in Interfaces in Computer Science and Operations Research, ed. by R.S. Barr,
R.V. Helgason, J. Kennington (Kluwer Academic Publishers, Norwell, 1996), pp. 1–75

13 Parallel Metaheuristics and Cooperative Search 449

56. F. Glover, M. Laguna, Tabu Search (Kluwer Academic Publishers, Norwell, 1997)
57. B.L. Golden, E.A. Wasil, J.P. Kelly, I.M. Chao, Metaheuristics in vehicle routing, in Fleet

Management and Logistics, ed. by T.G. Crainic, G. Laporte (Kluwer Academic Publishers,
Norwell, 1998), pp. 33–56

58. C. Groër, B. Golden, A parallel algorithm for the vehicle routing problem. INFORMS J.
Comput. 23(2), 315–330 (2011)

59. J.I. Hidalgo, M. Prieto, J. Lanchares, R. Baraglia, F. Tirado, O. Garnica, Hybrid paralleliza-
tion of a compact genetic algorithm, in Proceedings of the 11th Uromicro Conference on
Parallel, Distributed and Network-Based Processing (2003), pp. 449–455

60. D. Izzo, M. Rucinski, C. Ampatzis, Parallel global optimisation meta-heuristics using an
asynchronous island-model, in CEC’09 - IEEE Congress on Evolutionary Computation
(IEEE, Piscataway, 2009), pp. 2301–2308

61. T. James, C. Rego, F. Glover, A cooperative parallel tabu search algorithm for the quadratic
assignment problem. Eur. J. Oper. Res. 195(3), 810–826 (2009)

62. J. Jin, T.G. Crainic, A. Løkketangen, A parallel multi-neighborhood cooperative tabu search
for capacitated vehicle routing problems. Eur. J. Oper. Res. 222(3), 441–451 (2012)

63. J. Jin, T.G. Crainic, A. Løkketangen, A cooperative parallel metaheuristic for the capacitated
vehicle routing problem. Comput. Oper. Res. 44, 33–41 (2014)

64. N. Lahrichi, T.G. Crainic, M. Gendreau, W. Rei, C.C. Crisan, T. Vidal, An integrative co-
operative search framework for multi-decision-attribute combinatorial optimization. Eur. J.
Oper. Res. 246(2), 400–412 (2015)

65. A. Le Bouthillier, Recherches coopératives pour la résolution de problèmes d’optimisation
combinatoire. Ph.D. thesis, Département d’informatique et de recherche opérationnelle, Uni-
versité de Montréal, Montréal, 2007

66. A. Le Bouthillier, T.G. Crainic, A cooperative parallel meta-heuristic for the vehicle routing
problem with time windows. Comput. Oper. Res. 32(7), 1685–1708 (2005)

67. A. Le Bouthillier, T.G. Crainic, P. Kropf, A guided cooperative search for the vehicle routing
problem with time windows. IEEE Intell. Syst. 20(4), 36–42 (2005)

68. S.Y. Lee, K.G. Lee, Synchronous and asynchronous parallel simulated annealing with mul-
tiple Markov chains. IEEE Trans. Parallel Distrib. Syst. 7(10), 993–1007 (1996)

69. F. Li, B.L. Golden, E.A. Wasil, Very large-scale vehicle routing: new test problems, algo-
rithms, and results. Comput. Oper. Res. 32(5), 1165–1179 (2005)

70. C. Ling, S. Hai-Ying, W. Shu, A parallel ant colony algorithm on massively parallel proces-
sors and its convergence analysis for the travelling salesman problem. Inf. Sci. 199, 31–42
(2012)

71. N. Melab, E.-G. Talbi, S. Cahon, E. Alba, G. Luque, Parallel metaheuristics: models and
frameworks, in Parallel Combinatorial Optimization, ed. by E.-G. Talbi (Wiley, New York,
2006), pp. 149–162

72. N. Melab, T.-V. Luong, K. Boufaras, E.-G. Talbi, Towards paradisEO-MO-GPU: a frame-
work for gpu-based local search metaheuristics, in Advances in Computational Intelligence.
Lecture Notes in Computer Science, vol. 6691, ed. by J. Cabestany, I. Rojas, G. Joya
(Springer, Berlin, 2011), pp. 401–408

73. R. Michels, M. Middendorf, An ant system for the shortest common supersequence problem,
in New Ideas in Optimization, ed. by D. Corne, M. Dorigo, F. Glover (McGraw-Hill, New
York, 1999), pp. 51–61

74. M. Middendorf, F. Reischle, H. Schmeck, Multi colony ant algorithms. J. Heuristics 8(3),
305–320 (2002)

75. A. Mingozzi, The multi-depot periodic vehicle routing problem, in Abstraction, Reformula-
tion and Approximation, ed. by J.-D. Zucker, L. Saitta. Lecture Notes in Computer Science,
vol. 3607 (Springer, Berlin, 2005), pp. 347–350

76. S. Niar, A. Fréville, A parallel tabu search algorithm for the 0–1 multidimensional knapsack
problem, in 11th International Parallel Processing Symposium (IPPS ’97), Geneva (IEEE,
Piscataway, 1997), pp. 512–516

450 T. G. Crainic

77. I.O. Oduntan, M. Toulouse, R. Baumgartner, C. Bowman, R. Somorjai, T.G. Crainic, A multi-
level tabu search algorithm for the feature selection problem in biomedical data sets. Comput.
Math. Appl. 55(5), 1019–1033 (2008)

78. M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover, J.S. Deogun, Multi-level cooperative
search: application to the netlist/hypergraph partitioning problem, in Proceedings of Interna-
tional Symposium on Physical Design (ACM Press, New York, 2000), pp. 192–198

79. M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover, J.S. Deogun, Multilevel cooperative
search for the circuit/hypergraph partitioning problem. IEEE Trans. Comput. Aided Des.
21(6), 685–693 (2002)

80. M. Pedemonte, S. Nesmachnow, H. Cancela, A survey of parallel ant colony optimization.
Appl. Soft Comput. 11(8), 5181–5197 (2011)

81. M. Polacek, S. Benkner, K.F. Doerner, R.F. Hartl, A cooperative and adaptive variable neigh-
borhood search for the multi depot vehicle routing problem with time windows. Bus. Res.
1(2), 207–218 (2008)

82. C. Rego, Node ejection chains for the vehicle routing problem: sequential and parallel algo-
rithms. Parallel Comput. 27(3), 201–222 (2001)

83. C.C. Ribeiro, I. Rosseti, Efficient parallel cooperative implementations of GRASP heuristics.
Parallel Comput. 33(1), 21–35 (2007)

84. E. Rios, L.S. Ochi, C. Bœres, V.N. Cœlho, I.M. Cœlho, R. Faria, Exploring parallel multi-
GPU local search strategies in a metaheuristic framework. J. Parallel Distrib. Comput. (2017).
https://doi.org/10.1016/j.jpdc.2017.06.011

85. Y. Rochat, É.D. Taillard, Probabilistic diversification and intensification in local search for
vehicle routing. J. Heuristics 1(1), 147–167 (1995)

86. H. Sanvicente-Sánchez, J. Frausto-Solís, MPSA: a methodology to parallelize simulated an-
nealing and its application to the traveling salesman problem, in MICAI 2002: Advances in
Artificial Intelligence, ed. by C.A. Coello Coello, A. de Albornoz, L.E. Sucar, O.C. Battis-
tutti. Lecture Notes in Computer Science, vol. 2313 (Springer, Heidelberg, 2002), pp. 89–97

87. J. Schulze, T. Fahle, A parallel algorithm for the vehicle routing problem with time window
constraints. Ann. Oper. Res. 86, 585–607 (1999)

88. M. Sevkli, M.E. Aydin, Parallel variable neighbourhood search algorithms for job shop
scheduling problems. IMA J. Manag. Math. 18(2), 117–133 (2007)

89. M. Solar, V. Parada, R. Urrutia, A parallel genetic algorithm to solve the set-covering prob-
lem. Comput. Oper. Res. 29(9), 1221–1235 (2002)

90. T. Stutzle, Parallelization strategies for ant colony optimization, in Proceedings of Parallel
Problem Solving from Nature V, ed. by A.E. Eiben, T. Back, M. Schoenauer, H.-P. Schwefel.
Lecture Notes in Computer Science, vol. 1498 (Springer, Heidelberg, 1998), pp. 722–731

91. É.D. Taillard, Parallel iterative search methods for vehicle routing problems. Networks 23(8),
661–673 (1993)

92. É.D. Taillard, Parallel taboo search techniques for the job shop scheduling problem. ORSA
J. Comput. 6(2), 108–117 (1994)

93. É.D. Taillard, L.M. Gambardella, M. Gendreau, J.-Y. Potvin, Adaptive memory program-
ming: a unified view of metaheuristics. Eur. J. Oper. Res. 135(1), 1–10 (1997)

94. E.-G. Talbi (ed.), Parallel Combinatorial Optimization (Wiley, Hoboken, 2006)
95. E.-G. Talbi (ed.), Metaheuristics: From Design to Implementation (Wiley, Hoboken, 2009)
96. S. Talukdar, S. Murthy, R. Akkiraju, Asynchronous teams, in Handbook in Metaheuristics,

ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Norwell, 2003)
97. Y. Tan, K. Ding, A survey on GPU-based implementation of swarm intelligence algorithms.

IEEE Trans. Cybern. 46(9), 2168–2267 (2016)
98. H.M.M. ten Eikelder, B.J.L. Aarts, M.G.A. Verhoeven, E.H.L. Aarts, Sequential and parallel

local search for job shop scheduling, in Meta-Heuristics 98: Theory & Applications, ed.
by S. Voß, S. Martello, C. Roucairol, I.H. Osman (Kluwer Academic Publishers, Norwell,
1999), pp. 359–371

99. G. Tongcheng, M. Chundi, Radio network using coarse-grained parallel genetic algorithms
with different neighbor topology, in Proceedings of the 4th World Congress on Intelligent
Control and Automation, vol. 3 (2002), pp. 1840–1843

https://doi.org/10.1016/j.jpdc.2017.06.011

13 Parallel Metaheuristics and Cooperative Search 451

100. M. Toulouse, T.G. Crainic, M. Gendreau, Communication issues in designing coopera-
tive multi thread parallel searches, in Meta-Heuristics: Theory & Applications, ed. by
I.H. Osman, J.P. Kelly (Kluwer Academic Publishers, Norwell, 1996), pp. 501–522

101. M. Toulouse, T.G. Crainic, B. Sansó, K. Thulasiraman, Self-organization in cooperative
search algorithms, in Proceedings of the 1998 IEEE International Conference on Systems,
Man, and Cybernetics (Omnipress, Madison, 1998), pp. 2379–2385

102. M. Toulouse, T.G. Crainic, B. Sansó, An experimental study of systemic behavior of co-
operative search algorithms, in Meta-Heuristics 98: Theory & Applications, ed. by S. Voß,
S. Martello, C. Roucairol, I.H. Osman (Kluwer Academic Publishers, Norwell, 1999), pp.
373–392

103. M. Toulouse, K. Thulasiraman, F. Glover, Multi-level cooperative search: a new paradigm
for combinatorial optimization and an application to graph partitioning, in 5th International
Euro-Par Parallel Processing Conference, ed. by P. Amestoy, P. Berger, M. Daydé, I. Duff,
V. Frayssé, L. Giraud, D. Ruiz. Lecture Notes in Computer Science, vol. 1685 (Springer,
Heidelberg, 1999), pp. 533–542

104. M. Toulouse, T.G. Crainic, K. Thulasiraman, Global optimization properties of parallel co-
operative search algorithms: a simulation study. Parallel Comput. 26(1), 91–112 (2000)

105. M. Toulouse, T.G. Crainic, B. Sansó, Systemic behavior of cooperative search algorithms.
Parallel Comput. 30(1), 57–79 (2004)

106. E. Vallada, R. Ruiz, A cooperative metaheuristics for the permutation flowshop scheduling
problem. Eur. J. Oper. Res. 193(2), 365–376 (2009)

107. T. Van Luong, N. Melab, E.-G. Talbi, GPU computing for parallel local search metaheuristic
algorithms. IEEE Trans. Comput. 62(1), 173–185 (2013)

108. T. Vidal, T.G. Crainic, M. Gendreau, N. Lahrichi, W. Rei, A hybrid genetic algorithm for
multi-depot and periodic vehicle routing problems. Oper. Res. 60(3), 611–624 (2012)

Chapter 14
A Classification of Hyper-Heuristic
Approaches: Revisited

Edmund K. Burke, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa,
Ender Özcan, and John R. Woodward

Abstract Hyper-heuristics comprise a set of approaches that aim to automate the
development of computational search methodologies. This chapter overviews pre-
vious categorisations of hyper-heuristics and provides a unified classification and
definition. We distinguish between two main hyper-heuristic categories: heuristic
selection and heuristic generation. Some representative examples of each category
are discussed in detail and recent research trends are highlighted.

E. K. Burke (�)
University of Leicester, Leicester, UK
e-mail: edmund.burke@le.ac.uk

M. R. Hyde · E. Özcan
Automated Scheduling, Optimisation and Planning (ASAP) Group, School of Computer Science,
University of Nottingham, Nottingham, UK
e-mail: matthewroberthyde@gmail.com; Ender.Ozcan@nottingham.ac.uk

G. Kendall
University of Nottingham Malaysia Campus, Semenyih, Malaysia

Automated Scheduling, Optimisation and Planning (ASAP) Group, School of Computer Science,
University of Nottingham, Nottingham, UK
e-mail: Graham.Kendall@nottingham.ac.uk

G. Ochoa
Computing Science and Mathematics, University of Stirling, Stirling, UK
e-mail: goc@cs.stir.ac.uk

J. R. Woodward
Queen Mary University of London, London, UK
e-mail: j.woodward@qmul.ac.uk

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_14

453

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_14&domain=pdf
mailto:edmund.burke@le.ac.uk
mailto:matthewroberthyde@gmail.com
mailto:Graham.Kendall@nottingham.ac.uk
mailto:goc@cs.stir.ac.uk
mailto:j.woodward@qmul.ac.uk
https://doi.org/10.1007/978-3-319-91086-4_14
mailto:Ender.Ozcan@nottingham.ac.uk

454 E. K. Burke et al.

14.1 Introduction

The current state-of-the art in hyper-heuristic research represents a set of approaches
that share the common goal of automating the design and adaptation of heuristic
methods in order to address computational search problems. The motivation behind
these approaches is to raise the level of generality at which search methodologies
can operate [13]. The term hyper-heuristic was first used in 1997 [32] to describe a
protocol that combines several artificial intelligence methods for automated theorem
proving. The term was independently used in 2000 [28] to describe ‘heuristics to
choose heuristics’ in the context of combinatorial optimisation. In this context, a
hyper-heuristic is a high-level approach that, given a particular problem instance
and a number of low-level heuristics, can select and apply an appropriate low-level
heuristic at each decision point [13, 79]. The idea of automating the heuristic design
process, however, is not new. Indeed, it can be traced back to the early 1960s [30, 38,
39], and was independently developed by a number of authors during the 1990s [36,
45, 49, 64, 95, 98]. Some historical notes, and a brief overview of early approaches
can be found in [13] and [79], respectively. A more recent research trend in hyper-
heuristics attempts to automatically generate new heuristics that are suited to a given
problem or class of problems. This is typically done by combining, through the
use of genetic programming for example, components or building-blocks of human
designed heuristics [20].

We differentiate between the terms heuristic, metaheuristic and hyper-heuristic.
A heuristic is a “rule of thumb” offering guidance for finding good solutions accord-
ing to domain knowledge. Two main types of search heuristics can be distinguished,
perturbative or local search heuristics, which operate on fully instantiated candidate
solutions, and constructive heuristics which iteratively expand partial candidate so-
lutions. Metaheuristics are search methodologies that coordinate local search and
higher-level strategies to perform a robust search on a solution space and which aim
to escape local optima. Hyper-heuristics are high-level strategies that operate on a
search space of heuristics rather than directly on a search space of solutions.

A variety of hyper-heuristic approaches have been proposed in the literature. An
introduction to the area appeared in the 2003 edition of the Handbook of Meta-
heuristics [13]. The present chapter updates our previous version [21], which sug-
gested a unified classification and definition of hyper-heuristics. The proposed clas-
sification inspired a thorough survey article that appeared in 2013 [25], and has been
widely adopted by the research community.

The next section outlines previous classifications of hyper-heuristics. Sec-
tion 14.3 proposes our unified classification and definition. Sections 14.4 and 14.5
describe the main categories of the proposed classification. They discuss some
representative examples and highlight current research trends. Finally, Sect. 14.6
summarises our categorisation.

14 A Classification of Hyper-Heuristic Approaches: Revisited 455

14.2 Previous Classifications

The first attempt to classify hyper-heuristics was reported in [94], where two cate-
gories are proposed: (1) with learning, and (2) without learning. Hyper-heuristics
without learning include approaches that use several heuristics (neighbourhood
structures), but select the heuristics to call according to a predetermined sequence.
Therefore, this category contains approaches such as variable neighbourhood search
[47]. The hyper-heuristics with learning include methods that dynamically change
the preference of each heuristic based on their historical performance, guided by
some learning mechanism. As discussed in [94], hyper-heuristics can be further
classified with respect to the learning mechanism employed, and a distinction is
made between approaches which use a genetic algorithm, from those which use
other mechanisms. This is because several hyper-heuristics have been based on ge-
netic algorithms. In these genetic algorithm-based hyper-heuristics the idea is to
evolve the solution methods, not the solutions themselves.

In [79], hyper-heuristics are classified into those which are constructive and those
which are local search methods. Constructive hyper-heuristics build a solution in-
crementally by adaptively selecting heuristics, from a pool of constructive heuris-
tics, at different stages of the construction process. Local search hyper-heuristics, on
the other hand, start from a complete initial solution and iteratively select, from a set
of neighbourhood structures, appropriate heuristics to lead the search in a promising
direction.

When genetic programming started being used for hyper-heuristic research in
the late 2000s (see [20] for an overview), a new class of hyper-heuristics emerged.
This class was explicitly and independently mentioned in [5] and [22]. In the first
class of heuristics, or ‘heuristics to choose heuristics’, the framework is provided
with a set of pre-existing, generally widely known heuristics for solving the target
problem. In contrast, in the second class, the aim is to generate new heuristics from
a set of building-blocks, components or search trail of known heuristics, which are
given to the framework. Therefore, the process requires, as in the first class of hyper-
heuristics, the selection of a suitable set of heuristics known to be useful in solving
the target problem. However, instead of supplying these directly to the framework,
the heuristics are first decomposed into their basic components. Genetic program-
ming hyper-heuristic researchers [5, 20, 22] have also made the distinction between
‘disposable’ and ‘reusable’ heuristics. A disposable heuristic is created just for one
problem, and is not intended for use on unseen problems. Alternatively, the heuristic
may be created for the purpose of re-using it on new unseen problems of a certain
class.

In [27], hyper-heuristics are classified into four categories: (1) hyper-heuristics
based on the random choice of low-level heuristics, (2) greedy and peckish hyper-
heuristics, which require preliminary evaluation of all or a subset of the heuris-
tics in order to select the best performing one, (3) metaheuristics based hyper-
heuristics, and (4) hyper-heuristics employing learning mechanisms to manage low
level heuristics.

456 E. K. Burke et al.

14.3 The Proposed Classification and Definition

Building upon some of the previous classifications discussed above, and realising
that hyper-heuristics lie at the interface of optimisation and machine learning re-
search, we propose a general classification of hyper-heuristics according to two con-
siderations: (1) the nature of the heuristic search space, and (2) the source of feed-
back during learning. These considerations are orthogonal in that different heuristic
search spaces can be combined with different sources of feedback, and thus different
machine learning techniques.

Heuristic selection

Methodologies to select

Heuristic generation

Methodologies to generate

construction
heuristics

perturbation
heuristics

construction
heuristics

perturbation
heuristics

Online
learning

Offline
learning

No-
learning

Feedback Nature of the heuristic search space

Hyper-
heuristics

Fig. 14.1 A classification of hyper-heuristic approaches, according to two considerations: (1) the
nature of the heuristic search space, and (2) the source of feedback during learning

The most fundamental hyper-heuristic categories from the previous classifica-
tions, are those represented by the processes of:

• Heuristic selection: Methodologies for choosing or selecting existing heuristics
• Heuristic generation: Methodologies for generating new heuristics (from primi-

tive components or observed search trails of existing heuristics)

There is no reason why the higher level strategy (for selecting or generat-
ing heuristics) should be a heuristic. Indeed, sophisticated knowledge-based tech-
niques such as case-based reasoning have been employed in this way for university
timetabling [15]. This leads us to propose the following more general definition of
the term ‘hyper-heuristic’ which is intended to capture the idea of a method for
automating the heuristic design and selection process:

A hyper-heuristic is an automated methodology for selecting or generating
heuristics to solve computational search problems.

14 A Classification of Hyper-Heuristic Approaches: Revisited 457

From this definition, there are two clear categories of hyper-heuristics aimed at
either (1) heuristic selection or (2) heuristic generation. This is the first point when
considering the nature of the search space. The second point is the distinction be-
tween constructive and local search hyper-heuristics, also discussed in Sect. 14.2.
Notice that this categorisation is concerned with the nature of the low-level heuris-
tics used in the hyper-heuristic framework. Our classification uses the terms con-
struction and perturbation to refer to these classes of low-level heuristics. Sec-
tions 14.4 and 14.5 describe these categories in more detail, discussing some con-
crete examples of recent approaches reported in the literature.

There is an underlying theme to these two clear categories of hyper-heuristics. In
both cases a high-level hyper-heuristic operates on a set of heuristics which in turn
operate on the solution space. In the case of selection, we are choosing from a set of
atomic predefined heuristics. In the case of generation, we are operating on a space
of heuristic components.

We consider a hyper-heuristic to be a learning algorithm when it uses feedback
information on the performance of the low-level heuristics from the search process.
A non-learning hyper-heuristic selects a heuristic to apply uniformly at random or
in a prefixed order from the existing pool, without keeping a record of their pre-
vious performance. According to the source of the feedback during learning about
the low-level heuristics performance, we propose a distinction between online and
offline learning. Notice that in the context of heuristic generation methodologies,
an example of which is genetic programming-based hyper-heuristics (discussed in
Sect. 14.2), the notions of disposable and reusable are analogous to those of online
and offline learning, as described below:

Online learning hyper-heuristics: The learning takes place while the algorithm is
solving an instance of a problem. Therefore, task-dependent local properties can
be used by the high-level strategy to determine the appropriate low-level heuristic
to apply.

Offline learning hyper-heuristics: The idea is to gather knowledge in the form of
rules or programs, from a set of representative training instances, that we would
expect to generalise to the process of solving unseen instances.

The proposed classification of hyper-heuristic approaches can be summarised as
follows (see also Fig. 14.1):

• With respect to the nature of the heuristic search space

– Heuristic selection methodologies: Produce combinations of pre-existing
construction or perturbation heuristics.

– Heuristic generation methodologies: Generate new heuristic methods using
basic components/building-blocks or search trail of pre-existing construction
or perturbation heuristics.

• With respect to the source of feedback during learning

– Online learning hyper-heuristics: Learn while solving a given instance of a
problem.

458 E. K. Burke et al.

– Offline learning hyper-heuristics: Learn, from a set of training instances, a
method that would generalise to unseen instances.

– No-learning hyper-heuristics: Do not use previous information from the
search process on the low-level heuristics performance.

These categories reflect the most common research trends. However, there
are methodologies that can cut across categories. For example, we can see hy-
brid methodologies that combine constructive with perturbation heuristics [43], or
heuristic selection with heuristic generation [56, 63, 77, 88].

14.4 Heuristic Selection Methodologies

This section is not intended to be an exhaustive survey. The intention is to present a
few examples to give the reader a flavour of the research that has been undertaken
in this area. Some research trends are also highlighted.

14.4.1 Approaches Based on Construction Low-Level Heuristics

These approaches build a solution incrementally. Starting with an empty solution,
the goal is to intelligently select and use construction heuristics to gradually build
a complete solution. The hyper-heuristic framework is provided with a set of pre-
existing (generally problem specific) construction heuristics, and the challenge is
to select the heuristic that is somehow the most suitable for the current problem
state. This process continues until the final state (a complete solution) is obtained.
Notice that there is a natural end to the construction process, that is, when a com-
plete solution is reached. Therefore, the sequence of heuristic choices is finite and
determined by the size of the underlying combinatorial problem. Furthermore, there
is the interesting possibility of learning associations between partial solution stages
and adequate heuristics for those stages.

Several approaches have been proposed to generate efficient hybridisations of
existing construction heuristics in domains such as bin packing [62, 81], timetabling
[15, 19, 74, 80, 82], production scheduling [101], and stock cutting [99, 100]. Both
online and offline machine learning approaches have been investigated. Examples
of online approaches are the use of metaheuristics in a search space of construction
heuristics like genetic algorithms [37, 49, 98, 101], tabu search [19] and other single-
point based search strategies [76]. For this type of hyper-heuristic, the structure
of the heuristic search space or hyper-heuristic landscape has been studied [67].
Examples of offline techniques are the use of learning classifier systems [62, 81],
messy genetic algorithms [80, 82, 100] and case-based reasoning [15].

14 A Classification of Hyper-Heuristic Approaches: Revisited 459

14.4.1.1 Representative Examples

Two hyper-heuristics based on construction heuristics are described here in more
detail. The first approach is online and is based on graph-colouring heuristics for
timetabling problems, whilst the second is offline and is based on bin packing
heuristics.

Graph-Colouring Hyper-Heuristic for Timetabling In educational timetabling,
a number of courses or exams need to be assigned to a number of timeslots, subject
to a set of both hard and soft constraints. Timetabling problems can be modelled as
graph colouring problems, where nodes in the graph represent events (e.g. exams),
and edges represent conflicts between events. Graph heuristics in timetabling use
the information in the graph to order the events by their characteristics (e.g. num-
ber of conflicts with other events or the degree of conflict), and assign them one by
one into the timeslots. These characteristics suggest how difficult it is to schedule
the events. Therefore, the most difficult event, according to the corresponding or-
dering strategy, will be assigned first. The graph-based hyper-heuristic developed in
[19], implements the following five graph colouring-based heuristics, plus a random
ordering heuristic:

• Largest Degree (LD): Orders the events in decreasing order based on the number
of conflicts the event has with the other events.

• Largest Weighted Degree (LW): The same as LD, but the events are weighted by
the number of students involved.

• Colour Degree (CD): Orders the events in decreasing order in terms of the num-
ber of conflicts (events with common students involved) each event has with
those already scheduled.

• Largest Enrolment (RO): Orders the events in decreasing order based on the num-
ber of enrolments.

• Saturation Degree (SD): Orders the events in increasing order based on the num-
ber of timeslots available for each event in the timetable at that time.

A candidate solution in the heuristic search space corresponds to a sequence
(list) of these heuristics. The solution (timetable) construction is an iterative process
where, at the ith iteration, the ith graph-colouring heuristic in the list is used to order
the events not yet scheduled at that step. The first e events in the ordered list are then
assigned to the first e least-cost timeslots in the timetable (see Fig. 14.2).

Tabu Search is employed as the high-level search strategy for producing good
sequences of the low-level heuristics. Each heuristic list produced by tabu search is
evaluated by sequentially using the individual heuristics to order the unscheduled
events, and thus construct a complete timetable. Since each heuristic in the list is
used to schedule a number e of events, the length of the heuristic list is n/e where
n is the number of events to be scheduled. Tests were performed for e = 1, . . . ,5
(details can be found in [19]). This work also highlights the existence of two search
spaces in constructive hyper-heuristics (the heuristic space and the problem solution
space). The approach was tested on both course and exam timetabling benchmark

460 E. K. Burke et al.

…ROCDLDSDLWSDSDLECDLDSDSD

heuristic list

…e12e11e10e9e8e7e6e5e4e3e2e1

exams

e25e26e3e1
e9

…e12e31e10e19e28e17e6e25e26e3e9e1
order of exams

slots

Fig. 14.2 A solution (timetable) is constructed by iteratively considering each heuristic in the list,
and using it to order the events not yet scheduled. The first e events (in the figure e = 5) in the
resulting ordering are assigned to the first e least-cost timeslots in the timetable

instances with competitive results. This graph-based hyper-heuristic was later ex-
tended in [76] where a formal definition of the framework is presented. The authors
also compare the performance of several high-level heuristics that operate on the
search space of heuristics. Specifically, a best-improvement hill-climber, iterated
local search and variable neighbourhood search are implemented and compared to
the previously implemented tabu search. The results suggest that the choice of a
particular neighbourhood structure on the heuristic space is not crucial to the per-
formance. Moreover, iterative techniques such as iterated local search and variable
neighbourhood search, were found to be more effective for traversing the heuristic
search space than more elaborate metaheuristics such as tabu search. The authors
suggest that the heuristic search space is likely to be smooth and to contain large
plateaus (i.e. areas where different heuristic sequences produce solutions of similar
quality). The work also considers hybridisations of the hyper-heuristic framework
with local search operating on the solution space. This strategy greatly improves
the performance of the overall system, making it competitive with state-of-the-art
approaches on the studied benchmark instances.

In a further study [67], the notion of fitness landscapes is used to analyse the
search space of graph colouring heuristics. The study confirms some observations
about the structure of the heuristic search space discussed in [76]. Specifically, these
landscapes have a high level of neutrality (i.e. the presence of plateaus). Further-
more, although rugged, they have the encouraging feature of a globally convex or
big valley structure, which indicates that an optimal solution would not be isolated
but surrounded by many local minima. The study also revealed a positional bias in
the search space made of sequences of heuristics. Specifically, changes in the earlier
positions of a heuristic sequence have a larger impact on the solution quality than

14 A Classification of Hyper-Heuristic Approaches: Revisited 461

changes in the later positions. This is because early decisions (heuristic choices) in
a construction process have a higher impact on the overall quality of the solution
than later decisions.

Classifier System Hyper-Heuristic for Bin Packing Classifier systems are rule-
based learning systems that evolve fixed length stimulus-response rules. The rules
are encoded as ternary strings, made of the symbols {0,1,#}, and have an associated
strength. The system operates in two phases. First, the population of classification
rules is applied to some task; and secondly, a genetic algorithm generates a new
population of rules by selection based on strength, and by the application of stan-
dard genetic operators. Calculating the strength of each rule is a credit assignment
problem, which refers to determining the contribution made by each sub-component
or partial solution, in decomposable problems being solved collectively by a set of
partial solutions.

In [81], a classifier system was used in the domain of one-dimensional bin pack-
ing, to learn a set of rules that associate characteristics of the current state of a
problem with different low-level construction heuristics. In the one-dimensional bin
packing problem, there is an unlimited supply of bins, each with capacity C. A set
of n items is to be packed into the bins, the size of each item is given, and items
must not overfill any bin. The task is to minimise the total number of bins required.

The set of rules evolved by the classifier system is used as follows: given the ini-
tial problem characteristics P, a heuristic H is chosen to pack an item, thus gradually
altering the characteristics of the problem that remains to be solved. At each step a
rule appropriate to the current problem state P′ is selected, and the process continues
until all items have been packed. For the training phase a total of 890 benchmark in-
stances from the literature were used. The authors chose four bin packing heuristics
from the literature, the selection being based on those that produced the best results
on the studied benchmark set. These heuristics were as follows:

• Largest-Fit-Decreasing: Items are taken in order of size, largest first, and are put
in the first bin where they fit (a new bin is opened if necessary).

• Next-Fit-Decreasing: An item is packed into the current bin if possible, or else
a new bin is opened into which the item is placed. This new bin becomes the
current bin.

• Djang and Finch’s (DJD): A heuristic that considers combinations of up to three
items to completely fill partially full bins.

• A Variation of DJD: A variation of the previous heuristic that considers combi-
nations of up to five items to completely fill partially full bins.

A simplified description of the current state of the problem is proposed. This de-
scription considers the number of items remaining to be packed, and calculates the
percentage of items in each of four size ranges (huge, large, medium, and small),
where the size of the items is judged in proportion to the bin size. The approach
used single-step environments, meaning that rewards were available after each ac-
tion had taken place. The classifier system was trained on a set of example problems
and showed good generalisation to unseen problems. In [62], the classifier system
approach is extended to multi-step environments. The authors tested several reward

462 E. K. Burke et al.

schemes in combination with alternate exploration/exploitation ratios, and several
sizes and types of multi-step environments. Again, the approach was tested using a
large set of one-dimensional benchmark bin packing problems. The classifier sys-
tem was able to generalise well and create solution processes that performed well
on a large set of NP-hard benchmark instances. The authors report that multi-step
environments can obtain better results than single-step environments at the expense
of a higher number of training cycles.

14.4.2 Approaches Based on Perturbation Low-Level Heuristics

These approaches start with a complete solution, generated either randomly or using
simple construction heuristics, and thereafter try to iteratively improve the current
solution. The hyper-heuristic framework is provided with a set of neighbourhood
structures and/or simple local searchers, and the goal is to iteratively select and ap-
ply them to the current complete solution. This process continues until a stopping
condition is met. Notice that these approaches differ from those based on construc-
tion heuristics, in that they do not have a natural termination condition. The se-
quence of heuristic choices can, in principle, be arbitrarily extended. This class of
hyper-heuristics has the potential to be applied successfully to different combinato-
rial optimisation problems, since general neighbourhood structures or simple local
searchers can be made available. Hyper-heuristics based on perturbation have been
applied to personnel scheduling [14, 28], timetabling [7, 9, 23, 74, 84, 90, 91], shelf
space allocation [6, 8], packing [7, 34] and vehicle routing problems [43, 75, 88].

So far, the approaches that combine perturbation low-level heuristics in a hyper-
heuristic framework use online learning, in that they attempt to adaptively solve a
single instance of the problem under consideration. Furthermore, the majority of the
proposed approaches are single-point algorithms, in that they maintain a single in-
cumbent solution in the solution space. Some approaches that maintain a population
of points in the heuristic space have been attempted [29, 103].

As suggested in [71, 72] perturbation hyper-heuristics can be separated into two
processes: (1) (low-level) heuristic selection, and (2) move acceptance strategy.
Thus, the authors classify hyper-heuristics with respect to the nature of the heuristic
selection and move acceptance components. The heuristic selection can be done in
a non-adaptive (simple) way: either randomly or along a cycle, based on a prefixed
heuristic ordering [28]. No learning is involved in these approaches. Alternatively,
the heuristic selection may incorporate an adaptive (or on-line learning) mechanism
based on the probabilistic weighting of the low-level heuristics [14, 65, 75], or some
type of performance statistics [28]. Both non-adaptive and adaptive heuristic selec-
tion schemes are generally embedded within a single-point local search high-level
heuristic.

The acceptance strategy is an important component of any local search heuris-
tic. Many acceptance strategies have been explored within hyper-heuristics. Move
acceptance strategies can be divided into two categories: deterministic and non-

14 A Classification of Hyper-Heuristic Approaches: Revisited 463

deterministic. In general, a move is accepted or rejected, based on the quality of
the move and the current solution during a single point search. At any point in
the search, deterministic move acceptance methods generate the same result for the
same candidate solution(s) involved in the acceptance test. However, a different out-
come is possible if a non-deterministic approach is used. If the move acceptance test
involves other parameters, such as the current time, then these strategies are referred
to as non-deterministic strategies. Well known meta-heuristic components are used
as non-deterministic acceptance methods such as simulated annealing [34, 75].

14.4.2.1 Representative Examples

Two hyper-heuristics based on perturbation heuristics are described here. The first
is applied to a real-world packing problem, whilst the second uses large neighbour-
hood heuristics and is applied to five variants of the well known vehicle routing
problem.

A Simulated Annealing Hyper-Heuristic for Determining Shipper Sizes In [34]
the tabu search hyper-heuristic, originally presented in [14], is integrated within a
simulated annealing framework. That is, a simulated annealing acceptance strat-
egy is combined with the previously proposed heuristic selection mechanism. Fig-
ure 14.3 outlines the simulated annealing-based hyper-heuristic, illustrating the do-
main barrier that separates the high-level search strategy from the underlying prob-
lem domain. The framework requires a repository of low-level heuristic from which
the high-level strategy selects and applies to the incumbent solution considering
only domain-independent information on the performance of each heuristic.

The tabu search hyper-heuristic [14], selects the low-level heuristics according
to learned utilities or ranks. The framework also incorporates a dynamic tabu list
of low-level heuristics that are temporarily excluded from the selection pool. The
algorithm deterministically selects the low-level heuristic with the highest rank (not
included in the tabu list), and applies it once regardless of whether the selected move
causes an improvement or not (all moves acceptance). If there is an improvement,
the rank is increased. If the new solution is worse, the rank of the low-level heuristic
is decreased and it is made tabu. The rank update scheme is additive, and the tabu
list is emptied each time a non-improvement move is accepted. This general tabu
search approach was evaluated on various instances of two distinct timetabling and
rostering (personal scheduling) problems, and the obtained results were competitive
with those obtained using state-of-the-art problem-specific techniques. Apart from
the simulated annealing acceptance criteria, some modifications are also introduced
in [34]. In particular, a single application of a low-level heuristic h, is defined to be
k iterations of h. Therefore, the decision points are set every k iterations, and the
feedback for updating the quality of heuristic h is based on the best cost obtained
during those k iterations. Additionally, a non monotonic cooling schedule is pro-
posed to deal with the effects of having different neighbourhood sizes (given by the
pool of low-level heuristics used). The methodology was applied to a packing prob-

464 E. K. Burke et al.

lem in the cosmetics industry, where the shipper sizes for storage and transportation
had to be determined. Real data was used for generating the instances, and the ap-
proach was compared with a simpler local search strategy (random descent), with
favourable results.

H1

Heuristic Repository

Problem Domain

Problem Representation
Evaluation Function
Initial Solution
Others…

Domain Barrier

Stochastic Heuristic
Selection Mechanism

Collecting domain-independent information from the domain barrier (e.g. the
number of heuristics, the changes in evaluation function, a new solution or
not, the distance between two solutions, whether it gets stuck or not, etc.)

Apply the Selected
Heuristic

Simulated Annealing Hyper-heuristic

Feedback

Simulated Annealing
Acceptance Criterion

…

H2

Hn

Fig. 14.3 A simulated annealing hyper-heuristic framework

A General Heuristic for Vehicle Routing Problems In [75], a unified methodol-
ogy is presented, which is able to solve five variants of the vehicle routing prob-
lem: the vehicle routing problem with time windows, the capacitated vehicle rout-
ing problem, the multi-depot vehicle routing problem, the site-dependent vehicle
routing problem and the open vehicle routing problem. All problem variants are
transformed into a rich pickup and delivery model and solved using an adaptive
large neighbourhood search methodology [78]. The general framework is outlined
in Fig. 14.4, where the repeat loop corresponds to the high-level local search frame-
work. Implementing a simulated annealing algorithm is straightforward as one solu-
tion is sampled in each iteration of the algorithm. The acceptance strategy considers
a standard exponential cooling rate. In each iteration of the main loop, the algorithm
chooses one destroy (N−) and one repair neighbourhood (N+). An adaptive layer
stochastically controls which neighbourhoods to choose according to their past per-
formance (score, Pi). The more the neighbourhood Ni has contributed to the solution
process, the larger the score Pi it obtains, and hence the larger the probability of be-
ing chosen. The adaptive layer uses roulette wheel selection for choosing a destroy
and a repair neighbourhood.

14 A Classification of Hyper-Heuristic Approaches: Revisited 465

The pickup and delivery model is concerned with serving a number of trans-
portation requests using a limited number of vehicles. Each request involves mov-
ing a number of goods from a pickup location to a delivery location. The task is
to construct routes that visit all locations such that the corresponding pickups and
deliveries are placed on the same route and such that a pickup is performed before
the corresponding delivery. Different constraints are added to model the different
problem variants. A large number of tests were performed on standard benchmarks
from the literature on the five variants of the vehicle routing problem. The results
proved to be highly promising, as the methodology was able to improve on the best
known solutions of over one third of the tested instances.

Construct a feasible solution x; set x*:=x
Repeat

Choose a destroy and a repair neighbourhood: N- and N +
based on previously obtained scores (Pi)

Generate a new solution x’ from x using the heuristics
corresponding to the chosen destroy and repair neighbourhoods

If x’ can be accepted then set x:=x’
Update scores Pi of N- and N +
If f(x) < f(x*) set x*:=x

Until a stopping criterion is met
return x*

Fig. 14.4 Outline of the Adaptive Large Neighbourhood framework. N− and N+ correspond to
destroy and repair neighbourhoods, respectively. Pi stands for the score associated to heuristic i

14.4.3 Recent Research Trends

The most prominent approaches for heuristic selection have focused on a high-level
search strategy resembling an existing metaheuristic such as simulated annealing,
variable neighbourhood or genetic algorithms, which searches in a space of sim-
ple low-level heuristics. In recent years, new hyper-heuristic methodologies, such
as the use of Monte Carlo Search [23, 83] have been explored. In addition, new
domains such as software engineering [51, 103, 104], game playing [58], competi-
tive travelling salesman problem [54], and DNA sequencing [10] have been studied.
Attention has also been devoted to developing software frameworks, considering
multi-objective problems and studying the theoretical foundations of these meth-
ods, as discussed below.

466 E. K. Burke et al.

14.4.3.1 Software Frameworks

The HyFlex (Hyper-heuristic Flexible) framework [68], features a common soft-
ware interface for dealing with different combinatorial optimisation problems, and
provides the algorithm components that are problem specific. The algorithm de-
signer does not require a detailed knowledge of the problem domains, and thus can
concentrate his/her efforts on designing adaptive general-purpose optimisation algo-
rithms. HyFlex provides six combinatorial problems implemented in Java, namely:
Boolean satisfiability, one dimensional bin packing, permutation flow shop, person-
nel scheduling, travelling salesman and vehicle routing. These domains supported
an international research competition: the first Cross-Domain Heuristic Search
Challenge (CHeSC) [66]. The framework has been widely used by the research
community [25], an extension to the framework was proposed in [69] and three
new domains have been recently added: the 0-1 knapsack, quadratic assignment and
max-cut problem [1].

In [96] a unified object-oriented formulation of hyper-heuristics is introduced,
which includes perturbative and constructive heuristics, as well as selection and
generation heuristics. The goal is to extend the software design space of hyper-
heuristic algorithms.

14.4.3.2 Multi-Objective

There are emerging studies on multiobjective optimisation approaches mixing a set
of existing multiobjective metaheuristics. For example, [102] describes a multial-
gorithm, genetically adaptive multiobjective method applied to benchmark function
optimisation using NSGA-II [31], particle swarm optimisation, adaptive Metropolis
search, and differential evolution. This study demonstrates that combining standard
metaheuristic algorithms can be better than using each one is isolation, as well as
being competitive with other state-of-the-art methodologies on a set of benchmark
functions. However, it has been once again observed in [59] that the choice of low
level (meta)heuristics influences the overall performance of a hyper-heuristic. This
latter study considers a variety of selection hyper-heuristics for multi-objective op-
timisation. The results showed that combining simple random choice and great del-
uge move acceptance from [61] is the best performing approach using three modern
multi-objective evolutionary algorithms as low level metaheuristics. This approach
is additionally tested on a real world wind farm layout optimisation problem.

14.4.3.3 Theoretical and Foundational Studies

The structure of heuristic search spaces has been studied using the notion of fitness
landscapes [67]. These landscapes are found to have a high level of neutrality (i.e.
the presence of plateaus). Furthermore, although rugged, they have the encouraging
feature of a globally convex or big valley structure, which indicates that there is a

14 A Classification of Hyper-Heuristic Approaches: Revisited 467

gradient guiding search towards good solutions. More recently, the search space of
Boolean satisfiability (MAX-SAT) heuristics was analysed [26]. Using systematic
enumeration of millions of heuristics, they gave evidence that the heuristic land-
scape had many clusters of good local optima, and was also amenable to other search
methods, such as (iterated) hill-climbing.

A series of formal run-time analysis of simplified hyper-heuristic algorithms has
been conducted. In [50], the authors show the improved performance of a (1+1)
evolutionary algorithms using a strategy combining multiple operators as compared
to a strategy employing a single mutation operator with respect to a performance
metric referred to as asymptotic hitting time. In [57], a rigorous run-time analysis
of hyper-heuristic mixing heuristics (operators) was performed, showing that there
is some value to mixing heuristics leading to exponentially faster search than indi-
vidual heuristics on some problems. In [2], theoretical analyses showed that alter-
natives to the additive updates in reinforcement learning, which is a commonly used
scheme for heuristic selection, should be considered, since this strategy behaves in
an asymptotically similar way to random choice based on the assumption that the
probability of improving a solution at each step is less than 0.5. Heuristic space
diversity is the focus of [46].

A fundamental open question in selection hyper-heuristics is which low-level
heuristics (and how many) to use as part of the pool. In [3], the authors use ten-
sor analysis as an advanced machine learning approach to decide on the subset of
low level heuristics operating effectively with chosen deterministic move accep-
tance, yielding improved results. A methodology for selecting a subset of effective
heuristics from a given larger set is proposed in [92]. The approach considers non-
parametric statistics and fitness landscape measurements from an available set of
heuristics and benchmark instances, and it produces a compact subset of effective
heuristics with improved performance for the underlying problem.

14.5 Heuristic Generation Methodologies

This section provides some examples of approaches that have the potential to auto-
matically generate heuristics for a given problem. Many of the approaches in the lit-
erature to generate heuristics use genetic programming [20], a branch of evolution-
ary computation concerned with the automatic generation of computer programs.
Genetic programming has been successfully applied to the automated generation
of heuristics that solve hard combinatorial optimisation problems, such as Boolean
satisfiability, [5, 40–42, 55], bin packing [16, 17, 22, 60, 89], the traveling sales-
man problem [52, 53] and production scheduling [11, 33, 44, 48, 97]. In addition
to the particular representation, using trees, graphs, grammars or linear program
encodings, genetic programming differs from other evolutionary approaches in its
application area. While most applications of evolutionary algorithms deal with op-
timisation problems, genetic programming could instead be positioned in the field
of machine learning.

468 E. K. Burke et al.

Some genetic programming-based hyper-heuristics have evolved local search
heuristics [5, 24, 41, 42, 52, 53] or even evolutionary algorithms [70]. An alterna-
tive idea is to use genetic programming to evolve a program representing a function,
which is part of the processing of a given problem specific construction heuris-
tic [16, 17, 33, 44, 97]. Most examples of using genetic programming as a hyper-
heuristic are offline in that a training set is used for generating a program that acts
as a heuristic, which is thereafter used on unseen instances of the same problem.
That is, the idea is to generate reusable heuristics. However, research on disposable
heuristics has also been conducted [5, 52, 53]. In other words, heuristics are evolved
for solving a single instance of a problem. This approach is analogous to the online
heuristic selection methodologies discussed in Sect. 14.4, except that a new heuris-
tic is generated for each instance, instead of choosing a sequence of heuristics from
a predefined set.

The adaptation of heuristic orderings can also be considered as a methodology
for heuristic generation. The adaptive approach proposed in [12], starts with one
heuristic and adapts it to suit a particular problem instance ‘on the fly’. This method
provides an alternative to existing forms of ‘backtracking’, which are often required
to cope with the possible unsuitability of a heuristic. The adaptive method is more
general, significantly easier to implement, and produces results that are at least com-
parable (if not better) than the current state-of-the-art examination timetabling algo-
rithms.

14.5.1 Representative Examples

Two representative examples of heuristic generation using genetic programming are
discussed below. The first evolves packing heuristics that operate on a constructive
framework. The second evolves complete local search algorithms, using compo-
nents of successful, existing local search heuristics for Boolean satisfiability.

Generation of Construction Heuristics for Bin Packing The one-dimensional
bin packing problem involves a set of n items, which must be packed into bins of a
certain capacity C, using the minimum number of bins possible. In the online version
of the problem, the number of items and their sizes are not known in advance. This
is in contrast to the offline version of the problem where the set of items to be packed
is available at the start. An example of a construction heuristic used in online bin
packing is first-fit, which packs a set of items one at a time, in the order that they
are presented. The heuristic iterates through the open bins, and the current item is
placed in the first bin into which it fits.

In [16, 17], construction heuristics are evolved for the online bin packing prob-
lem. The evolved heuristics, represented as trees (see Fig. 14.5 for an example), op-
erate within a fixed framework that resembles the operation of the first-fit heuristic

14 A Classification of Hyper-Heuristic Approaches: Revisited 469

discussed above. The key idea is to use the attributes of the items and bin capacities,
that represent the state of the problem, in order to evolve functions (expressions)
that would direct the packing process. Each evolved function (GP tree) is applied
in turn to the available bins, returning a value. If the value is less than or equal to
zero then the system moves on to the next bin, but if the value is positive the item is
packed into the current bin. In this way, the function decides when to stop the search
for a suitable bin for the item. The algorithm (depicted in Fig. 14.6) then repeats the
process for each of the other items until all the items have been packed.

90 120

30 45

70

<=

Capacity

Size

Bin Fullness

-

Fig. 14.5 Evolving one-dimensional packing heuristics with genetic programming. The tree il-
lustrates an evolved heuristic, while the bins indicate an example current state of the online bin-
packing solving process

In a genetic programming framework, the set of terminals and functions need to
be specified. The hyper-heuristic framework for online bin packing uses attributes
that describe the state of the problem to define the terminals. In [16], the authors use
the following terminals:

• S, the size of the current item,
• C, the capacity of a bin (this is a constant for the problem) and,
• L, the load of a bin (i.e. the total size of all of the items occupying that bin).

Later [18], these three attributes were replaced by only two attributes: S, the
size of the current item and E (= C − L), the residual capacity of a bin (i.e. how
much space is remaining in the bin). The function set used in [16, 17] consists of
≤,+,−,×,%, where % is the ‘protected divide function’. The results in [16] show
that a simple genetic programming system can discover human designed heuristics
such as first-fit, whilst in [18], heuristics that outperformed first-fit were evolved. In
[17], it was also shown empirically that the choice of the training instances (cate-
gorised according to the item size distribution) has an impact on the trade-off be-
tween the performance and generality of the heuristics generated and their applica-
bility to new problems.

470 E. K. Burke et al.

For each item p
For each bin b

output := evaluate Heuristic
If (output > 0)

place item p in bin b
break

End If
End For

End For

Fig. 14.6 Pseudo code showing the overall program structure within which an evolved packing
heuristic operates

Generation of Local Search Heuristics for Satisfiability Testing The Boolean
satisfiability problem consists of finding the true/false assignments of a set of
Boolean variables, to decide if a given propositional formula or expression (in con-
junctive normal form) can be satisfied. The problem, denoted as SAT, is a classic
NP-complete problem.

In [40–42] a genetic programming system, named CLASS (Composite Learned
Algorithms for SAT Search), is proposed which automatically discovers new SAT
local search heuristics. Figure 14.7 illustrates a generic SAT local search algorithm,
where the ‘key detail’ is the choice of a variable selection heuristic in the inner
loop. Much research in the past decade has focused on designing a better variable
selection heuristic, and as a result, the performance of local search heuristics have
improved dramatically. The CLASS system was developed in order to automatically
discover variable selection heuristics for SAT local search. It was noted in [40] that
many of the best-known SAT heuristics (such as GSAT, HSAT, Walksat, and Novelty
[42]) could be expressed as decision tree-like combinations of a set of primitives.
Thus, it should be possible for a machine learning system to automatically discover
new, efficient variable selection heuristics by exploring the space of combinations
of these primitives. Examples of the primitives used in human designed SAT heuris-
tics are the gain obtained by flipping a variable (i.e. the increase in the number of
satisfied clauses in the formula) or the age of a variable (i.e. how long since it was
last flipped).

The results using CLASS [42] show that a simple genetic programming system is
able to generate local search heuristics that are competitive with efficient implemen-
tations of state-of-the-art heuristics (e.g., Walksat and Novelty variants), as well as
previous evolutionary approaches. The evolved heuristics scale and generalise fairly
well on random instances as well as more structured problem classes.

14 A Classification of Hyper-Heuristic Approaches: Revisited 471

A:= randomly generated truth assignment
While termination condition is not met

If A satisfies formula then return A
v:= Choose variable using

"variable selection heuristic"
A:= A with value of v inverted

End If
End While
return FAILURE (no assignment found)

Fig. 14.7 A generic SAT local search algorithm. The “variable selection heuristic” is replaced by
the evolved function

14.5.2 Some Recent Examples

The most common approach so-far for generating heuristics has been tree-based
genetic programming. Recently other genetic programming approaches have been
used such as grammar-based [93], gene expression programming [86, 87], and
grammatical evolution [24, 85].

Other machine learning techniques and representations have also been employed.
In [4, 73], the authors applied a generic genetic algorithm which creates and
searches heuristics in the form of policy matrices, communicating with an online
bin packing simulator for evaluation. The empirical results show that the generated
heuristics are specialised to the distribution of item sizes and outperform the existing
human designed heuristics.

A lifelong learning approach is proposed in [89], where an artificial immune sys-
tem is combined with genetic programming in a system that continuously generates
new heuristics and samples problems from its environment. The system is success-
fully tested on a large set of dynamically changing one-dimensional bin packing in-
stances. A system that evolves an ensemble of heuristics for the job-shop scheduling
problem is presented in [48]. The ensemble adopts a divide-and-conquer approach
in which each heuristic solves a unique subset of the instance set considered. The
system incorporates a heuristic generator that evolves heuristics composed of linear
sequences of dispatching rules. Following a training period, the ensemble is shown
to outperform both existing dispatching rules and a standard genetic programming
algorithm on a large set of new test instances.

A new application domain includes generating strategies for games, such as the
work in [35] where heuristics are evolved to guide staged deepening search for the
hard game of FreeCell, obtaining solvers that outperform human players in this
challenging puzzle.

472 E. K. Burke et al.

14.6 Conclusions

The defining feature of hyper-heuristic research is that it investigates methodologies
that operate on a search space of heuristics rather than directly on a search space
of problem solutions. This feature provides the potential for increasing the level of
generality of search methodologies. Several hyper-heuristic approaches have been
proposed that incorporate different search and machine learning paradigms. We have
suggested an updated definition of the term ‘hyper-heuristic’ to reflect recent work
in the area.

With the incorporation of genetic programming and other machine learning
methods, a new class of approaches can be identified; that is, heuristic generation
methodologies. These approaches provide richer heuristic search spaces, and thus
the freedom to create new methodologies for solving the underlying combinato-
rial problems. However, they are more difficult to implement than their counterpart,
heuristic selection methodologies, since they require the decomposition of existing
heuristics, and the design of an appropriate framework.

We have further categorised the two main classes of hyper-heuristics (heuristic
selection and heuristic generation), according to whether they use construction or
perturbation low-level heuristics. These categories describe current research trends.
However, the possibilities are open for the exploration of hybrid approaches. We
also considered an additional orthogonal criterion for classifying hyper-heuristics
with respect to the source of the feedback during the learning process, which can be
either one instance (online approaches) or many instances of the underlying problem
(offline approaches). Both online and offline approaches are potentially useful and
therefore worth investigating. Although having a reusable method will increase the
speed of solving new instances of problems, using online (or disposable) methods
can have other advantages. In particular, searching over a space of heuristics may be
more effective than directly searching the underlying problem space, as heuristics
may provide an advantageous search space structure. Moreover, in newly encoun-
tered problems there may not be a set of related instances on which to train off-line
hyper-heuristic methods.

Hyper-heuristic research lies at the interface between search methodologies and
machine learning methods. Machine learning is a well established artificial intelli-
gence sub-field with a wealth of proven tools. The exploration of these techniques
for automating the design of heuristics is only in its infancy. We foresee increasing
interest in these methodologies in the coming years.

References

1. S. Adriaensen, G. Ochoa, A. Nowé, A benchmark set extension and comparative study for
the hyflex framework, in IEEE Congress on Evolutionary Computation, CEC (2015), pp.
784–791

14 A Classification of Hyper-Heuristic Approaches: Revisited 473

2. F. Alanazi, P.K. Lehre, Limits to learning in reinforcement learning hyper-heuristics, in Eu-
ropean Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP.
Lecture Notes in Computer Science, vol. 9595 (2016), pp. 170–185

3. S. Asta, E. Özcan, A tensor-based selection hyper-heuristic for cross-domain heuristic search.
Inf. Sci. 299, 412–432 (2015)

4. S. Asta, E. Özcan, A.J. Parkes, CHAMP: creating heuristics via many parameters for online
bin packing. Exp. Syst. Appl. 63, 208–221 (2016)

5. M. Bader-El-Den, R. Poli, Generating SAT local-search heuristics using a GP hyper-heuristic
framework, in Artificial Evolution Conference, EA. Lecture Notes in Computer Science, vol.
4926 (2007), pp. 37–49

6. R. Bai, E.K. Burke, G. Kendall, Heuristic, meta-heuristic and hyper-heuristic approaches for
fresh produce inventory control and shelf space allocation. J. Oper. Res. Soc. 59(10), 1387–
1397 (2008)

7. R. Bai, J. Blazewicz, E.K. Burke, G. Kendall, B. McCollum, A simulated annealing hyper-
heuristic methodology for flexible decision support. 4OR Quart. J. Oper. Res. 10(1), 43–66
(2012)

8. R. Bai, E.K. Burke, G. Kendall, T. van Woensel, A new model and a hyper-heuristic approach
for two-dimensional shelf space allocation. 4OR Quart. J. Oper. Res. 11(1), 31–55 (2013)

9. B. Bilgin, E. Özcan, E.E. Korkmaz, An experimental study on hyper-heuristics and exam
timetabling, in Practice and Theory of Automated Timetabling, PATAT. Lecture Notes in
Computer Science, vol. 3867 (2007), pp. 394–412

10. J. Blazewicz, E.K. Burke, G. Kendall, W. Mruczkiewicz, C. Öguz, A. Swiercz, A hyper-
heuristic approach to sequencing by hybridization of DNA sequences. Ann. Oper. Res.
207(1), 27–41 (2013)

11. J. Branke, S. Nguyen, C. Pickardt, M. Zhang, Automated design of production scheduling
heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124 (2016)

12. E.K. Burke, J. Newall, Solving examination timetabling problems through adaptation of
heuristic orderings. Ann. Oper. Res. 129(1–4), 107–134 (2004)

13. E.K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg, Hyper-heuristics: an
emerging direction in modern search technology, in Handbook of Metaheuristics, ed. by
F. Glover, G. Kochenberger (Kluwer, Dordecht, 2003), pp. 457–474

14. E.K. Burke, G. Kendall, E. Soubeiga, A tabu-search hyperheuristic for timetabling and ros-
tering. J. Heuristics 9(6), 451–470 (2003)

15. E.K. Burke, S. Petrovic, R. Qu, Case based heuristic selection for timetabling problems. J.
Sched. 9(2), 115–132 (2006)

16. E.K. Burke, M.R. Hyde, G. Kendall, Evolving bin packing heuristics with genetic program-
ming, in Parallel Problem Solving from Nature, PPS. Lecture Notes in Computer Science,
vol. 4193 (2006), pp. 860–869

17. E.K. Burke, M.R. Hyde, G. Kendall, J. Woodward, Automatic heuristic generation with ge-
netic programming: evolving a jack-of-all-trades or a master of one, in Genetic and Evolu-
tionary Computation Conference, GECCO (2007), pp. 1559–1565

18. E.K. Burke, M.R. Hyde, G. Kendall, J.R. Woodward, The scalability of evolved on line bin
packing heuristics, in IEEE Congress on Evolutionary Computation, CEC (2007), pp. 2530–
2537

19. E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based hyper-heuristic for
educational timetabling problems. Eur. J. Oper. Res. 176(1), 177–192 (2007)

20. E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, J. Woodward, Exploring hyper-
heuristic methodologies with genetic programming, in Collaborative Computational Intelli-
gence, ed. by C. Mumford, L. Jain (Springer, Berlin, 2009), pp. 177–201

21. E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, J.R. Woodward, A Classification of
Hyper-Heuristic Approaches (Springer, Boston, 2010), pp. 449–468

22. E.K. Burke, M.R. Hyde, G. Kendall, J.R. Woodward, A genetic programming hyper-heuristic
approach for evolving 2-D strip packing heuristics. IEEE Trans. Evol. Comput. 14(6), 942–
958 (2010)

23. E.K. Burke, G. Kendall, M. Misir, E. Özcan, Monte Carlo hyper-heuristics for examination
timetabling. Ann. Oper. Res. 196(1), 73–90 (2012)

474 E. K. Burke et al.

24. E.K. Burke, M.R. Hyde, G. Kendall, Grammatical evolution of local search heuristics. IEEE
Trans. Evol. Comput. 16(3), 406–417 (2012)

25. E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, R. Qu, Hyper-
heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 695–1724 (2013)

26. A.W. Burnett, A.J. Parkes, Exploring the landscape of the space of heuristics for local search
in SAT, in IEEE Congress on Evolutionary Computation CEC (2017), pp. 2518–2525

27. K. Chakhlevitch, P.I. Cowling, Hyperheuristics: recent developments, in Adaptive and Mul-
tilevel Metaheuristics. Studies in Computational Intelligence, vol. 136 (Springer, Berlin,
2008), pp. 3–29

28. P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach for scheduling a sales sum-
mit, in Selected Papers of the Third International Conference on the Practice and Theory of
Automated Timetabling, PATAT 2000. Lecture Notes in Computer Science (2001)

29. P. Cowling, G. Kendall, L. Han, An investigation of a hyperheuristic genetic algorithm ap-
plied to a trainer scheduling problem, in IEEE Congress on Evolutionary Computation, CEC
(2002), pp. 1185–1190

30. W.B. Crowston, F. Glover, G.L. Thompson, J.D. Trawick, Probabilistic and parametric learn-
ing combinations of local job shop scheduling rules. ONR research memorandum, Carnegie-
Mellon University, Pittsburgh (1963)

31. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

32. J. Denzinger, M. Fuchs, M. Fuchs, High performance ATP systems by combining several
AI methods, in International Joint Conference on Artificial Intelligence IJCAI (1997), pp.
102–107

33. C. Dimopoulos, A.M.S. Zalzala, Investigating the use of genetic programming for a classic
one-machine scheduling problem. Adv. Eng. Softw. 32(6), 489–498 (2001)

34. K.A. Dowsland, E. Soubeiga, E.K. Burke, A simulated annealing hyper-heuristic for deter-
mining shipper sizes. Eur. J. Oper. Res. 179(3), 759–774 (2007)

35. A. Elyasaf, A. Hauptman, M. Sipper, Evolutionary design of freecell solvers. IEEE Trans.
Comput. Intell. AI Games 4(4), 270–281 (2012)

36. H.L. Fang, P. Ross, D. Corne, A promising genetic algorithm approach to job shop schedul-
ing, rescheduling, and open-shop scheduling problems, in International Conference on Ge-
netic Algorithms, ICGA (1993), pp. 375–382

37. H.L. Fang, P. Ross, D. Corne, A promising hybrid GA/heuristic approach for open-shop
scheduling problems, in European Conference on Artificial Intelligence, ECAI (1994)

38. H. Fisher, G.L. Thompson, Probabilistic learning combinations of local job-shop scheduling
rules, in Factory Scheduling Conference. Carnegie Institue of Technology (1961)

39. H. Fisher, G.L. Thompson, Probabilistic learning combinations of local job-shop scheduling
rules, in Industrial Scheduling, ed. by J.F. Muth, G.L. Thompson (Cengage Learning, Boston,
1963)

40. A.S. Fukunaga, Automated discovery of composite SAT variable selection heuristics, in
AAAI Conference on Artificial Intelligence (2002), pp. 641–648

41. A.S. Fukunaga, Evolving local search heuristics for SAT using genetic programming, in Ge-
netic and Evolutionary Computation, GECCO (2004), pp. 483–494

42. A.S. Fukunaga, Automated discovery of local search heuristics for satisfiability testing. Evol.
Comput. J. 16(1), 31–61 (2008)

43. P. Garrido, M.C. Riff, DVRP: a hard dynamic combinatorial optimisation problem tackled
by an evolutionary hyper-heuristic. J. Heuristics 16(6), 795–834 (2010)

44. C.D. Geiger, R. Uzsoy, H. Aytŭg, Rapid modeling and discovery of priority dispatching rules:
an autonomous learning approach. J. Sched. 9(1), 7–34 (2006)

45. J. Gratch, S. Chien, Adaptive problem-solving for large-scale scheduling problems: a case
study. J. Artif. Intell. Res. 4(1), 365–396 (1996)

46. J. Grobler, A.P. Engelbrecht, G. Kendall, V.S.S. Yadavalli, Heuristic space diversity control
for improved meta-hyper-heuristic performance. Inf. Sci. 300, 49–62 (2015)

47. P. Hansen, N. Mladenovic, Variable neighborhood search: principles and applications. Eur.
J. Oper. Res. 130(3), 449–467 (2001)

14 A Classification of Hyper-Heuristic Approaches: Revisited 475

48. E. Hart, K. Sim, A hyper-heuristic ensemble method for static job-shop scheduling. Evol.
Comput. J. 24(4), 609–635 (2016)

49. E. Hart, P. Ross, J.A.D. Nelson, Solving a real-world problem using an evolving heuristically
driven schedule builder. Evol. Comput. J. 6(1), 61–80 (1998)

50. J. He, F. He, H. Dong, Pure strategy or mixed strategy?, in European Conference on Evolu-
tionary Computation in Combinatorial Optimization, EvoCOP. Lecture Notes in Computer
Science, vol. 7245 (2012), pp. 218–229

51. Y. Jia, M.B. Cohen, M. Harman, J. Petke, Learning combinatorial interaction test generation
strategies using hyperheuristic search, in IEEE/ACM International Conference on Software
Engineering, ICSE (2015), pp. 540–550

52. R.E. Keller, R. Poli, Cost-benefit investigation of a genetic-programming hyperheuristic, in
Artificial Evolution Conference, EA. Lecture Notes in Computer Science, vol. 4926 (2007),
pp. 13–24

53. R.E. Keller, R. Poli, Linear genetic programming of parsimonious metaheuristics, in IEEE
Congress on Evolutionary Computation, CEC (2007), pp. 4508–4515

54. G. Kendall, J. Li, Competitive travelling salesmen problem: a hyper-heuristic approach. J.
Oper. Res. Soc. 64(2), 208–216 (2013)

55. R.H. Kibria, Y. Li, Optimizing the initialization of dynamic decision heuristics in DPLL
SAT solvers using genetic programming, in European Conference on Genetic Programming,
EuroGP. Lecture Notes in Computer Science, vol. 3905 (2006), pp. 331–340

56. N. Krasnogor, S. Maturana Gustafson, A study on the use of “self-generation” in memetic
algorithms. Nat. Comput. 3(1), 53–76 (2004)

57. P.K. Lehre, E. Özcan, A runtime analysis of simple hyper-heuristics: to mix or not to mix
operators, in Workshop on Foundations of Genetic Algorithms, FOGA XII (2013), pp. 97–
104

58. J. Li, G. Kendall, A hyper-heuristic methodology to generate adaptive strategies for games.
IEEE Trans. Comput. Intell. AI Games 9(1), 1–10 (2017)

59. W. Li, E. Özcan, R. John, Multi-objective evolutionary algorithms and hyper-heuristics for
wind farm layout optimisation. Renew. Energy 105, 473–482 (2017)

60. E. Lopez-Camacho, H. Terashima-Marin, P. Ross, G. Ochoa, A unified hyper-heuristic
framework for solving bin packing problems. Exp. Syst. Appl. 41(15), 6876–6889 (2014)

61. M. Maashi, G. Kendall, E. Özcan, Choice function based hyper-heuristics for multi-objective
optimization. Appl. Soft Comput. 28, 312–326 (2015)

62. J.G. Marin-Blazquez, S. Schulenburg, A hyper-heuristic framework with XCS: learning to
create novel problem-solving algorithms constructed from simpler algorithmic ingredients,
in Learning Classifier Systems. Lecture Notes in Computer Science, vol. 4399 (2007), pp.
193–218

63. J. Maturana, F. Lardeux, F. Saubion, Autonomous operator management for evolutionary
algorithms. J. Heuristics 16(6), 881–909 (2010)

64. J. Mockus, L. Mockus, Bayesian approach to global optimization and applications to multi-
objective constrained problems. J. Optim. Theory Appl. 70(1), 155–171 (1991)

65. A. Nareyek, Choosing search heuristics by non-stationary reinforcement learning, in Meta-
heuristics: Computer Decision-Making, ed. by M.G.C. Resende, J.P. de Sousa, Chap. 9
(Kluwer, Dordecht, 2003), pp. 523–544

66. G. Ochoa, M. Hyde, The cross-domain heuristic search challenge (CHeSC 2011) (2011).
http://www.asap.cs.nott.ac.uk/chesc2011/

67. G. Ochoa, R. Qu, E.K. Burke, Analyzing the landscape of a graph based hyper-heuristic
for timetabling problems, in Genetic and Evolutionary Computation Conference, GECCO
(2009), pp. 341–348

68. G. Ochoa, M. Hyde, T. Curtois, J.A. Vazquez-Rodriguez, J. Walker, M. Gendreau,
G. Kendall, A.J. Parkes, S. Petrovic, E.K. Burke, Hyflex: a benchmark framework for cross-
domain heuristic search, in European Conference on Evolutionary Computation in Combi-
natorial Optimization, EvoCOP. Lecture Notes in Computer Science, vol. 7245 (2012), pp.
136–147

http://www.asap.cs.nott.ac.uk/chesc2011/

476 E. K. Burke et al.

69. G. Ochoa, J. Walker, M. Hyde, T. Curtois, Adaptive evolutionary algorithms and extensions
to the hyflex hyper-heuristic framework, in Parallel Problem Solving from Nature, PPSN XI
(2012), pp. 418–427

70. M. Oltean, Evolving evolutionary algorithms using linear genetic programming. Evol. Com-
put. J. 13(3), 387–410 (2005)

71. E. Özcan, B. Bilgin, E.E. Korkmaz, Hill climbers and mutational heuristics in hyperheuris-
tics, in Parallel Problem Solving from Nature, PPSN. Lecture Notes in Computer Science,
vol. 4193 (2006), pp. 202–211

72. E. Özcan, B. Bilgin, E.E. Korkmaz, A comprehensive analysis of hyper-heuristics. Intell.
Data Anal. 12(1), 3–23 (2008)

73. E. Özcan, A.J. Parkes, Policy matrix evolution for generation of heuristics, in Genetic and
Evolutionary Computation, GECCO (2011), pp. 2011–2018

74. N. Pillay, A review of hyper-heuristics for educational timetabling. Ann. Oper. Res. 239(1),
3–38 (2016)

75. D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems. Comput. Oper. Res.
34(8), 2403–2435 (2007)

76. R. Qu, E.K. Burke, Hybridisations within a graph based hyper-heuristic framework for uni-
versity timetabling problems. J. Oper. Res. Soc. 60, 1273–1285 (2009)

77. S. Remde, P. Cowling, K. Dahal, N. Colledge, E. Selensky, An empirical study of hyper-
heuristics for managing very large sets of low level heuristics. J. Oper. Res. Soc. 63(3),
392–345 (2012)

78. S. Ropke, D. Pisinger, An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

79. P. Ross, Hyper-heuristics, in Search Methodologies: Introductory Tutorials in Optimization
and Decision Support Techniques, ed. by E.K. Burke, G. Kendall, Chap. 17 (Springer, Berlin,
2005), pp. 529–556

80. P. Ross, J.G. Marín-Blázquez, Constructive hyper-heuristics in class timetabling, in IEEE
Congress on Evolutionary Computation, CEC (2005), pp. 1493–1500

81. P. Ross, S. Schulenburg, J.G. Marin-Blazquez, E. Hart, Hyper-heuristics: learning to com-
bine simple heuristics in bin-packing problem, in Genetic and Evolutionary Computation
Conference, GECCO (2002), pp. 942–948

82. P. Ross, J.G. Marin-Blazquez, E. Hart, Hyper-heuristics applied to class and exam
timetabling problems, in IEEE Congress on Evolutionary Computation, CEC (2004), pp.
1691–1698

83. N.R. Sabar, G. Kendall, Population based Monte Carlo tree search hyper-heuristic for com-
binatorial optimization problems. Inf. Sci. 314, 225–239 (2015)

84. N.R. Sabar, M. Ayob, R. Qu, G. Kendall, A graph coloring constructive hyper-heuristic for
examination timetabling problems. Appl. Intell. 37(1), 1–11 (2012)

85. N.R. Sabar, M. Ayob, G. Kendall, R. Qu, Grammatical evolution hyper-heuristic for combi-
natorial optimization problems. IEEE Trans. Evol. Comput. 17(6), 840–861 (2013)

86. N.R. Sabar, M. Ayob, G. Kendall, R. Qu, Automatic design of hyper-heuristic framework
with gene expression programming for combinatorial optimization problems. IEEE Trans.
Evol. Comput. 19(3), 309–325 (2015)

87. N.R. Sabar, M. Ayob, G. Kendall, R. Qu, A dynamic multiarmed bandit-gene expression
programming hyper-heuristic for combinatorial optimization problems. IEEE Trans. Cybern.
45(2), 217–228 (2015)

88. K. Sim, E. Hart, A combined generative and selective hyper-heuristic for the vehicle routing
problem, in Genetic and Evolutionary Computation Conference, GECCO (2016), pp. 1093–
1100

89. K. Sim, E. Hart, B. Paechter, A lifelong learning hyper-heuristic method for bin packing.
Evol. Comput. J. 23(1), 37–67 (2015)

90. J.A. Soria-Alcaraz, G. Ochoa, J. Swan, M. Carpio, H. Puga, E.K. Burke, Effective learning
hyper-heuristics for the course timetabling problem. Eur. J. Oper. Res. 238(1), 7–86 (2014)

14 A Classification of Hyper-Heuristic Approaches: Revisited 477

91. J.A. Soria-Alcaraza, E. Özcan, J. Swan, G. Kendall, M. Carpio, Iterated local search using
an add and delete hyper-heuristic for university course timetabling. Appl. Soft Comput. 40,
581–593 (2016)

92. J.A. Soria-Alcaraz, G. Ochoa, M.A. Sotelo-Figeroa, E.K. Burke, A methodology for de-
termining an effective subset of heuristics in selection hyper-heuristics. Eur. J. Oper. Res.
260(3), 972–983 (2017)

93. A. Sosa-Ascencio, G. Ochoa, H. Terashima-Marin, S.E. Conant-Pablos, Grammar-based
generation of variable-selection heuristics for constraint satisfaction problems. Genet. Pro-
gram Evolvable Mach. 17(2), 119–144 (2016)

94. E. Soubeiga, Development and application of hyperheuristics to personnel scheduling. Ph.D.
Thesis, School of Computer Science and Information Technology, University of Nottingham,
2003

95. R.H. Storer, S.D. Wu, R. Vaccari, Problem and heuristic space search strategies for job shop
scheduling. ORSA J. Comput. 7(4), 453–467 (1995)

96. J. Swan, J.R. Woodward, E. Özcan, G. Kendall, E.K. Burke, Searching the hyper-heuristic
design space. Cogn. Comput. 6(1), 66–73 (2014)

97. J.C. Tay, N.B. Ho, Evolving dispatching rules using genetic programming for solving multi-
objective flexible job-shop problems. Comput. Ind. Eng. 54(3), 453–473 (2008)

98. H. Terashima-Marin, P. Ross, M. Valenzuela-Rendon, Evolution of constraint satisfaction
strategies in examination timetabling, in Genetic and Evolutionary Computation Conference,
GECCO (1999), pp. 635–642

99. H. Terashima-Marin, E.J. Flores-Alvarez, P. Ross, Hyper-heuristics and classifier systems
for solving 2D-regular cutting stock problems, in Genetic and Evolutionary Computation
Conference, GECCO (2005), pp. 637–643

100. H. Terashima-Marin, A. Moran-Saavedra, P. Ross, Forming hyper-heuristics with GAs when
solving 2D-regular cutting stock problems, in IEEE Congress on Evolutionary Computation,
CEC, vol. 2 (2005), pp. 1104–1110

101. J.A. Vazquez-Rodriguez, S. Petrovic, A. Salhi, A combined meta-heuristic with hyper-
heuristic approach to the scheduling of the hybrid flow shop with sequence dependent setup
times and uniform machines, in Multidisciplinary International Scheduling Conference: The-
ory and Applications, MISTA (2007), pp. 506–513

102. J.A. Vrugt, B.A. Robinson, Improved evolutionary optimization from genetically adaptive
multimethod search. Proc. Natl. Acad. Sci. 104(3), 708–711 (2007)

103. X. Wu, P.A. Consoli, L.L. Minku, G. Ochoa, X. Yao, An evolutionary hyper-heuristic for the
software project scheduling problem, in Parallel Problem Solving from Nature, PPSN XIV
(2016), pp. 37–47

104. K.Z. Zamil, F. Din, G. Kendall, B.S. Ahmed, An experimental study of hyper-heuristic selec-
tion and acceptance mechanism for combinatorial t-way test suite generation. Inf. Sci. 399,
121–153 (2017)

Chapter 15
Reactive Search Optimization: Learning
While Optimizing

Roberto Battiti, Mauro Brunato, and Andrea Mariello

Abstract Reactive Search Optimization (RSO) advocates the integration of sub-
symbolic machine learning techniques into search heuristics for solving complex
optimization problems. The word reactive hints at a ready response to events during
the search through an internal online feedback loop for the self-tuning of critical pa-
rameters. Methodologies of interest include prohibition-based methods, reactions on
the neighborhood, the annealing schedule or the objective function, and reactions in
population-based methods. This chapter describes different strategies that have been
introduced in the literature as well as several applications to classic combinatorial
tasks, continuous optimization and real-world problems.

15.1 Introduction

The final purpose of Reactive Search Optimization (RSO) is to simplify the life for
the final user of optimization. While researchers enjoy designing algorithms, testing
alternatives, tuning parameters and choosing solution schemes—in fact this is part
of their daily life—the final users’ interests are different: solving a problem in the
most effective way without requiring a costly adaptation and learning curve.

Reactive Search Optimization has to do with learning for optimizing, with the in-
sertion of a machine learning component into a solution process so that algorithm se-

R. Battiti (�) · M. Brunato · A. Mariello
LION Lab, University of Trento, Trento, Italy
e-mail: roberto.battiti@unitn.it; mauro.brunato@unitn.it; andrea.mariello@unitn.it

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_15

479

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_15&domain=pdf
mailto:roberto.battiti@unitn.it
mailto:mauro.brunato@unitn.it
mailto:andrea.mariello@unitn.it
https://doi.org/10.1007/978-3-319-91086-4_15

480 R. Battiti et al.

lection, adaptation, integration, are done in an automated way, and a comprehensive
solution is delivered to the final user. The interaction with the final user is simplified
and made human: no complex technical questions are asked about parameters, but
the focus is kept on the problem’s detailed characteristics and user preferences. In
fact, the user wants to maintain control of the problem definition, including hard and
soft constraints, preferences, weights. This is the part which cannot be automated,
while the user is happy to delegate issues related to algorithm choices and tuning.

Apart from the above concrete issues related to the final user, Reactive Search
Optimization also addresses a scientific issue related to the reproducibility of results
and to the objective evaluation of methods. In fact, if an intelligent user is actively
in the loop between a parametric algorithm and the solution of a problem, judging
about an algorithm in isolation from its user—in some cases its creator—becomes
difficult if not impossible. Are the obtained results a merit of the algorithm or a
merit of its intelligent user? In some cases, the latter holds, which explains why
even some naïve and simplistic techniques can obtain results of interest if adopted
by a motivated person, not to say by a researcher in love with his pet algorithm and
under pressure to get something published.

Now that the long-term vision is given, we can provide a more detailed definition.

Reactive Search Optimization (RSO) advocates the integration of machine
learning techniques into search heuristics for solving complex optimization
problems. The word reactive hints at a ready response to events while alter-
native solutions are tested, through an internal online feedback loop for the
self-tuning of critical parameters. Its strength lies in the introduction of high-
level skills often associated to the human brain, such as learning from the past
experience, learning on the job, rapid analysis of alternatives, ability to cope
with incomplete information, quick adaptation to new situations and events.

If one considers the dictionary definition of reactive, see the box below, the
“ready response to some treatment, situation, or stimulus” is the part of interest
to us. The contrary in our context is: inactive, inert, unresponsive. For sure, its con-
trary is not proactive! In fact, when the level of automation increases, the final user
wins, but the work becomes much more challenging for the researcher: he must
be fully proactive to anticipate the different adaptation needs of a Reactive Search
Optimization algorithm.

15 Reactive Search Optimization: Learning While Optimizing 481

re·ac·tive
1 of, relating to, or marked by reaction or reactance
2 a: readily responsive to a stimulus b: occurring as a result of stress or emotional
upset

re·ac·tion
1 a: the act or process or an instance of reacting b: resistance or opposition to a
force, influence, or movement . . .
2 a response to some treatment, situation, or stimulus . . .
3 bodily response to or activity aroused by a stimulus: a: an action induced by vital
resistance to another action . . .
4 the force that a body subjected to the action of a force from another body exerts in
the opposite direction
5 a (1): chemical transformation or change: the interaction of chemical entities (2):
the state resulting from such a reaction b: a process involving change in atomic
nuclei

(derived from: Merriam-Webster online dictionary)

Before dwelling on the technical details, we briefly mention some relevant char-
acteristics of Reactive Search Optimization when applied in the context of local-
search based processes.

Learning on the job Real-world problems have a rich structure. While many al-
ternative solutions are tested in the exploration of a search space, patterns and
regularities appear. The human brain quickly learns and drives future decisions
based on previous observations. This is the main inspiration source for inserting
online machine learning techniques into the optimization engine of RSO.

Rapid generation and analysis of many alternatives Often, to solve a problem
one searches among a large number of alternatives, each requiring the analysis
of what-if scenarios. The search speed is improved if alternatives are generated
in a strategic manner, so that different solutions are chained along a trajectory in
the search space exploring wide areas and rapidly exploiting the most promising
solutions.

Flexible decision support Crucial decisions depend on several factors and prior-
ities which are not always easy to describe before starting the solution process.
Feedback from the user in the preliminary exploration phase can be incorporated
so that a better tuning of the final solutions takes the end user preferences into
account.

Diversity of solutions The final decision is up to the user, not the machine. The
reason is that not all qualitative factors of a problem can be encoded into a com-
puter program. Having a set of diverse near-best alternatives is often a crucial
asset for the decision maker.

482 R. Battiti et al.

Anytime solutions The user decides when to stop searching. A first complete
solution is generated rapidly, then better and better ones are produced in the
following search phases. The more the program runs, the higher the probability
to identify excellent solutions.

Methodologies of interest for Reactive Search Optimization include machine
learning and statistics, in particular neural networks, artificial intelligence, rein-
forcement learning, active or query learning.

When one considers the source of information that is used for the algorithm
selection and tuning process, it is important to stress that there are at least three
different alternatives:

1. Problem-dependent information. This is related to characteristics of the spe-
cific problem. For example, a local search scheme for the Traveling Salesman
Problem needs a different neighborhood definition than a network partitioning
problem.

2. Task-dependent information. A single problem consists of a set of instances or
tasks with characteristics which can be radically different. For example, a Trav-
eling Salesman task for delivering pizza among a set locations in Los Angeles
can be very different from a pizza delivery task in Trento, a small and pleasant
town in the Alps.

3. Local properties in configuration space. When one considers a local search
scheme based on perturbation, one builds a trajectory in configuration space
given by successive sample points generated by selecting and applying the lo-
cal moves. In poetic terms, one travels along a fitness surface with peaks and
valleys which can vary a lot during the trip. For example, the size and depth of
the attractors around local minimizers can vary from a reasonably flat surface,
to one characterized by deep wells. If a scheme for escaping local minimizers
is adapted also to the local characteristics, better results can be expected.

Now, the first alternative is the typical source of information for off-line algo-
rithm selection and parameter tuning, while the last two are the starting point for
the on-line schemes of RSO, where parameters are dynamically tuned based on the
current optimization state and previous history of the search process while working
on a specific instance.

These methods can be applied to any optimization scenario and can be seen as a
subset of a more extended area of research called Learning and Intelligent Optimiza-
tioN (LION). This includes online and off-line schemes based on the use of memory,
adaptation, incremental development of models, experimental algorithmics applied
to intelligent tuning and design of optimization algorithms.

Within LION, the RSO approach of learning on the job is orthogonal to off-
line parameter tuning. For example, in [90, 91] methods are proposed to predict
per-instance and per-parameter run-times with reasonable accuracy. These predic-

15 Reactive Search Optimization: Learning While Optimizing 483

tive models are then used to predict which parameter settings result in the lowest
run-time for a given instance, thus automatically tuning the parameter values of a
stochastic local search (SLS) algorithm on a per-instance basis by simply picking the
parameter configuration that is predicted to yield the lowest run-time. An iterated
local search (ILS) algorithm for the algorithm configuration problem is proposed
in [92]. The approach works for both deterministic and randomized algorithms, and
it can be applied regardless of the tuning scenario and optimization objective.

On-line and off-line strategies are complementary: in fact, even RSO methods
tend to have a number of parameters that remain fixed during the search and can
hence be tuned by off-line approaches.

The remainder of this chapter is organized as follows. First the different oppor-
tunities for RSO strategies are listed and briefly commented. Section 15.2 describes
different RSO schemes that have been introduced in the literature. A much more ex-
tended presentation can be found in [12, 31]. Then sample applications of Reactive
Search Optimization principles are illustrated in Sect. 15.3.

15.2 Different Reaction Possibilities

Several superficially different techniques for diversifying the search in a responsive
manner, according to the RSO principles of learning while optimizing, have design
principles that are strongly related. The unifying principle is that of using online
reactive learning schemes to increase the robustness and to permit more hands-off
usage of software for optimization.

For brevity we concentrate this review chapter on reactive techniques applied
to single local search streams. However, other possible strategies include methods
related to using more than one search stream, a.k.a. population-based methods, ge-
netic algorithms and evolutionary techniques, and they are briefly mentioned at the
end of this section.

15.2.1 Reactive Prohibitions

It is part of common sense that the discovery of radically new solutions, which
is associated with real creativity, demands departing from the usual way of doing
things, avoiding known solutions. The popular concepts of “lateral thinking” and
“thinking outside the box” are related to shifting the point of view, observing an old
problem with new eyes, discarding pet hypotheses.

484 R. Battiti et al.

Techniques that apply lateral thinking to problems are characterized by the
shifting of thinking patterns, away from entrenched or predictable thinking to
new or unexpected ideas. A new idea that is the result of lateral thinking is
not always a helpful one, but when a good idea is discovered in this way it is
usually obvious in hindsight, which is a feature lateral thinking shares with a
joke.

There are a number of mental tools or methods that can be used to bring
about lateral thinking. These include the following:

. . .
Provocation: Declare the usual perception out of bounds, or provide some

provocative alternative to the usual situation under consideration. . . .
As an example, see the provocation on cars having square wheels.
Challenge: Simply challenge the way things have always been done or

seen, or the way they are. This is done not to show there is anything wrong
with the existing situation but simply to direct your perceptions to exploring
outside the current area.

For example, you could challenge coffee cups being produced with a han-
dle. There is nothing wrong with coffee cups having handles so the challenge
is a direction to explore without defending the status quo. The reason for the
handle seems to be that the cup is often too hot to hold directly. Perhaps coffee
cups could be made with insulated finger grips . . .

There are many other techniques . . . All these tools are practical matters for
circumstances where our normal automatic perceptions and pattern matching
tend to keep us trapped “within the box”.

(derived from Wikipedia “lateral thinking” voice, Feb 2017)

When one reflects about the above connections, it is not surprising to see ideas re-
lated to using “prohibitions” to encourage diversification and exploration (the tech-
nical terms for true creativity in the context of optimization heuristics) in different
contexts and different times. For example, they can be found in the denial strategy
of [140]: once common features are detected in many suboptimal solutions, they are
forbidden.

The full blossoming of “intelligent prohibition-based heuristics” starting from
the late eighties is greatly due to the role of F. Glover in the proposal and diffusion
of a rich variety of meta-heuristic tools under the umbrella of Tabu Search (TS) [78,
79], but see also [83] for an independent seminal paper. It is evident that Glover’s
ideas have been a source of inspiration for many approaches based on the intelligent
use of memory in heuristics.

The main competitive advantage of TS with respect to alternative heuristics based
on local search like Simulated Annealing (SA) lies in the intelligent use of the past
history of the search to influence its future steps. Because TS includes now a wide
variety of methods, we prefer the term prohibition-based search when the investi-
gation is focused on the use of prohibition to encourage diversification.

15 Reactive Search Optimization: Learning While Optimizing 485

Let us assume that the feasible search space is the set of binary strings with
a given length L: X = {0,1}L. X (t) is the current configuration and N(X (t)) the
set of its neighbors, i.e., configurations that can be explored in the following step
(Sect. 15.2.2 is mainly focused on neighborhoods). In prohibition-based search
some of the neighbors are prohibited, and a subset NA(X (t)) ⊂ N(X (t)) contains
the allowed ones. The general way of generating the search trajectory is given by:

X (t+1) = BEST-NEIGHBOR(NA(X
(t))) (15.1)

NA(X
(t+1)) = ALLOW(N(X (t+1)),X (0), . . . ,X (t+1)) (15.2)

The set-valued function ALLOW selects a subset of N(X (t+1)) in a manner that de-
pends on the entire search trajectory X (0), . . . ,X (t+1).

By analogy with the concept of abstract data type in Computer Science [2], and
with the related object-oriented software engineering framework [56], it is useful
to separate the abstract concepts and operations of TS from the detailed implemen-
tation, i.e., realization with specific data structures. In other words, policies (that
determine which trajectory is generated in the search space, what the balance of in-
tensification and diversification is, etc.) should be separated from mechanisms that
determine how a specific policy is realized.
A first classification is between strict-TS policies, which prohibit only the moves
leading back to previously visited configurations, and fixed-TS policies, which pro-
hibit only the inverse of moves which have been applied recently in the search,
their recency being judged according to a prohibition parameter T , also called tabu
tenure.

Let μ−1 denote the inverse of a move. For example, if μi is changing the i-
th bit of a binary string from 0 to 1, μi

−1 changes the same bit from 1 to 0. A
neighbor is allowed if and only if it is obtained from the current point by applying
a move such that its inverse has not been used during the last T iterations. In detail,
if LASTUSED(μ) is the last usage time of move μ (LASTUSED(μ) = −∞ at the
beginning):

NA(X
(t)) = {X = μ ◦X (t) s. t. LASTUSED(μ−1)< (t −T)} (15.3)

If T changes with the iteration counter depending on the search status, and in
this case the notation is T (t), the general dynamical system that generates the search
trajectory comprises an additional evolution equation for T (t):

T (t) = REACT(T (t−1),X (0), . . . ,X (t)) (15.4)

NA(X
(t)) = {X = μ ◦X (t) s. t. LASTUSED(μ−1)< (t −T (t))} (15.5)

X (t+1) = BEST-NEIGHBOR(NA(X
(t))) (15.6)

Rules to determine the prohibition parameter by reacting to the repetition of
previously-visited configurations have been proposed in [20] (reactive-TS, RTS for
short). In addition, there are situations where the single reactive mechanism on T
is not sufficient to avoid long cycles in the search trajectory and therefore a second
reaction is needed [20].

486 R. Battiti et al.

The prohibition parameter T used in Eq. (15.3) is related to the amount of di-
versification: the larger T , the longer the distance that the search trajectory must go
before it is allowed to come back to a previously visited point. In particular, the
following relationships between prohibition and diversification are demonstrated
in [10] for a search space consisting of binary strings with basic moves flipping
individual bits:

• The Hamming distance H between a starting point and successive points along
the trajectory is strictly increasing for T +1 steps.

H(X (t+Δ t),X (t)) = Δ t for Δ t ≤ T +1

• The minimum repetition interval R along the trajectory is 2(T +1).

X (t+R) = X (t) ⇒ R ≥ 2(T +1)

In general, because a larger prohibition value implies a more limited choice of
moves, it makes sense to set T to the smallest value that guarantees a sufficient
degree of diversification.

In reactive-TS [20] the prohibition T is determined through feedback (i.e., reac-
tive) mechanisms during the search. T is equal to one at the beginning (the inverse
of a given move is prohibited only at the next step), it increases only when there is
evidence that diversification is needed, it decreases when this evidence disappears.
The evidence that diversification is needed is signaled by the repetition of previ-
ously visited configurations. This criterion needs to be generalized when the search
space dimension becomes very large, so that the exact repetition of configurations
can become very rare even if the trajectory is confined. In this case, one can monitor
an appropriate distance measure from a given starting configuration. An insufficient
growth of the distance as a function of the number of steps can be taken as evidence
of confinement, see for example [15].

A more radical escape mechanism can be triggered when the basic prohibition
mechanism is not sufficient to guarantee diversification. In [20] the escape (a num-
ber of random steps) is triggered when too many configurations are repeated too
often. Further details about applications, implementation and data structures can be
found in [31].

A reactive determination of the T value can change the process of escaping from
a local minimum in a qualitative manner: one obtains an (optimistic) logarithmic
increase in the strict-TS policy, and a (pessimistic) increase that behaves like the
square root of the number of iterations in the reactive case [31].

Robust stochastic algorithms related to the previously described deterministic
versions can be obtained in many ways. For example, prohibition rules can be sub-
stituted with probabilistic generation-acceptance rules with large probability for al-
lowed moves, small for prohibited ones, see for example the probabilistic-TS [78].
Asymptotic results for TS can be obtained in probabilistic TS [64]. In a different
proposal (robust-TS) the prohibition parameter is randomly changed between an
upper and a lower bound during the search [141].

15 Reactive Search Optimization: Learning While Optimizing 487

Finally, other possibilities which are softer than prohibitions exist. For example,
in the context of boolean satisfiability problems (see Sect. 15.2.4), the HSAT [77]
variation of the GSAT algorithm introduces a tie-breaking rule: if more than one
move produces the same (best) Δ f , the preferred move is the one that has not been
applied for the longest span. This can be seen as a “soft” version of Tabu Search:
while TS prohibits recently-applied moves, HSAT discourages recent moves if the
same Δ f can be obtained with moves that have been “inactive” for a longer time.

15.2.2 Reacting on the Neighborhood

Local search based on perturbing a candidate solution is a first paradigmatic case
where simple online adaptation and learning strategies can be applied. Let X be
the search space, X (t) the current solution at iteration (“time”) t and N(X (t)) the
neighborhood of point X (t), obtained by applying a set of basic moves μ0,μ1, . . . ,μM

to the current configuration:

N(X (t)) = {X ∈X s.t. X = μi(X
(t)), i = 0, . . . ,M}

Local search starts from an admissible configuration X (0) and builds a search
trajectory X (0), . . . ,X (t+1). The successor of the current point is a point in the neigh-
borhood with a lower value of the function f to be minimized. If no neighbor has
this property, i.e., if the configuration is a local minimizer, the search stops.

Y ← IMPROVING-NEIGHBOR(N(X (t))) (15.7)

X (t+1) =

{
Y if f (Y)< f (X (t))

X (t) otherwise (search stops)
(15.8)

IMPROVING-NEIGHBOR returns an improving element in the neighborhood. In a
simple case this is the element with the lowest f value, but other possibilities exist,
as we will see in what follows.

Online learning strategies can be applied in two contexts: selection of the neigh-
bor or selection of the neighborhood. While these strategies are part of the standard
bag of tools, they in fact can be seen as simple forms of reaction to the recent history
of evaluations.

When the neighborhood is fixed, one can modify the unresponsive strategy which
considers all neighbors before selecting one of the best moves (best-improvement
local search) and obtain a very simple reactive strategy like FIRSTMOVE. FIRST-
MOVE accepts the first improving neighbor if one is found before examining all
candidates. The simple adaptation is clear: the exact number of neighbors evaluated
before deciding the next move depends not only on the instance but on the particular
local properties in the configuration space around the current point. On the average,
less neighbors will need to be evaluated at the beginning of the search, when finding
an improving move is simple, more neighbors when the trajectory goes deeper and
deeper into a given local minimum attractor.

488 R. Battiti et al.

When the neighborhood is changed depending on the local configuration one
obtains for example the Variable Neighborhood Search (VNS) [82]. VNS considers
a set of neighborhoods, defined a priori at the beginning of the search, and then uses
the most appropriate one during the search.

1. function VariableNeighborhoodDescent (N1, . . . ,Nkmax)
2. repeat until no improvement or max CPU time elapsed
3. k ← 1 // index of the default neighborhood
4. while k ≤ kmax:
5. X ′ ← BestNeighbor (Nk(X)) // neighborhood exploration
6. if f (X ′)< f (X)
7. X ← X ′ ; k ← 1 // success: back to default neighborhood
8. else
9. k ← k+1 // try with the following neighborhood

Fig. 15.1 The VND routine. Neighborhoods with higher numbers are considered only if the default
neighborhood fails and only until an improving move is identified. X is the current point

Variable Neighborhood Descent (VND) [84], see Fig. 15.1, uses the default
neighborhood first, and the ones with a higher number only if the default neigh-
borhood fails (i.e., the current point is a local minimum for N1), and only until
an improving move is identified, after which it reverts back to N1. When VND is
coupled with an ordering of the neighborhoods according to the strength of the per-
turbation, one realizes the principle use the minimum strength perturbation leading
to an improved solution, which is present also in more advanced RSO methods.
The consideration of neighborhoods of increasing diameter (distance of its mem-
bers w.r.t. the starting configuration) can be considered as a form of diversification.
A strong similarity with the design principle of Reactive Tabu Search is present, see
later in this chapter, where diversification through prohibitions is activated when
there is evidence of entrapment in an attraction basin and gradually reduced when
there is evidence that a new basin has been discovered.

An explicitly reactive-VNS is considered in [37] for the Vehicle Routing Prob-
lem with Time Windows (VRPTW), where a construction heuristic is combined
with VND using first-improvement local search. Furthermore, the objective func-
tion used by the local search operators is modified to consider the waiting time to
escape from a local minimum. A preliminary investigation about a self-adaptive
neighborhood ordering for VND is presented in [88]. The different neighborhoods
are ranked according to their observed benefits in the past.

We also note some similarities between VNS and the adaptation of the search
region in stochastic search techniques for continuous optimization, see the discus-
sion later in this chapter. Neighborhood adaptation in the continuous case, see for
example the Affine Shaker algorithm in [19], is mainly considered to speed-up con-
vergence to a local minimizer, not to jump to nearby valleys.

A related approach that causes a more radical move when simple ones are not
sufficient to escape from a local minimum is iterated local search (ILS). ILS is
based on building a sequence of locally optimal solutions by perturbing the current

15 Reactive Search Optimization: Learning While Optimizing 489

local minimum and applying local search after starting from the modified solution.
An application of this technique to biclustering of gene expression data is proposed
in [145]. The problem consists in identifying the largest network of collaborating
genes and a subset of experimental conditions which activate the specific network
under the constraint that the lack of coherence of the network (the residue) is below a
threshold. This cannot be done by using traditional clustering methods because one
cannot use normal geometric similarities. Significantly better results are achieved
by repeating local search on a pool of biclusters, where each move defines a new
tentative solution by replacing, deleting and adding a subset of nodes to the cur-
rent configuration. The main idea is that while one keeps the volume of a bicluster
fixed, the local search tries to reduce the residue, and when the residue is below
the required threshold, one tries to increase the volume. The work about large-step
Markov chain of [109–111, 146] also contains very interesting results coupled with
a clear description of the principles.

In VNS minimal perturbations maintain the trajectory in the starting attraction
basin, while excessive ones bring the method closer to a random sampling, there-
fore loosing the boost which can be obtained by the problem structural properties.
A possible solution consists of perturbing by a short random walk whose length is
adapted by statistically monitoring the progress in the search. Memory and reactive
learning can be used in a way similar to [15] to adapt the strength of the perturbation
to the local characteristics in the neighborhood of the current solution for the con-
sidered instance. Creative perturbations can be obtained by temporarily changing
the objective function with penalties so that the current local minimum is displaced,
like in [33, 52], see also the later description about reactively changing the objective
function, or by fixing some configuration variables and optimizing sub-parts of the
problem [106]. Incremental neighborhood evaluation and first-improving strategies
have also been recently used to accelerate stochastic local search for training neural
networks [40, 42]. In these papers, a Binary Learning Machine (BLM) is proposed
that uses the Gray encoding of each weight and acts by changing individual bits and
by picking improving moves.

15.2.3 Reacting on the Annealing Schedule

A widely popular stochastic local search technique is the Simulated Annealing (SA)
method [102] based on the theory of Markov processes. The trajectory is built in a
randomized manner: the successor of the current point is chosen stochastically, with
a probability that depends only on the difference in f value w.r.t. the current point
and not on the previous history.

Y ← RANDOM-NEIGHBOR(N(X (t)))

490 R. Battiti et al.

X (t+1) ←

⎧⎪⎨
⎪⎩

Y if f (Y)≤ f (X (t))

Y if f (Y)> f (X (t)), with probability p=e−(f (Y)− f (X (t)))/T

X (t) if f (Y)> f (X (t)), with probability (1−p).

(15.9)

SA introduces a temperature parameter T which determines the probability that
worsening moves are accepted: a larger T implies that more worsening moves
tend to be accepted, and therefore a larger diversification occurs. An analogy with
energy-minimization principles in physics is present, and this explains the “temper-
ature term”, as well as the term “energy” to refer to the function f .

If the local configuration is close to a local minimizer and the temperature is
already very small in comparison to the upward jump which has to be executed to
escape from the attractor, the system will eventually escape, but an enormous num-
ber of iterations can be spent around the attractor. The memory-less property (cur-
rent move depending only on the current state, not on the previous history) makes
SA look like a dumb animal indeed. It is intuitive that a better performance can be
obtained by using memory, by self-analyzing the evolution of the search, by devel-
oping simple models and by activating more direct escape strategies aiming at a
better usage of the computational resources devoted to optimization.

Even if a vanilla version of a cooling schedule for SA is adopted (starting temper-
ature Tstart, geometric cooling schedule Tt+1 = α Tt , with α < 1, final temperature
Tend), a sensible choice has to be made for the three involved parameters Tstart, α , and
Tend. The work [150] suggests estimating the distribution of f values. The standard
deviation of the energy distribution defines the maximum-temperature scale, while
the minimum change in energy defines the minimum-temperature scale. These tem-
perature scales tell us where to begin and end an annealing schedule.

The analogy with physics is further pursued in [103], where concepts related to
phase transitions and specific heat are used. The idea is that a phase transition is
related to solving a sub-part of a problem. After a phase transition corresponding to
a big reconfiguration occurs, finer details in the solution have to be fixed, and this
requires a slower decrease of the temperature.

When the parameters Tstart and α are fixed a priori, the useful span of CPU time
is practically limited. After the initial period the temperature will be so low that the
system freezes, and, with large probability, no tentative moves will be accepted any-
more in the remaining CPU time of the run. For a new instance, guessing appropriate
parameter values is difficult. Furthermore, in many cases one would like to use an
anytime algorithm, so that longer allocated CPU times are related to possibly better
and better values until the user decides to stop. Non-monotonic cooling schedules
are a reactive solution to this difficulty, see [1, 53, 121]. The work in [53] suggests
to reset the temperature once and for all at a constant temperature high enough to
escape local minima but also low enough to visit them, for example, at the tem-
perature Tfound at which the best heuristic solution was found in a preliminary SA
simulation.

15 Reactive Search Optimization: Learning While Optimizing 491

A non-monotonic schedule aims at: exploiting an attraction basin rapidly by de-
creasing the temperature so that the system can settle down close to the local mini-
mizer, increasing the temperature to diversify the solution and visit other attraction
basins, decreasing again after reaching a different basin. The implementation details
have to do with identifying an entrapment situation, for example when no move
is accepted after a sequence tmax of tentative changes, and with determining the
detailed temperature decrease-increase evolution as a function of events occurring
during the search [1, 121]. Enhanced versions involve a learning process to choose a
proper value of the heating factor depending on the system state. We note that sim-
ilar “strategic oscillations” have been proposed in tabu search, in particular in the
reactive tabu search of [20], see later in this chapter, and in variable neighborhood
search.

Modifications departing from the exponential acceptance rule and other adap-
tive stochastic local search methods for combinatorial optimization are considered
in [116, 117]. The authors appropriately note that the optimal choices of algorithm
parameters depend not only on the problem but also on the particular instance and
that a proof of convergence to a globally optimum is not a selling point for a spe-
cific heuristic: in fact a simple random sampling, or even exhaustive enumeration (if
the set of configurations is finite) will eventually find the optimal solution, although
they are not the best algorithms to suggest. A simple adaptive technique is suggested
in [117]: a perturbation leading to a worsening solution is accepted if and only if a
fixed number of trials could not find an improving perturbation. The temperature pa-
rameter is eliminated. The positive performance of the method in the area of design
automation suggests that the success of SA is “due largely to its acceptance of bad
perturbations to escape from local minima rather than to some mystical connection
between combinatorial problems and the annealing of metals.”

“Cybernetic” optimization is proposed in [69] as a way to use probabilistic in-
formation for feedback during a run of SA. The idea is to consider more runs of
SA that are executed in parallel to intensify the search (by lowering the tempera-
ture parameter) when there is evidence that the search is converging to the optimum
value.

The application of SA to continuous optimization (optimization of functions de-
fined on real variables) was pioneered by [55]. The basic method is to generate a new
point with a random step along a direction eh, to evaluate the function and to accept
the move with the exponential acceptance rule. One cycles over the different direc-
tions eh during successive steps of the algorithm. A first critical choice has to do with
the range of the random step along the chosen direction. A fixed choice obviously
may be very inefficient: this opens a first possibility for learning from the local f
surface. In particular a new trial point x′ is obtained from the current point x as:

x′ = x+ RAND(−1,1)vheh

where RAND(−1,1) returns a random number uniformly distributed between −1
and 1, eh is the unit-length vector representing the direction h, and vh is the step-
range parameter in dimension h. The vh value is adapted during the search to

492 R. Battiti et al.

maintain the number of accepted moves at about one-half of the total number of
tried moves. Although the implementation is already reactive and based on memory,
the authors encourage more work so that a “good monitoring of the minimization
process” can deliver precious feedback about some crucial internal parameters of
the algorithm.

In Adaptive Simulated Annealing (ASA), also known as very fast simulated re-
annealing [93], the parameters that control the temperature cooling schedule and the
random step selection are automatically adjusted according to algorithm progress.
If the state is represented as a point in a box and the moves as an oval cloud around
it, the temperature and the step size are adjusted so that all of the search space
is sampled at a coarse resolution in the early stages, while the state is directed to
promising areas in the later stages.

A reactive determination of parameters in an advanced simulated annealing ap-
plication for protein folding is presented in [85].

In [95] ASA is combined with genetic algorithms (GA) for system identification
problems, where one develops mathematical models of a physical system and es-
timates optimal parameter values by experimental means. The proposed algorithm
(ASAGA) exploits the ability of probabilistic hill-climbing of SA by defining a mu-
tation operator based on ASA, thus improving the efficiency of the global search
provided by the GA.

15.2.4 Reacting on the Objective Function

In the above methods, the objective function f remains the guiding source of in-
formation to select the next move. Reactive diversification to encourage exploration
of areas which are distant from a locally optimal configuration has been considered
through an adaptive selection of the neighborhood or the neighbor, based on the lo-
cal situation and the past history of the search process. A more direct way to force
diversification is to directly prohibit configurations or moves to create a pressure to
reach adequate distances from a starting point.

This part considers a different way to achieve similar results, by reactively chang-
ing the function guiding the local search. For example, visiting a local minimum
may cause a local increase of the evaluation function value so that the point be-
comes less and less appealing, until eventually the trajectory is gently pushed to
other areas. Of course, the real objective function values and the corresponding con-
figurations are saved into memory before applying the modification process. The
physics analogy is that of pushing a ball out of a valley by progressively raising the
bottom of the valley.

A relevant problem for which objective function modifications have been ex-
tensively used is maximum satisfiability (MAX-SAT): the input consists of logic
variables—with false and true values—and the objective is to satisfy the maximum
number of clauses (a clause is the logical OR of literals, a literal is a variable or
its negation). The decision version is called SAT, where one searches for a variable
assignment, if any exists, which makes a formula true.

15 Reactive Search Optimization: Learning While Optimizing 493

The influential algorithm GSAT [134] is based on local search with the standard
basic moves flipping the individual variables (from false to true and vice versa).
Different noise strategies to escape from locally optimal configurations are added
to GSAT in [135, 136]. In particular, the GSAT-with-walk algorithm introduces ran-
dom walk moves with a certain probability. A prototypical algorithm for modifying
the evaluation function is the breakout method proposed in [114] for the related
constraint satisfaction problem. The cost is measured as the sum of the weights
associated with the violated constraints. Each weight is one at the beginning, at a
local minimum the weight of each violated constraint is increased by one until one
escapes from the given local minimum (a breakout occurs). Clause-weighting has
been proposed in [133] for GSAT. A positive weight is associated with each clause to
determine how often the clause should be counted when determining which variable
to flip. The weights are dynamically modified during problem solving and the qual-
itative effect is that of “filling in” local optima while the search proceeds. Clause-
weighting and the breakout technique can be considered as “reactive” techniques
where a repulsion from a given local optimum is generated in order to induce an
escape from a given attraction basin.

New clause-weighing parameters are introduced and therefore new possibilities
for tuning the parameters based on feedback from preliminary search results. The
algorithm in [132] suggests to use weights to encourage more priority on satisfying
the “most difficult” clauses. One aims at learning how difficult a clause is to satisfy.
These hard clauses are identified as the ones which remain unsatisfied after a try
of local search descent. Their weight is increased so that future runs will give them
more priority when picking a move. More algorithms based on the same weighting
principle are proposed in [72, 73], where clause weights are updated after each flip:
the reaction from the unsatisfied clauses is now immediate as one does not wait until
the end of a try (weighted GSAT or WGSAT). If weights are only increased, their
size becomes large after some time and their relative magnitude will reflect the over-
all statistics of the SAT instance, more than the local characteristics of the portion of
the search space where the current configuration lies. To combat this problem, two
techniques are proposed in [73], either reducing the clause weight when a clause
is satisfied, or storing the weight increments which took place recently, as obtained
by a weight decay scheme (each weight is reduced by a factor φ before updating
it). Depending on the size of the increments and decrements, one achieves “contin-
uously weakening incentives not to flip a variable” instead of the strict prohibitions
of Tabu Search. The second scheme takes the recency of moves into account. This is
implemented through a weight update scheme where each weight is reduced before
being possibly incremented by δ if the clause is not satisfied:

wi ← φ wi +δ

with φ the decay rate and δ the “learning rate”. A faster decay (lower φ value)
limits the time horizon and implies that the old information will be forgotten faster.
A critique of some warping effects that a clause-weighting dynamic local search can
create on the fitness surface is presented in [143]: in particular, the fitness surface is

494 R. Battiti et al.

changed in a global way after encountering a local minimum. Points which are very
far from the local minimum, but which share some of the unsatisfied clauses, will
also see their values changed.

A more recent proposal of a dynamic local search (DLS) for SAT is in [142]. The
authors start from the Exponentiated Sub-Gradient (ESG) algorithm [131], which
alternates search phases and weight updates, and develop a scheme with low time
complexity called Scaling and Probabilistic Smoothing (SAPS). Weights of satisfied
clauses are multiplied by αsat , while weights of unsatisfied clauses are multiplied
by αunsat . Then, all weights are smoothed towards their mean w̄ with the formula
w ← w ρ +(1−ρ) w̄. A reactive version of SAPS (RSAPS) is also introduced that
adaptively tunes the smoothing probability, which directly determines the level of
search intensification.

A similar approach of dynamically modifying the objective function has been
proposed in Guided Local Search (GLS) [147, 148] for different applications. GLS
aims at enabling intelligent search schemes that exploit problem- and search-related
information to guide a local search algorithm. Penalties depending on solution fea-
tures are introduced and dynamically manipulated to distribute the search effort over
different regions of a search space. A penalty formulation for the TSP, including
memory-based trap-avoidance strategies, is proposed in [149]. One of the strate-
gies avoids visiting points that are close to points visited before, a generalization of
the strategy that prohibits only already-visited points from being visited again (the
strict-TS policy mentioned in Sect. 15.2.1). A recent algorithm with an adaptive
clause weight redistribution is presented in [94]. It adopts resolution-based prepro-
cessing and reactive adaptation of the total weight to the degree of stagnation of the
search.

Let us note that the use of a dynamically modified (learned) evaluation function
is related to the machine learning technique of reinforcement learning (RL). Early
applications of RL in the area of local search are presented in [8, 35, 36]. Some
recent RL approaches for optimization are also discussed in [13, 31, 63].

15.2.5 Reactive Schemes in Population-Based Methods

Reactions are also possible in techniques involving more than one search stream,
a.k.a. population-based methods and evolutionary techniques, where one aims at
using a set of local search solvers. A methodology that blends combinatorial and
continuous local search has been recently proposed in [41]. Robustness is increased
by using a portfolio of interacting and reactive search streams in different regions
of the search space. Collaborative RSO (CORSO) is a technique based on solving
continuous optimization problems by an intelligent and adaptive use of memory in a
set of cooperating local search streams. The knowledge acquired by one solver in a
subregion of the search space is shared among the entire population. Each individual
stream then generates samples within its district and decides whether a local search
should be initiated in coordination with the other solvers.

15 Reactive Search Optimization: Learning While Optimizing 495

Knowledge sharing can be done in different ways. One possibility is represented by
Genetic Algorithms (GA) [113]: one defines a fitness function and a population of
individuals. Then at each iteration the fittest individuals are selected for generating
new offspring by means of crossover and mutation . The main idea is that new indi-
viduals inherit features from their parents and can discover improving solutions to
the optimization problem. In this case there are several possibilities for introducing
the RSO techniques discussed previously: one can reactively adapt the selection,
crossover and mutation operators to the measured fitness values of single individu-
als or the whole population.
However, the way knowledge is shared in CORSO is more similar to that of Memetic
Algorithms (MA). This term was coined in [115] to describe any population-based
approach including separate individual learning or local improvement procedures. In
this case there are many possibilities for reaction because one can use self-adaptive
local search techniques, such as RTS or VNS, to produce the members of the popu-
lation.
A reactive evolutionary algorithm for the Maximum Clique Problem is proposed in
[39]. The authors demonstrate that the combination of the estimation-of-distribution
concept with RSO produces significantly better results than evolutionary algorithms
with guided mutation (EA/G) for many test instances and is remarkably robust with
respect to the setting of the algorithm parameters.
Another application of intelligent local search to evolutionary algorithms in the con-
text of multiobjective optimization is described in [97]. A memetic algorithm based
on decomposition (MOMAD) treats a combinatorial multiobjective problem as a
set of single objective optimization problems and evolves three populations: one
for recording the current solution to each subproblem, one for storing starting so-
lutions for Pareto local search, and an external population for maintaining all the
non-dominated solutions found so far during the search.
In addition to pure evolutionary techniques, one can also benefit from the use of al-
gorithm portfolios [89]. One runs a set of algorithms concurrently, in a time-sharing
manner, by allocating a fraction of the total resources to each of them. The number
of cycles allocated to each of the interleaved search procedures is dynamically de-
termined by using statistical models of the quality of solutions.
This can be done by using racing techniques. After the portfolio is started, one peri-
odically estimates the future potential of a single algorithm given the current state of
the search, and assigns a growing fraction of the available future computing cycles
to the most promising algorithms. Racing algorithms can also be used online for
parameter tuning during the optimization of a single heuristic solver. The objective
in this case is not minimizing the total execution time but finding at each iteration
the set of parameter configurations that will statistically provide the best solutions,
deciding whether to remove the worst configurations from further consideration or
replace them with a perturbed version of the best ones.
An Extreme Reactive Portfolio (XRP) has been recently proposed in [43]. This fast
reactive algorithm portfolio is based on simple performance indicators such as the
record value and the number of iterations elapsed from the last record. The members
of the portfolio are ranked according to a combination of the two indicators and the

496 R. Battiti et al.

worst-performing members are stochastically replaced with a new random searcher
or a perturbed version of one of the best-performing members.
Other recent RSO and LION methods for local and global optimization problems
can be found in [62, 66, 123]. Another source of information and benchmarks is the
GENeralization-based challenge in global OPTimization (GENOPT),1 whose first
edition was held in 2016 [32].

15.3 Applications of Reactive Search Optimization

It must be noted that Reactive Search Optimization is not a rigid algorithm but
a general framework: specific algorithms have been introduced for unconstrained
and constrained tasks, with different stochastic mechanisms and rules for selecting
neighbors. As it usually happens in heuristics, the more specific knowledge about
a problem is used, the better the results. Nonetheless, it was often the case that
simple RSO versions could duplicate or improve the performance of more complex
schemes, without requiring intensive parameter and algorithm tuning. A long-term
goal of RSO is the progressive shift of the learning capabilities from the user to the
algorithm itself, through machine learning techniques.

The RSO framework and related algorithms and tools have been and are being
applied to a growing number of “classical” discrete optimization problems, continu-
ous optimization tasks, and real-world problems arising in widely different contexts.
The Web, see for example Google scholar, lists thousands of papers, and the follow-
ing list is a selection of some applications that we are aware of. We are always happy
to hear from users and developers interested in RSO principles and applications.

In the following we summarize some applications in “classical” combinatorial
tasks in Sect. 15.3.1, where by classical we mean abstract definitions of problems
which have been extensively studied in the Computer Science and Operations Re-
search community.

Then we present applications in the area of neural networks and clustering in
Sect. 15.3.2, where RSO has been used to solve optimization problems related to
machine learning. It should be noted that the synergy between optimization and
machine learning is explored in the opposite direction in this case, i.e., using opti-
mization to solve machine learning tasks.

We discuss versions of RSO for continuous optimization tasks in Sect. 15.3.3.
Finally, in Sect. 15.3.4, we present some applications to problems which are

closer to real application areas. These problems are of course related to their abstract
and clean definitions but usually contains more details and require more competence
in the specific area to make substantial progress.

1 http://genopt.org/.

http://genopt.org/

15 Reactive Search Optimization: Learning While Optimizing 497

15.3.1 Classic Combinatorial Tasks

The seminal paper about RSO for Tabu Search (Reactive Tabu Search) pre-
sented preliminary experimental results on the 0-1 Knapsack Problem, and on
the Quadratic Assignment Problem [20]. A comparison with Simulated Annealing
on QAP tasks is contained in [21]. An early experimental comparison of Reactive
Search Optimization with alternative heuristics (Repeated Local Minima Search,
Simulated Annealing, Genetic Algorithms and Mean Field Neural Networks) is pre-
sented in [22]. An application of a self-controlling software approach to Reactive
Tabu Search is presented in [65] with results on the QAP problem.

15.3.1.1 Knapsack and Related Problems

A reactive local search-based algorithm (adaptive memory search) for the 0/1-
Multidemand Multidimensional knapsack problem (0/1-MDMKP) is proposed in
[5]. The 0/1-MDMKP represents a large class of important real-life problems, in-
cluding portfolio selection, capital budgeting, and obnoxious and semi-obnoxious
facility location problems. A different application is considered in [86] for the dis-
junctively constrained knapsack problem (DCKP), a variant of the standard knap-
sack problem with special disjunctive constraints. A disjunctive constraint corre-
sponds to a pair of items for which only one item is packed.

15.3.1.2 Problems on Graphs

A reactive tabu search algorithm for Minimum Labeling Spanning Tree is consid-
ered in [46, 47], together with other meta-heuristics. The problem is as follows:
Given a graph G with a color (label) assigned to each edge one looks for a span-
ning tree of G with the minimum number of different colors. The problem has
several applications in telecommunication networks, electric networks, multi-modal
transportation networks, among others, where one aims at ensuring connectivity by
means of homogeneous connections.

The graph partitioning problem has been a test case for advanced local search
heuristics starting at least from the seminal paper of Lin and Kernighan [98], who
proposed a variable-depth scheme. This is in fact a simple prohibition-based (tabu)
scheme where swaps of nodes among the two sets of the partitions are applied,
and the just-swapped nodes are kept fixed during a sequence of tentative moves in
the search for an improving chain. Greedy, Prohibition-based, and Reactive Search
Optimization Heuristics for Graph Partitioning are proposed and compared in [10],
Multilevel Reactive Tabu Search techniques, based on the generation of coarse ver-
sions of very large graphs, are considered for Graph Partitioning in [29].

498 R. Battiti et al.

RSO is applied to the Maximum Clique Problem (MCP) in [14, 18], where a
clique is a subset of nodes which are mutually interconnected in a graph. The prob-
lem is related to identifying densely interconnected communities and, in general, to
clustering issues. A relaxed quasi-clique version of the problem where some edges
may be missing is addressed in [45].

The work in [152] introduces a new algorithm that combines the stigmergic ca-
pabilities of Ant Colony Optimization (ACO) with local search heuristics to solve
the maximum and maximum-weighted clique problem. The introduced Reactive
Prohibition-based Ant Colony Optimization for MCP (RPACOMCP) complements
the intelligent ant colony search with a prohibition-based diversification technique,
where the amount of diversification is determined in an automated way through a
feedback (history-sensitive) scheme.

In [130] the authors address the problem of computing a graph similarity measure
which is generic in the sense that other well known graph similarity measures can
be viewed as special cases of it. They propose and compare two algorithms, an Ant
Colony Optimization based algorithm and a Reactive Search Optimization. They
report complementary results: while the RSO technique achieves good solutions in
shorter times, the proposed ACO method eventually attains a better solution quality.

A classification of methods to manage the prohibition period (Tabu tenure) in the
literature is presented in [61] together with a new reactive Tabu tenure adaptation
mechanism. The generic method is tested on the k-coloring problem.

A Reactive Tabu Search algorithm with variable clustering for the unicost Set
Covering Problem (SCP) is proposed in [101]. Unicost SCPs arise in graph theory
when one must select a minimum covering of edges by nodes or nodes by cliques.
In addition, in many practical applications (crew scheduling, political redistricting,
conservation biology, etc.) the relative variation in the weights may be small enough
to warrant a unicost model.

A local search algorithm based on simulated annealing and greedy search tech-
niques to solve the Traveling Salesman Problem (TSP) is proposed in [75]. Three
mutation strategies such as vertex insert (VI), block insert (BI) and block reverse
(BR) are used with different probabilities in an ASA scheme. Then greedy search is
used to reduce the convergence time of the algorithm.

15.3.1.3 Vehicle Routing Problems

A reactive tabu search for the vehicle routing problem with time windows is de-
signed in [51], while a variant of the Vehicle Routing Problem with Backhauls
(VRPB) is considered in [57, 122].

A heuristic approach based on the hybrid operation of RTS and Adaptive Mem-
ory Programming (AMP) is proposed in [105] to solve the VRPB. One is given a set
of customers, some of which are linehauls (delivery points) and some are backhauls
(collection points), a set of homogeneous vehicles and a depot. A distinguishing
feature of this model is that all backhaul customers must be visited after all linehaul
customers in each route. RTS is used with an escape mechanism which manipu-

15 Reactive Search Optimization: Learning While Optimizing 499

lates different neighborhood schemes in order to continuously balance intensifica-
tion and diversification during the search process. The adaptive memory strategy
takes the search back to the unexplored regions of the search space by maintaining
a set of elite solutions and using them strategically with the RTS. The authors in
[118] address the pickup and delivery problem with time windows using reactive
tabu search.

A reactive VNS technique for the VRPTW is also proposed in [37]. Vehicle rout-
ing with soft time windows and Erlang travel times is studied in [127].

15.3.1.4 Satisfiability and Related Problems

Maximum satisfiability is considered in [15, 16], reactive Scaling and Probabilis-
tic Smoothing (SAPS) in [142] and constraint satisfaction in [119]. Reactive local
search techniques for the Maximum k-Conjunctive Constraint Satisfaction Problem
(MAX-k-CCSP) are used in [17]. A worst-case analysis of tabu search as a function
of the tabu list length for the MAX-TWO-SAT problem is presented in [112], with
applications also to a reactive determination of the prohibition.

15.3.2 Neural Networks and Learning Systems

While derivative-based methods for training from examples have been used with
success in many contexts (error back-propagation is an example in the field of neural
networks), they are applicable only to differentiable performance functions and are
not always appropriate in the presence of local minima. In addition, the calculation
of derivatives is expensive and error-prone, especially if special-purpose VLSI hard-
ware is used. A radically different approach is used in [23]: the task is transformed
into a combinatorial optimization problem (the points of the search space are bi-
nary strings) and solved with the Reactive Search Optimization algorithm. To speed
up the neighborhood evaluation phase a stochastic sampling of the neighborhood is
adopted and a “smart” iterative scheme is used to compute the changes in the per-
formance function caused by changing a single weight. RSO escapes rapidly from
local minima, it is applicable to non-differentiable and even discontinuous functions
and it is very robust with respect to the choice of the initial configuration. In addi-
tion, by fine-tuning the number of bits for each parameter, one can decrease the size
of the search space, increase the expected generalization and realize cost-effective
VLSI.

Reactive Tabu Search in Semi-supervised Classification is proposed in [153].
With a linear kernel, their RTS implementation can effectively find optimal global
solutions for the primal Mixed Integer Programming Transductive Support Vector
Machine (MIP-TSVM) with relatively large problem dimension.

500 R. Battiti et al.

In [107] the well-known k-means clustering algorithm is augmented by using
RTS to escape from local optima. Centroids are updated by intensification and di-
versification strategies based on prohibitions and adaptive neighborhoods.

In contrast to the exhaustive design of systems for pattern recognition, control,
and vector quantization, an appealing possibility consists of specifying a general
architecture, whose parameters are then tuned through Machine Learning (ML).
ML becomes a combinatorial task if the parameters assume a discrete set of values:
the RTS algorithm permits the training of these systems with a low number of bits
per weight, low computational accuracy, no local minima “trapping” and limited
sensitivity to the initial conditions [25, 26].

Special-purpose VLSI modules have been developed to be used as components of
fully autonomous massively-parallel systems for real-time adaptive applications. In
contrast to many “emulation” approaches, the developed VLSI completely reflects
the combinatorial structure used in the learning algorithms.

Applications considered are in the area of pattern recognition (Optical Character
Recognition), event triggering in High Energy Physics [3], control of non-linear
systems [22], compression of EEG signals [28]. The first product was the TOTEM
chip [25, 27]. More general special-purpose VLSI realizations are described in [3,
4]. A parallel neurochip for neural networks implementing the Reactive Tabu Search
algorithm and application case studies are presented in [59]. A Fast Programmable
Gate Array (FPGA) implementation of the TOTEM chip is presented in [6].

15.3.3 Continuous Optimization

A simple benchmark on a continuous function with many suboptimal local minima
is considered in [23], where a straightforward discretization of the domain is used.
A novel algorithm for the global optimization of functions (C-RTS) is presented
in [24], in which a combinatorial optimization method cooperates with a stochas-
tic local minimizer. The combinatorial optimization component, based on Reac-
tive Search Optimization, locates the most promising search regions, where starting
points for the local minimizer are generated. In order to cover a wide spectrum of
possible applications with no user intervention, the method is designed with adap-
tive mechanisms: in addition to the reactive adaptation of the prohibition period, the
bounding box of the search region is adapted to the local structure of the function to
be optimized (boxes are larger in “flat” regions, smaller in regions with a “rough”
structure). An application of intelligent prohibition-based strategies to continuous
optimization is presented in [50].

A Reactive Affine Shaker method for continuous optimization is studied in [38,
44]. The work presents an adaptive stochastic search algorithm for the optimiza-
tion of functions of continuous variables where the only hypothesis is the pointwise
computability of the function. The main design criterion consists of the adaptation
of a search region by an affine transformation which takes into account the local
knowledge derived from trial points generated with uniform probability. Heuristic

15 Reactive Search Optimization: Learning While Optimizing 501

adaptation of the step size and direction allows the largest possible movement per
function evaluation. The experimental results show that the proposed technique is,
in spite of its simplicity, a promising building block to consider for the develop-
ment of more complex optimization algorithms, particularly in those cases where
the objective function evaluation is expensive.

A Gregarious Particle Swarm Optimizer (GPSO) is proposed in [124]. The par-
ticles (the different local searchers) adopt a reactive determination of the step size,
based on feedback from the last iterations. This is in contrast to the basic parti-
cle swarm algorithm, in which no feedback is used for the self-tuning of algorithm
parameters. The novel scheme presented, when tested on a benchmark for contin-
uous optimization, besides generally improving the average optimal values found,
reduces the computation effort.

15.3.4 Real-World Applications

Reactive search schemes have been applied to a considerable number of “real-
world” problems; this term refers to applications where domain-specific knowledge
is required. Rather than defining classes with properties common to many problems,
these applications aim at the “pointwise” solution of a specific issue with detailed
modeling, therefore providing an essential benchmark for optimization techniques.

15.3.4.1 Power Distribution Networks

Real-world applications in the area of electric power distribution and service restora-
tion in distribution systems are studied in [76, 144]. Fast optimal setting for voltage
control equipment considering interconnection of distributed generators is proposed
in [120] and optimal distributed load transfer in [74]. Reactive Tabu Search has also
been used in [96] for solving the Job-shop Scheduling Problem (JSP) considering
the peak shift of electric power energy consumption.

15.3.4.2 Industrial Production and Delivery

A follow-up of the previously mentioned work on the VRPTW [51] is proposed
in [128] to aid in the coordination and synchronization of the production and deliv-
ery of multi-product newspapers to bulk delivery locations. The problem is modeled
as an open vehicle routing problem with time windows and zoning constraints. The
methodology is applied to the newspaper production and distribution problem in a
major metropolitan area.

In the field of industrial production planning, [67] studies applications of modern
heuristic search methods to pattern sequencing problems. Flexible job-shop schedul-
ing is studied in [48, 49]. The plant location problem is studied in [60]. The work

502 R. Battiti et al.

in [68] is dedicated to solving the continuous flow-shop scheduling problem. Adap-
tive self-tuning neurocontrol is considered in [125]. The objective is to construct an
adaptive control scheme for unknown time-dependent nonlinear plants.

15.3.4.3 Telecommunication Networks

Various applications of RSO focused on problems arising in the design and manage-
ment of telecommunication networks. RSO for traffic grooming in optical WDM
networks is considered in [11]. Optimal conformance test selection is studied in
[58]. Conformance testing is used to increase the reliability of telecommunica-
tion applications. Locating hidden groups in communication networks is addressed
in [108] by using hidden Markov models. A communication network is a collection
of social groups that communicate via an underlying communication medium. In
such a network, a hidden group may try to camouflage its communications amongst
the typical communications of the network. The task of increasing Internet capacity
is considered in [71]. The Multiple-choice Multi-dimensional Knapsack Problem
(MMKP) with applications to service level agreements and multimedia distribution
is studied in [86, 87], where the dynamic adaptation of the resource allocation model
is considered for multi-session multimedia. High quality solutions, reaching the op-
timum for several instances, are obtained through a reactive local search scheme.
In the area of wireless and cellular communication networks, the work in [30] con-
siders the optimal wireless access point placement for location-dependent services,
and the work in [70] proposes a tabu search heuristic for the dimensioning of 3G
multi-service networks.

15.3.4.4 Vehicle Routing and Dispatching

Real-time dispatch of trams in storage yards is studied in [151]. In the military sec-
tor, simple versions of Reactive Tabu Search are considered in [100] in a comparison
of techniques dedicated to designing an unmanned aerial vehicle (UAV) routing sys-
tem. Hierarchical Tabu Programming is used in [7] for finding underwater vehicle
trajectories. Aerial reconnaissance simulations is the topic of [129]. The authors in
[9] use an adaptive tabu search approach for solving the aerial fleet refueling prob-
lem. Variable Neighborhood Descent is used in [126] for redistributing bicycles in
public bike-sharing systems to avoid rental stations to become empty or entirely full.

15.3.4.5 Industrial and Architectural Design

In the automotive sector, RSO is used in [81] for improving vehicle safety: a mixed
reactive tabu search method is used to optimize the design of a vehicle B-pillar sub-
jected to roof crush. Reactive Tabu Search and sensor selection in active structural
acoustic control problems are considered in [99]. The solution of the engineering

15 Reactive Search Optimization: Learning While Optimizing 503

roof truss design problem is discussed in [80]. An application of reactive tabu search
for designing barrelled cylinders and domes of generalized elliptical profile is stud-
ied in [34]. The cylinders and domes are optimized for their buckling resistance
when loaded by static external pressure through the use of a structural analysis tool.

15.3.4.6 Biology

A reactive stochastic local search algorithm is used in [104] to solve the Genomic
Median Problem (GMP), an optimization problem inspired by a biological issue.
It aims at finding the chromosome organization of the common ancestor of mul-
tiple living species. It is formulated as the search for a genome that minimizes a
rearrangement distance measure among given genomes. Additional applications in
bio-informatics include for example [139], which proposes an adaptive bin frame-
work search method for a beta-sheet protein homopolymer model. A novel approach
is studied based on the use of a bin framework for adaptively storing and retrieving
promising locally optimal solutions. Each bin holds a set of conformations within a
certain energy range and one uses an adaptive strategy for restarting a given search
process with a conformation retrieved from these bins when the search stagnates. An
adaptive mechanism chooses which conformations should be stored, based on the
set of conformations already stored in memory, and biases choices when retrieving
conformations from memory in order to overcome search stagnation. The energy
and diversity thresholds for each bin are dynamically modified during the search
process. An adaptive meta-search method that alternates between two distinct search
processes operating at different levels is proposed in [137, 138] for protein folding.
The high level process ensures that unexplored promising parts of the search land-
scape are visited and the low-level search provides the thorough exploration of local
neighborhoods. Finally, visual representation of data through clustering is consid-
ered in [54].

15.4 Conclusion

This chapter provided an introduction to Reactive Search Optimization (RSO), a
set of techniques and tools that integrate machine learning into search heuristics
for solving complex optimization problems. An immediate response to changes in
the search space, while alternative solutions are tested, is possible through the use
of an internal on-line feedback loop for the self-tuning of critical parameters. This
corresponds to the integration of those high-level skills often associated with the hu-
man brain, such as the exploitation of the past experience, learning on the job, rapid
analysis of alternatives, robustness to incomplete information and quick adaptation
to new situations and events.

504 R. Battiti et al.

Needless to say, studying and designing satisfactory solutions is a long-term en-
terprise with opportunities for PhD students and researchers of this century, but we
showed that the road is clear and preliminary results of interest abound. In particular,
we believe that in the next future more effort should and will be put on population-
based methods and evolutionary techniques.

The brevity of this chapter does not allow for an exhaustive description of the
field: we ask the omitted authors for forgiveness, and encourage authors of novel
work to get in touch with us or mine the LION community2 web site as an additional
source of information.

References

1. D. Abramson, H. Dang, M. Krisnamoorthy, Simulated annealing cooling schedules for the
school timetabling problem. Asia-Pac. J. Oper. Res. 16(1), 1–22 (1999)

2. A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and Algorithms (Addison-Wesley,
Reading, 1983)

3. G. Anzellotti, R. Battiti, I. Lazzizzera, P. Lee, A. Sartori, G. Soncini, G. Tecchiolli, A. Zorat,
Totem: a highly parallel chip for triggering applications with inductive learning based on the
reactive tabu search, in 4th International Workshop on Software Engineering and Artificial
Intelligence for High-Energy and Nuclear Physics (AIHENP95), Pisa, 1995

4. G. Anzellotti, R. Battiti, I. Lazzizzera, G. Soncini, A. Zorat, A. Sartori, G. Tecchiolli, P. Lee,
Totem: a highly parallel chip for triggering applications with inductive learning based on the
reactive tabu search. Int. J. Mod. Phys. C 6(4), 555–560 (1995)

5. H. Arntzen, L.M. Hvattum, A. Lokketangen, Adaptive memory search for multidemand mul-
tidimensional knapsack problems. Comput. Oper. Res. 33(9), 2508–2525 (2006). http://dx.
doi.org/10.1016/j.cor.2005.07.007

6. M. Avogadro, M. Bera, G. Danese, F. Leporati, A. Spelgatti, The totem neurochip: an FPGA
implementation, in Proceedings of the Fourth IEEE International Symposium on Signal Pro-
cessing and Information Technology (2004), pp. 461–464

7. J. Balicki, Hierarchical tabu programming for finding the underwater vehicle trajectory. Int.
J. Comput. Sci. Netw. Secur. 7(11), 32 (2007)

8. S. Baluja, A. Barto, K.B.J. Boyan, W. Buntine, T. Carson, R. Caruana, D. Cook, S. Davies,
T. Dean et al., Statistical machine learning for large-scale optimization. Neural Comput. Surv.
3, 1–58 (2000)

9. J. Barnes, V. Wiley, J. Moore, D. Ryer, Solving the aerial fleet refueling problem using group
theoretic tabu search. Math. Comput. Model. 39(6–8), 617–640 (2004)

10. R. Battiti, A.A. Bertossi, Greedy, prohibition, and reactive heuristics for graph partitioning.
IEEE Trans. Comput. 48(4), 361–385 (1999)

11. R. Battiti, M. Brunato, Reactive search for traffic grooming in WDM networks, in Evolu-
tionary Trends of the Internet, IWDC2001, ed. by S. Palazzo. Taormina. Lecture Notes in
Computer Science, vol. 2170 (Springer, Berlin, 2001), pp. 56–66

12. R. Battiti, M. Brunato, The LION way. Machine Learning plus Intelligent Optimization. Ver-
sion 3.0. (LIONlab, University of Trento, Trento, 2017)

13. R. Battiti, P. Campigotto, Reinforcement learning and reactive search: an adaptive max-
sat solver, in Proceedings ECAI 08: 18th European Conference on Artificial Intelligence,
Patras, July 21–25, 2008, ed. by N.F.M. Ghallab, C.D. Spyropoulos, N. Avouris (IOS Press,
Amsterdam, 2008)

2 http://intelligent-optimization.org/.

http://dx.doi.org/10.1016/j.cor.2005.07.007
http://dx.doi.org/10.1016/j.cor.2005.07.007
http://intelligent-optimization.org/

15 Reactive Search Optimization: Learning While Optimizing 505

14. R. Battiti, M. Protasi, Reactive local search for maximum clique, in Proceedings of the Work-
shop on Algorithm Engineering (WAE’97), Ca’ Dolfin, Venice, ed. by G.F. Italiano, S. Or-
lando (1997), pp. 74–82

15. R. Battiti, M. Protasi, Reactive search, a history-sensitive heuristic for MAX-SAT. ACM J.
Exp. Algorithmics 2(2) (1997). http://www.jea.acm.org/

16. R. Battiti, M. Protasi, Solving MAX-SAT with non-oblivious functions and history-based
heuristics, in Satisfiability Problem: Theory and Applications, ed. by D. Du, J. Gu, P.M.
Pardalos. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science,
vol. 35, American Mathematical Society (ACM, New York, 1997), pp. 649–667

17. R. Battiti, M. Protasi, Reactive local search techniques for the maximum k-conjunctive con-
straint satisfaction problem (MAX-k-CCSP). Discr. Appl. Math. 96, 3–27 (1999)

18. R. Battiti, M. Protasi, Reactive local search for the maximum clique problem. Algorithmica
29(4), 610–637 (2001)

19. R. Battiti, G. Tecchiolli, Learning with first, second, and no derivatives: a case study in high
energy physics. Neurocomputing 6(2), 181–206 (1994)

20. R. Battiti, G. Tecchiolli, The reactive tabu search. ORSA J. Comput. 6(2), 126–140 (1994)
21. R. Battiti, G. Tecchiolli, Simulated annealing and tabu search in the long run: a comparison

on QAP tasks. Comput. Math. Appl. 28(6), 1–8 (1994)
22. R. Battiti, G. Tecchiolli, Local search with memory: benchmarking RTS. Oper. Res. Spek-

trum 17(2–3), 67–86 (1995)
23. R. Battiti, G. Tecchiolli, Training neural nets with the reactive tabu search. IEEE Trans.

Neural Netw. 6(5), 1185–1200 (1995)
24. R. Battiti, G. Tecchiolli, The continuous reactive tabu search: blending combinatorial opti-

mization and stochastic search for global optimization. Ann. Oper. Res. Metaheuristics Com-
binatorial Optim. 63(2), 153–188 (1996)

25. R. Battiti, P. Lee, A. Sartori, G. Tecchiolli, Combinatorial optimization for neural nets: RTS
algorithm and silicon. Technical Report, Department of Mathematics, University of Trento
(1994). Preprint UTM 435

26. R. Battiti, P. Lee, A. Sartori, G. Tecchiolli, Totem: a digital processor for neural networks
and reactive tabu search, in Fourth International Conference on Microelectronics for Neural
Networks and Fuzzy Systems, MICRONEURO 94 (IEEE Computer Society Press, Torino,
1994), pp. 17–25. Preprint UTM 436-June 1994, University of Trento

27. R. Battiti, P. Lee, A. Sartori, G. Tecchiolli, Special-purpose parallel architectures for high-
performance machine learning, in Proceedings of the International Conference and Exhibi-
tion on High-Performance Computing and Networking (Springer, Berlin, 1995)

28. R. Battiti, A. Sartori, G. Tecchiolli, P. Tonella, A. Zorat, Neural compression: an integrated
approach to eeg signals, in International Workshop on Applications of Neural Networks
to Telecommunications (IWANNT*95), Stockholm, ed. by J. Alspector, R. Goodman, T.X.
Brown (1995), pp. 210–217

29. R. Battiti, A. Bertossi, A. Cappelletti, Multilevel reactive tabu search for graph partitioning.
Preprint UTM 554 (1999)

30. R. Battiti, M. Brunato, A. Delai, Optimal wireless access point placement for location-
dependent services. Tech. Rep., University of Trento DIT-03-052 (2003)

31. R. Battiti, M. Brunato, F. Mascia, Reactive search and intelligent optimization, in Operations
Research/Computer Science Interfaces, vol. 45 (Springer, Berlin, 2008)

32. R. Battiti, Y. Sergeyev, M. Brunato, D. Kvasov, GENOPT 2016: design and results of a
GENeralization-based challenge in global OPTimization, in Proceedings of NUMTA 2016,
Numerical Computations: Theory and Algorithms, Pizzo Calabro, Italy 1925 June 2016. The
American Institute of Physics (AIP) Conference Proceedings (2016)

33. J. Baxter, Local optima avoidance in depot location. J. Oper. Res. Soc. 32(9), 815–819 (1981)
34. J. Błachut, Tabu search optimization of externally pressurized barrels and domes. Eng. Op-

tim. 39(8), 899–918 (2007)
35. J.A. Boyan, A.W. Moore, Learning evaluation functions for global optimization and boolean

satisfability, in Proceedings of 15th National Conference on Artificial Intelligence (AAAI),
ed. by A. Press (1998), pp. 3–10

http://www.jea.acm.org/

506 R. Battiti et al.

36. J. Boyan, A. Moore, Learning evaluation functions to improve optimization by local search.
J. Mach. Learn. Res. 1(11), 77–112 (2001)

37. O. Braysy, A reactive variable neighborhood search for the vehicle-routing problem with
time windows. INFORMS J. Comput. 15(4), 347–368 (2003)

38. M. Brunato, R. Battiti, RASH: a self-adaptive random search method, in Adaptive and Mul-
tilevel Metaheuristics, ed. by C. Cotta, M. Sevaux, K. Sörensen. Studies in Computational
Intelligence, vol. 136 (Springer, Berlin, 2008)

39. M. Brunato, R. Battiti, R-EVO: a reactive evolutionary algorithm for the maximum clique
problem. IEEE Trans. Evol. Comput. 15(6), 770–782 (2011)

40. M. Brunato, R. Battiti, Stochastic local search for direct training of threshold networks, in
2015 International Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2015),
pp. 1–8

41. M. Brunato, R. Battiti, CoRSO (Collaborative Reactive Search Optimization): blending com-
binatorial and continuous local search. Informatica 27(2), 299–322 (2016)

42. M. Brunato, R. Battiti, A telescopic binary learning machine for training neural networks.
IEEE Trans. Neural Netw. Learn. Syst. 28(3), 665–677 (2016)

43. M. Brunato, R. Battiti, Extreme reactive portfolio (XRP): tuning an algorithm population for
global optimization, in International Conference on Learning and Intelligent Optimization
(Springer International Publishing, New York, 2016), pp. 60–74

44. M. Brunato, R. Battiti, S. Pasupuleti, A memory-based rash optimizer, in Proceedings of
AAAI-06 Workshop on Heuristic Search, Memory Based Heuristics and Their Applications,
Boston, ed. by A.F.R.H.H. Geffner (2006), pp. 45–51. ISBN 978-1-57735-290-7

45. M. Brunato, H. Hoos, R. Battiti, On effectively finding maximal quasi-cliques in graphs,
in Proceedings of 2nd Learning and Intelligent Optimization Workshop, LION 2, Trento,
December 2007, ed. by V. Maniezzo, R. Battiti, J.P. Watson. Lecture Notes in Computer
Science, vol. 5313 (Springer, Berlin, 2008)

46. R. Cerulli, A. Fink, M. Gentili, S. Voss, Metaheuristics comparison for the minimum la-
belling spanning tree problem in The Next Wave on Computing, Optimization, and Decision
Technologies (Springer, New York, 2005), pp. 93–106

47. R. Cerulli, A. Fink, M. Gentili, S. Voß, Extensions of the minimum labelling spanning tree
problem. Res. J. Telecommun. Inf. Technol. 4, 39–45 (2006)

48. J. Chambers, J. Barnes, New tabu search results for the job shop scheduling problem. The
University of Texas, Austin, Technical Report Series ORP96-06, Graduate Program in Oper-
ations Research and Industrial Engineering (1996)

49. J. Chambers, J. Barnes, Reactive search for flexible job shop scheduling. Graduate program
in Operations Research and Industrial Engineering, The University of Texas at Austin, Tech-
nical Report Series, ORP98-04 (1998)

50. R. Chelouah, P. Siarry, Tabu search applied to global optimization. Eur. J. Oper. Res. 123(2),
256–270 (2000)

51. W. Chiang, R. Russell, A reactive tabu search metaheuristic for the vehicle routing problem
with time windows. INFORMS J. Comput. 9(4), 417–430 (1997)

52. B. Codenotti, G. Manzini, L. Margara, G. Resta, Perturbation: an efficient technique for the
solution of very large instances of the euclidean TSP. INFORMS J. Comput. 8(2), 125–133
(1996)

53. D. Connolly, An improved annealing scheme for the QAP. Eur. J. Oper. Res. 46(1), 93–100
(1990)

54. S. Consoli, K. Darby-Dowman, G. Geleijnse, J. Korst, S. Pauws, Metaheuristic approaches
for the quartet method of hierarchical clustering. Technical Report, Brunel University, West
London (2008)

55. A. Corana, M. Marchesi, C. Martini, S. Ridella, Minimizing multimodal functions of con-
tinuous variables with the simulated annealing algorithm. ACM Trans. Math. Softw. 13(3),
262–280 (1987). http://doi.acm.org/10.1145/29380.29864

56. B.J. Cox, Object Oriented Programming, an Evolutionary Approach (Addison-Wesley, Read-
ing, 1990)

57. J. Crispim, J. Brandao, Reactive tabu search and variable neighborhood descent applied to
the vehicle routing problem with backhauls, in Proceedings of the 4th Metaheuristics Inter-
national Conference, MIC, Porto, (2001), pp. 631–636

http://doi.acm.org/10.1145/29380.29864

15 Reactive Search Optimization: Learning While Optimizing 507

58. T. Csöndes, B. Kotnyek, J. Zoltán Szabó, Application of heuristic methods for conformance
test selection. Eur. J. Oper. Res. 142(1), 203–218 (2002)

59. G. Danese, I. De Lotto, F. Leporati, A. Quaglini, S. Ramat, G. Tecchiolli, A parallel neu-
rochip for neural networks implementing the reactive tabu search algorithm: application case
studies, in Proceedings of Ninth Euromicro Workshop on Parallel and Distributed Processing
(2001), pp. 273–280

60. H. Delmaire, J. Dıaz, E. Fernandez, M. Ortega, Reactive GRASP and Tabu Search based
heuristics for the single source capacitated plant location problem. Inf. Syst. Oper. Res. 37(3),
194–225 (1999)

61. I. Devarenne, H. Mabed, A. Caminada, Adaptive tabu tenure computation in local search,
in Proceedings 8th European Conference on Evolutionary Computation in Combinatorial
Optimisation, Napoli, March 2008. Lecture Notes in Computer Science, vol. 4972 (Springer,
Berlin, 2008), pp. 1–12

62. C. Dhaenens, L. Jourdan, M. E. Marmion (eds.), Learning and Intelligent Optimization: 9th
International Conference, LION 9, Lille, January 12–15, 2015. Revised Selected Papers, vol.
8994 (Springer, Berlin, 2015)

63. A. Eiben, M. Horvath, W. Kowalczyk, M. Schut, Reinforcement learning for online control
of evolutionary algorithms, in Proceedings of the 4th International Workshop on Engineering
Self-organizing Applications (ESOA’06), ed. by H. Brueckner, Y. Jelasity. Lecture Notes in
Artificial Intelligence (Springer, Berlin, 2006)

64. U. Faigle, W. Kern, Some convergence results for probabilistic tabu search. ORSA J. Comput.
4(1), 32–37 (1992)

65. N. Fescioglu-Unver, M. Kokar, Application of self controlling software approach to reactive
tabu search, in Second IEEE International Conference on Self-adaptive and Self-organizing
Systems, SASO’08 (2008), pp. 297–305

66. P. Festa, M. Sellmann, J. Vanschoren, Learning and Intelligent Optimization: 10th Interna-
tional Conference, LION 10, Ischia, May 29–June 1, 2016. Revised Selected Papers. Lecture
Notes in Computer Science (Springer, Berlin, 2016)

67. A. Fink, S. Voß, Applications of modern heuristic search methods to pattern sequencing
problems. Comput. Oper. Res. 26(1), 17–34 (1999)

68. A. Fink, S. Voß, Solving the continuous flow-shop scheduling problem by metaheuristics.
Eur. J. Oper. Res. 151(2), 400–414 (2003)

69. M.A. Fleischer, Cybernetic optimization by simulated annealing: accelerating convergence
by parallel processing and probabilistic feedback control. J. Heuristics 1(2), 225–246 (1996)

70. A. Fortin, N. Hail, B. Jaumard, A tabu search heuristic for the dimensioning of 3G multi-
service networks, in IEEE Wireless Communications and Networking, WCNC 2003, vol. 3
(2003)

71. B. Fortz, M. Thorup, Increasing internet capacity using local search. Comput. Optim. Appl.
29(1), 13–48 (2004)

72. J. Frank, Weighting for godot: learning heuristics for GSAT, in Proceedings of the National
Conference on Artificial Intelligence, vol. 13 (Wiley, Hoboken, 1996), pp. 338–343

73. J. Frank, Learning short-term weights for GSAT, in Proceedings of International Joint Con-
ference on Artificial Intelligence, vol. 15 (Lawrence Erlbaum, Hillsdale, 1997), pp. 384–391

74. Y. Fukuyama, Reactive tabu search for distribution load transfer operation, in IEEE Power
Engineering Society Winter Meeting, 2000, vol. 2 (2000)

75. X. Geng, Z. Chen, W. Yang, D. Shi, K. Zhao, Solving the traveling salesman problem based
on an adaptive simulated annealing algorithm with greedy search. Appl. Soft Comput. 11(4),
3680–3689 (2011)

76. T. Genji, T. Oomori, K. Miyazato, N. Hayashi, Y. Fukuyama, K. Co, Service restoration
in distribution systems aiming higher utilization rate of feeders, in Proceedings of the Fifth
Metaheuristics International Conference (MIC2003) (2003)

77. I. Gent, T. Walsh, Towards an understanding of hill-climbing procedures for SAT, in Pro-
ceedings of the Eleventh National Conference on Artificial Intelligence (AAAI Press/The
MIT Press, Cambridge, 1993), pp. 28–33

508 R. Battiti et al.

78. F. Glover, Tabu search - part I. ORSA J. Comput. 1(3), 190–260 (1989)
79. F. Glover, Tabu search - part II. ORSA J. Comput. 2(1), 4–32 (1990)
80. K. Hamza, H. Mahmoud, K. Saitou, Design optimization of N-shaped roof trusses using

reactive taboo search. Appl. Soft Comput. J. 3(3), 221–235 (2003)
81. K. Hamza, K. Saitou, A. Nassef, Design optimization of a vehicle b-pillar subjected to roof

crush using mixed reactive taboo search, in ASME 2003 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference, Chicago
(2003), pp. 449–457

82. N.M.P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100
(1997)

83. P. Hansen, B. Jaumard, Algorithms for the maximum satisfiability problem. Computing
44(4), 279–303 (1990)

84. P. Hansen, N. Mladenovic, Variable neighborhood search, in Search Methodologies: In-
troductory Tutorials in Optimization and Decision Support Techniques, ed. by E. Burke,
G. Kendall (Springer, Berlin, 2005), pp. 211–238

85. U.H.E. Hansmann, Simulated annealing with tsallis weights a numerical compari-
son. Phys. A Stat. Theor. Phys. 242(1–2), 250–257 (1997). https://doi.org/10.1016/
S0378-4371(97)00203-3

86. M. Hifi, M. Michrafy, A reactive local search-based algorithm for the disjunctively con-
strained knapsack problem. J. Oper. Res. Soc. 57(6), 718–726 (2006)

87. M. Hifi, M. Michrafy, A. Sbihi, A reactive local search-based algorithm for the multiple-
choice multi-dimensional knapsack problem. Comput. Optim. Appl. 33(2), 271–285 (2006)

88. B. Hu, G.R. Raidl, Variable neighborhood descent with self-adaptive neighborhood-ordering,
in Proceedings of the 7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level Meta-
heuristics, Malaga, ed. by C. Cotta, A.J. Fernandez, J.E. Gallardo (2006)

89. B.A. Huberman, R.M. Lukose, T. Hogg, An economics approach to hard computational prob-
lems. Science 275(5296), 51–54 (1997)

90. F. Hutter, Y. Hamadi, H. Hoos, K. Leyton-Brown, Performance prediction and automated
tuning of randomized and parametric algorithms, in Proceedings of the 12th International
Conference on Principles and Practice of Constraint Programming (CP 2006) (Springer,
Berlin, 2006)

91. F. Hutter, D. Babic, H. Hoos, A. Hu, Boosting verification by automatic tuning of decision
procedures, in Formal Methods in Computer Aided Design, FMCAD’07 (2007)

92. F. Hutter, H. Hoos, T. Stutzle, Automatic algorithm configuration based on local search, in
Proceedings of the National Conference on Artificial Intelligence, vol. 22 (AAAI Press/MIT
Press, Cambridge, 1999/2007), pp. 1152–1157

93. L. Ingber, Very fast simulated re-annealing. Math. Comput. Modell. 12(8), 967–973 (1989)
94. A. Ishtaiwi, J.R. Thornton, Anbulagan, A. Sattar, D.N. Pham, Adaptive clause weight redis-

tribution, in Proceedings of the 12th International Conference on the Principles and Practice
of Constraint Programming, CP-2006, Nantes, (2006), pp. 229–243

95. I.K. Jeong, J.J. Lee, Adaptive simulated annealing genetic algorithm for system identifica-
tion. Eng. Appl. Artif. Intell. 9(5), 523–532 (1996)

96. S. Kawaguchi, Y. Fukuyama, Reactive Tabu Search for Job-shop scheduling problems con-
sidering peak shift of electric power energy consumption, in IEEE Region 10 Conference
(TENCON) (2016), pp. 3406–3409

97. L. Ke, Q. Zhang, R. Battiti, Hybridization of decomposition and local search for multiobjec-
tive optimization. IEEE Trans. Cybern. 44(10), 1808–1820 (2014)

98. B. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech.
J. 49(2), 291–307 (1970)

99. R. Kincaid, K. Laba, Reactive tabu search and sensor selection in active structural acoustic
control problems. J. Heuristics 4(3), 199–220 (1998)

100. G. Kinney Jr., R. Hill, J. Moore, Devising a quick-running heuristic for an unmanned aerial
vehicle (UAV) routing system. J. Oper. Res. Soc. 56(7), 776–786 (2005)

101. G. Kinney, J. Barnes, B. Colletti, A reactive tabu search algorithm with variable clustering
for the unicost set covering problem. Int. J. Oper. Res. 2(2), 156–172 (2007)

https://doi.org/10.1016/S0378-4371(97)00203-3
https://doi.org/10.1016/S0378-4371(97)00203-3

15 Reactive Search Optimization: Learning While Optimizing 509

102. S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

103. P.J.M. Laarhoven, E.H.L. Aarts (eds.), Simulated Annealing: Theory and Applications
(Kluwer Academic Publishers, Norwell, 1987)

104. R. Lenne, C. Solnon, T. Stutzle, E. Tannier, M. Birattari, Reactive stochastic local search
algorithms for the genomic median problem. Lect. Notes Comput. Sci. 4972, 266–276 (2008)

105. A. Login, S. Areas, Reactive tabu adaptive memory programming search for the vehicle
routing problem with backhauls. J. Oper. Res. Soc. 58(12), 1630–1641 (2007)

106. H. Lourenco, Job-shop scheduling: computational study of local search and large-step opti-
mization methods. Eur. J. Oper. Res. 83(2), 347–364 (1995)

107. Y. Lu, B. Cao, F. Glover, A Tabu search based clustering algorithm and its parallel imple-
mentation on Spark. arXiv:1702.01396 (2017, preprint)

108. M. Magdon-Ismail, M. Goldberg, W. Wallace, D. Siebecker, Locating hidden groups in com-
munication networks using hidden Markov models, in International Conference on Intelli-
gence and Security Informatics (2003), pp. 126–137

109. O.C. Martin, S.W. Otto, Combining simulated annealing with local search heuristics. Ann.
Oper. Res. 63(1), 57–76 (1996)

110. O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling salesman
problem. Complex Syst. 5(3), 299–326 (1991)

111. O. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the TSP incorporating local
search heuristics. Oper. Res. Lett. 11(4), 219–224 (1992)

112. M. Mastrolilli, L. Gambardella, MAX-2-SAT: how good is tabu search in the worst-case?, in
Proceedings of the National Conference on Artificial Intelligence (AAAI Press/MIT Press,
Cambridge 1999/2004), pp. 173–178

113. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1998)
114. P. Morris, The breakout method for escaping from local minima. AAAI Proc. 93, 40–45

(1993)
115. P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts: towards

memetic algorithms. Caltech concurrent computation program, C3P Report, 826 (1989)
116. S. Nahar, S. Sahni, E. Shragowitz, Experiments with simulated annealing, in Proceedings of

the 22nd ACM/IEEE Conference on Design Automation, (DAC ’85) (ACM Press, New York,
1985), pp. 748–752. http://doi.acm.org/10.1145/317825.317977

117. S. Nahar, S. Sahni, E. Shragowitz, Simulated annealing and combinatorial optimization, in
Proceedings of the 23rd ACM/IEEE Conference on Design Automation (DAC ’86) (IEEE
Press, Piscataway, 1986), pp. 293–299

118. W. Nanry, J. Wesley Barnes, Solving the pickup and delivery problem with time windows
using reactive tabu search. Transp. Res. B 34(2), 107–121 (2000)

119. K. Nonobe, T. Ibaraki, A tabu search approach for the constraint satisfaction problem as a
general problem solver. Eur. J. Oper. Res. 106(2–3), 599–623 (1998)

120. T. Oomori, T. Genji, T. Yura, S. Takayama, T. Watanabe, Y. Fukuyama, T. Center, K. Inc,
J. Hyogo, Fast optimal setting for voltage control equipment considering interconnection of
distributed generators, in Transmission and Distribution Conference and Exhibition 2002:
Asia Pacific, vol. 2 (IEEE/PES, Piscataway, 2002)

121. I.H. Osman, Metastrategy simulated annealing and tabu search algorithms for the vehicle
routing problem. Ann. Oper. Res. 41(1–4), 421–451 (1993)

122. I. Osman, N. Wassan, A reactive tabu search meta-heuristic for the vehicle routing problem
with back-hauls. J. Sched. 5(4), 263–285 (2002)

123. P.M. Pardalos, M.G. Resende, C. Vogiatzis, J.L. Walteros (eds.), Learning and Intelligent
Optimization: 8th International Conference, Lion 8, Gainesville, February 16–21. Revised
Selected Papers, vol. 8426 (Springer, Berlin, 2014)

124. S. Pasupuleti, R. Battiti, The gregarious particle swarm optimizer (G-PSO), in Proceedings
of the 8th Annual Conference on Genetic and Evolutionary Computation (ACM, New York,
2006), pp. 67–74

125. P. Potocnik, I. Grabec, Adaptive self-tuning neurocontrol. Math. Comput. Simul. 51(3–4),
201–207 (2000)

http://doi.acm.org/10.1145/317825.317977

510 R. Battiti et al.

126. M. Rainer-Harbach, P. Papazek, B. Hu, G.R. Raidl, Balancing bicycle sharing systems: a
variable neighborhood search approach, in European Conference on Evolutionary Computa-
tion in Combinatorial Optimization (Springer, Berlin, 2013), pp. 121–132

127. R. Russell, T. Urban, Vehicle routing with soft time windows and Erlang travel times. J. Oper.
Res. Soc. 59(9), 1220–1228 (2007)

128. R. Russell, W. Chiang, D. Zepeda, Integrating multi-product production and distribution in
newspaper logistics. Comput. Oper. Res. 35(5), 1576–1588 (2008)

129. J. Ryan, T. Bailey, J. Moore, W. Carlton, Reactive tabu search in unmanned aerial reconnais-
sance simulations, in Proceedings of the 30th Conference on Winter Simulation (1998), pp.
873–880

130. O. Sammoud, S. Sorlin, C. Solnon, K. Ghédira, A comparative study of ant colony opti-
mization and reactive search for graph matching problems, in Evolutionary Computation in
Combinatorial Optimization – EvoCOP 2006, ed. by J. Gottlieb, G.R. Raidl. Lecture Notes
in Computer Science, vol. 3906 (Springer, Berlin, 2006), pp. 230–242

131. D. Schuurmans, F. Southey, R. Holte, The exponentiated subgradient algorithm for heuristic
boolean programming, in Proceedings of the International Joint Conference on Artificial
Intelligence, vol. 17 (Lawrence Erlbaum, Hillsdale, 2001), pp. 334–341

132. B. Selman, H. Kautz, Domain-independent extensions to GSAT: solving large structured
satisfiability problems, in Proceedings of IJCAI-93 (1993), pp. 290–295

133. B. Selman, H. Kautz, An empirical study of greedy local search for satisfiability testing,
in Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-93),
Washington (1993)

134. B. Selman, H. Levesque, D. Mitchell, A new method for solving hard satisfiability problems,
in Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), San
Jose (1992), pp. 440–446

135. B. Selman, H. Kautz, B. Cohen, Noise strategies for improving local search, in Proceedings
of the National Conference on Artificial Intelligence, vol. 12 (Wiley, Hoboken, 1994)

136. B. Selman, H. Kautz, B. Cohen, Local search strategies for satisfiability testing, in Proceed-
ings of the Second DIMACS Algorithm Implementation Challenge on Cliques, Coloring and
Satisfiability, ed. by M. Trick, D.S. Johson. DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, vol. 26 (1996), pp. 521–531

137. A. Shmygelska, Novel heuristic search methods for protein folding and identification of fold-
ing pathways. Ph.D. thesis, The University of British Columbia, 2006

138. A. Shmygelska, An extremal optimization search method for the protein folding problem: the
go-model example, in Proceedings of the 2007 GECCO Conference Companion on Genetic
and Evolutionary Computation (ACM Press, New York, 2007), pp. 2572–2579

139. A. Shmygelska, A. Hoos, An adaptive bin framework search method for a beta-sheet protein
homopolymer model. BMC Bioinf. 8(1), 136 (2007)

140. K. Steiglitz, P. Weiner, Algorithms for computer solution of the traveling salesman prob-
lem, in Proceedings of the Sixth Allerton Conference on Circuit and System Theory, Urbana
(IEEE, Piscataway, 1968), pp. 814–821

141. E. Taillard, Robust taboo search for the quadratic assignment problem. Parallel Comput.
17(4–5), 443–455 (1991)

142. F.H.D. Tompkins, H. Hoos, Scaling and probabilistic smoothing: efficient dynamic local
search for sat, in Proceedings Principles and Practice of Constraint Programming - CP
2002: 8th International Conference, CP 2002, Ithaca, September 9–13. Lecture Notes in
Computer Science, vol. 2470 (Springer, Berlin, 2002), pp. 233–248

143. D. Tompkins, H. Hoos, Warped landscapes and random acts of SAT solving, in Proceedings
of the Eighth Intl Symposium on Artificial Intelligence and Mathematics (ISAIM-04) (2004)

144. S. Toune, H. Fudo, T. Genji, Y. Fukuyama, Y. Nakanishi, Comparative study of modern
heuristic algorithms to service restoration in distribution systems. IEEE Trans. Power Deliv-
ery 17(1), 173–181 (2002)

145. D.T. Truong, R. Battiti, M. Brunato, A repeated local search algorithm for biclustering of
gene expression data, in International Workshop on Similarity-Based Pattern Recognition
(Springer, Berlin, 2013), pp. 281–296

15 Reactive Search Optimization: Learning While Optimizing 511

146. T. Vossen, M. Verhoeven, H. ten Eikelder, E. Aarts, A quantitative analysis of iterated local
search. Computing Science Reports 95/06, Department of Computing Science, Eindhoven
University of Technology, Eindhoven (1995)

147. C. Voudouris, E. Tsang, Partial constraint satisfaction problems and guided local search, in
Proceedings of 2nd International Conference on Practical Application of Constraint Tech-
nology (PACT 96), London (1996), pp. 337–356

148. C. Voudouris, E. Tsang, Guided local search and its application to the traveling salesman
problem. Eur. J. Oper. Res. 113(2), 469–499 (1999)

149. B. Wah, Z. Wu, Penalty formulations and trap-avoidance strategies for solving hard satisfia-
bility problems. J. Comput. Sci. Technol. 20(1), 3–17 (2005)

150. S. White, Concepts of scale in simulated annealing. AIP Conf. Proc. 122, 261–270 (1984)
151. T. Winter, U. Zimmermann, Real-time dispatch of trams in storage yards. Ann. Oper. Res.

96(1–4), 287–315 (2000)
152. S. Youssef, D. Elliman, Reactive prohibition-based ant colony optimization (RPACO): a new

parallel architecture for constrained clique sub-graphs, in Proceedings of the 16th IEEE In-
ternational Conference on Tools with Artificial Intelligence (IEEE Computer Society, Wash-
ington, 2004) pp. 63–71

153. M. Zennaki, A. Ech-cherif, J. Lamirel, Using reactive tabu search in semi-supervised classi-
fication, in 19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI
2007, vol. 2 (2007)

Chapter 16
Stochastic Search in Metaheuristics

Walter J. Gutjahr and Roberto Montemanni

Abstract Stochastic search is a key mechanism underlying many metaheuristics.
The chapter starts with the presentation of a general framework algorithm in the
form of a stochastic search process that contains a large variety of familiar meta-
heuristic techniques as special cases. Based on this unified view, questions concern-
ing convergence and runtime are discussed at the level of a theoretical analysis. Con-
crete examples from diverse metaheuristic fields are given. In connection with run-
time results, important topics such as instance difficulty, phase transitions, param-
eter choice, No-Free-Lunch theorems or fitness landscape analysis are addressed.
Furthermore, a short sketch of the theory of black-box optimization is given, and
generalizations of results to stochastic search under noise and to robust optimiza-
tion are outlined.

16.1 Introduction

The aim of this chapter is to present a unified view of stochastic search which is
used as a core mechanism in many metaheuristics. Not every metaheuristic applies
a probabilistic mechanism to organize the exploration of the search space; there are,

W. J. Gutjahr (�)
University of Vienna, Vienna, Austria
e-mail: walter.gutjahr@univie.ac.at

R. Montemanni
Dalle Molle Institute for Artificial Intelligence, University of Applied Sciences of Southern
Switzerland, Manno, Switzerland
e-mail: roberto.montemanni@supsi.ch

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_16

513

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_16&domain=pdf
mailto:walter.gutjahr@univie.ac.at
mailto:roberto.montemanni@supsi.ch
https://doi.org/10.1007/978-3-319-91086-4_16

514 W. J. Gutjahr and R. Montemanni

e.g., deterministic versions of Tabu Search. Interestingly enough, however, the in-
corporation of “random” (or more precisely: pseudo-random) steps into the algorith-
mic design is rather the usual than the exceptional case in the field of metaheuristics.
Thus, it makes sense to have a closer look at this feature.

One would expect that all metaheuristics that perform stochastic search have
some properties in common. Admittedly, at the moment, we are still far away from
a general theory containing every stochastic metaheuristic as a special case. Never-
theless, some observations are available that are not restricted to a particular meta-
heuristic algorithm, but have been made, possibly in different appearance, for sev-
eral seemingly unrelated algorithms.

The emphasis of this chapter is on results that lead to a deeper understanding
of principles and properties common to more than one stochastic metaheuristic.
Because of this goal, we concentrate on theoretical results, which can be rigorous
or (at least) precise, where “rigorous” is understood in a mathematical sense, and
“precise” means that some form of analytic derivation (although not necessarily a
rigorous one) is used for predicting numerical experimental outcomes. It is clear that
experimental results are at least as important—presumably even more important.
However, they usually contribute to a smaller degree to a unifying understanding,
so we shall not focus on them here.

The chapter is organized as follows: In Sect. 16.2, we develop a common for-
mal framework capturing the essential features of most stochastic metaheuristics,
and we shortly address the motivation for applying stochastic search in metaheuris-
tic algorithms. Sections 16.3 and 16.4 are devoted to convergence results and to
results dealing with required optimization time, respectively. The practically impor-
tant issue of parameter choice in metaheuristics is briefly outlined in Sect. 16.5. Sec-
tion 16.6 discusses “No-Free-Lunch” theorems and their implications for stochastic
search, in particular the desirability of a problem-specific fitness landscape analysis.
Some techniques for the latter are outlined in Sect. 16.7. The purest form of stochas-
tic search algorithms are (stochastic) black-box optimizers, which are discussed in
Sect. 16.8. Section 16.9 outlines an important special application area of metaheuris-
tics, namely optimization under uncertainty or noise. Section 16.10 addresses robust
optimization approaches, and Sect. 16.11 concludes the chapter.

16.2 General Framework

The aim of the stochastic search algorithms investigated in this chapter is the exact
or approximative solution of combinatorial optimization (CO) problems of the form

min f (x) such that x ∈ S, (16.1)

where S is a finite search space, f is a real-valued function called objective function,
and “min” can be replaced by “max”. The function f is also called cost function
(if to be minimized) or fitness function (if to be maximized). We consider iterative

16 Stochastic Search in Metaheuristics 515

algorithms A of the following general type: In iteration t, algorithm A uses a memory
Mt and a list Lt of solutions xi ∈ S. The list Lt contains new “trial points” for the
optimization. The algorithm proceeds as follows:

1. Initialize M1 according to some rule.
2. In iteration t = 1,2, . . ., until some stopping criterion is satisfied,

a. determine the list Lt as a function g(Mt ,zt) of Mt and of a random influence
zt ;

b. determine the objective function values f (xi) of all xi ∈ Lt , and form a list
L+

t containing the pairs (xi, f (xi));
c. determine the new memory content Mt+1 as a function h(Mt ,L

+
t ,z

′
t) of the

current Mt , of the list of solution-value pairs L+
t , and of a random influence

z′t .

The currently proposed (approximate) solution xcurr
t in iteration t results as some

function of (Mt ,L
+
t) specified by A. Also the stopping criterion defined by A depends

on (Mt ,L
+
t).

In this formalism, one can imagine zt and z′t as vectors of (pseudo-)random num-
bers that are used by the stochastic algorithm. The function g(Mt ,zt) specifies, for
a given memory Mt , a probability distribution for the list of new search points; the
function h(Mt ,L

+
t ,z

′
t) specifies, given memory Mt and current list L+

t of solution-
value pairs, a probability distribution for the new content of the memory. If the
functions g and h are independent of zt resp. z′t , we obtain the special case of a
deterministic search algorithm.

The generic algorithm above, which is an extension of the generic black-box opti-
mizer presented in [21] (discussed in Sect. 16.8), covers most—if not all—stochastic
metaheuristics. We shall outline this by giving two special examples:

• Simulated Annealing (SA): A neighborhood structure on S is used. Mt consists of
a single element, the current search point x. Also Lt consists of a single element,
the currently investigated neighbor solution y to x. To determine Lt from Mt ,
choose a random neighbor y to the element x in Mt . To update Mt to Mt+1, decide
by the stochastic acceptance rule used in SA whether y is accepted or not. If yes,
Mt+1 contains y, otherwise it contains x.

• Canonical Genetic Algorithm (GA): Mt consists of k solutions, and Lt also con-
sists of k solutions. To determine Lt from Mt , apply the operators mutation and
crossover to the solutions in Mt . This yields Lt . To update Mt to Mt+1, apply
fitness-proportional selection to the population contained in Lt , using the corre-
sponding objective function values. The result gives Mt+1.

In principle, the functions g and h may use any information on the problem in-
stance. The important special case where g and h are only allowed to use the knowl-
edge of the search space S and of the problem type, but not of the specific problem
instance, is denoted as black-box optimization and will be dealt with in Sect. 16.8.

516 W. J. Gutjahr and R. Montemanni

An important observation is that by construction, the “states” (Mt ,L
+
t) visited

during the execution of the algorithm form a Markov process in discrete time1: The
distribution of the next state (Mt+1,L

+
t+1) only depends on the current state (Mt ,L

+
t).

Considering the objective function f as given, (Mt) (t = 1,2, . . .) can already be
seen as a Markov process, since the distribution of Mt+1 only depends on Mt (via
L+

t , which results from Mt). This allows the application of Markov process theory
to the analysis of stochastic search algorithms.

We may use the described algorithmic framework for giving a rough classifica-
tion of several stochastic metaheuristics:

1. Stochastic Local Search Algorithms: Examples are Iterated Local Search (ILS),
Simulated Annealing (SA), Generalized Hillclimbers (GHCs), or Variable
Neighborhood Search (VNS). Mt contains a small, fixed number of solutions
(e.g., incumbent solution, current search point, current neighbor) derived by
using a neighborhood structure on S.

2. Population-Based Stochastic Search Algorithms: Examples are GAs and basic
forms of Estimation-of-Distribution Algorithms (EDAs). Mt contains a “popu-
lation” of solutions. The size of this population is a parameter of the algorithm.

3. Model-Based Stochastic Search Algorithms: The concept of model-based
search has been introduced by Zlochin et al. [114]. This group of metaheuris-
tics contains Ant Colony Optimization (ACO), some more elaborated forms
of EDAs, or Cross-Entropy Optimization. Here, Mt consists of a vector of
real-valued parameters, e.g., a pheromone vector in ACO, sometimes also of
additional information.

Although metaheuristics as Particle Swarm Optimization (PSO) or some variants of
Evolution Strategies (ES) do not deal with CO problems, but rather with continuous
search spaces S instead, these metaheuristics can be used for CO problems as well
by means of suitable problem encodings. For example, the Binary PSO algorithm
proposed by Kennedy and Eberhart [67] maintains vectors interpreted as positions,
best positions and velocities of “particles”, from which discrete solutions can be
derived by a probabilistic mechanism. In the classification above, this leads us to
the model-based class with Mt containing a list of vectors of real numbers.

We close this section with the question of the general motivation for introduc-
ing stochastic elements (the random variables zt and z′t above) into a metaheuristic.
Perhaps the simplest reason is that care must be taken to prevent a search algorithm
from cycling through a small portion of the search space. Let us look at a simple
example. Suppose we perform a search in the set S = {0,1}n of binary strings of
length n, with some cost function f on S. For simplicity, let us suppose that all oc-
curring cost values are different from each other. Our algorithm always stores the
current solution x as well as the solution w visited just before x, and it iteratively
moves from the current x to the lowest-cost neighbor solution y of x different from
w, where x and y are called neighbors if they differ exactly in one bit position. This
deterministic search algorithm is able to quickly find a locally optimal solution (i.e.,

1 Since g and h do not depend on the iteration counter t, the Markov process is homogeneous.
Dependence on t can easily be modeled by adding t as a component to the memory Mt .

16 Stochastic Search in Metaheuristics 517

a solution that does not have a neighbor with lower cost), but neither is it able to
stop at a local optimum xloc, nor does it typically leave the neighborhood of some
suboptimal xloc in order to continue the search for the global optimum. Of course,
this undesirable behavior can be avoided by increasing our “tabu list” (consisting
only of w in the naive algorithm above), but this comes at the price of increased
computational cost. An alternative way to give the search process the freedom to
leave local optima is to allow random moves from a solution point to a neighbor.
Whenever we choose this alternative, it is much easier to ensure that no point in the
solution space is excluded from the search in advance.

16.3 Convergence Results

The search process (Mt ,L
+
t) is only helpful if it leads us to an optimal solution

of (16.1) or, at least, to a good approximation. Ideally, the current solution xcurr
t de-

rived from the state at time t becomes an element of the set S∗ of optimal solutions
in some iteration t1 and remains unchanged in subsequent iterations. This behav-
ior is denoted as convergence to the optimum. Since we consider stochastic search
algorithms, the definition of convergence has to be modified. In probability theory,
there are several different notions for the convergence of a stochastic process. One
of the most natural in our context is convergence in probability: A stochastic search
algorithm A converges to the optimum in probability, if the probability of the event
xcurr

t ∈ S∗ converges (in the mathematical sense of the word) to unity as t → ∞.
Convergence to the optimum in probability can be achieved easily even by simple

stochastic search algorithms: Consider the (usually very inefficient) random search
algorithm, where, in each iteration, Lt consists of a single solution xt that is chosen at
random from S according to some fixed distribution independently of Mt (and hence
of the previous iterations). Let Mt contain the best-so-far solution xbs f

t encountered
up to iteration t − 1: The variable xbs f

t is initialized arbitrarily for t = 1 and is set
to xt in each iteration where f (xt) turns out to be better than f (xbs f

t). If for each
iteration t, we choose the currently proposed solution xcurr

t as the best-so-far solution
xbs f

t , random search converges to the optimum in probability. However, the runtime
until hitting an optimal solution may be huge.

Interestingly, some more efficient algorithms (from a practical point of view) do
not share the mentioned convergence property. For example, Rudolph [88] showed
that the canonical GA, as described in the previous section, with xcurr

t defined as the
best element of the current generation, never converges to the optimum in probabil-
ity; this is simply due to the fact that by possible mutations, the probability of the
event that the current population does not contain an element from S∗ has always
a strictly positive lower bound. By adding the “elite” solution xbs f

t as an additional

518 W. J. Gutjahr and R. Montemanni

component to the memory Mt , the algorithm can be made convergent to the optimum
in probability.2

For a stochastic search algorithm A, it would be desirable that not only the prob-
ability of xcurr

t ∈ S∗ converges to one, but that exploitation of the search history
increases the average fitness of the sample points, i.e., of the elements of Lt , which
is not the case for random search. If for an algorithm A, the part of the memory Mt

responsible for the generation of the list Lt of sample points converges to some state
supporting only optimal (or at least good) solutions, one can expect that the quality
of the sample points will improve during the process. Thus, the search algorithm
will arrive at the optimum faster than random search.

Convergence results of the last kind are harder to show (and require stricter con-
ditions on algorithms and parameter choices), but there exist such results in the
literature for several metaheuristics. The first ones were derived for SA. In the case
of SA with a logarithmic cooling scheme, Hajek [51] gave necessary and sufficient
conditions for the current search point xt (the solution contained in Mt) to converge
in probability to S∗. Contrary to the best-so-far solution xbs f

t which does not in-
fluence the process itself, the current search point xt defines the next sample point
candidates and thus determines the distribution of Lt . If xt gradually focuses more
and more on promising regions of the search space instead of doing “blind” random
search (as in the first, high-temperature phase of SA), the chance of detecting the
global optimum is increased compared to the random search algorithm. Therefore,
convergence of xt is more meaningful than convergence of xbs f

t only.
In the ACO case, the “sample-generating” part of the memory Mt consists of

the vector τt of pheromone values that determine the distribution of the solutions to
be sampled in the current iteration. For algorithms of the MAX-MIN-Ant-System
type developed by Stützle and Hoos [95] using “elitism” (i.e., incorporating also
xbs f

t into Mt), conditions are given in [40, 92] to ensure not only that xbs f
t converges

to the optimum, but also that τt converges to a limiting vector that only allows the
generation of an optimal solution. A related result for Cross-Entropy Optimization
was shown by Margolin [70].

What have these results for different metaheuristics in common? Typically, when
proving a “strong” form of convergence for a stochastic search algorithm in the just-
mentioned sense, the parametrization of the algorithm has to be chosen in such a
way that a proper balance between exploration and exploitation is preserved: When
the emphasis is too much on the exploration pole, random-search-type behavior
results, and the sample-generating part of the memory Mt does not converge at all.
On the other hand, when exploitation is emphasized too much, one does obtain
convergence, but it is usually “premature” convergence to a suboptimal solution.
By keeping the balance, convergence is still ensured, but slowed down to allow the
detection of a global optimum. The specific form of the exploration-exploitation
tradeoff depends on the algorithm under consideration. For example, for SA, high
values of the temperature parameter favor exploration, low values favor exploitation.

2 Elitism as a mechanism ensuring convergence of a GA has already been analyzed in [52], which
appears to be the first paper on GA convergence.

16 Stochastic Search in Metaheuristics 519

In some stochastic metaheuristics, the question of convergence is conveniently
addressed via a system dynamics approach. For example, Trelea [101] identifies
attractors, i.e., stable fixed points of a dynamic process concretizing our generic
(Mt ,L

+
t) dynamics in the context of PSO. In the case of convergence, only attrac-

tors can be limiting points. In [101], the exploration-exploitation tradeoff and its
connection to parameter choice is also explicitly addressed.

A very small selection of convergence results for stochastic metaheuristics have
been mentioned in this section. For some other results, see, e.g., [64, 102] (GHCs),
[37, 38] (EDAs), [39, 96] (ACO), or [50] (VNS).

16.4 Runtime Results

From the viewpoint of applications, the question of whether and in which sense a
stochastic search algorithm A converges is less relevant than the question of what
amount of computation times A requires for finding an optimal or a sufficiently
good solution. Nevertheless, theoretical investigations must start with the conver-
gence issue, since important performance measures are undefined or infinite if A
has a nonzero probability of never arriving at an optimum, as, e.g., in the case of
premature convergence.3

Typical performance measures in the runtime analysis of stochastic search algo-
rithms are (among others):

• The probability μt = Pr{xcurr
t ∈ S∗} that the current solution in iteration t is

optimal. He and Yu [57] (cf. also [111]) call 1−μt the convergence rate.
• The expected value or the distribution of the first hitting time (FHT) T1, defined

by T1 = min{t ≥ 1 : xcurr
t ∈ S∗}.

• The expected value or the distribution of the time until a solution with a relative
cost deviation from the optimum less than some ε has been found.

The measures above relate to a single given problem instance, say, a fixed distance
matrix in the case of a TSP. In order to obtain more general information, one is
usually rather interested in the behavior of A for a class of problem instances. In
complexity analysis, all instances of a given problem of a certain size n are con-
sidered (say, all [n× n] distance matrices in the case of a TSP), where a suitable
measure for instance size is applied. Then, the dependence of a fixed performance
measure on n is studied. Since algorithm A has a different expected first hitting time
for each instance of size n, some sort of aggregation is necessary. The two most
important options for aggregation are to consider either the worst case performance

3 To ask, say, for the expected time until an optimal solution is first hit without being sure that the
optimum will be reached, is as meaningless as to ask: “How much training time would it take on
average for a randomly selected person to win an olympic gold medal?” Also by being satisfied
with an approximate solution of a certain minimum quality (call it the “silver medal”) instead of
the optimal solution, one does not escape this difficulty.

520 W. J. Gutjahr and R. Montemanni

over all instances of size n, or the average case performance, given some probability
distribution on the set of instances of size n.

16.4.1 Some Methods for Runtime Analysis

Each metaheuristic field has developed some specific techniques for analyzing com-
putation times on selected optimization problems. However, a few general methods
that turned out to be successful for more than one metaheuristic algorithm can be
identified. Below, we shortly outline four of these methods. The reader is also re-
ferred to [5, 44, 81] for more details.

(1) Markov Chain Theory As noted in Sect. 16.2, the process (Mt) is a Markov
process. In cases where the memory content Mt can only take finitely many val-
ues, the state space for this process is finite, i.e., (Mt) is a (homogeneous) Markov
chain. An example are GAs, where Mt contains a population of solutions x ∈ S. In
the probabilistic literature, much is known about Markov chains, and some results
can be exploited for the analysis of the corresponding stochastic search algorithms.
Following He and Yao [55], let us suppose, e.g., that by construction of A, states
of Mt containing an optimal solution are never left again during the process (they
are “absorbing states”), whereas other states have a probability larger than zero of
being left in the next iteration (they are “transient states”). Let A and T denote the
set of absorbing states and transient states, respectively, and let j = |A| and k = |T|.
Giving the j states in A the lowest and the k states in T the highest indices, the
probability transition matrix P of the Markov chain (Mt) can be decomposed in the
form

P =

[
I j 0
R T

]
,

where I j is the [j× j] identity matrix, 0 is the [j×k] matrix with all elements equal to
zero, and R and T are [k× j] and [k×k] matrices, respectively. He and Yao [55] show
by direct application of a classical Markov chain result that the vector m whose ith
component is the expected first hitting time mi of the set of absorbing (i.e., optimal)
states when starting from transient state i, is given by

m = (Ik −T)−1(1, . . . ,1)t ,

where Ik is the [k×k] identity matrix. In principle, this would allow the computation
of expected first hitting times, but the matrix Ik − T is usually difficult to invert.
Thus, the result can only be applied in cases where P has some special form (see,
e.g., [81]). For other examples of the application of Markov chain theory, see, e.g.,
[22, 113]. In the last years, Markov chain approaches are often combined with drift
analysis (see below).

(2) Level Sets This method evolved in papers on the analysis of evolutionary algo-
rithms (EAs) such as [13] or [20]. It tries to circumvent the state-space explosion

16 Stochastic Search in Metaheuristics 521

for growing n, unavoidable in the direct application of the Markov chain approach,
by grouping solutions into classes, where the fitness values are used as a natural
criterion for defining the classes. Certain ranges of the fitness function (“levels”)
correspond to certain subsets (“level sets”) of the search space S. The level sets have
to be ordered in such a way that if x ∈ A j and y ∈ Ak for two level sets A j and Ak

with j < k, it must always hold that f (x)< f (y). In the easiest cases to analyze, the
stochastic search algorithm A never returns to a level set corresponding to a lower
fitness value after it has already visited a level set corresponding to a higher fitness
value. For example, this monotonicity property is satisfied if A relies on the best-so-
far solution xbs f

t for the update from (Mt ,L
+
t) to (Mt+1,L

+
t+1), since xbs f can never

decrease for increasing t. Now, if it is possible to determine a lower bound on the
probability that the process jumps from some level j to a higher level k > j, an up-
per bound for the expected staying time in level j can be derived, and from those
bounds, one can obtain an upper bound for the time until the highest (i.e., optimal)
level is reached.

This idea has turned out to be fruitful for runtime analysis purposes not only in
the field of EAs, but also in the ACO field (see, e.g., [44, 45, 49]). In the PSO field,
the level-set method has been applied by Sudholt and Witt [98]. For an extension of
the method using the concept of potential functions, see [108].

(3) Drift Analysis Drift analysis derives from martingale theory and has been ap-
plied for the analysis of SA (see [89]) and later for EAs (see, e.g., [54, 56]). Consider
again the Markov process (Mt) and suppose that xcurr

t can be derived directly from
Mt , i.e., xcurr

t = xcurr(Mt). (If the information in L+
t is also required for getting xcurr

t ,
the process (Mt ,L

+
t) must be considered instead of (Mt).) Based on xcurr

t , a distance
V (M) between state M and the set of states supporting optimal solutions may be
defined. For example, one may set V (M) = | f (xcurr(M))− f ∗|, where f ∗ is the ob-
jective function value of the optimal solution. The one-step mean drift in state M is
defined as the conditional expectation

E(V (Mt)−V (Mt+1) |Mt = M) =V (M)−∑
M′

P(M,M′)V (M′),

where P(M,M′) is the transition probability from state M to state M′. If the mean
drift is always zero, the process V (Mt) is a martingale, which means that an optimal
solution can only be found by chance. Hopefully, however, the drift generated by a
stochastic search algorithm is positive, such that there is a tendency of the process
to approach the set of optimal solutions.

He and Yao [54] show that from a lower bound on the mean drift, an upper
bound on the expected first hitting time can be derived: If the mean drift in state M
is larger than or equal to some constant clow > 0 for any M with V (M)> 0, then the
expected first hitting time after start in state M1 satisfies E(T1 |M1) ≤ V (M1)/clow.
With the help of this and similar lemmas, the behavior of some EAs on simple test
functions has been successfully analyzed. The generality of the formalism shows
that drift analysis should be applicable in principle to every type of stochastic search
algorithms.

522 W. J. Gutjahr and R. Montemanni

In the last years, the application of drift analysis for obtaining runtime results
has been considerably refined. For example, Oliveto and Witt [80] recently com-
bined drift analysis, potential functions and the theory of submartingales in an in-
vestigation of the so-called Simple Genetic Algorithm, showing that already for the
OneMax fitness function (discussed in Sect. 16.4.3 below), this algorithm requires
exponential optimization time with overwhelming probability.

(4) Stochastic Approximation In some cases, where the process (Mt) itself appears
too difficult for a mathematical analysis, one may try to obtain asymptotic approx-
imations to this process for limiting cases concerning special parameter values. An
example is given in [43, 45], where the behavior of the Ant System variant of ACO,
developed by Dorigo et al. [18], is analyzed on simple test problems for a small
learning rate ρ for the pheromone update (ρ is usually called “evaporation rate”
in the ACO literature). In Ant System, the solution quality achieved in iteration t
can also decrease compared to iteration t −1. Therefore, the level-set method is not
applicable to this algorithm, contrary to some variants of MAX-MIN-Ant-System.
However, letting ρ become small allows the application of the theory of slow learn-
ing that has been developed early in the learning literature (see [79]). As stated in
Sect. 16.2, the memory Mt in ACO contains a vector of pheromone values. In the
limiting case ρ → 0, the dynamics of this vector becomes deterministic and can
be described by a system of differential equations. Similar approaches have been
pursued by Purkayastha and Baras [86] and by Paul and Mukhopdahyay [84].

Stochastic approximation techniques of this type may also be helpful for the
analysis of other stochastic search algorithms where the memory content Mt lies in
a continuous state space, e.g., EDAs or PSO. Indeed, in one of the first articles using
an approach of this type, Gonzales et al. [37] refer to the analysis of PBIL, which is
a special EDA.

16.4.2 Instance Difficulty and Phase Transitions

The methods presented in Sect. 16.4.1 analyze a stochastic metaheuristic A for a
special problem instance (S, f). As noted at the beginning of Sect. 16.4, the topic
of interest is typically not the behavior of A for a single instance, but for a class of
instances, say the instances of size n of a given CO problem. The class may contain
instances with completely different properties. Thus, the concepts of worst-case and
of average-case analysis come into play.

In the case of some simple problems such as Generalized OneMax, which will
be described in Sect. 16.4.3, the degree of difficulty is the same for all instances
of size n. This is not true anymore for most CO problems found in applications.
However, it seems that the degree of difficulty is usually not completely “scattered”
among the instances, but often depends on some characteristic parameters of in-
stances which are called control parameters or order parameters. The seminal pa-
per by Cheesman et al. [15] has shown experimentally that for some fundamental

16 Stochastic Search in Metaheuristics 523

NP-hard combinatorial decision problems like k-SAT, Hamilton Circuits or Graph
Coloring, different regions of the set of instances, such as “underconstrained” or
“overconstrained” regions, must be distinguished; their boundary is defined by a
critical value αc of a control parameter, and the probability of the existence of a
solution with the required properties changes abruptly from near zero to near one
when crossing the boundary. The larger the instance size n, the sharper is the tran-
sition. By analogy to phenomena in physics like the melting of ice, this behavior
is called phase transition. The computation time required for solving the problem
is typically high near the phase transition and low for control parameter values far
from αc (“easy–hard–easy pattern”); sometimes, also “easy–hard” or “hard–easy”
patterns are found.

Similar phase transition phenomena have also been observed in NP-hard combi-
natorial optimization problems, e.g., number partitioning [35], resource-constrained
project scheduling problems [58], TSPs [112], independent-set problems [6], Max
k-SAT [1], vertex-cover problems [53], and others—problems that form the natural
range of application for stochastic search algorithms.

Whereas Cheesman et al. [15] use computational experiments for investigating
the phase transition phenomenon in CO, essential progress in the theoretical under-
standing of this phenomenon has been achieved during the last decade in the physics
literature, especially by applying concepts from statistical mechanics to CO. Martin
et al. [71] and Monasson [75] give an introduction to this field. Statistical-mechanics
investigations of CO problems usually start with the Boltzmann distribution4 on the
search space S, which is given by p(x) = (1/ZT)exp(− f (x)/T), where x ∈ S is
a solution, p(x) is the probability of x, f is the cost function (called energy in the
physics literature), the parameter T ≥ 0 is called temperature, and the normalization
factor ZT = ∑y∈S exp(− f (y)/T) is called the partition function. The two boundary
cases T = ∞ and T = 0 produce a uniform distribution on S, resp. a distribution that
is concentrated on the set of global optima, the so-called ground states. The crucial
idea is that by letting T tend toward zero and by investigating the partition function
ZT at this asymptotic limit, information on global optima is obtained, in particular
information on the optimal cost function value f ∗ (“ground-state energy”) or on the
number of global optima.

In order to get from single problem instances to instance classes, the quantities
derived from the partition function are averaged over the distribution of instances
within the class of interest. As an example, consider the Number Partitioning Prob-
lem (NPP) with n items, the weights of which are represented by b-bit integers. A
solution x consists in a partition of the set of given items into two subsets, and the
cost function is the absolute difference between the total weights of the two sub-
sets. Here, the ratio b/n turns out as the relevant control parameter. The statistical-
mechanics approach predicts a phase transition around b/n ∼ 1, with an exponen-
tially growing search cost for b large compared to n, and polynomially growing cost
for b small compared to n (see, e.g., [73]). This is in good agreement with exper-

4 The relevance of this distribution in the field of stochastic search is also underlined by the fact
that one of the oldest general-purpose stochastic search techniques, namely SA, approximates at
each fixed temperature level T the corresponding Boltzmann distribution.

524 W. J. Gutjahr and R. Montemanni

imental results. Recent work has focused on obtaining empirical insights into the
changes in some properties such as number of local optima, plateaus or basin sizes
when going through a phase transition. For the above-mentioned example of the
NPP, e.g., Alyahya and Rowe [4] have presented such results.

From a practical point of view, the results on phase transitions indicate that for
testing or tuning a metaheuristic algorithm, a suitable choice of the instance dis-
tribution is very important. In particular, it does not make too much sense to mix
instances from the “easy” and “hard” regions, since the last will dominate the aver-
age behavior, which may mask the information that can be obtained for the easier
instances.

16.4.3 Some Notes on Special Runtime Results

For reasons that will be discussed in Sect. 16.6, it is rather unlikely that for a stochas-
tic search algorithm, universal positive runtime results (i.e., results valid for all CO
problems predicting computation times of practical interest) can be obtained. There-
fore, the promising way is to investigate different problems separately from each
other, starting with very simple ones in order to develop useful analytical techniques,
and successively progressing toward the hard CO problems found in applications.

Due to the necessity of studying runtime issues separately for single problems,
the literature on analytical runtime results for stochastic search heuristics is rather
dispersed. An overview would be beyond the scope of this chapter. Therefore, we
focus on a few key issues. Classical results are recalled in the survey [81], which
addresses the evolutionary algorithms field excluding the swarm-intelligence meta-
heuristics ACO and PSO, and the survey concerning ACO provided in [44]; some
more recent results can be found in [5].

Typical simple problems investigated in the literature consist of artificially con-
structed test functions, usually pseudo-Boolean functions, i.e., functions mapping
the set S = {0,1}n of binary strings x = (x1, . . . ,xn) of length n into the reals. Ex-
amples are the OneMax fitness function f (x) = ∑n

i=1 xi, the LeadingOnes fitness
function f (x) = ∑n

i=1 ∏i
j=1 x j, or the Needle-in-a-Haystack (NIAH) fitness function

f (x) = ∏n
j=1 x j. These three functions (instances) can be generalized to problems

(classes of instances). For example, the Generalized OneMax problem contains the
fitness functions n−dH(x,x∗), with dH denoting the Hamming distance and x∗ ∈ S
being an arbitrary fixed solution. (The OneMax function is the special case where
x∗ = (1, . . . ,1).) Also more general classes have been successfully analyzed in the
literature. Droste et al. [20] have shown that for all linear pseudo-boolean functions,
the expected first hitting time E(T1) of the simple (1+ 1) EA grows as θ(n logn)
in the instance size n. In [104], some results on quadratic pseudo-boolean functions
have been derived; this class already contains NP-hard optimization problems. Also
for more complex EAs and for other stochastic metaheuristics, results concerning
pseudo-boolean functions have been proved in the meantime (see the cited surveys).

16 Stochastic Search in Metaheuristics 525

Part of the literature analyzes the behavior of stochastic search algorithms on
practically relevant problems from the complexity class P, i.e., problems for which
polynomial-time solution algorithms exist. Such problems are good benchmarks for
testing a metaheuristic algorithm which should be able to solve them by requiring
only a low computational overhead compared to a problem-specific algorithm. In
particular, sorting problems (e.g., [90]), maximum matching problems (e.g., [36]),
and minimum spanning tree problems (e.g., [76, 78]) have been analyzed in an EA
or ACO context. As expected, the investigated metaheuristics perform worse than
the respective “tailored” algorithms, but they usually remain efficient in the sense
that only polynomially growing runtime is required.

Very few works exist that analyze stochastic metaheuristics on NP-hard prob-
lems. Witt [107] investigates the behavior of the (1+1) EA on a variant of the NPP
(see Sect. 16.4.2) for which a fully polynomial approximation scheme exists. Within
O(n2) steps, the (1+ 1) EA finds a solution that is at least (4/3)-approximate. For
the maximum clique problem on random planar graphs, Storch [94] proves that SA
with constant temperature finds an optimal solution in linear time with overwhelm-
ing probability, while the (1+1) EA needs θ(n6) iterations. Also Wei and Dinneen
[105] investigate the clique problem, comparing two fitness function choices. For
the vertex cover problem, Friedrich et al. [29] show that the (1+ 1) EA can pro-
duce arbitrarily poor solutions, whereas the evolutionary multi-objective optimizer
SEMO performs sufficiently well. The poor performance of the (1+1) EA can also
be remedied by applying multistarts, as Oliveto et al. [82] demonstrate.

The issue of the possible advantage of random multistart also raises another in-
teresting question. Whether or not random multistart is beneficial depends on the
distribution of the first hitting time T1. Therefore, results that do not only deter-
mine the expected value E(T1), but the entire distribution of the random variable T1,
would be very useful. Only a few results of this type seem to exist. We give two
examples. Garnier et al. [32] show that for the first hitting time T1(n) of (1+1) EA
on a OneMax instance of size n, the re-normalized value (T1(n)− en logn)/n con-
verges in distribution to −e logZ+C as n → ∞, where Z is exponentially distributed
with parameter λ = 1, and C is a constant. Ladret [69] proves that for the first hit-
ting time T1(n) of the (1+ 1) EA on a LeadingOnes instance, the re-normalized
value (T1(n)−mn2)/n3/2 with m = (e−1)/2 converges in distribution to a normal
distribution with mean 0 and variance 3(e2 −1)/8.

Runtime complexity results are not an end in itself; ideally, they should guide the
development of new and more efficient algorithms. In [17], Doerr et al. use runtime
analysis to design a new crossover-based genetic algorithm that is asymptotically
faster on OneMax than all previously known EAs.

16.5 Parameter Choice

One of the most important questions for the application of a metaheuristic algorithm
is how its parameters should be chosen in order to obtain a good algorithmic per-
formance for the application case at hand. Considering the functions g and h of the

526 W. J. Gutjahr and R. Montemanni

generic algorithm of Sect. 16.2, we may distinguish between sampling parameters
contained in g (they govern the distribution of the sample points in Lt), and learn-
ing parameters contained in h (they determine the type and amount of influence of
the fitness values observed in the sampled trial points on the new memory content
Mt+1). Examples of sampling parameters are mutation rate and crossover rate in
GAs. Examples of learning parameters are temperature in SA or the learning rates
used in ACO and in some EDAs, respectively.

A first question in this context is whether it is better to keep parameters constant
during the optimization run or whether they should be changed dynamically. There
are good empirical and theoretical arguments for the second alternative. Conver-
gence results for more than one stochastic search algorithm are based on dynamic
parameter schemes. For example, the classical convergence results [51] for SA re-
quire that the temperature parameter T is gradually decreased. Similarly, in [40], one
of two indicated options for obtaining convergence of an ACO algorithm consists in
gradually reducing the learning rate ρ . It seems that such a dynamic management of
a central parameter of a stochastic search algorithm is a key instrument for achieving
an exploration-exploitation balance.

Despite this intuitive consideration, it is surprisingly hard to verify the benefits
of a dynamic parameter scheme through a rigorous demonstration that performance
measures, such as the expected first hitting time, can be improved if the parame-
ter values are not kept constant. For example, in the SA literature there has been
a long discussion about the question “to cool or not to cool?”: Is it really advan-
tageous to decrease T during the optimization process, as theoretical convergence
results suggest, or can the same performance be achieved by applying the so-called
Metropolis algorithm which preserves a fixed, constant temperature T ? At least for
some practically occurring optimization problems, the former seems to be the case:
Wegener [103] showed that for the minimum spanning tree problem, SA outper-
forms Metropolis.

In cases where there is no reason suggesting that a gradual reduction of the ba-
sic parameter of a stochastic search algorithm may be beneficial, we may still be
interested in knowing whether it is better to keep the parameter at a fixed value,
or to let it oscillate in some way in order to give the process a higher degree of
variability. Jansen and Wegener [65] investigate this question analytically for the
(1+1) EA, applied to simple test functions such as OneMax and LeadingOnes (see
Sect. 16.4.3). It turns out that the static variant where the parameter under consider-
ation, the mutation probability p of the (1+ 1) EA, is fixed to a constant, is better
for some test functions than the dynamic variant where p is cyclically changed, and
worse for some other test functions. The choice between the static and the dynamic
scheme for a specific test function can make the difference between polynomial and
exponential runtime.

Doerr and Doerr [16] analyze a certain dynamic rule for step size adaptation of
a specific GA and show its superiority over any static version of this GA as well as
its asymptotic optimality among adaptive parameter choices.

Apart from the question of whether or not parameters should be changed dynami-
cally during the process, implementers of metaheuristics are always confronted with

16 Stochastic Search in Metaheuristics 527

the question of how the parameter values should be adapted to properties of specific
problem instances, in particular the instance size n.

Let us give an example from the ACO domain showing how analytical results can
help to get insight into this issue (for details, cf. [44]). The first investigations about
the runtime of certain ACO variants [45, 77] seemed to indicate that for the Gen-
eralized OneMax problem, one has to apply relatively high values of the learning
rate ρ to obtain the favorable expected first hitting time of order θ(n logn) which is
already known for the (1+1) EA. In [49], it is demonstrated that a natural ACO al-
gorithm of the MAX-MIN-Ant-System type can solve Generalized OneMax within
expected time of order θ(n logn) also for a small value of ρ independent of the prob-
lem size n. Similar results are obtained for the LeadingOnes problem. More than
that: As soon as one goes from a fitness function giving “guidance” to the search
process, as it is provided by OneMax or LeadingOnes, to a fitness function where
parts of the optimal solution have to be identified by trial-and-error rather than by
the guidance provided by the neighborhood structure, it becomes essential for the
efficiency of the search process to choose ρ small enough. Consider, e.g., a combi-
nation of the functions OneMax and NIAH presented in Sect. 16.4.3 and defined by
f (x) =

(
∏k

i=1 xi
) · (∑n

i=k+1 xi +1
)
. For the maximization of this function, the cor-

rect bits on the first part of length k of the string must be found by trial-and-error
(this is the NIAH part), and the remaining n− k bits are optimized as for a OneMax
problem. It is shown in [49] that this problem can only be solved efficiently if the
learning rate ρ is decreased with increasing problem size n, but not too fast: For
k = log2 n, a scheme of order θ(n−3) is suitable to obtain polynomial expected first
hitting time. On the other hand, both (1+ 1) EA and ACO with constant ρ require
exponential expected time.

Another example is the following. In [98], Sudholt and Witt show that for the
Binary PSO algorithm, keeping the (usually applied) bound vmax on the velocity of
the particles fixed when increasing the instance size n leads to an extreme decline
in performance. Scaling vmax to n by the function vmax = ln(n− 1) considerably
improves the runtime behavior on the considered test functions.

16.6 No-Free-Lunch Theorems

Looking at the co-existence of a considerable number of stochastic metaheuristics, a
natural question would be to ask which is the “best” of them. In more specific terms:
Can we derive a universal result stating that for all CO problems, some stochastic
search algorithm A1 always performs better than some other stochastic search al-
gorithm A2? Results of this type would be extremely valuable by simplifying the
complex landscape of metaheuristics, but this hope broke down when Wolpert ad
Macready [109] published their famous No-Free-Lunch (NFL) theorems for opti-
mization. Basically, they state that when averaging over all possible fitness func-
tions, no black-box search algorithm (may it be deterministic or stochastic) can be
better than straightforward random search.

528 W. J. Gutjahr and R. Montemanni

Before discussing this surprising result in more detail, we have to formulate the
setting for which it holds in precise terms. It is not an essential restriction to assume
that in our formulation (16.1) of a CO problem, the range of the function f is some
finite subset Y of the set of reals: we may simply restrict the range to the image
of the finite set S under f . Clearly, for fixed S and Y , there exist |Y ||X | different
mappings (fitness functions) f : S → Y . Assume that each of them has the same
probability. Furthermore, let us restrict ourselves to search algorithms A (they can
be deterministic or stochastic, i.e., the functions g and h introduced in Sect. 16.2
can depend on the random influences z and z′ or not) with the property that the
list Lt always contains only sample points x ∈ S that have not yet been visited in
previous iterations—in other words, with the property that the sets Lt are disjoint
for t = 1,2, . . . , tmax, where tmax is the iteration in which algorithm A terminates. (Of
course, this is a strong assumption, since it assumes that A stores information on
already visited sample points in the memory Mt ; its consequences, especially for
stochastic search, where memory is saved to some extent by re-sampling, have not
been fully investigated up to now.)

It is rather clear that under these circumstances, the fitness values of the sample
points in S that have already been visited before some iteration t do not give any
information on the fitness values of the sample points in S that have not yet been
visited. Let us denote the set

⋃{Lu|u < t} of already visited points (solutions) by
Sv(t), so that S \ Sv(t) is the set of yet unvisited points. As we assumed a uniform
distribution on the set of all possible fitness functions f , the function values f (x)
for x ∈ S\Sv(t) are independent from the (observed) values for x ∈ Sv(t). Therefore,
no matter which rule algorithm A applies to determine Lt , information on the fitness
values in Sv(t) gathered in iterations u = 1, . . . , t−1 does not provide any hint about
the way to explore the yet completely unknown domain S\Sv(t). As a consequence,
every rule is equally efficient on average; in particular, it is neither more efficient nor
less efficient than random search. To each fitness function f for which A performs
better than random search, there is another fitness function for which it performs
worse.5

Of course, this result does not imply that on a special given problem, every
stochastic search algorithm has the same performance. However, it seems that the
NFL theorems force us to investigate search algorithms separately for each problem,
because if A1 dominates A2 on some problem P1, there must be another problem P2

where A2 dominates A1. (For a recent discussion on the NFL theorems and their
consequences for metaheuristics, see [61].)

5 There seem to be close relations between NFL theorems and the well-known philosophical in-
duction problem which also plays a role in AI approaches to inductive reasoning. Suppose that the
evaluation of f (x) for solution x ∈ S is not done by an algorithmic computation, but rather by the
observation of some real-world system (say, x is a control vector for a chemical plant, and f (x) is
the observed value of an outcome variable). Then the “NFL insight” that there is no logical argu-
ment for the observations f (x1), . . . , f (xt−1) of some sample solutions x1, . . . ,xt−1 to provide any
information on f (xt) for the sample solution xt /∈ {x1, . . . ,xt−1}, basically amounts to the intriguing
claim by David Hume that we do not have any logical justification for the step called “inductive
conclusion”, although this step is essential in science as in everyday life.

16 Stochastic Search in Metaheuristics 529

Some researchers have drawn rather radical implications from the NFL theorems,
questioning the field of metaheuristics as a whole. For example, Whitley and Wat-
son [106] report that one extreme reaction is to conclude that there are no effective
general-purpose search methods at all. Early on, there has already been a resistance
against such over-interpretations, and authors have begun to investigate the limita-
tions of the NFL theorems. Their arguments proceed mainly along two lines:

1. Complexity Issues. Whereas the NFL theorems hold for the set of all possible
fitness functions, this set is usually not encountered in practice when solving op-
timization problems. Instead, the objective functions in classical CO problems
have comparably low Kolmogorov complexity (KC). Droste et al. [19] show
with an example that NFL theorems do not need to hold in classes of functions
with restricted complexity, and that “intelligent” search algorithms are able in
this context to outperform random search. English [23, 24] demonstrates that
for search spaces S of medium to large size, almost all functions f : S → Y are
“random” (in the sense of having a high KC), and he argues that random func-
tions do not pose practical problems for heuristic optimization, because sim-
ple optimizers already discover good solutions quickly for them. On the other
hand, “hard” problems are rare and therefore not represented adequately by the
average-case consideration of the NFL theorems. Further results on the relation
between KC and NFL theorems are presented, e.g., in [11].

2. Influence of Fitness Landscape Properties. Igel and Toussaint [62, 63] prove a
sharpened NFL theorem giving a sufficient and necessary condition (closedness
of the set of fitness functions under permutation) for the NFL theorem to hold.
Under this condition, they show that if a non-trivial neighborhood structure on
S has an influence on the fitness, the NFL theorem does not hold. In particular, a
set of fitness functions satisfying certain steepness constraints entail that the as-
sumptions of the NFL theorem are not satisfied. (Suitable steepness constraints
may, e.g., exclude a case where by moving from a solution to an immediate
neighbor solution, the cost function jumps from a global maximum to a global
minimum.) Therefore, most practical applications do not fall under the NFL
verdict. A similar conclusion is drawn in [68].

One may be relieved about the fact that NFL results do not have the consequence
that developing efficient metaheuristics is a futile goal, but one should not miss the
message: Since complexity properties are hard to deal with in applications (KC is
not computable!), it seems that only the structure of the fitness landscape may “give
us a free lunch” when applying general-purpose search algorithms. This leads us to
the topic of fitness landscape analysis.

16.7 Fitness Landscape Analysis

A fitness landscape is formally defined as a triple (S,d, f), where S and f are the
search space and fitness function, respectively, and d is a distance function on S
assigning to each pair (x,x′) of solutions x,x′ ∈ S a nonnegative integer distance

530 W. J. Gutjahr and R. Montemanni

[74, 91]. (If a neighborhood structure on S—as used by ILS, SA or VNS—is given,
d is derived in a natural way as the shortest distance in the neighborhood graph.
Conversely, given d, solutions x,x′ with d(x,x′) = 1 are considered as neighbors.)
In the literature, several quantities characterizing properties of the fitness landscape
that are relevant for search algorithms have been defined (see, e.g., [74, 85, 87]). For
the sake of shortness, let us restrict ourselves to two examples:

• The fitness distance correlation (FDC) is defined as

ρ(f ,dopt) = cov(f ,dopt)/ [σ(f)σ(dopt)],

where dopt is the distance of a solution to the nearest optimal solution, while cov
and σ denote covariance and standard deviation, respectively. For a maximization
problem, a value of ρ(f ,dopt) near the minimum possible value of −1 indicates
that the fitness is ideally correlated with the distance to the optimum solution;
such landscapes are easy for stochastic local search algorithms or GAs. On the
other hand, a value of ρ(f ,dopt) around 0 makes the problem harder, and a value
near 1 indicates that the problem is “deceptive”.

• The random walk correlation function is defined as the average of

r(s) =
1

σ2(f)(m− s)

m−s

∑
t=1

(f (xt)− f̄)(f (xt+s)− f̄),

where x1, . . . ,xm is a sampled random walk on the neighborhood graph of S,
σ2(f) denotes the variance of the fitness, and f̄ is the mean fitness.

Experimentally, a considerable effect of fitness landscape measures as those above
on the efficiency of stochastic search algorithms has been observed. This effect has
been exploited to improve algorithms, e.g., in [26, 59].

One of the most interesting parameters in fitness landscape analysis, and also
a crucial parameter for the performance of stochastic local search algorithms, is
the number Nloc of local optima. Fitness landscapes with a large number of local
optima are “rugged” and hard for optimization. Reidys and Stadler [87] give a “cor-
relation length conjecture” for the estimation of Nloc from the so-called correlation
length �=−[ln(|r(1)|)]−1, where r is the random walk correlation function defined
above. Empirical evidence supports this conjecture. Garnier and Kallel [31] describe
a general technique for estimating Nloc by performing repeated local search with M
random start solutions and by recording the number of times the found local optima
are covered. Moreover, the methodology provides bounds on the search complexity
for detecting all local optima. Eremeev and Reeves [25] are even able to determine
confidence intervals for Nloc.

For some problems, the number of local optima can also be estimated an-
alytically. For example, through the statistical-mechanics approach outlined in
Sect. 16.4.2, Ferreira and Fontani [27] derive the expression Nloc ∼ 2.764 ·2n n−3/2

for the average number of local optima of the NPP problem (see Sect. 16.4.2) under

16 Stochastic Search in Metaheuristics 531

a uniform distribution model, which is in good agreement with simulation results.
Considering that an NPP instance of size n has 2n feasible solutions, we see that a
simple ILS implementation will presumably not be very efficient in this case, com-
pared to complete enumeration, except if one single local search run takes distinctly
less than O(n3/2) time.

16.8 Black-Box Optimization

The basic forms of most stochastic metaheuristics do not exploit any information
about the specific problem instance (say, the distance matrix in a TSP), but only use
information on the search space, including the neighborhood structure, as well as
information on the specific problem type under consideration. In our generic frame-
work, this scenario is defined by the condition that the functions g and h do not
depend on the problem instance. Then, one may imagine that the algorithm A re-
peatedly calls a “black-box” procedure returning fitness values of given solutions x,
but A does not “know” how these fitness values are determined. In this case, A is
called a black-box optimizer.

From the viewpoint of a unified theory of stochastic search, it is interesting to
investigate the potential of black-box optimizers independently from their specific
algorithmic mechanisms. Recently, some articles have studied this issue. In [21],
Droste et al. investigate upper and lower bounds for the expected first hitting times of
stochastic black-box optimizers. The authors introduce a generic stochastic search
algorithm “Black-Box Algorithm 1” which is essentially the generic algorithm of
Sect. 16.2 with Lt restricted to a single element and Mt consisting of the entire search
history, i.e., the sequence (x1, f (x1), . . . ,xt−1, f (xt−1)) of solutions visited before
iteration t, together with their fitness values. In “Black-Box Algorithm 2”, the size
of the memory Mt is restricted by a bound s(n) depending on the instance size n
(which can be seen as a property of S; therefore, it does not violate the black-box
restriction). The measure of performance is the expected optimization time in the
worst case over all instances of size n.

For obtaining lower bounds on E(T1), the authors apply Yao’s minimax prin-
ciple [110], which can be stated as follows: The expected optimization time of a
stochastic search algorithm A in the worst case over all instances is lower bounded
by the expected value of the optimization time of an optimal deterministic search
algorithm, where the expected value is taken with respect to an arbitrary instance
distribution.

Droste et al. investigate sorting problems, for which they obtain linear lower
bounds (and, depending on the fitness function used to evaluate the quality of a sort,
linear or slightly super-linear upper bounds), on classes of simple functions such
as the linear pseudo-boolean functions, and some more complex pseudo-boolean
functions as well as special classes of unimodal functions. To give the flavor of
the type of results, let us consider the Generalized OneMax example, for which

532 W. J. Gutjahr and R. Montemanni

the lower bound n/ log(2n+ 1)− 1 is derived in [21].6 It is intuitively clear why
we obtain a lower bound of order O(n/ logn) here: Since there are n+ 1 different
fitness function values, each call of the black-box procedure for determining the
fitness of a solution x gives us log2(n+ 1) bits of information. On the other hand,
since there are 2n alternatives for the optimal solution x∗, a total information of n bits
is needed to identify x∗. Thus, an optimally designed search procedure will require
about n/ log2(n) black-box calls.

Teytaud and Gelly [99] present lower bounds for black-box optimizers on prob-
lems with continuous search space and consider the scenario where only pairwise
comparisons between fitness values are allowed to govern the search process instead
of the overall information contained in the fitness value.

Another interesting perspective is presented by Borenstein and Poli [11, 12];
it relates NFL theorems, fitness landscape analysis and black-box optimization to
each other. The authors argue that it is not sufficient to analyze the fitness landscape
for itself; it is only by relating the latter to the operators used during the search that
this information becomes relevant. A “proper” black-box optimizer should not have
any a-priori preference for any regions of the search space, but rather select new
sample points (in our notation: the elements of Lt) on the basis of their distance
from already visited points. This requires that the applied search operators are in
some sense consistent with the metric structure on S, which is described in [11] in
algebraic terms.

Finally, let us mention that several practically applied variants of stochastic meta-
heuristics are not black-box optimizers, because they use information on the prob-
lem instance in addition to a black-box-type core mechanism. An example is the use
of problem-specific heuristic values in ACO. We may call such algorithms grey-box
optimizers, distinguishing them also from the “white-box” optimization techniques
of mathematical programming (MP). Some metaheuristics, such as GRASP or Ex-
treme Optimization, are inherently “grey-box”. A special form of grey-box optimiz-
ers are hybrids between metaheuristics and MP approaches such as Local Branching
[28], which have been termed matheuristic algorithms [14].

16.9 Stochastic Search Under Noise

In applications, it often happens that decisions are made under uncertainty, where
certain parameters of an optimization problem are not deterministically known in
advance. Often, it is possible to represent these parameters as random variables, by
using an appropriate stochastic model. This leads to stochastic optimization prob-
lems where the objective function and sometimes also the constraints are disturbed

6 Note that both EAs and ACO algorithms typically solve this problem in O(n logn) time [20, 49],
which differs from the lower bound by a factor of order O((logn)2). This overhead may partly be
explained by the effort for re-sampling already visited solutions.

16 Stochastic Search in Metaheuristics 533

by “noise”. In this section, we restrict ourselves to stochastic combinatorial opti-
mization (SCO) problems of the following frequently occurring form, which is a
natural extension of the deterministic CO problem (16.1):

min E(f (x,ω)) such that x ∈ S. (16.2)

Therein, E denotes the expectation operator, and ω is a random influence with a dis-
tribution given by the stochastic model of the problem (ω is not to be confounded
with the random variables z and z′ used by the stochastic search algorithm, see
Sect. 16.2). As in the deterministic case, “min” can be replaced by “max”. For ex-
ample, consider the stochastic total tardiness problem, where a set of jobs 1, . . . ,n
together with their due dates d1, . . . ,dn are given. Each job has a processing time
Yi which is a random variable with known distribution. The objective is to find a
sequential arrangement x of the n jobs such that the expected value of the sum of
their tardiness values is minimized, where the tardiness of job i is (Ci − di)

+, with
Ci denoting the completion time of job i. Note that Ci = Ci(x,Y) depends both on
the solution x and on the vector Y of random processing times. Here, ω can be
considered as identical to Y , and f (x,ω) = ∑n

i=1(Ci(x,ω)−di)
+.

In the literature on stochastic optimization, several methods have been developed
to solve problems of the form (16.2). In particular, metaheuristic algorithms have
also been applied in this field; surveys are given in [9, 46, 60]. A survey focusing on
EAs can also be found in [66].

Basically, three different approaches followed by metaheuristic search algo-
rithms under the black-box optimization paradigm7 can be distinguished: (1) If
possible, a procedure for the numerical computation of the expectation in (16.2) is
implemented, and the problem is solved in the same manner as a deterministic CO
problem, performing black-box calls of the numerical procedure to obtain fitness
evaluations. Often, this requires a large amount of computation time or is even in-
feasible. (2) A sample of random instances for the uncertain parameters, distributed
according to the given stochastic model, is generated as an approximation of the
exact distribution; after that, large-scale optimization averaging over this sample is
done. This is called a fixed-sample approach. (3) In a variable-sample approach,
sampling and optimization are not two successive phases, but rather alternate over
the iterations of the search algorithm. This allows the use of smaller sample sizes.

Note that a combination of these different approaches can be convenient
for particular problems where the (small) error intrinsically affecting sam-
pling methods is amplified by the characteristics of the problem: Consider
a stochastic scheduling problem with the same settings than the total tar-
diness problem mentioned earlier, but with an objective function given by
f (x,ω) = [Pr(Ci(x,ω) ≤ di)qi − (1 − Pr(Ci(x,ω) ≤ di))ei], where Pr(γ)
is the probability for event γ to happen, according to the given distribution, qi is a
reward gained if job i is expected to be completed before the deadline di, and ei is
a penalty paid in case the deadline di is not respected for job i. For such a problem,

7 For approaches using “white-box” mathematical programming techniques such as the Integer
L-Shaped Method, see, e.g., [34].

534 W. J. Gutjahr and R. Montemanni

even small errors caused by sampling approaches may produce grossly distorted
estimates of the objective function, due to jobs for which |Ci − di| is close to 0: re-
wards or penalties can be erroneously attributed in such circumstances. A natural
solution is to make a trade off between precision and computational speed by using
sampling approaches when |Ci−di| is greater than a safety threshold, and numerical
approximation otherwise, for critical jobs. Notice that more complex strategies can
also be devised [83].

General-purpose variable-sample SCO algorithms have been derived from cer-
tain metaheuristics such as SA [3, 33, 48], ACO [10, 41, 42] or VNS [50]. The
structure of these algorithms is an extension of our generic scheme of Sect. 16.2.
We only have to replace in step 2b of the generic algorithm the evaluation of the
objective function values f (xi) by sample average estimates F̃(xi) = ∑N

ν=1 f (xi,ων)
approximating F(xi) = E(f (xi,ω)), where the ων form a random sample for the un-
certain parameter ω according to the given distribution. The sample size N does not
need to be fixed over the iterations, but can be chosen as a function of Mt . Typically,
N is gradually increased to improve the accuracy of the estimate.

Using this approach and using a suitable scheme for N = N(Mt), convergence
results for the previously mentioned modifications of SA, ACO or VNS are reported
in [41, 48, 50] by generalizing known convergence results for the corresponding
basic metaheuristics. Furthermore, work on runtime analysis of such algorithms has
recently started [2, 30, 47, 97].

16.10 Stochastic Search and Robustness

Sometimes it is not possible to come out with a probability distribution for the pa-
rameters of a problem under uncertainty, as previously assumed in Sect. 16.9. This
can happen either because the uncertain phenomena cannot be captured by a math-
ematical distribution, or because there is not enough data to identify a distribution.
In such cases, one may rely on robust optimization (RO) [93], using, e.g., the so
called interval data model [8]. An input information for a problem parameter af-
fected by uncertainty corresponds to an interval defined by a lower and an upper
bound. All values within such an interval are possible, but the underlying distribu-
tion of the values is considered unknown. Such a model is less precise than those
based on stochastic information, but is much easier to handle from a computational
viewpoint, and has proven to provide results of great interest for practitioners [7].

The first robust optimization approaches [93] were protecting the decision maker
against the worst possible scenarios by taking the worst possible values for all un-
certain parameters, from the decision maker point of view. Later, compromise so-
lutions, which are less conservative and typically more practical, were considered.
One of the most prominent approaches of this kind was proposed in Bertsimas and
Sim [8] who presented robust optimization models where the decision maker can
configure the degree of conservatism according to her/his needs. The corresponding
robust optimization techniques, based on mathematical programming, provide op-

16 Stochastic Search in Metaheuristics 535

timal solutions to the model, but are often not suitable for real-life problems, due
to their long running time on medium/large instances. Therefore, general-purpose
robust heuristic algorithms have been derived as an extension of our generic scheme
described in Sect. 16.2. The main idea is to plug a new objective function evalua-
tor inside an algorithm that, given a solution, returns its robustness cost, taking into
account both uncertainty and the degree of conservatism chosen by the decision
maker. Such an evaluation is typically obtained by solving a small linear program-
ming model, as originally described in [8]. It has been observed that the robust
version of a metaheuristic algorithm typically takes about twice the time of a de-
terministic version to carry out the same number of iterations [100]. Although the
SA [7] and ACO [100] metaheuristics have been presented in the OR domain, to the
best of our knowledge, no formal convergence results are available at present for
these algorithms.

16.11 Conclusions

In the past, metaheuristics have evolved in different scientific sub-communities, sep-
arated from each other to a certain extent. Although a strong tendency towards
cross-linking can be observed between these sub-communities (see [72]), already
resulting in considerable synergy effects as well as in the establishment of a joint
experimental methodology, a common theoretical framework enabling an immedi-
ate exploitation of progress in one of the metaheuristic subfields by other subfields
seems still to be lacking. Much work still has to be done for achieving a unified
understanding of metaheuristic algorithms.

One of the key elements around which a holistic view of the different meta-
heuristic techniques may be organized is the role of stochastic search in most of
them. The results cited in this chapter may indicate possible starting points for a
process leading to a general theory of stochastic search, but this process still has
to take place. Anyway, the many successes of particular metaheuristics in solving
real-world problems should not lead the community astray from attempting to con-
sider the “big picture” by looking at what single metaheuristic paradigms have in
common.

As discussed in Sect. 16.6, it is not likely that one single metaheuristic will turn
out as “superior” to the others and throw them out from the application fields.
Rather, it may be anticipated that the current co-existence of different metaheuris-
tics will prevail. This is desirable if we want to increase our understanding of the
benefits of each metaheuristic through a common framework that will allow them to
be compared.

Many important topics have been excluded in this chapter, such as stochastic
search in (non-linear) continuous, multi-objective, or dynamic optimization. Other
issues, like runtime analysis, are even less developed in these areas than in single-
objective static CO, and many related open problems represent a challenge for future
research.

536 W. J. Gutjahr and R. Montemanni

References

1. D. Achlioptas, A. Naor, Y. Peres, Rigorous location of phase transitions in hard optimization
problems. Nature 435, 759–764 (2005)

2. Y. Akimoto, S. Astete-Morales, O. Teytaud, Analysis of runtime of optimization algorithms
for noisy functions over discrete codomains. Theor. Comput. Sci. 605, 42–50 (2015)

3. M.H. Alrefaei, S. Andradottir, A simulated annealing algorithm with constant temperature for
discrete stochastic optimization. Manag. Sci. 45, 748–764 (1999)

4. K. Alyahya, J.E. Rowe, Phase transition and landscape properties of the number partitioning
problem, in European Conference on Evolutionary Computation in Combinatorial Optimiza-
tion (Springer, Berlin, 2014), pp. 206–217

5. A. Auger, B. Doerr (eds.), Theory of Randomized Search Heuristics: Foundations and Recent
Developments, vol. 1 (World Scientific, Singapore, 2011)

6. V.C. Barbosa, R.G. Ferreira, On the phase transitions of graph coloring and independent sets.
Phys. A 343, 401–423 (2004)

7. D. Bertsimas, O. Nohadani, Robust optimization with simulated annealing. J. Glob. Optim.
48, 323–334 (2010)

8. D. Bertsimas, M. Sim, The price of robustness. Oper. Res. 52, 35–53 (2004)
9. L. Bianchi, M. Dorigo, L.M. Gambardella, W.J. Gutjahr, A survey on metaheuristics for

stochastic combinatorial optimization. Nat. Comput. 8, 239–287 (2009)
10. M. Birattari, P. Balaprakash, M. Dorigo, The ACO/FRACE algorithm for combinatorial opti-

mization under uncertainty, in Metaheuristics – Progress in Complex Systems Optimization,
ed. by K. Doerner et al. (Springer, Berlin, 2006)

11. Y. Borenstein, R. Poli, Information perspective of optimization, in Proceedings of the 9th
Conference on Parallel Problem Solving from Nature. Springer LNCS, vol. 4193 (2006), pp.
102–111

12. Y. Borenstein, R. Poli, Structure and metaheuristics, in Proceedings of the Genetic and Evo-
lutionary Computation Conference ’06 (2006), pp. 1087–1093

13. P.A. Borisovsky, A.V. Eremeev, A study on performance of the (1+ 1)-evolutionary algo-
rithm, in Proceedings of the Foundations of Genetic Algorithms, vol. 7 (Morgan Kaufmann,
San Francisco, 2003), pp. 271–287

14. M.A. Boschetti, V. Maniezzo, M. Roffilli, A.B. Röhler, Matheuristics: optimization, simu-
lation and control, in International Workshop on Hybrid Metaheuristics (Springer, Berlin,
2009), pp. 171–177

15. P. Cheesman, B. Kenafsky, W.M. Taylor, Where the really hard problems are, in Proceedings
of the IJCAI ’91 (Morgan Kaufmann, San Francisco, 1991), pp. 331–337

16. B. Doerr, C. Doerr, Optimal parameter choices through self-adjustment: applying the 1/5-
th rule in discrete settings, in Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation (ACM, New York, 2015), pp. 1335–1342

17. B. Doerr, C. Doerr, F. Ebel, From black-box complexity to designing new genetic algorithms.
Theor. Comput. Sci. 567, 87–104 (2015)

18. M. Dorigo, V. Maniezzo, A. Colorni, Ant System: optimization by a colony of cooperating
agents. IEEE Trans. Syst. Man, Cybern. 26, 1–13 (1996)

19. S. Droste, T. Jansen, I. Wegener, Perhaps not a free lunch but at least a free appe-
tizer, in Proceedings of the Genetic and Evolutionary Computation Conference ’99 (1999),
pp. 833–839

20. S. Droste, T. Jansen, I. Wegener, On the analysis of the (1+1) evolutionary algorithm. Theor.
Comput. Sci. 276, 51–81 (2002)

21. S. Droste, T. Jansen, I. Wegener, Upper and lower bounds for randomized search heuristics in
black-box optimization. Theory Comput. Syst. 39, 525–544 (2006)

22. X. Du, L. Ding, About the convergence rates of a class of gene expression programming. Sci.
China Inf. Sci. 53, 715–728 (2010)

23. T. English, Optimization is easy and learning is hard in the typical function, in Proceedings
of the Congress in Evolutionary Computation ’00 (2000), pp. 924–931

16 Stochastic Search in Metaheuristics 537

24. T. English, On the structure of sequential search: beyond “no free lunch”, in Proceedings of
the EvoCOP ’04. Springer LNCS, vol. 3004 (2004), pp. 95–103

25. A.V. Eremeev, C.R. Reeves, On confidence intervals for the number of local optima, in Ap-
plications of Evolutionary Computing. Springer LNCS, vol. 2611 (2003), pp. 224–235

26. M. Eskandarpour, E. Nikbakhsh, S.H. Zegordi, Variable neighborhood search for the bi-
objective post-sales network design problem: a fitness landscape analysis approach. Comput.
Oper. Res. 52, 300–314 (2014)

27. F.F. Ferreira, J.F. Fontanari, Probabilistic analysis of the number partitioning problem.
J. Phys. A Math. Gen. 31, 3417–3428 (1998)

28. M. Fischetti, A. Lodi, Local branching. Math. Program. Ser. B 98, 23–47 (2003)
29. T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, C. Witt, Approximating covering prob-

lems by randomized search heuristics using multi-objective models, in Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation (2007), pp. 797–804

30. T. Friedrich, T. Kötzing, M.S. Krejca, A.M. Sutton, The benefit of recombination in noisy
evolutionary search, in International Symposium on Algorithms and Computation (Springer,
Berlin, 2015), pp. 140–150

31. J. Garnier, L. Kallel, Efficiency of local search with multiple local optima. SIAM J. Discrete
Math. 15, 122–141 (2002)

32. J. Garnier, L. Kalel, M. Schoenauer, Rigorous hitting times for binary mutations. Evol. Com-
put. 7, 45–68 (1999)

33. S.B. Gelfand, S.K. Mitter, Simulated annealing with noisy or imprecise measurements. J. Op-
tim. Theory Appl. 69, 49–62 (1989)

34. M. Gendreau, G. Laporte, R. Seguin, An exact algorithm for the vehicle routing problem with
stochastic demands and customers. Transp. Sci. 29, 143–155 (1995)

35. I.P. Gent, T. Walsh, Analysis of heuristics for number partitioning. Comput. Intell. 14, 430–
450 (1998)

36. O. Giel, I. Wegener, Evolutionary algorithms and the maximum matching problem, in Pro-
ceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science (2003),
pp. 415–426

37. C. Gonzalez, J.A. Lozano, P. Larrañaga, Analyzing the PBIL algorithm by means of discrete
dynamical systems. Complex Syst. 11, 1–15 (1997)

38. C. Gonzalez, J.A. Lozano, P. Larrañaga, Mathematical modelling of discrete estimation of
distribution algorithms, in Estimation of Distribution Algorithms, A New Tool for Evolution-
ary Computation, ed. by Larranaga et al. (Kluwer Academic Publishers, Boston, 2002), pp.
147–163

39. W.J. Gutjahr, A graph-based ant system and its convergence. Futur. Gener. Comput. Syst. 16,
873–888 (2000)

40. W.J. Gutjahr, ACO algorithms with guaranteed convergence to the optimal solution. Inf. Pro-
cess. Lett. 82, 145–153 (2002)

41. W.J. Gutjahr, A converging ACO algorithm for stochastic combinatorial optimization, in Pro-
ceedings of the 2nd Symposium on Stochastic Algorithms, Foundations and Applications.
Springer LNCS, vol. 2827 (2003), pp. 10–25

42. W.J. Gutjahr, S-ACO: an ant-based approach to combinatorial optimization under uncertainty,
in Proceedings of the 4nd International Workshop on Ant Colony Optimization and Swarm
Intelligence. Springer LNCS, vol. 3172 (2004), pp. 238–249

43. W.J. Gutjahr, On the finite-time dynamics of ant colony optimization. Methodol. Comput.
Appl. Probab. 8, 105–133 (2006)

44. W.J. Gutjahr, Mathematical runtime analysis of ACO algorithms: survey on an emerging is-
sue. Swarm Intell. 1, 59–79 (2007)

45. W.J. Gutjahr, First steps to the runtime complexity analysis of ant colony optimization. Com-
put. Oper. Res. 35, 2711–2727 (2008)

46. W.J. Gutjahr, Recent trends in metaheuristics for stochastic combinatorial optimization. Cen.
Eur. J. Comput. Sci. 1, 58–66 (2011)

47. W.J. Gutjahr, Runtime analysis of an evolutionary algorithm for stochastic multi-objective
combinatorial optimization. Evol. Comput. 20, 395–421 (2012)

538 W. J. Gutjahr and R. Montemanni

48. W.J. Gutjahr, G. Pflug, Simulated annealing for noisy cost functions. J. Glob. Optim. 8, 1–13
(1996)

49. W.J. Gutjahr, G. Sebastiani, Runtime analysis of ant colony optimization with best-so-far
reinforcement. Methodol. Comput. Appl. Probab. 10, 409–433 (2008)

50. W.J. Gutjahr, S. Katzensteiner, P. Reiter, A VNS algorithm for noisy problems and its appli-
cation to project portfolio analysis, in Proceedings of the SAGA 2007 (Stochastic Algorithms:
Foundations and Applications). Springer LNCS, vol. 4665 (2007), pp. 93–104

51. B. Hajek, Cooling schedules for optimal annealing. Math. Oper. Res. 13, 311–329 (1988)
52. R.F. Hartl, A global convergence proof for a class of genetic algorithms. Technical Report,

University of Vienna (1990)
53. A.K. Hartmann, W. Barthel, M. Weigt, Phase transition and finite-size scaling in the vertex-

cover problem. Comput. Phys. Commun. 169, 234–237 (2005)
54. J. He, X. Yao, Drift analysis and average time complexity of evolutionary algorithms. Artif.

Intell. 127, 57–85 (2003)
55. J. He, X. Yao, Towards an analytic framework for analysing the computation time of evolu-

tionary algorithms. Artif. Intell. 145, 59–97 (2003)
56. J. He, X. Yao, A study of drift analysis for estimating computation time of evolutionary algo-

rithms. Nat. Comput. 3, 21–35 (2004)
57. J. He, X. Yu, Conditions for the convergence of evolutionary algorithms. J. Syst. Archit. 47,

601–612 (2001)
58. W. Herroelen, B. De Reyck, Phase transitions in project scheduling. J. Oper. Res. Soc. 50,

148–156 (1999)
59. J. Humeau, A. Liefooghe, E.G. Talbi, S. Verel, ParadisEO-MO: from fitness landscape anal-

ysis to efficient local search algorithms. J. Heuristics 19, 881–915 (2013)
60. L.M. Hvattum, E.F. Esbensen, Metaheuristics for stochastic problems, in Wiley Encyclopedia

of Operations Research and Management Science (Wiley, Hoboken, 2011)
61. C. Igel, No free lunch theorems: limitations and perspectives of metaheuristics, in Theory and

Principled Methods for the Design of Metaheuristics (Springer, Berlin, 2014), pp. 1–23
62. C. Igel, M. Toussaint, On classes of functions for which no free lunch results hold. Inf. Pro-

cess. Lett. 86, 317–321 (2003)
63. C. Igel, M. Toussaint, A no-free-lunch theorem for non-uniform distributions of target func-

tions. J. Math. Model. Algorithms 3, 313–322 (2004)
64. S.H. Jacobson, E. Yücesan, Analyzing the performance of generalized hill climbing algo-

rithms. J. Heuristics 10, 387–405 (2004)
65. T. Jansen, I. Wegener, On the analysis of a dynamic evolutionary algorithm. J. Discrete Algo-

rithms 4, 181–199 (2006)
66. Y. Jin, J. Branke, Evolutionary optimization in uncertain environments – a survey. IEEE

Trans. Evol. Comput. 9, 303–317 (2005)
67. J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in

Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics (1997),
pp. 4104–4109

68. G.J. Koehler, Conditions that obviate the no-free-lunch theorems for optimization. Inform.
J. Comput. 19, 273–279 (2007)

69. V. Ladret, Asymptotic hitting time for a simple evolutionary model of protein folding. J. Appl.
Probab. 42, 39–51 (2005)

70. L. Margolin, On the convergence of the cross-entropy method. Ann. Oper. Res. 134, 201–214
(2005)

71. O.C. Martin, R. Monasson, R. Zecchina, Statistical mechanics methods and phase transitions
in optimization problems. Theor. Comput. Sci. 265, 3–67 (2001)

72. J.-J. Merelo, C. Cotta, Building bridges: the role of subfields in metaheuristics. SIGEVOlution
1(4), 9–15 (2006)

73. S. Mertens, A physicist’s approach to number partitioning. Theor. Comput. Sci. 265, 79–108
(2001)

74. P. Merz, B. Freisleben, Fitness landscape analysis and memetic algorithms for the quadratic
assignment problem. IEEE Trans. Evol. Comput. 4, 337–352 (2000)

16 Stochastic Search in Metaheuristics 539

75. R. Monasson, Introduction to phase transitions in random optimization problems. Technical
Report, Laboratoire de Physique Theorique de l’ENS, Paris (2007)

76. F. Neumann, I. Wegener, Randomized local search, evolutionary algorithms, and the mini-
mum spanning tree problem. Theor. Comput. Sci. 378, 32–40 (2007)

77. F. Neumann, C. Witt, Runtime analysis of a simple ant colony optimization algorithm, in
Proceedings of the ISAAC ’06. Springer LNCS, vol. 4288 (2006), pp. 618–627

78. F. Neumann, C. Witt, Ant colony optimization and the minimum spanning tree problem.
Theor. Comput. Sci. 411, 2406–2413 (2010)

79. F. Norman, Markov Processes and Learning Models (Academic, New York, 1972)
80. P.S. Oliveto, C. Witt, Improved time complexity analysis of the simple genetic algorithm.

Theor. Comput. Sci. 605, 21–41 (2015)
81. P.S. Oliveto, J. He, X. Yao, Time complexity of evolutionary algorithms for combinatorial

optimization: a decade of results. Int. J. Autom. Comput. 4, 281–293 (2007)
82. P.S. Oliveto, J. He, X. Yao, Evolutionary algorithms and the vertex cover problem, in Pro-

ceedings of the Congress on Evolutionary Computation CEC ’07 (2007), pp. 1870–1877
83. V. Papapanagiotou, R. Montemanni, L.M. Gambardella, Sampling-based objective function

evaluation techniques for the Orienteering Problem with Stochastic Travel and Service Times,
in Operations Research Proceedings 2014 (Springer, Cham, 2016), pp. 445–450

84. A. Paul, S. Mukhopadhyay, A frequency domain analysis on the deterministic modeling of
the Ant System dynamics, in Third International Conference on Computer, Communication,
Control and Information Technology (C3IT) (IEEE, Piscataway, 2015), pp. 1–6

85. E. Pitzer, M. Affenzeller, A comprehensive survey on fitness landscape analysis, in Recent
Advances in Intelligent Engineering Systems (Springer, Berlin, 2012), pp. 161–191

86. P. Purkayastha, J.S. Baras, Convergence results for ant routing algorithms via stochastic ap-
proximation and optimization, in Proceedings of the 46th IEEE Conference on Decision and
Control (2007), pp. 340–345

87. C.M. Reidys, P.F. Stadler, Combinatorial landscapes. SIAM Rev. 44, 3–54 (2002)
88. G. Rudolph, Convergence Analysis of canonical genetic algorithms. IEEE Trans. Neural

Netw. 5, 96–101 (1994)
89. G.H. Sasaki, B. Hajek, The time complexity of maximum matching by simulated annealing.

J. ACM 35, 67–89 (1988)
90. J. Scharnow, K. Tinnefeld, I. Wegener, Fitness landscapes based on sorting and shortest path

problems, in Proceedings of the 7th Conference on Parallel Problem Solving from Nature
(2002), pp. 54–63

91. T. Schiavinotto, T. Stûtzle, A review of metrics on permutations for search landscape analysis.
Comput. Oper. Res. 34, 3143–3153 (2007)

92. G. Sebastiani, G.L. Torrisi, An extended ant colony algorithm and its convergence analysis.
Methodol. Comput. Appl. Probab. 7, 249–263 (2005)

93. A.L. Soyster, Convex programming with set-inclusive constraints and applications to inexact
linear programming. Oper. Res. 21, 1154–1157 (1973)

94. T. Storch, How randomized search heuristics find maximum cliques in planar graphs, in Pro-
ceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (2006), pp.
567–574

95. T. Stützle, H.H. Hoos, MAX-MIN Ant System. Futur. Gener. Comput. Syst. 16, 889–914
(2000)

96. T. Stützle, M. Dorigo, A short convergence proof for a class of ACO algorithms. IEEE
Trans. Evol. Comput. 6, 358–365 (2002)

97. D. Sudholt, C. Thyssen, Running time analysis of ant colony optimization for shortest path
problems. J. Discrete Algorithms 10, 165–180 (2012)

98. D. Sudholt, C. Witt, Runtime analysis of binary PSO, in Proceedings of the 10th Annual
Conference on Genetic and Evolutionary Computation (2008), pp. 135–142

99. O.Teytaud, S. Gelly, General lower bounds for evolutionary algorithms, in Proceedings of
the 9th Conference on Parallel Problem Solving from Nature (2006), pp. 21–31

540 W. J. Gutjahr and R. Montemanni

100. N.E. Toklu, R. Montemanni, L.M. Gambardella, A robust multiple ant colony system for the
capacitated vehicle routing problem, in Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics (2013), pp. 1871–1876

101. I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter
selection. Inf. Process. Lett. 85, 317–325 (2003)

102. D.E. Vaughan, S.H. Jacobson, H. Kaul, Analyzing the performance of simultaneous general-
ized hill climbing algorithms. Comput. Optim. Appl. 37, 103–119 (2007)

103. I. Wegener, Simulated annealing beats metropolis in combinatorial optimization, in Proceed-
ings of the ICALP ’05. Springer LNCS, vol. 3580 (2005), pp. 589–601

104. I. Wegener, C. Witt, On the analysis of a simple evolutionary algorithm on quadratic pseudo-
boolean functions. J. Discrete Algorithms 3, 61–78 (2005)

105. K. Wei, M.J. Dinneen, Runtime analysis comparison of two fitness functions on a memetic al-
gorithm for the clique problem, in 2014 IEEE Congress on Evolutionary Computation (CEC)
(2014), pp. 133–140

106. D. Whitley, J.P. Watson, Complexity theory and the no free lunch theorem. in Search Method-
ologies: Introductory Tutorials in Optimization and Decision Support Techniques, ed. by E.K.
Burke, G. Kendall (Kluwer, Boston, 2005), pp. 317–399

107. C. Witt, Worst-case and average-case approximations by simple randomized search heuris-
tics, in Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer
Science. Springer LNCS, vol. 3404 (2005), pp. 44–56

108. C. Witt, Runtime analysis of the (μ + 1) EA on simple pseudo-boolean functions. in Pro-
ceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle,
Washington (2006), pp. 651–658

109. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1, 67–82 (1997)

110. A.C. Yao, Probabilistic computations: towards a unified measure of complexity, in Proceed-
ings of the 17th IEEE Symposium on the Foundations of Computer Science (1977), pp. 222–
227

111. Y. Yu, Z.-H. Zhou, A new approach to estimating the expected first hitting time of evolu-
tionary algorithms, in Proceedings of the 21th National Conference on Artificial Intelligence,
Boston (2006), pp. 555–560

112. W. Zhang, Phase transitions and backbones of the asymmetric travelling salesman problem.
J. Artif. Intell. Res. 21, 471–497 (2004)

113. Y. Zhou, J. He, Q. Nie, A comparative runtime analysis of heuristic algorithms for satisfia-
bility problems. Artif. Intell. 173, 240–257 (2009)

114. M. Zlochin, M. Birattari, N. Meuleau, M. Dorigo, Model-based search for combinatorial
optimization: a critical survey. Ann. Oper. Res. 131, 373–379 (2004)

Chapter 17
Automated Design of Metaheuristic
Algorithms

Thomas Stützle and Manuel López-Ibáñez

Abstract The design and development of metaheuristic algorithms can be time-
consuming and difficult for a number of reasons including the complexity of the
problems being tackled, the large number of degrees of freedom when designing
an algorithm and setting its numerical parameters, and the difficulties of algorithm
analysis due to heuristic biases and stochasticity. Traditionally, this design and de-
velopment has been done through a manual, labor-intensive approach guided mainly
by the expertise and intuition of the algorithm designer. In recent years, a number
of automatic algorithm configuration methods have been developed that are able
to effectively search large and diverse parameter spaces. They have been shown to
be very successful in identifying high-performing algorithm designs and parame-
ter settings. In this chapter, we review the recent advances in addressing automatic
metaheuristic algorithm design and configuration. We describe the main existing
automatic algorithm configuration techniques and discuss some of the main uses
of such techniques, ranging from the mere optimization of the performance of al-
ready developed metaheuristic algorithms to their pivotal role in modifying the way
metaheuristic algorithms will be designed and developed in the future.

T. Stützle (�)
Université Libre de Bruxelles (ULB), Brussels, Belgium
e-mail: stuetzle@ulb.ac.be

M. López-Ibáñez
Alliance Manchester Business School, University of Manchester, Manchester, UK
e-mail: manuel.lopez-ibanez@manchester.ac.uk

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_17

541

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_17&domain=pdf
mailto:stuetzle@ulb.ac.be
mailto:manuel.lopez-ibanez@manchester.ac.uk
https://doi.org/10.1007/978-3-319-91086-4_17

542 T. Stützle and M. López-Ibáñez

17.1 Introduction

Metaheuristics have become one of the most widespread and effective techniques
for tackling computationally hard decision and optimization problems [1, 56, 62].
A metaheuristic can be seen as a set of rules that are applied to derive heuristic
algorithms for solving a specific optimization problem of interest. These rules or-
ganize the search by defining means for search intensification and diversification
and guiding in this way underlying, problem-specific algorithm components. As
such, metaheuristics are rather malleable techniques that can be configured and spe-
cialized using specific algorithmic components, problem-specific information, and
numerical parameters.

The design of high-performing metaheuristic algorithms involves precisely coor-
dinating the intensifying and diversifying aspects of the search together with their
interaction with problem-specific heuristics. The design and implementation effort
that is spent on the development of metaheuristic algorithms can be highly vari-
able. Basic versions of metaheuristic algorithms can be implemented quickly with
little effort, and reach good performance. However, when very high performance is
required, the development and design of metaheuristic algorithms profits strongly
from the exploitation of problem-specific knowledge, the level of expertise of the
developer, the time invested in designing and tuning the algorithms, and the cre-
ative use of insights into algorithm behavior and interplay with problem character-
istics [142].

Taking appropriate design decisions and searching for appropriate settings of
numerical parameters are well-known bottlenecks in the development of metaheu-
ristic algorithms. Traditionally, metaheuristic design and development is addressed
in a manual, labor-intensive experimental approach that is guided mainly by the
expertise and intuition of the algorithm designer. This process is prone to over-
generalizations from previous experience and implicit independence assumptions
between algorithm components and parameters. This manual process also has a
number of other disadvantages because it (1) limits the number of design alterna-
tives that are explored, (2) makes the algorithm development process irreproducible,
(3) hides the actual effort that has been dedicated to the development, and (4) loses
information on which alternative design decisions were explored and discarded as
they have resulted in apparently worse performance.

To alleviate metaheuristic algorithm developers from the burden of a manual
algorithm parameter tuning, various methods have been proposed that can be exe-
cuted (almost) without manual user intervention. While several such methods have
been applied mainly to tune numerical algorithm parameters [8, 115, 156], various
general-purpose automatic algorithm configuration methods have been proposed
over the recent years, including ParamILS [68, 69], iterated racing [11, 31, 97], se-
quential model-based configuration [71], or gender-based genetic algorithms [5, 6].
They can deal with the stochasticity of the algorithms to be configured and are able
to search large algorithm parameter spaces, with tens or sometimes hundreds of

17 Automated Design of Metaheuristic Algorithms 543

parameters of different types. In other words, they are built with the intention of
dealing with the complexity of the actual algorithm design process.

A basic utilization of these automatic algorithm configuration techniques con-
sists in fine-tuning the parameter settings of metaheuristic algorithms that are al-
ready fully specified with respect to the choice of alternative algorithm components.
Although this approach already can lead to significant performance improvements
w.r.t. the default parameter settings, the importance of effective, automatic algorithm
configuration techniques lies in their pivotal role in transforming the way metaheu-
ristic (and also other types of) algorithms are designed and developed. Instead of
manually exploring various alternative algorithm components and fine-tuning some
parameter settings, an alternative design paradigm relies on defining an appropriate
algorithm design space into which alternative algorithm design choices and numer-
ical parameters are encoded and then searching this algorithm design space in a
computation-intensive, automated process for high-performance algorithm instan-
tiations. In various research efforts, the feasibility of such an approach has been
studied. Currently, the most advanced contributions collect known algorithm com-
ponents and design features for specific classes of algorithms and specific problems,
and include them into a parameterized algorithm framework. These contributions
have led to new state-of-the-art heuristics for the satisfiability problem in proposi-
tional logic (SAT) [54, 80], highly effective multi-objective optimizers [44, 90, 92],
or new hybrid stochastic local search algorithms [104].

The remainder of the chapter is organized as follows. In the next section, we
highlight the importance of parameters and design choices in the development of
metaheuristic algorithms and review a number of recent methods for automatic al-
gorithm configuration. Section 17.3 discusses approaches that led to an increasing
automation of metaheuristic algorithm design. In Sect. 17.4, we give a number of
successful examples that highlight the potential of an automated design of metaheu-
ristic algorithms. We shortly discuss related, complementary work in Sect. 17.5 and
conclude in Sect. 17.6.

17.2 Automatic Algorithm Configuration

In this section, we first discuss the questions and choices that need to be addressed
in the development of metaheuristic algorithms, using the example of iterated lo-
cal search. This motivates the definition of the algorithm configuration problem. A
rather natural way to address this problem is to use automatic algorithm configura-
tion tools, which allow moving from a manual, trial-and-error based metaheuristic
algorithm development to an automated, reproducible algorithm design process. We
discuss some automatic algorithm configuration tools that support such an auto-
mated design process.

544 T. Stützle and M. López-Ibáñez

Algorithm 1 Iterated local search
1: s0 = GenerateInitialSolution
2: s∗ = LocalSearch(s0)
3: repeat
4: s′ = Perturbation(s∗,history)
5: s∗′ = LocalSearch(s′)
6: s∗ = AcceptanceCriterion(s∗,s∗′,history)
7: until termination condition met

17.2.1 Design Choices for Metaheuristic Algorithms

Let us start by illustrating alternative design choices arising during the development
of a metaheuristic algorithm using the example of a rather simple metaheuristic, it-
erated local search (ILS) [101]. ILS is one of the oldest metaheuristic techniques.
Implementations of the ideas underlying ILS can be traced back to several articles
published in the early and mid 1980s [21–23]. In a nutshell, ILS embeds an im-
provement method into an iterative process that loops through phases of solution
perturbation, local search and acceptance tests.

A generic outline of an ILS algorithm is given in Algorithm 1. ILS starts from
some initial candidate solution s0 taken from a search space S of candidate solutions.
It applies a local search to this initial candidate solution, resulting in some locally
optimal candidate solution s∗. In the main loop of ILS, first a perturbation modifies
the incumbent candidate solution to create a new starting candidate solution s′ for
the local search. Once a new local optimum s∗′ is obtained, an acceptance criterion
decides whether to continue the search process from s∗ or s∗′. Upon termination, the
ILS algorithm returns the best candidate solution found in the search process.

A basic version of an ILS algorithm is very easy to implement, in particular,
if an improvement method that plays the role of the procedure LocalSearch is
already available. In a basic version, the ILS algorithm may start from a random
initial candidate solution. The perturbation may be random moves in a higher order
neighborhood than the one used in the local search and the acceptance criterion may
force the solution cost to decrease. Thus, starting from an available local search
procedure, a basic ILS algorithm can be easily obtained by adding a few lines of
code to implement the perturbation and the acceptance criterion. With more work
on each of the components that define an ILS algorithm, state-of-the-art results are
often attainable [101].

For the basic ILS version outlined above, the main choice is the size of the per-
turbation, which can be controlled by a parameter k (e.g., it may be the number of
solution components involved in the perturbation). However, ILS is a very flexible
metaheuristic where many alternative choices for each of the main algorithmic com-
ponents are available [101]. Let us now list a number of alternative choices for the
main procedures without any claims of being exhaustive.

17 Automated Design of Metaheuristic Algorithms 545

For GenerateInitialSolution, one may consider any available greedy or random-
ized constructive heuristic for the problem under concern. One may also generate a
set of initial candidate solutions and take the best one as the starting one.

For Perturbation, various choices are possible for the type of modification ap-
plied to a candidate solution and the strength that modification has—strength being
defined by the number of solution components it will affect. Concerning the type of
modification, different neighborhoods exist for many problems, but a perturbation
may be composed of moves in more than one neighborhood, by interleaving them
in different ways. Alternatively, complex perturbations may be used, for example,
involving the exact solution of some subproblems [99]. The strength of the perturba-
tion may be fixed to some value k, vary at algorithm run-time or be adjusted based
on a feedback loop as in reactive search [20]. Varying the perturbation strength k
within some minimum and maximum range [kmin,kmax], increasing k by one if Lo-
calSearch does not find an improved solution and setting it to kmin if it does, would
lead to a basic variable neighborhood search (VNS) algorithm [60]. With different
settings for the variation of parameter k, other variants of basic VNS would result
[60] or even some schemes that have never been examined before.

For AcceptanceCriterion, one may force the cost to decrease or accept every
new candidate solution s∗′ as the new incumbent. Intermediate choices are possible,
for example, by accepting a candidate solution based on probabilistic acceptance cri-
teria such as the Metropolis condition, which always accepts a same or improving
candidate solution and accepts a worse candidate solution with a probability given
by exp(f (s∗)− f (s∗′)/T), where f is the evaluation function (we assume here a
minimization problem) and T is a parameter called temperature [82]. In case this
acceptance criterion is chosen, the temperature parameter T needs to be appropri-
ately set in case it is kept fixed; if it should be varied, as in simulated annealing, then
an annealing schedule needs to be defined. Many other possible acceptance criteria
may be considered [101].

Finally, any improvement method can be chosen in principle for LocalSearch,
ranging from iterative improvement algorithms in simple or very large-scale neigh-
borhoods to local search-based metaheuristics like tabu search, simulated annealing,
etc. Such choices provide a large set of additional options for neighborhoods, pivot-
ing rules and numerical parameters.

The development of a high-performing ILS algorithm would require that the al-
gorithm designer potentially explores many such options and their possible combi-
nations. Typically, the development of a metaheuristic algorithm starts from some
template such as the ILS one and then proceeds in a manual, work-intensive algo-
rithm engineering effort that involves cycles of development and coding of alterna-
tive procedures, tuning of the current algorithm to identify the usefulness of new al-
ternative choices and, often, the manual execution and analysis of experiments. This
process is guided by the expertise that the algorithm developer has gained through
previous, similar efforts and the intuition about the problem to be tackled. The dis-
advantages of such a procedure include irreproducibility of the development process
and often a lack of separation between the instances on which the algorithm tuning
has been performed and the instances on which the algorithm is evaluated—thus, ac-

546 T. Stützle and M. López-Ibáñez

tually implementing an approach that is known to potentially result in over-fitting.
The shortcomings of this (early) research methodology in many articles on meta-
heuristics (but also on many other algorithms) have recurrently been documented
in a number of papers and better practices have been called for and also been pro-
posed [15, 75, 78, 129].

One may wonder whether the many decisions to be taken and parameters to be
set is an inherent problem of ILS. The answer is simple: no, it is not. In fact, if one
considers the possible choices and decisions to be taken to apply any metaheuris-
tic to a specific optimization problem, a similar list will arise—maybe sometimes
shorter for some very simple methods but often much longer, in particular, when
considering algorithms that combine elements from different metaheuristic tech-
niques or that integrate techniques from systematic search algorithms, resulting in
so-called matheuristics [103]. While some authors strive for so-called parameter-
less metaheuristics, these are often obtained by simply hiding from the user alter-
native choices by fixing them a priori. Nevertheless, the fact that the appropriate
algorithm design choices and parameter settings can have a very strong impact on
algorithm performance is widely acknowledged.

17.2.2 Parameters and the Configuration Problem

The choices that must be made during the design and development of metaheuristic
algorithms can be represented by appropriate parameters of different types. On a
high level, one may consider parameters that are related to algorithm design deci-
sions for choosing between different available options when implementing the main
algorithm procedures. Such parameters can be categorical if there is no ordering
among the various options and no sensible distance measure between them is avail-
able. A categorical parameter may model alternative choices such as the types of
moves performed by a perturbation in ILS or which neighborhood is explored in a
simulated annealing algorithm. If the values can be ordered according to some crite-
ria but a distance measure is not defined, such as in {small,medium, large}, one has
an ordinal parameter. If one has to consider the order of various neighborhoods in
a local search algorithm, a permutation parameter may be useful. Other parameters
may be numerical ones, which can be either real-valued or integer-valued.

Some numerical parameters may arise as algorithm-wide parameters, that is, pa-
rameters that have to be defined independently of other choices. An example is the
population size in evolutionary algorithms or the tabu list length in tabu search.
However, numerical parameters may arise due to other choices that have been made
in the algorithm design, that is, they are conditional parameters because they de-
pend on the value of others. For example, if one chooses simulated annealing as
local search in an ILS algorithm, a temperature parameter needs to be set, while no
additional parameter is necessary, if an iterative improvement algorithm is chosen
instead.

17 Automated Design of Metaheuristic Algorithms 547

In addition to the parameter types, the possible ranges of the parameter values
need to be set. For categorical and ordinal parameters, this is rather straightforward:
each available option may be one possible value. For numerical parameters there is
some freedom in setting the ranges by choosing appropriate minimum or maximum
values a parameter can take. While the size of the range may influence the diffi-
culty of identifying high-performance values, it appears to be preferable in case of
doubt to choose a larger range as this gives more freedom for possible settings and
sometimes rather unexpected parameter values may be high-performing.

Once the parameters of an algorithm are defined, the task of finding a
performance-optimizing algorithm configuration can be more formally described
[29]. Let Np be the number of algorithm parameters of any type, that is, numeri-
cal, ordinal, categorical or other variable types. Each parameter θi, i = 1, . . . ,Np

has an associate type ti and domain Di. Hence, we have a parameter vector
θ = (θ1, . . . ,θNp) ∈ Θ associated with a metaheuristic algorithm, where Θ is
the space of possible parameter settings. The goal in the design of a metaheuristic
algorithm is to optimize the performance reached for some problem Π of interest or
for a specific instance distribution I of problem Π . Formally, the performance of an
algorithm, when applied to a problem instance πi obtained from I, can be captured
by a cost measure C(θ ,πi) : Θ × I → IR. If a metaheuristic algorithm involves
stochastic decisions during the search, the performance measure is a random vari-
able with typically unknown distribution. However, by executing an algorithm on a
specific instance, one can measure realizations of this random variable. A second
element of stochasticity is incurred by the fact that each instance πi can be seen as
being drawn according to some random instance distribution I. The performance
of a configuration can then be defined as a function FI(θ) : Θ → IR with respect to
an instance distribution I.

A common approach to define FI(θ) is to take the expected cost E[C(θ ,πi)] of θ
when applied to a specific instance distribution. The definition of FI(θ) determines
how to compare configurations over a set of instances. If cost values across differ-
ent instances are not comparable on a same scale, rank-based measures such as the
median or the sum of ranks may be more meaningful. The precise value of FI(θ)
can generally not be computed in an analytic way but it can be estimated by sam-
pling. In practice, this means that one obtains realizations c(θ ,πi) of the random
variable C(θ ,πi) by running an algorithm configuration θ on instances that have
been sampled according to I.

The algorithm configuration problem then is to identify an algorithm configura-
tion θ ∗ such that

θ ∗ = argmin
θ∈Θ

FI(θ) (17.1)

The algorithm configuration problem, hence, is a stochastic optimization prob-
lem with various variable types, where decision variables may be categorical, ordi-
nal or numerical (that is, real-valued or integer) but also of other types. Each of these
variables has an associated domain of possible values and constraints among them.
The stochasticity of the configuration task mainly stems from (1) the stochasticity
of the algorithm and (2) the stochasticity in the sampling of the problem instances.

548 T. Stützle and M. López-Ibáñez

Due to the stochastic nature of the configuration problem, a crucial aspect is
generalization of the performance of the configurations to unseen instances [29]. As
a result, the configuration problem is commonly tackled in a two-phase approach. In
a training phase a high-performing algorithm configuration is searched. The training
stage involves the execution of candidate algorithm configurations on some training
instances. Clearly, to ensure generalization, the set of training instances needs to
be representative of the distribution of the instances to which the finally configured
algorithm should be applied. This should be ensured by an appropriate selection
of the training data set and, additionally, by the specific application context (e.g.,
available computation times, etc.) in which the algorithm should be employed. If
the performance of the obtained best configuration is to be evaluated, this is then
done in a test phase using an independent test set, that is, on problem instances that
do not overlap with those seen during the configuration process. This split between
training and test phase reflects the general setup in which algorithm design usually
takes place: an algorithm is designed and trained for a specific target application to
which it is later deployed to solve new, previously unseen problem instances.

17.2.3 Automatic Algorithm Configuration

In the metaheuristics literature, the algorithm configuration problem is typically
addressed by a manual trial-and-error process. Over the recent years, an increas-
ing number of automatic algorithm configuration techniques have been proposed to
tackle this problem through a computationally-intensive search process. The general
setup followed by these techniques is depicted in Fig. 17.1. A configurator receives
as input the parameters to be set for the specific algorithm (software) to be config-
ured. This input includes the names of the parameters, their types and their domains,
but also a measure of how to evaluate the performance of the algorithm that is to be
configured. Additionally, automatic algorithm configuration tools may receive in-
formation about which parameters depend on others, whether specific combinations
of parameter values are forbidden, and any other relevant information. With these
inputs, the configurator generates one or several algorithm candidate configurations,
that is, settings of all parameters relevant in a configuration to define a fully instan-
tiated algorithm. These candidate configurations are evaluated on a set of training
instances and the evaluations are returned to the configurator. This process of gen-
erating and evaluating candidate configurations is iterated until the specified config-
uration budget is exhausted; the configuration budget may be given in terms of an
overall computation time available for the configuration process (CPU or wall-clock
time) or the number of algorithm executions that is allowed if each execution has
a specific computation time bound. Upon termination, the best or a set of the best
candidate configurations is returned, with possibly some additional information on
the configuration process for further analysis.

An automated algorithm configuration offers also a number of advantages with
respect to the above mentioned classical, manual development of metaheuristic al-

17 Automated Design of Metaheuristic Algorithms 549

gorithms. These include a clear definition of the target application scenario through
the definition of configuration goals, training instances, the necessary explicit defi-
nition of parameters, their types and possible domains, and the termination criteria
for the algorithms to be configured. These items together define the target scenario
for which the algorithms should be designed. The automatic execution of the config-
uration process also increases the reproducibility of the algorithm design process,
helps to have a more clear-cut separation between training instances and test in-
stances on which the once configured algorithms are actually evaluated, and has a
pivotal role in reducing the bias in algorithm comparisons by algorithm designers.
Finally, a conceptual advantage is the clear separation between general methods for
tackling the algorithm configuration problem through configurators and the use of
these methods that led, for example, to rather general ideas on the automated design
of (metaheuristic and other) algorithms, as discussed in Sect. 17.3. Improvements on
the configurators, thus, have direct repercussions in their application areas or even
enable new uses of configurators.

A number of approaches have been targeted towards implementing automated
configuration procedures and these may be classified as follows.

Experimental Design Techniques To avoid immediate pitfalls of trial-and-error
processes, various researchers have adopted statistical techniques such as hypothe-
sis tests for evaluating the statistical significance of performance differences or ex-
perimental design techniques such as factorial or fractional factorial designs and re-
sponse surface methodologies [40, 114, 132, 135]. While often experimental design
techniques such as ANOVA have been applied using manual intervention, several
efforts have been made to exploit such techniques to make them more automated.
An example in this direction is the CALIBRA approach [2], which applies Taguchi

Fig. 17.1 Generic view on the main interaction of an automatic configuration technique with the
configuration scenario

550 T. Stützle and M. López-Ibáñez

designs and a refinement local search to tune five parameters. A different approach
by Coy et al. [40] is based on the exploitation of response surface methodologies.

Continuous Optimization Techniques When an algorithm is already fully de-
signed, that is, all the main alternative algorithm procedures are already fixed, the
configuration task reduces to tuning the numerical algorithm parameters. An obvi-
ous option is to consider for this task numerical optimization techniques enhanced
by techniques to deal with the stochasticity of algorithm configuration. Although
continuous optimization techniques typically deal with real-valued parameters, it is
often effective in practice to use rounding for integer parameters, in particular, if the
possible range of integer values is large. Audet and Orban [8] used mesh-adaptive
direct search (MADS) for the tuning of mathematical optimization algorithms, han-
dling stochasticity by averaging the performance of a configuration across a large set
of instances. MADS and adaptations of the continuous optimizers CMAES [59] and
BOBYQA [126] to the algorithm configuration task have been examined by Yuan
et al. [156]. They found that BOBYQA worked best for very few (typically two
to four) parameters, while for more parameters the CMAES-based configurator was
found to be best performing. Other approaches that have been recently designed and
applied mainly to tuning tasks involving numerical parameters include the REVAC
algorithm and its extensions [115, 116].

Heuristic Search Techniques For configuration tasks that involve other variables
than numerical ones, a number of heuristic search techniques have been developed.
The first proposals date back to work on meta-genetic algorithms that configure
the parameters of an underlying genetic algorithm [57]. More recent work includes
gender-based genetic algorithms [5] and the EVOCA evolutionary algorithm [133].
The work on MADS has been extended to the OPAL system, which takes into ac-
count categorical and binary parameters [9]. Among the most widely used configu-
rators is the ParamILS algorithm [69], which implements an iterated local search in
the parameter space and is described in more detail in Sect. 17.2.3.1.

Surrogate-Model Based Configurators Surrogate-modeling approaches intend to
predict the performance of configurations based on previously observed executions
of other configurations on problem instances. (In the literature, these approaches
are also often referred to as Bayesian optimization [112, 137].) These predictions
are then used to select one or a set of promising configurations that are executed. In
turn, the new execution data are re-used to improve the prediction model. Surrogate-
model based approaches are appealing as they may help to avoid evaluating un-
promising candidate configurations and, thus, reduce the computation time spent ex-
ecuting poor configurations. They were first used for parameter tuning tasks within
the sequential parameter optimization (SPOT) approach [16, 17]. Currently, se-
quential model-based algorithm configuration (SMAC) [71], which is described in
Sect. 17.2.3.2 in some more detail, is probably the best performing among these ap-
proaches. A recent variant of the above mentioned gender-based genetic algorithm
also makes use of surrogate models with promising initial results [6].

17 Automated Design of Metaheuristic Algorithms 551

(Iterated) Racing Approaches Other methods make use of racing approaches [105]
to select a best configuration among a set of candidate configurations. The F-race
method [30] makes use of sequential statistical testing employing the Friedman test
and its related post-tests [39]. The initial candidate configurations for a race may be
selected by experimental design techniques, randomly or based on problem-specific
knowledge [11]. In the case of iterated racing [11, 97], a sampling model is itera-
tively refined according to the results of previous races. Section 17.2.3.3 explains
iterated racing, as implemented in the irace package [97].

17.2.3.1 ParamILS

ParamILS performs an iterated local search in the parameter space (see Algorithm 1
for an outline of ILS) [68, 69]. From the algorithmic side, the main features of
ParamILS are the following. ParamILS treats the configuration problem as a task
that only considers categorical variables. Thus, the numerical parameters need to
be discretized in some way, which may be done by generating a number of dis-
crete values for each parameter according to a grid with a specific resolution, by
using some a priori knowledge of good parameter value regions, or at random. The
resulting values are then handled by ParamILS without any specific ordering. For
the initialization, ParamILS requires as input a default configuration and generates
a small number of r random configurations. The starting configuration for the lo-
cal search is then chosen as the best among the r + 1 initial configurations. The
local search in ParamILS uses a one-exchange neighborhood, where the parameter–
value pairs are examined in random order. At each local search step, a next move is
examined and the new configuration replaces the current one if it improves upon it.
After each improvement, the neighborhood is randomly re-shuffled. Once ParamILS
reaches a local optimum, the current locally optimal configuration θ ∗′ is compared
to the incumbent configuration θ ∗ and the better of the two is kept. The perturba-
tion modifies k randomly chosen parameters (by default, k = 3 is used) to obtain
configuration θ ′, from which a new local search is started. With a probability pr

(by default, pr = 0.01) a different strategy is followed: instead of applying a per-
turbation, a random configuration is generated from which the next ILS iteration is
started.

ParamILS offers two different approaches for comparing configurations. In the
BasicILS version, all configurations are evaluated on the same maximum number of
configurations ne. The configuration that obtains the better cost estimate is selected.
BasicILS incurs the potential disadvantages of requiring an a priori choice of ne

and wasting configuration budget by evaluating sub-optimal configurations. In the
FocusedILS version, which is the recommended one, the number of instances on
which two configurations are compared is increased iteratively, until one configura-
tion dominates another one. Dominance between two configurations is established
as follows. Let two configurations θ1 and θ2 be evaluated on n1 and n2 instances,
respectively, and without loss of generality we assume n1 ≥ n2. Configuration θ1

then dominates θ2 if F̂(θ1,n2)≤ F̂(θ2,n2), where F̂(θ ,n) denotes the cost estimate

552 T. Stützle and M. López-Ibáñez

of a configuration θ using n instances. Thus, a configuration dominates another one
if the former has been evaluated on as many instances as the latter and it also has
a lower cost estimate for the number of instances on which the latter configuration
has been evaluated. If no dominance can be established, the number of instances
on which the second configuration is evaluated is increased and the dominance test
redone. When a new configuration improves upon the incumbent one, the number
of instances on which the new best configuration is evaluated is increased. As a re-
sult, over the configuration process, the best configurations are evaluated on a rather
large number of instances.

Frequently, ParamILS has been used to configure exact solvers to minimize their
computation time until completion. In this context, a large amount of computational
budget may be wasted when evaluating new configurations. To reduce this effort,
ParamILS implements a pruning technique called adaptive capping, which is used
to terminate early the evaluation of potentially poor performing configurations. Es-
sentially, the idea underlying adaptive capping is to allocate to a new configuration
a maximum computation time equivalent to the maximum time it could take to still
reach a cost estimate better than the one of the incumbent configuration. Together
with the above mentioned dominance criterion, adaptive capping can strongly re-
duce the computation time necessary to eliminate poor performing configurations
and is crucial for the success of ParamILS in such configuration scenarios.

ParamILS is publicly available at http://www.cs.ubc.ca/labs/beta/Projects/
ParamILS/ and it has been shown to be a powerful configurator in a significant
number of applications, leading to speed-ups of several orders of magnitude for
various applications to solvers for mixed integer programming (MIP) or the SAT
problem [67, 70].

17.2.3.2 SMAC

Sequential model-based algorithm configuration (SMAC) is a configurator that im-
plements a surrogate-model based search of the parameter space [71]. As opposed
to ParamILS, SMAC handles both numerical and categorical parameters natively,
that is, without the need of discretizing numerical parameters.

SMAC uses surrogate modelling to screen a set of such configurations using pre-
dictions of their performance. The best configurations in the set according to the
surrogate model are selected for actual evaluation. The surrogate model of SMAC
uses random forests, which is an ensemble learning technique that works by con-
structing a number of decision trees [33]. The surrogate model is built using per-
formance data generated during the search process. The performance prediction are
then used to compute the expected improvement [136] and the configurations are
sorted in non-increasing order of the expected improvement for evaluation. Rou-
tinely, the random forest model is then re-trained using the execution data to further
improve its predictive capabilities.

SMAC starts from some initial configuration, typically, the algorithm default
configuration or, if no such configuration is available, from one or a set of ran-

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

17 Automated Design of Metaheuristic Algorithms 553

dom initial configuration(s), which is (are) evaluated on one instance. The proce-
dure then loops over the following steps. First the random forest model is learned.
Next, a set of candidate configurations is generated. To do so, a list of nls config-
urations is created from an elite set of configurations, each of which serves as the
starting point for a best-improvement local search in the configuration space, where
each configuration is evaluated according to the expected improvement criterion.
This process results in nls configurations that are locally optimal w.r.t. the expected
improvement. In addition, a set of nr randomly generated configurations is created,
each being evaluated again according to their expected improvement. Then, SMAC
sorts the nls + nr configurations according to their expected improvement and exe-
cutes them in the given order on problem instances. The process for evaluating the
configurations on the actual problem instances is analogous to the one used in Fo-
cusedILS: it uses the dominance criterion, the adaptive capping technique and, in
addition, successively increments the number of instances on which the incumbent
configuration is evaluated. This evaluation process is stopped once a time limit on
the evaluation process is reached and the next iteration is invoked, that is, the surro-
gate model is re-learned, new candidate configurations for evaluation are generated,
etc.

While the high-level search process implemented by SMAC is a relatively
straightforward adaptation of a surrogate-model based search paradigm to the task
of automatic algorithm configuration, there are a number of further, rather techni-
cal details that have been addressed, such as special treatments of censored data to
improve the predictions of SMAC or the inclusion of instance features for the pre-
dictions, which together make SMAC one of the best performing and most widely
used automatic algorithm configuration techniques. Full details about SMAC can be
found in the SMAC user manual [66] and the current version is free for academic
use. A reimplementation of SMAC in Python is currently being developed [111] and
is expected to replace the original Java implementation in the future.

17.2.3.3 irace

The irace package [95, 97] implements configuration procedures where the search
mechanism iterates between (1) the generation of algorithm candidate configura-
tions through a probabilistic mechanism, (2) the selection of the best performing
configurations through racing, and (3) the update of the probabilistic model that is
used to generate candidate configurations around the elite candidate configurations.

irace maintains a set of elite candidate configurations during the run. Each of
these elite candidate configurations is associated with a probabilistic model that de-
fines a sampling distribution for each algorithm parameter, independent of those of
other elite candidates. For numerical parameters and indices of ordinal parameters,
the probabilistic model consists of truncated normal distributions N(μ j

i ,σ
j

i), where
μ j

i is the value that parameter i takes for elite configuration j and σ j
i is its standard

deviation. Hence, assigning a value to a numerical or ordinal parameter corresponds
to sampling a value from a truncated N(μ j

i ,σ
j

i)-distribution; the truncation happens

554 T. Stützle and M. López-Ibáñez

in the range [xl,xu], where xl and xu are the lower and the upper bound for the pa-
rameter, respectively. For categorical parameters a discrete probability distribution
is defined, which is initialized to a uniform distribution.

irace may use specific candidate configurations as input, such as default algo-
rithm configurations or otherwise promising candidate configurations, but does not
require any initial configuration. Conditional parameters are sampled in the order
given by a (cycle-free) dependency graph of conditions: first non-conditional pa-
rameters are sampled, then those that are conditional if the condition is satisfied,
and so on.

The evaluation of the configurations is done by a racing procedure. In a race,
all configurations are evaluated on a first instance, then on a second one and so on
until the evaluation budget for the current iteration is depleted. After T first instances
have been considered, a statistical test eliminates candidate configurations that are
statistically inferior to the best configuration. Currently, two main alternatives are
used for this elimination test. The first is the non-parametric Friedman’s two-way
analysis of variance by ranks: if the null hypothesis of equal performance is re-
jected, the configurations that perform worse than the best one are eliminated using
a Friedman post-test [39]. The second is the pairwise, paired Student t-test with or
without multiple test corrections; it is recommended not to use multiple test correc-
tions, as otherwise the elimination of poor configurations is very slow. Once a race
is finished, either because the computational budget is exhausted or only a minimum
number of elite configurations remain, the sampling model is updated independently
for each elite configuration. This is done for numerical and ordinal parameters by
centering the expectation at the parameter value taken by the corresponding elite
configuration and by decreasing the standard deviation of the sampling distribution
to bias the search around the best values. For categorical parameters the distribution
is shifted by increasing the probability of the parameter’s value in the corresponding
elite configuration and by decreasing the probability of the others.

The irace software that implements these iterated racing procedures is publicly
available at http://iridia.ulb.ac.be/irace/ and has been extended over the recent years,
from being mainly a re-implementation and direct extension of the iterated F-race
procedure [95], to a software that includes an elitist race that preserves the best
configurations across iterations [97], techniques to improve its performance when
the configuration target is run-time minimization [123] and additional techniques
to improve the sampling procedure [122]. irace has been successfully used in a
large number of configuration tasks for metaheuristic algorithms and in many other
applications [97].

17.3 Towards Metaheuristic Algorithm Design

What is the use of automatic configuration software in the context of metaheuristics?
In the following, we argue that the systematic exploitation of automatic configura-
tion software has a number of benefits that stem from their direct use in parameter

http://iridia.ulb.ac.be/irace/

17 Automated Design of Metaheuristic Algorithms 555

tuning or, better say, metaheuristic algorithm configuration tasks. We will elabo-
rate on this aspect in the next section. In addition, from a wider algorithm design
perspective, the exploitation of automated algorithm configuration software has the
potential to radically change the way research is done in metaheuristics, in particu-
lar, when combined with flexible software frameworks designed to be freely config-
urable. This approach will be discussed in Sect. 17.3.2 and a number of examples of
the implementation of flexible frameworks from our own research will be given in
Sect. 17.4.

17.3.1 Basic Uses of Configurators

Automated Configuration of Existing Algorithms A basic and common use of a
configurator is the tuning of the numerical parameters of an already fully developed
algorithm. However, when algorithm design decisions such as the choice of an ap-
propriate local search algorithm are encoded as algorithm parameters, already some
aspects of algorithm design can be handled through this basic use.

The success from such a basic use of a configurator is almost guaranteed as all the
available configurators may use an already existing default configuration as input
and a configuration at least as good as the default one may be expected from the
configuration process. Depending on the quality of the default configuration, the
configuration budget and the particular target scenario for which the algorithm is
to be tuned, the improvement offered by the automatic configuration process may
vary. Obviously, the performance improvements through automated configuration
may be large if (1) the default version of the algorithm is not based on extensive
experiments or (2) the algorithm is applied to a target scenario that differs from the
one for which the default parameter settings have been designed. In the latter case,
such differences may be due to different instance distributions, termination criteria,
hardware, or other factors.

There is a number of examples of this kind in the literature. The tuning of evo-
lutionary algorithms is a recurring example that has been considered in a number
of papers on applications of the REVAC configurator and its design improvements
[116, 138, 139], but also in the use of irace for tuning state-of-the-art evolutionary
algorithms for continuous function optimization [84]. Typically, significant perfor-
mance improvements have been achieved. When taking algorithms out of the con-
text for which they have been designed initially, for example, by changing the type
of instances to be tackled or changing the termination criteria, often very differ-
ent parameter settings from the known ones are necessary. This is demonstrated in
the work of Pérez Cáceres et al. [121] who re-configured ant colony optimization
(ACO) algorithms in a context where only very few objective function evaluations
are allowed either due to hard real-time constraints or because the objective function
is very costly to evaluate as in simulation-based optimization [7].

556 T. Stützle and M. López-Ibáñez

Comparisons of Metaheuristic Algorithms When comparing the performance of
different algorithms, all competitors should undergo the same configuration effort.
To achieve this goal, automated configuration tools are instrumental. An additional
advantage is that, given the parameters and their ranges, the search for performance
optimizing parameter values is not biased by the developer’s expertise, which may
favor some techniques with which she/he is more familiar. In addition, configur-
ing algorithms is necessary when the algorithms are evaluated in a modified target
scenario. This is, for example, very important if older algorithms are included in
the comparison—due to the enormous advances in computation power, older algo-
rithms are often developed for what nowadays would be very small computation
times [52].

It is sometimes instructive to compare algorithms before and after the configura-
tion process. Pellegrini and Birattari [119] compared five metaheuristic algorithms
for the vehicle routing problem with stochastic demand using default parameter
settings and fine-tuned ones. While all metaheuristics benefit from the automatic
algorithm configuration process and improve their performance significantly when
compared to the default settings, they do benefit to different degrees. As a result,
the relative performance between the default versions is rather different from the
relative performance of the tuned versions. Liao et al. [86] studied state-of-the-art
continuous optimizers (such as evolution strategies, differential evolution, memetic
algorithms and others) for different benchmark sets before and after tuning the al-
gorithm parameters. They show that the automated configuration results in signifi-
cantly improved performance. Maybe more interesting, the type of benchmark set
had a crucial impact on the ranking of the algorithms: the ranking of the algorithms
for one benchmark set was almost the exact opposite of the ranking on the other
benchmark set.

Integration into an Algorithm (Re-)engineering Process Automated configura-
tion (as well as sound experiments) are not restricted to be the final step of an al-
gorithm development. Rather, it is advisable to integrate automated configuration
already into the iterative metaheuristic algorithm engineering process [142]. In the
simplest case, automated algorithm configuration is integrated at each engineering
step, where significant changes to an algorithm design are considered, for exam-
ple when new algorithm components are introduced. In fact, the usefulness of an
algorithm component and its interaction with other already available components
depends on parameter settings. In turn, good parameter settings may change with
new algorithm components. Montes de Oca et al. [113] make this iterative process
explicit in their re-design of an existing particle swarm optimization for large-scale
function optimization. Earlier, automated configuration was exploited in the devel-
opment of high-performing local search algorithms and metaheuristic algorithms for
the probabilistic traveling salesman problem and in estimation-based metaheuristics
for a single vehicle routing problem with stochastic demands and customers [12–
14].

17 Automated Design of Metaheuristic Algorithms 557

17.3.2 Advanced Uses of Configurators

While the above uses do not necessarily come up with completely new algorithm de-
signs, even if applied to metaheuristic algorithms with categorical parameters, there
are other approaches that aim at a wider scope. They combine the design of flexible,
configurable algorithm frameworks that can be instantiated for specific problems

Design space definition

Algorithmic
components

Rules for combining
components

Parameter space

Instances

Automatic
Parameter

Configuration

Effective Algorithm

Fig. 17.2 General approach for deriving configurable algorithm frameworks

or problem instance distributions with the power of scrutinizing large configuration
spaces using effective automatic configuration techniques. While these approaches
vary in scope, the software is designed with the goal of being configured by auto-
matic techniques right at the start of its development. In the following, we will refer
to such approaches as automatically configurable frameworks.

The general approach that these methods follow is illustrated in Fig. 17.2. It starts
by a definition of the algorithm design space, which can be seen as being composed
of algorithmic components and specific ways of how these components interact.
From this design space definition, a parameter space is derived, which encodes the
choice of the algorithm components, their interaction and the numerical parame-
ters. This parameter space is then explored by automatic algorithm configuration
techniques, using training instances that are provided by the user. The configura-
tion process is to be understood as being fully automatic, once the set of training
instances and the configuration setup is provided.

Of course, the main task here is the actual definition of the design space for
the main algorithm components and the implementation of the underlying software
framework to allow the instantiation of a wide variety of valid combinations of al-
gorithm components. So far, this approach has mainly been followed in the develop-
ment of either problem-specific or metaheuristic-specific, configurable frameworks.

Among the problem-specific, configurable frameworks, the best known ones are
approaches to generate local search heuristics for the SAT problem. A first approach
by Fukanaga [53, 54] is based on a set of algorithm components taken from ex-
isting local search algorithms for SAT, which are combined into unexplored new
local search heuristics. Then, the SATenstein framework was proposed by allow-
ing a flexible combination of various SAT heuristics inside a static algorithm out-

558 T. Stützle and M. López-Ibáñez

line [79, 80]. From SATenstein, the authors could derive new state-of-the-art local
search algorithms that were unambiguously shown to outperform previous state-of-
the-art methods. Another, yet rather different approach, makes use of the ADATE
system to derive new heuristics for SAT [117].

In our own research, we have explored the development of several metaheuristic-
specific, configurable frameworks. One line of research considered the development
of frameworks for continuous optimization problems, in particular by defining a
framework for ant colony optimization algorithms for continuous optimization [85]
and more recently a framework for artificial bee colony algorithms [10]. In both
cases, we could show that the configurations obtained automatically outperformed
the best previously available (metaheuristic-specific) algorithms, even if their nu-
merical parameters were fine-tuned using the same configuration effort. Another
line of research was about algorithm frameworks for multi-objective problems. The
two most advanced comprise a framework for multi-objective ant colony optimiza-
tion (MOACO) algorithms [90, 92] and a framework for multi-objective evolution-
ary algorithms [26, 27]; in Sect. 17.4.2 we give some more details on the MOACO
framework. While these frameworks were designed for one specific metaheuristic
and derived algorithms that fall within the framework of the same metaheuristic,
other works went beyond that limitation. An example is the work of Marmion et al.
[104], where a framework for generating hybrid stochastic local search (SLS) al-
gorithms was presented. This work has been and is being currently much extended
[28, 98]. A more detailed description is given in Sect. 17.4.3.

One common theme of these approaches is that the algorithm components are de-
fined based on a careful analysis of the state-of-the-art and extracted directly from
the various algorithmic variants that have been proposed in the literature. In this
sense, known algorithmic components are taken as building blocks, with the ad-
vantage that already developed, well-designed algorithm components are available
for the automatic design process. Using the automatically configurable frameworks,
the algorithms from which the components have been extracted can typically be re-
created directly with appropriate parameter settings. However, the rules for combin-
ing components often lead to a huge number of additional, previously unexplored
algorithm designs, which are possibly superior to the best designs that have been
proposed in the literature.

One may distinguish two approaches for the design of automatically configurable
frameworks. In a top-down approach, a static algorithm outline is defined in which
choices between alternative algorithm components are possible at specific points,
which are generally encoded as categorical variables. If a specific algorithm step
may appear or not, the absence of this step may be encoded by a value none as
one possible choice for a categorical variable. Specific choices in turn then may
imply further alternatives, often lower level algorithm components or parameters.
Considering at implementation time all possible alternatives and their efficient in-
teractions makes generating the code increasingly complex. Hence, an alternative
is to implement individual algorithm components and allow their composition in a
more flexible way at the time the algorithm is instantiated. This approach can be
seen as a bottom-up approach. The possible compositions may then be presented
in different forms, be it through grammars that define the possible compositions

17 Automated Design of Metaheuristic Algorithms 559

or through finite-state machine type representations such as the generalized local
search machines [62].

In another stream of research, a number of other frameworks have been proposed
with the aim of making metaheuristics applicable to a wide class of problems. One
of the most advanced examples in this direction is the framework for a wide class of
vehicle routing problems proposed by Vidal et al. [148], which is based on a care-
ful analysis of the state-of-the-art on many vehicle routing variants [147]. The key
ingredients of the framework are a way to instantiate from the same framework a
large number of different VRP variants and a generic, powerful metaheuristic algo-
rithm that is used to tackle each of the VRP variants. There are also a number of
other, earlier examples of such problem-focused frameworks [42, 73, 74, 124, 134],
which are designed to tackle all variants of vehicle routing problems within the tar-
get problem class. Similarly, various available metaheuristic frameworks may also
be to a certain extent (at least at the level of the numerical parameters) configurable
[35, 43, 64]. However, they have not been designed with the goal of being auto-
matically configurable at the full extent possible. In the future, we would foresee
that a generic, powerful approach to tackle important problems combines the two
streams of problem-specific and, in particular, problem-class specific frameworks
and automatically configurable metaheuristic framework. Thus, through automatic
configuration, high performance heuristics can then be specialized to tackle any
problem that is specifiable within a relevant problem class or any specific instance
distribution for the problem under concern.

17.4 Examples

In this section, we describe some successful examples of the automated design of
metaheuristic algorithms. The first example illustrates the possibility of using non-
standard performance measures related to improving the anytime behavior of meta-
heuristic algorithms. The second and the third are examples of, respectively, a top-
down and a bottom-up approach to automatically configurable frameworks.

17.4.1 Improving the Anytime Behavior of Metaheuristics

Metaheuristics are often executed with a pre-defined termination criterion, and
once reached, the best solution found is returned. In some cases, terminating the
execution earlier may lead to poor solutions. In other cases, continuing the execu-
tion beyond the termination criterion may not produce significant improvements,
e.g., because the algorithm “converges” quickly and no further exploration is pos-
sible. On the other hand, metaheuristics showing a good anytime behavior aim
to return a solution that is as good as possible at any moment of their execu-
tion [157]. Metaheuristics often need to be (re-)designed with anytime behavior
in mind [3, 46, 47, 149], since the default parameter settings may be specified
to maximize performance for very long or very short runtimes (thus, sacrificing
anytime behavior). Often, different static or time-varying parameter settings may

560 T. Stützle and M. López-Ibáñez

significantly improve anytime behavior with almost no increment in solution cost
for the original termination criterion [96, 128, 143].

Optimizing the anytime behavior of metaheuristics can be seen as a bi-objective
problem, where both solution cost and runtime must be minimized at the same
time [37]. If an algorithm returns both solution cost and runtime whenever the best
solution so far is improved, the resulting values conform a set of mutually nondom-
inated points, that is, no point in the set is better in both cost and time than any other
point. Thus, the anytime behavior of an algorithm can be improved by “optimizing”
the nondominated sets that are obtained from the execution traces. Taking inspira-
tion from research in multi-objective optimization, quality indicators may be used
to rate the quality of a set of non-dominated points [159]. A well-known example is
the hypervolume measure [158], which summarizes the quality of a nondominated
set of points by a single number, corresponding to the volume of the dominated area,
which is delimited by some reference point. Such unary quality measures enable the
usage of standard, automatic algorithm configuration techniques, which expect the
performance of one algorithm execution to be summarized in a single number.

López-Ibáñez and Stützle [94] proposed and evaluated the above idea by au-
tomatically choosing among various parameter variation schemes for ACO algo-
rithms. The goal was to determine which and how numerical algorithm parameters
should be varied dynamically throughout execution in order to improve the anytime
behavior of an ACO algorithm. Schedules for the modification of the various param-
eters studied were defined, such as changes from one value to another one or a lin-
ear increase or decrease of the parameter values over the algorithm runtime. These
schedules and modifications were encoded as additional algorithm parameters. The
experimental results showed that significant improvements in the anytime behavior
of ACO could be achieved in this way without requiring a long and detailed study
of the behavior of each parameter. Figure 17.3 gives some illustrative experimental
results of possible improvements when considering the evolution of solution quality

1

80

60

re
la

tiv
e

de
vi

at
io

n
fr

om
 b

es
t–

kn
ow

n

40

20

0

2 5 10

time in seconds

default (1.599)
auto var ants (1.1865)
auto var beta (1.1821)
auto var rho (1.1813)
auto var q0 (1.1935)
auto var ALL (1.2012)

20 50 100 200

Fig. 17.3 Anytime behavior represented by the evolution of solution quality over computation time
for the algorithm default settings, the best variation scheme for each one of four parameters (keep-
ing all others to a fixed value) and a scheme that allows all four parameters to change at run-time
(ALL). The number in parenthesis besides the curve labels gives the normalized hypervolume value

17 Automated Design of Metaheuristic Algorithms 561

over computation time. It is particularly remarkable that, thanks to the automatic
configuration done with irace, it was possible to find parameter variation schemes
that clearly improved upon varying a single parameter at a time—something that
was not possible in previous efforts based on a manual approach [143].

The above idea is not limited to choosing among parameter variation schemes,
but it can be applied also to improving the anytime behavior of exact solvers that
may be stopped before reaching the optimal solution [94].

17.4.2 Multi-Objective Ant Colony Optimization

Multi-objective metaheuristics generate a set of mutually nondominated solutions,
that is, vectors of objective function values where no solution has a better value
in all objectives than any other solution in the set. The quality of such nondomi-
nated sets may be evaluated by using measures such as the unary epsilon and the
unary hypervolume [158]. By combining automatic configuration tools with unary
quality measures, it becomes possible to configure the parameters of multi-objective
metaheuristics [90, 150]. Using the same technique and a framework of algorithmic
components, it is also possible to automatically design multi-objective optimizers.

A notable example is the MOACO framework [92], which consists of an algo-
rithmic template that can reproduce, with appropriate settings of its components, al-
most all multi-objective ACO methods proposed in the literature so far. At the same
time, it can generate new MOACO designs by re-combining its components in novel
ways. The MOACO framework is also an example of a top-down approach, because
the instantiation of the known and novel MOACO algorithms is done from an a pri-
ori defined, fixed algorithm template. The construction of the MOACO framework
itself involved a profound analysis of existing MOACO algorithms from the liter-
ature, understanding their common points as well as their differences, and decon-
structing them into configurable components that may provide alternative MOACO
designs [89, 91, 93].

The space of possible designs that can be instantiated from the MOACO frame-
work is too large to be explored exhaustively. However, automatic configuration
tools allow to find designs that are well-suited for specific optimization problems. In
particular, the automatically found MOACO algorithms outperformed the MOACO
algorithms from the literature by a large margin, even after tuning the numerical
parameters of the latter with the same effort. Moreover, an analysis of the best de-
signs found provided insights into the actual behavior of MOACO algorithms [93].
This analysis started by finding high-quality algorithmic designs automatically and
focusing the analysis on why alternative designs perform worse.

Experiments also showed that the choice of quality measure, either epsilon or
hypervolume, did not have a strong influence in the quality of the automatically-
found designs, and in both cases the automatic designs outperformed the algorithms
from the literature [92]. Moreover, configuring all possible settings of the MOACO
framework at once was found to produce better results than configuring first the

562 T. Stützle and M. López-Ibáñez

high-level MOACO design using default values for the underlying ACO parameters
and then configuring the ACO parameters in a second stage. More research is needed
to establish whether these findings generalize to other problems and multi-objective
metaheuristics.

Similar approaches have been reported for other types of multi-objective optimiz-
ers. Dubois-Lacoste et al. [44] have applied automatic configuration to a two-phase
and Pareto local search hybrid algorithm, improving in many cases the state-of-the-
art algorithm for five bi-objective flowshop scheduling problems [45]. In a more
recent work, Bezerra et al. [27] have developed an algorithmic framework for multi-
objective evolutionary algorithms (MOEAs). Similarly to the MOACO framework,
not only many known MOEAs can be instantiated from the MOEA framework, but
also a huge number of new MOEAs can be created. The key idea behind the flex-
ibility of this framework is a ternary set-preference relation [160] that combines a
set-partitioning function, a Pareto-compliant quality metric and a diversity metric to
generate different combinations of preference rankings. This set-preference relation
does not only replicate the various selection and truncation criteria that have been
proposed so far in MOEAs, but also a large number of valid combinations that were
never explored before. Computational results with the automatically generated algo-
rithms from the MOEA framework are excellent, outperforming the tuned version of
known MOEA algorithms on various benchmark sets for all numbers of objectives
tested under various target scenarios.

17.4.3 Automated Design of Hybrid Stochastic Local Search
Algorithms

Marmion et al. [104] proposed an approach to automatically design a wide range of
stochastic local search (SLS) methods (another name for metaheuristics) that ma-
nipulate a single solution, that is, methods which essentially do not use a population
of solutions. According to [62], these methods can be classified as simple and hybrid
SLS methods. The proposed approach has three main aspects. The first is a generic
template from which a number of specific metaheuristics can be instantiated. The
template is based on a generic, unified view of different metaheuristics. In addi-
tion, the template allows the combination of elements that have been proposed for
different metaheuristics. The second aspect is the strict separation between generic
metaheuristic elements of the code and problem-specific elements that are needed to
make the final algorithm efficient on the particular problem being tackled. Finally,
the third aspect is the possibility of automatically configuring the framework.

The first step towards a unified algorithmic template is to enable the instantia-
tion of various metaheuristics from it. This can be done by starting with the basic
ILS template. Recall from Algorithm 1 that the ILS template essentially uses the
four procedures GenerateInitialSolution, LocalSearch, Perturbation, and Ac-
ceptanceCriterion. With different choices for these procedures, different meta-
heuristics may be obtained. Obviously, any choice mentioned in Sect. 17.2.1 would

17 Automated Design of Metaheuristic Algorithms 563

result in an ILS algorithm. As discussed in Sect. 17.2.1, many VNS variants such as
basic VNS, skewed VNS, or general VNS may be obtained by appropriate choices
for each component; e.g., a general VNS may be obtained by instantiating Lo-
calSearch to a variable neighborhood descent and choosing appropriate settings for
the other components. From the template, one may also obtain a simulated annealing
algorithm [36, 81], by using a single move in a given neighborhood for Perturba-
tion, not using LocalSearch (that is, instantiating it as “none”), and choosing the
Metropolis condition for AcceptanceCriterion. A GRASP algorithm [130] may be
obtained by using a greedy randomized constructive heuristic for Perturbation, any
improvement method for LocalSearch and not using an acceptance criterion but
simply keeping track of the best solution found so far. This list can be completed
by enumeration, but from these examples the versatility of the framework should be
obvious. Hybridization between various metaheuristics is obtained by allowing Lo-
calSearch to be instantiated again as the main loop of an ILS algorithm, resulting
in a recursive embedding of the ILS template within itself. Such a recursive em-
bedding has previously been discussed in [100] and has been used to implement a
recursive ILS algorithm in [65].

1: <algorithm> ::= <initalization> <ils>
2: <initialization> ::= random | <pbs_initialization>
3: <ils> ::= ILS(<perturb>, <ls>, <accept>, <stop>)

4: <perturb> ::= none | <initialization> | <pbs_perturb>
5: <ls> ::= <ils> | <descent> | <sa> | <rii> |<vns>| <ig> | <pbs_ls>
6: <accept> ::= alwaysAccept | improvingAccept <comparator>

| prob(<value_prob_accept>) | probRandom | <metropolis>
| threshold(<value_threshold_accept>) | <pbs_accept>

Fig. 17.4 Initial part of a possible grammar for configuring an automatically instantiable, recursive
local search template

The automatic generation of metaheuristic algorithms that follow the template is
done through a grammar representation, implementing a bottom-up automated de-
sign of metaheuristic algorithms. To give an idea of the grammar, a snapshot of it
is given in Fig. 17.4. The first rule says that an algorithm consists of an initializa-
tion followed by the main loop of an ILS template. The initialization (second line)
may be random or based on a problem-specific procedure (pbs stands for problem
specific), while the main ILS loop consists of a perturbation, a local search, and an
acceptance criterion (line 3). Lines 4 to 6 give possible alternative choices for the
perturbation, the local search, and the acceptance criterion. Note that the rule for the
local search in line 5 is recursive as the main ils loop may again be chosen as a
local search.

The separation of the grammar into a generic, problem-independent part and a
problem-specific part increases the modularity of the approach and would allow
tackling problems with little additional implementation effort other than providing
a way to evaluate candidate solutions. Furthermore, it is possible to add as many

564 T. Stützle and M. López-Ibáñez

problem-specific features as desired in the code base, which can make the automat-
ically designed algorithms competitive or superior to the state-of-the-art.

The next task is to derive high-performance algorithms from the grammar. While
several possibilities exist, one is to translate the grammar representation into a para-
metric one with the goal of exploiting automatic algorithm configuration tools to
derive algorithms [107]. The translation can be done by limiting the number of re-
cursion levels to some maximum, considering the intuitive fact that hybrid methods
should not grow arbitrarily complex and that often a hybridization between two or
three methods may be sufficient (if necessary at all). A tool called grammar2code
was developed to perform this translation. It was shown that by translating the gram-
mar into a parameter space and by using the automatic configuration tool irace,
better performing algorithms could be generated, when compared to other methods
proposed to derive algorithms directly from grammar representations [107]. The
role of the grammar2code tool is twofold. First, it is used to derive the parame-
ter space from the grammar description of the algorithm design space; second, it is
used to actually derive an algorithm instantiation from the grammar, given a specific
parameter setting.

ge
ne

ra
te

s

ge
ne

ra
te

s

se
le

ct
s

Fig. 17.5 Overview of the automatic design process to generate hybrid metaheuristic algorithms.
The user only needs to provide the grammar, the code implementing problem-specific algorithmic
components and the problem instances

Such a system was first implemented by Marmion et al. [104] on top of the Par-
adisEO framework [64]. The overall system then works as indicated in Fig. 17.5.
From a grammar, which comprises problem-independent and problem-specific sub-
grammars, grammar2code generates a parameter space description. The level of
hybridization is limited by the maximum number of derivations of recursive rules.
The parameter space description is then input, together with a set of problem in-

17 Automated Design of Metaheuristic Algorithms 565

stances, to the irace software. From the parameter space, irace generates param-
eter configurations that correspond to possible designs of hybrid SLS algorithms.
These parameter configurations are translated into derivations of the grammar by
grammar2code, thus generating source code which is then compiled. The gen-
erated executable is run on training instances to evaluate the performance of the
corresponding hybrid SLS algorithm. This overall process stops when a maximum
computation budget is exceeded and the best algorithm design is returned.

This system for generating hybrid metaheuristic algorithms has been initially
evaluated on flow-shop scheduling problems, in particular, the variant to minimize
the total weighted tardiness in a permutation flowshop problem. The final output
of the system was shown to be superior to the state-of-the-art algorithm (at that
time) for the same problem [104]. Since then, the system has been applied to other
problems such as unconstrained binary quadratic programming and the traveling
salesman problem with time windows. It was able to reach, through automatically
generated algorithms, the state-of-the-art performance of algorithms that were ob-
tained after a substantial, manual algorithm engineering effort [98]. In the meantime,
a re-implementation of the system with substantial simplifications of the code base
was shown to automatically generate new state-of-the-art algorithms for several of
the most studied variants of the flow-shop scheduling problem, including the variant
where the completion time of the last job is minimized [118]. This is a remarkable
result, since the latter variant has received an enormous amount of research effort
with tens or even hundreds of articles specifically aimed at solving it [50].

17.5 Relevant Connections and Related Work

In this section, we shortly discuss some relevant connections of automatic offline
algorithm configuration to other techniques including online parameter control and
algorithm selection, and highlight some additional related work.

17.5.1 Online Parameter Control

So far, we have discussed the offline configuration of algorithms that mimics the
general setting of algorithm design: an algorithm is designed and developed before
being actually employed in production mode, where it regularly has to tackle new,
previously unseen instances. Of course, offline configuration of algorithms does not
mean that the values of the parameters that are configured need to take one fixed
value during the whole run of the algorithm. In fact, in Sect. 17.4.1, we have dis-
cussed the automatic configuration of a metaheuristic algorithm’s anytime behavior,
which may be improved by modifying algorithm parameter values at run-time. The
modification of algorithm parameters at run-time is the main topic of a large set of
techniques and approaches that have been proposed in the context of online param-

566 T. Stützle and M. López-Ibáñez

eter control [48, 77] or reactive search [19, 20, 58]. While many online parame-
ter control schemes refer to the modification of numerical algorithm parameters, a
number of schemes have also been proposed to adapt categorical parameters such
as operators to be used during the search [51].

Online parameter control may be useful to better adapt an algorithm to the char-
acteristics of a particular instance—this may be particularly beneficial if the in-
stances are relatively heterogeneous, requiring different settings of key algorithm
parameters to reach peak performance. Additionally, it may be desirable to adapt
algorithm parameters depending on the stage of the search process, for example,
to make a transition from a rather explorative to an exploitative search phase, or
depending on the amount of infeasibility when dealing with (strongly) constrained
problems.

One may distinguish between three types of online parameter control strategies
[48, 143]. The first type, which we call pre-scheduled parameter variation, varies a
parameter according to an a priori defined function, which may be deterministic or
stochastic in nature. The second type uses adaptive parameter settings, which change
the parameter value as a function of statistics collected during the search process.
The third type are search-based adaptation schemes, where algorithm parameters
are added to the problem search space and optimized together with the decision
variables of the problem; this latter approach is often called self-adaptation in the
evolutionary computation literature [48].

Independent of which type of parameter adaptation mechanism is chosen, offline
automatic configuration can help in this design task by automatically configuring
the parameter variation scheme, as in Sect. 17.4.1, or by choosing appropriate pa-
rameter settings and search processes for adaptive or search-based schemes [51].
In turn, insights into the dependence of parameter settings on instance characteris-
tics, as gained by the analysis of automated configuration results, may identify the
parameters that may need to be adapted at run-time. Hence, offline automated al-
gorithm configuration and online parameter control can be seen as complementary
schemes.

17.5.2 Algorithm Portfolios and Algorithm Selection

The algorithm selection problem [131] is concerned with the selection of the most
suitable algorithm from a portfolio of algorithms [63] for tackling specific prob-
lem instances. Algorithm selection is relevant when there is no single algorithm
that dominates all other algorithms on all problem instances of interest; in other
words, when the best algorithm depends on the particular instance to be solved—a
common case when using metaheuristic algorithms. In the algorithm selection prob-
lem, we have a distribution of problem instances I and an algorithm space A and
the main task is, given a problem instance πi ∈ I, to select some algorithm a ∈ A
with the best performance when applied to πi. Each instance is characterized by
a vector of features. A selection mapping uses this vector to decide which algo-

17 Automated Design of Metaheuristic Algorithms 567

rithm should tackle each instance. Often, this selection mapping is implemented by
predicting the performance of each algorithm for a particular instance and then se-
lecting the algorithm with the best prediction. Algorithm selection approaches have
led to significant advances in the performance of solvers for a number of problems.
A noteworthy example is the SATzilla approach [153], which is an award-winning
algorithm selector for the SAT problem.

To build an effective algorithm selector, various issues need to be addressed: the
choice of the portfolio, the features to be computed and used for the performance
mapping, whether to select a single algorithm or a subset of algorithms that may
be run in parallel or according to some schedule, and how to actually perform the
selection. In the literature, various choices for each of these issues have been ex-
plored and we refer to [83] for an overview of approaches to algorithm selection for
combinatorial problems.

The links between algorithm selection and configuration have been explored in
the literature. A first connection results from the large set of parameters and alterna-
tive choices, such as the model to be used for the mapping of features to algorithms,
present in algorithm selectors. Hence, one possible approach is to use automatic al-
gorithm configuration to configure algorithm selectors [87, 88]. Another is to build
portfolios of algorithms for selection using automatic configuration techniques. This
direction was explored in the Hydra approach [154], first using the SAT problem
as an application example. The central idea of Hydra is to build a portfolio of al-
gorithms from a parameterized algorithm by iteratively generating new algorithm
instantiations, through automatic algorithm configuration, that are as complemen-
tary as possible—in other words, the different configurations should be specialized
to solving particularly well specific sets of instances. An algorithm selection stage
then chooses, given an instance feature vector, the most appropriate configuration.
This approach has also been applied to automatically configure portfolios of algo-
rithms for mixed integer programs [155]. Another instance-specific algorithm con-
figuration approach was proposed by Kadioglu et al. [76, 102], where the idea is to
cluster problem instances according to instance features and to configure an algo-
rithm for each instance cluster. A recent work in this direction uses search landscape
features to select appropriate parameter settings of continuous optimizers [24], lead-
ing to substantial improvements upon the current state-of-the-art. Other approaches
use instance features to set crucial (typically one or two) algorithm parameters; two
examples of a regression-based approach to derive parameter settings can be found
in [18, 108].

From a higher level perspective, algorithm selection and configuration are com-
plementary, especially when tackling a heterogeneous set of problem instances,
where different algorithm configurations are required to reach peak performance.
In fact, automatic algorithm configuration works best when the instance distribution
is sufficiently homogeneous to allow the identification of a single high-performing
configuration for all instances. When the best configuration is different for various
instance classes, instead of finding a single configuration that is good on average,
algorithm selection offers the possibility of tailoring configurations more precisely
within homogeneous instance classes.

568 T. Stützle and M. López-Ibáñez

The combination of automatic algorithm configuration and algorithm selection
may be seen as an alternative approach to using online parameter adaptation, es-
pecially if many algorithm parameters would need adaptation to reach high perfor-
mance. Of course, (some) parameters may still be adapted at run-time and, hence,
one relevant research direction is building solver portfolios through the combina-
tion of techniques from automatic algorithm configuration, algorithm selection, and
online parameter control.

17.5.3 Automated Design of Metaheuristics/Metaheuristic
Algorithm

There is a subtle but important distinction between the terms metaheuristic and
metaheuristic algorithm. While metaheuristic refers to a set of rules or a template
that needs to be appropriately instantiated to define an algorithm, the term “meta-
heuristic algorithm” refers to the instantiated algorithm with all design options and
parameter settings already defined. The adjective “metaheuristic” in metaheuristic
algorithm simply indicates that the algorithm has been derived from some specific
template provided by a metaheuristic. This distinction is important when we talk
about automated design of metaheuristic algorithms (as in this chapter). In particu-
lar, it refers to the automated instantiation of some general algorithm template that
can be given as a fixed outline in a top-down approach, as a more flexible composi-
tion of components in a bottom-up approach, or in yet other ways.

An alternative would be to automate the design of metaheuristics, which would
correspond to the generation of new, general templates that combine algorithm de-
sign features related to search diversification and intensification in novel ways. The
idea of generating useful, high-performing templates may be formulated as follows:
once the templates are instantiated, for example, using automatic algorithm config-
uration tools, the result should be very high-performing metaheuristic algorithms.
This approach is consistent with the research on metaheuristics: much of the early
and current metaheuristic research is targeted towards identifying new metaheuris-
tics (i.e., templates) and showing that these are useful by applying them to many
different problems. In fact, the work on most metaheuristics, such as simulated an-
nealing, variable neighborhood search, ant colony optimization or any other of your
favorite metaheuristics can be cast in these terms. This is also true for the recent
wave of (supposedly) new, nature-inspired metaheuristics. This wave of new meta-
heuristics has in part been strongly criticized due to a number of significant issues
such as lack of novelty, weak justifications for their inspiration and poor experi-
mental campaigns [110, 141, 151]. Still, several of these “new” metaheuristics may
propose previously unexplored templates and it may be useful to search for new
templates that combine known and new metaheuristic features in novel ways. How-
ever, we would prefer to think of this being done automatically without resorting to
sometimes far-fetched analogies.

17 Automated Design of Metaheuristic Algorithms 569

17.5.4 Other Related Work

There are several other research directions that we did not discuss in detail in this
chapter. Related to the topic of this chapter is the stream of work on hyperheuristics.
The term hyperheuristics refers to a wide set of techniques from simple combina-
tions of basic pre-defined heuristics to more sophisticated schemes that assemble
new heuristics from components (so-called selective hyperheuristics) or build new
building blocks of algorithms (generative hyperheuristics) [34]. However, hyper-
heuristics do not address the algorithm configuration and parameter tuning problem
that arises in the design of metaheuristic algorithms. Nevertheless, the literature in
the area of hyperheuristics offers approaches for generating specific heuristics or
building blocks that typically can be seen as algorithmic components in an auto-
mated design approach of metaheuristic algorithms, as described in Sect. 17.3.2.
Such components may be used in addition to those components taken directly from
existing literature. Hence, an integration of ideas from the hyperheuristics area in the
design approaches discussed in this chapter is a promising research direction. For
a detailed review of recent work on hyperheuristics, we refer to the accompanying
chapter in this book.

Automatic tuning methods have been much explored in the area of performance
tuning of computer code w.r.t. specific computer architectures. Several projects de-
fine application-specific autotuners that adjust the program produced to the system
on which it will be installed. Examples of such work include ATLAS [152], Spi-
ral [127], and Patus [38]. The problem of setting performance optimizing compiler
settings has been tackled by various techniques such as OpenTuner [4] or in more
specific approaches [32, 55, 125]. In recent years, the idea of hyperparameter tuning,
which overlaps with automated algorithm configuration, has received an increasing
amount of attention in machine learning [25, 137, 140, 146].

Finally, a number of relevant topics in the area of automatic algorithm configu-
ration should be mentioned. One topic is the analysis of the obtained configuration
regarding variable importance and interaction effects. For this analysis, the data
generated in the configuration process may be exploited, but in the application of
traditional experimental design techniques, a number of issues arise as the data are
not generated following some pre-specified experimental designs and many missing
data arise as most configurations are executed only on a small set of instances. As
technique for dealing in part with these challenges, Hutter et al. [72] have proposed a
functional ANOVA analysis. The importance of specific settings in the best configu-
rations when compared to algorithm defaults, for example, is studied by the ablation
analysis, proposed by Fawcett and Hoos [49]. The impact of variations around the
best configuration, as returned by the configuration process, has been analyzed by
Massen et al. [109].

If configuration tasks are very time-consuming due to the occurrence of large
instances, one possibility is to develop specialized configuration protocols for
adapting the procedures in order to save valuable configuration time [144, 145].
If few key parameters of an algorithm need to be set, an alternative may be to
use regression-based approaches to extrapolate parameter settings, as explored by
Mascia et al. [106].

570 T. Stützle and M. López-Ibáñez

From the description of the configurators in Sect. 17.2.3, it is clear that they have
themselves a number of parameters that may affect their performance. Additionally,
it may seem contradictory at first sight that the configurators have been developed
through a manual effort of algorithm design. Some initial, limited experiments on
the automatic configuration of parameters of ParamILS have been done early on, but
did not result in improved settings [69]. Later, the impact of the parameter settings
of irace have been studied on a number of configuration tasks [120], but again with-
out being able to propose new improved settings. However, significantly improved
irace settings were determined automatically in a recent work on the automatic con-
figuration of irace for configuration tasks that involve the minimization of compu-
tation time [41]. This is the first successful approach for automatically configuring
a configurator.

17.6 Conclusions

Automatic algorithm configuration is arguably important for metaheuristic research
for the following reasons: (1) it provides an improvement over manual, ad-hoc meth-
ods for algorithm configuration and makes this process more reproducible, (2) it re-
duces the development time and human intervention in the parameter tuning process,
(3) it allows conducting sound empirical studies and comparisons of algorithms, (4)
it increases the number of algorithm design decisions that are considered to instan-
tiate algorithms, and (5) it has become feasible due to the huge increase in available
computing power.

It should be noted that the impact of automatic configuration is not limited to
metaheuristics research, but has much wider perspectives [61]. The work on the au-
tomated design of metaheuristic algorithms from automatically configurable frame-
works can be seen as one of the most advanced instances of the “programming by
optimization” paradigm [61].

For future research, we propose to combine flexible, automatically configurable
algorithm frameworks with problem-related frameworks in which large classes of
relevant problems such as routing or scheduling problems can be formulated. Fo-
cusing on problem classes will allow capturing specific representations, operators,
and problem-specific features, thus tailoring the algorithms to particular problem
types and instance distributions of interest in a more effective manner than what
would be possible with more generic representations. Combining this approach with
the power of automatic configuration of metaheuristic algorithms shows, from our
point of view, great promise to further boost the applicability and performance of
metaheuristic algorithms.

Acknowledgements The authors would like to thanks the editors for the careful reading of the
chapter and the valuable comments for improving the presentation. Thomas Stützle acknowledges
support from the F.R.S.-FNRS, of which he is a research director. This work received support from
the COMEX project P7/36 within the Interuniversity Attraction Poles Programme of the Belgian
Science Policy Office.

17 Automated Design of Metaheuristic Algorithms 571

References

1. E.H.L. Aarts, J.K. Lenstra (eds.), Local Search in Combinatorial Optimization (Wiley,
Chichester, 1997)

2. B. Adenso-Díaz, M. Laguna, Fine-tuning of algorithms using fractional experimental design
and local search. Oper. Res. 54(1), 99–114 (2006)

3. S. Aine, R. Kumar, P.P. Chakrabarti, Adaptive parameter control of evolutionary algorithms
to improve quality-time trade-off. Appl. Soft Comput. 9(2), 527–540 (2009)

4. J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.M. O’Reilly,
S. Amarasinghe, Opentuner: an extensible framework for program autotuning, in Proceed-
ings of the 23rd International Conference on Parallel Architectures and Compilation (ACM,
New York, 2014), pp. 303–315

5. C. Ansótegui, M. Sellmann, K. Tierney, A gender-based genetic algorithm for the auto-
matic configuration of algorithms, in Principles and Practice of Constraint Programming,
CP 2009, ed. by I.P. Gent. Lecture Notes in Computer Science, vol. 5732 (Springer, Heidel-
berg, 2009), pp. 142–157

6. C. Ansótegui, Y. Malitsky, H. Samulowitz, M. Sellmann, K. Tierney, Model-based genetic
algorithms for algorithm configuration, in Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence (IJCAI-15), ed. by Q. Yang, M. Wooldridge (IJ-
CAI/AAAI Press, Menlo Park, 2015), pp. 733–739

7. J. April, F. Glover, J.P. Kelly, M. Laguna, Simulation-based optimization: practical introduc-
tion to simulation optimization, in Proceedings of the 35th Winter Simulation Conference:
Driving Innovation, December 2003, vol. 1, ed. by S.E. Chick, P.J. Sanchez, D.M. Ferrin,
D.J. Morrice (ACM Press, New York, 2003), pp. 71–78

8. C. Audet, D. Orban, Finding optimal algorithmic parameters using derivative-free optimiza-
tion. SIAM J. Optim. 17(3), 642–664 (2006)

9. C. Audet, K.-C. Dang, D. Orban, Optimization of algorithms with OPAL. Math. Program.
Comput. 6(3), 233–254 (2014)

10. D. Aydın, G. Yavuz, T. Stützle, ABC-X: a generalized, automatically configurable artificial
bee colony framework. Swarm Intell. 11(1), 1–38 (2017)

11. P. Balaprakash, M. Birattari, T. Stützle, Improvement strategies for the F-race algorithm:
sampling design and iterative refinement, in Hybrid Metaheuristics, ed. by T. Bartz-
Beielstein, M.J. Blesa, C. Blum, B. Naujoks, A. Roli, G. Rudolph, M. Sampels. Lecture
Notes in Computer Science, vol. 4771 (Springer, Heidelberg, 2007), pp. 108–122

12. P. Balaprakash, M. Birattari, T. Stützle, M. Dorigo, Adaptive sampling size and importance
sampling in estimation-based local search for the probabilistic traveling salesman problem.
Eur. J. Oper. Res. 199(1), 98–110 (2009)

13. P. Balaprakash, M. Birattari, T. Stützle, M. Dorigo, Estimation-based metaheuristics for the
probabilistic travelling salesman problem. Comput. Oper. Res. 37(11), 1939–1951 (2010)

14. P. Balaprakash, M. Birattari, T. Stützle, M. Dorigo, Estimation-based metaheuristics for the
single vehicle routing problem with stochastic demands and customers. Comput. Optim.
Appl. 61(2), 463–487 (2015)

15. R.S. Barr, B.L. Golden, J.P. Kelly, M.G.C. Resende, W.R. Stewart, Designing and reporting
on computational experiments with heuristic methods. J. Heuristics 1(1), 9–32 (1995)

16. T. Bartz-Beielstein, S. Markon, Tuning search algorithms for real-world applications: a re-
gression tree based approach, in Proceedings of the 2004 Congress on Evolutionary Compu-
tation (CEC 2004), September 2004 (IEEE Press, Piscataway, 2004), pp. 1111–1118

17. T. Bartz-Beielstein, C. Lasarczyk, M. Preuss, Sequential parameter optimization, in Pro-
ceedings of the 2005 Congress on Evolutionary Computation (CEC 2005), September 2005
(IEEE Press, Piscataway, 2005), pp. 773–780

18. M. Battistutta, A. Schaerf, T. Urli, Feature-based tuning of single-stage simulated annealing
for examination timetabling. Ann. Oper. Res. 252(2), 239–254 (2017)

19. R. Battiti, G. Tecchiolli, The reactive tabu search. ORSA J. Comput. 6(2), 126–140 (1994)

572 T. Stützle and M. López-Ibáñez

20. R. Battiti, M. Brunato, F. Mascia, Reactive Search and Intelligent Optimization. Operations
Research/Computer Science Interfaces, vol. 45 (Springer, New York, 2008)

21. E.B. Baum, Iterated descent: a better algorithm for local search in combinatorial optimization
problems. Manuscript, 1986

22. E.B. Baum, Towards practical “neural” computation for combinatorial optimization prob-
lems, in AIP Conference Proceedings on Neural Networks for Computing (1986), pp. 53–64

23. J. Baxter, Local optima avoidance in depot location. J. Oper. Res. Soc. 32(9), 815–819 (1981)
24. N. Belkhir, J. Dréo, P. Savéant, M. Schoenauer, Per instance algorithm configuration

of CMA-ES with limited budget, in Genetic and Evolutionary Computation Conference,
GECCO 2017, Berlin, 15–19 July 2017, ed. by P.A.N. Bosman (ACM Press, New York,
2017), pp. 681–688

25. J.S. Bergstra, Y. Bengio, Random search for hyper-parameter optimization. J. Mach. Learn.
Res. 13, 281–305 (2012)

26. L.C.T. Bezerra, M. López-Ibáñez, T. Stützle, Automatic design of evolutionary algorithms
for multi-objective combinatorial optimization, in PPSN 2014, ed. by T. Bartz-Beielstein,
J. Branke, B. Filipič, J. Smith. Lecture Notes in Computer Science, vol. 8672 (Springer,
Heidelberg, 2014), pp. 508–517

27. L.C.T. Bezerra, M. López-Ibáñez, T. Stützle, Automatic component-wise design of multi-
objective evolutionary algorithms. IEEE Trans. Evol. Comput. 20(3), 403–417 (2016)

28. L.C.T. Bezerra, M. López-Ibáñez, T. Stützle, Automatic configuration of multi-objective op-
timizers and multi-objective configuration. Technical Report TR/IRIDIA/2017-011, IRIDIA,
Université Libre de Bruxelles, Brussels, November 2017

29. M. Birattari, The problem of tuning metaheuristics as seen from a machine learning per-
spective. PhD thesis, IRIDIA, École polytechnique, Université Libre de Bruxelles, Brussels,
2004

30. M. Birattari, T. Stützle, L. Paquete, K. Varrentrapp, A racing algorithm for configuring
metaheuristics, in Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2002, ed. by W.B. Langdon et al. (Morgan Kaufmann Publishers, San Francisco,
2002), pp. 11–18

31. M. Birattari, Z. Yuan, P. Balaprakash, T. Stützle, F-race and iterated F-race: an overview,
in Experimental Methods for the Analysis of Optimization Algorithms, ed. by T. Bartz-
Beielstein, M. Chiarandini, L. Paquete, M. Preuss (Springer, Berlin, 2010), pp. 311–336

32. C. Blackmore, O. Ray, K. Eder, Automatically tuning the GCC compiler to optimize the
performance of applications running on the ARM cortex-M3. Technical report, CoRR, 2017.
https://arxiv.org/abs/1703.08228

33. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)
34. E.K. Burke, M. Gendreau, M.R. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu, Hyper-

heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
35. S. Cahon, N. Melab, E.-G. Talbi, ParadisEO: a framework for the reusable design of parallel

and distributed metaheuristics. J. Heuristics 10(3), 357–380 (2004)
36. V. Černý, A thermodynamical approach to the traveling salesman problem: an efficient sim-

ulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)
37. M. Chiarandini, Stochastic local search methods for highly constrained combinatorial opti-

misation problems. PhD thesis, FB Informatik, TU Darmstadt, Darmstadt, 2005
38. M. Christen, O. Schenk, H. Burkhart, PATUS: a code generation and autotuning frame-

work for parallel iterative stencil computations on modern microarchitectures, in Proceed-
ings of the 2011 IEEE International Parallel & Distributed Processing Symposium, IPDPS
‘11 (IEEE Computer Society, Los Alamitos, 2011), pp. 676–687

39. W.J. Conover, Practical Nonparametric Statistics, 3rd edn. (Wiley, New York, 1999)
40. S.P. Coy, B.L. Golden, G.C. Runger, E.A. Wasil, Using experimental design to find effective

parameter settings for heuristics. J. Heuristics 7(1), 77–97 (2001)
41. N. Dang Thi Thanh, L. Pérez Cáceres, P. De Causmaecker, T. Stützle, Configuring irace using

surrogate configuration benchmarks, in Genetic and Evolutionary Computation Conference,
GECCO 2017, Berlin, 15–19 July 2017, ed. by P.A.N. Bosman (ACM Press, New York,
2017), pp. 243–250

https://arxiv.org/abs/1703.08228

17 Automated Design of Metaheuristic Algorithms 573

42. U. Derigs, U. Vogel, Experience with a framework for developing heuristics for solving rich
vehicle routing problems. J. Heuristics 20(1), 75–106 (2014)

43. L. Di Gaspero, A. Schaerf, EASYLOCAL++: an object-oriented framework for flexible design
of local search algorithms. Softw. Pract. Experience 33(8), 733–765 (2003)

44. J. Dubois-Lacoste, M. López-Ibáñez, T. Stützle, Automatic configuration of state-of-the-
art multi-objective optimizers using the TP+PLS framework, in Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2011, ed. by N. Krasnogor, P.L. Lanzi
(ACM Press, New York, 2011), pp. 2019–2026

45. J. Dubois-Lacoste, M. López-Ibáñez, T. Stützle, A hybrid TP+PLS algorithm for bi-objective
flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)

46. J. Dubois-Lacoste, M. López-Ibáñez, T. Stützle, Improving the anytime behavior of two-
phase local search. Ann. Math. Artif. Intell. 61(2), 125–154 (2011)

47. J. Dubois-Lacoste, M. López-Ibáñez, T. Stützle, Anytime Pareto local search. Eur. J. Oper.
Res. 243(2), 369–385 (2015)

48. A.E. Eiben, Z. Michalewicz, M. Schoenauer, J.E. Smith, Parameter control in evolutionary
algorithms, in Parameter Setting in Evolutionary Algorithms, ed. by F. Lobo, C.F. Lima,
Z. Michalewicz (Springer, Berlin, 2007), pp. 19–46

49. C. Fawcett, H.H. Hoos, Analysing differences between algorithm configurations through ab-
lation. J. Heuristics 22(4), 431–458 (2016)

50. V. Fernandez-Viagas, R. Ruiz, J.M. Framiñán, A new vision of approximate methods for the
permutation flowshop to minimise makespan: state-of-the-art and computational evaluation.
Eur. J. Oper. Res. 257(3), 707–721 (2017)

51. A. Fialho, L. Da Costa, M. Schoenauer, M. Sebag, Analyzing bandit-based adaptive operator
selection mechanisms. Ann. Math. Artif. Intell. 60(1–2), 25–64 (2010)

52. A. Franzin, T. Stützle, Exploration of metaheuristics through automatic algorithm configura-
tion techniques and algorithmic frameworks, in GECCO (Companion), ed. by T. Friedrich,
F. Neumann, A.M. Sutton (ACM Press, New York, 2016), pp. 1341–1347

53. A.S. Fukunaga, Evolving local search heuristics for SAT using genetic programming, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO 2004, Part II,
ed. by K. Deb et al. Lecture Notes in Computer Science, vol. 3103 (Springer, Heidelberg,
2004), pp. 483–494

54. A.S. Fukunaga, Automated discovery of local search heuristics for satisfiability testing. Evol.
Comput. 16(1), 31–61 (2008)

55. G. Fursin, Y. Kashnikov, A.W. Memon, Z. Chamski, O. Temam, M. Namolaru, E. Yom-Tov,
B. Mendelson, A. Zaks, E. Courtois, F. Bodin, P. Barnard, E. Ashton, E. Bonilla, J. Thomson,
C.K.I. Williams, M. O’Boyle, Milepost GCC: machine learning enabled self-tuning compiler.
Int. J. Parallel Program. 39(3), 296–327 (2011)

56. M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics. International Series in Oper-
ations Research & Management Science, vol. 146, 2nd edn. (Springer, New York, 2010)

57. J.J. Grefenstette, Optimization of control parameters for genetic algorithms. IEEE Trans.
Syst. Man Cybern. 16(1), 122–128 (1986)

58. Y. Hamadi, E. Monfroy, F. Saubion (eds.), Autonomous Search (Springer, Berlin, 2012)
59. N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies.

Evol. Comput. 9(2), 159–195 (2001)
60. P. Hansen, N. Mladenović, J. Brimberg, J.A. Moreno Pérez, Variable Neighborhood Search,

in Handbook of Metaheuristics, ed. by M. Gendreau, J.-Y. Potvin. International Series in
Operations Research & Management Science, vol. 146, 2nd edn. (Springer, New York, 2010),
pp. 61–86

61. H.H. Hoos, Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
62. H.H. Hoos, T. Stützle, Stochastic Local Search—Foundations and Applications (Morgan

Kaufmann Publishers, San Francisco, 2005)
63. B. Huberman, R. Lukose, T. Hogg, An economic approach to hard computational problems.

Science 275, 51–54 (1997)
64. J. Humeau, A. Liefooghe, E.-G. Talbi, S. Verel, ParadisEO-MO: from fitness landscape anal-

ysis to efficient local search algorithms. J. Heuristics 19(6), 881–915 (2013)

574 T. Stützle and M. López-Ibáñez

65. M.S. Hussin, T. Stützle, Hierarchical iterated local search for the quadratic assignment prob-
lem, in Hybrid Metaheuristics, ed. by M.J. Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sam-
pels, A. Schaerf. Lecture Notes in Computer Science, vol. 5818 (Springer, Heidelberg, 2009),
pp. 115–129

66. F. Hutter, S. Ramage, Manual for SMAC, 2015. SMAC version 2.10.03
67. F. Hutter, D. Babić, H.H. Hoos, A.J. Hu, Boosting verification by automatic tuning of de-

cision procedures, in FMCAD’07: Proceedings of the 7th International Conference Formal
Methods in Computer Aided Design, Austin (IEEE Computer Society, Washington, 2007),
pp. 27–34

68. F. Hutter, H.H. Hoos, T. Stützle, Automatic algorithm configuration based on local search, in
Proceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI ‘07), ed. by
R.C. Holte, A. Howe (AAAI Press/MIT Press, Menlo Park, 2007), pp. 1152–1157

69. F. Hutter, H.H. Hoos, K. Leyton-Brown, T. Stützle, ParamILS: an automatic algorithm con-
figuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

70. F. Hutter, H.H. Hoos, K. Leyton-Brown, Automated configuration of mixed integer program-
ming solvers, in 7th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2010, ed. by
A. Lodi, M. Milano, P. Toth. Lecture Notes in Computer Science, vol. 6140 (Springer, Hei-
delberg, 2010), pp. 186–202

71. F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general
algorithm configuration, in 5th International Conference on Learning and Intelligent Opti-
mization, LION 5, ed. by C.A. Coello Coello. Lecture Notes in Computer Science, vol. 6683
(Springer, Heidelberg, 2011), pp. 507–523

72. F. Hutter, H.H. Hoos, K. Leyton-Brown, An efficient approach for assessing hyperparame-
ter importance, in Proceedings of the 31th International Conference on Machine Learning,
vol. 32 (2014), pp. 754–762

73. T. Ibaraki, A personal perspective on problem solving by general purpose solvers. Int. Trans.
Oper. Res. 17(3), 303–315 (2010)

74. S. Irnich, A unified modeling and solution framework for vehicle routing and local search-
based metaheuristics. INFORMS J. Comput. 20(2), 270–287 (2008)

75. R.H.F. Jackson, P.T. Boggs, S.G. Nash, S. Powell, Guidelines for reporting results of com-
putational experiments. Report of the ad hoc committee. Math. Program. 49(3), 413–425
(1991)

76. S. Kadioglu, Y. Malitsky, M. Sellmann, K. Tierney, ISAC: instance-specific algorithm con-
figuration, in Proceedings of the 19th European Conference on Artificial Intelligence, ed. by
H. Coelho, R. Studer, M. Wooldridge (IOS Press, Amsterdam, 2010), pp. 751–756

77. G. Karafotias, M. Hoogendoorn, A.E. Eiben, Parameter control in evolutionary algorithms:
trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)

78. G. Kendall, R. Bai, J. Blazewicz, P. De Causmaecker, M. Gendreau, R. John, J. Li, B. Mc-
Collum, E. Pesch, R. Qu, N.R. Sabar, G.V. Berghe, A. Yee, Good laboratory practice for
optimization research. J. Oper. Res. Soc. 67(4), 676–689 (2016)

79. A.R. KhudaBukhsh, L. Xu, H.H. Hoos, K. Leyton-Brown, SATenstein: automatically build-
ing local search SAT solvers from components, in Proceedings of the Twenty-First Inter-
national Joint Conference on Artificial Intelligence (IJCAI-09), ed. by C. Boutilier (AAAI
Press, Menlo Park, 2009), pp. 517–524

80. A.R. KhudaBukhsh, L. Xu, H.H. Hoos, K. Leyton-Brown, SATenstein: automatically build-
ing local search SAT Solvers from Components. Artif. Intell. 232, 20–42 (2016)

81. S. Kirkpatrick, Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34(5–
6), 975–986 (1984)

82. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220,
671–680 (1983)

83. L. Kotthoff, Algorithm selection for combinatorial search problems: a survey. AI Mag. 35(3),
48–60 (2014)

17 Automated Design of Metaheuristic Algorithms 575

84. T. Liao, M.A. Montes de Oca, T. Stützle, Computational results for an automatically tuned
CMA-ES with increasing population size on the CEC’05 benchmark set. Soft Comput. 17(6),
1031–1046 (2013)

85. T. Liao, T. Stützle, M.A. Montes de Oca, M. Dorigo, A unified ant colony optimization
algorithm for continuous optimization. Eur. J. Oper. Res. 234(3), 597–609 (2014)

86. T. Liao, D. Molina, T. Stützle, Performance evaluation of automatically tuned continuous
optimizers on different benchmark sets. Appl. Soft Comput. 27, 490–503 (2015)

87. M.T. Lindauer, H.H. Hoos, F. Hutter, T. Schaub, AutoFolio: algorithm configuration for al-
gorithm selection, in AAAI, ed. by B. Bonet, S. Koenig (AAAI Press, Menlo Park, 2015)

88. M.T. Lindauer, H.H. Hoos, F. Hutter, T. Schaub, AutoFolio: an automatically configured
algorithm selector. J. Artif. Intell. Res. 53, 745–778 (2015)

89. M. López-Ibáñez, T. Stützle, An analysis of algorithmic components for multiobjective ant
colony optimization: a case study on the biobjective TSP, in Artificial Evolution: 9th In-
ternational Conference, Evolution Artificielle, EA, 2009, ed. by P. Collet, N. Monmarché,
P. Legrand, M. Schoenauer, E. Lutton. Lecture Notes in Computer Science, vol. 5975
(Springer, Heidelberg, 2010), pp. 134–145

90. M. López-Ibáñez, T. Stützle, Automatic configuration of multi-objective ACO algorithms,
in Swarm Intelligence, 7th International Conference, ANTS 2010, ed. by M. Dorigo et al.
Lecture Notes in Computer Science, vol. 6234 (Springer, Heidelberg, 2010), pp. 95–106

91. M. López-Ibáñez, T. Stützle, The impact of design choices of multi-objective ant colony
optimization algorithms on performance: an experimental study on the biobjective TSP, in
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2010, ed.
by M. Pelikan, J. Branke (ACM Press, New York, 2010), pp. 71–78

92. M. López-Ibáñez, T. Stützle, The automatic design of multi-objective ant colony optimization
algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

93. M. López-Ibáñez, T. Stützle, An experimental analysis of design choices of multi-objective
ant colony optimization algorithms. Swarm Intell. 6(3), 207–232 (2012)

94. M. López-Ibáñez, T. Stützle, Automatically improving the anytime behaviour of optimisation
algorithms. Eur. J. Oper. Res. 235(3), 569–582 (2014)

95. M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, M. Birattari, The irace package, iterated
race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA,
Université Libre de Bruxelles, Brussels, 2011

96. M. López-Ibáñez, T. Liao, T. Stützle, On the anytime behavior of IPOP-CMA-ES, in Parallel
Problem Solving from Nature, PPSN XII, ed. by C.A. Coello Coello et al. Lecture Notes in
Computer Science, vol. 7491 (Springer, Heidelberg, 2012), pp. 357–366

97. M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, M. Birattari, The irace
package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–
58 (2016)

98. M. López-Ibáñez, M.-E. Kessaci, T. Stützle, Automatic design of hybrid metaheuristics from
algorithmic components. Technical Report TR/IRIDIA/2017-012, IRIDIA, Université Libre
de Bruxelles, Brussels, November 2017

99. H.R. Lourenço, Job-shop scheduling: computational study of local search and large-step op-
timization methods. Eur. J. Oper. Res. 83(2), 347–364 (1995)

100. H.R. Lourenço, O. Martin, T. Stützle, Iterated local search, in Handbook of Metaheuris-
tics, ed. by F. Glover, G. Kochenberger (Kluwer Academic Publishers, Norwell, 2002),
pp. 321–353

101. H.R. Lourenço, O. Martin, T. Stützle, Iterated local search: framework and applications,
in Handbook of Metaheuristics, ed. by M. Gendreau, J.-Y. Potvin. International Series in
Operations Research & Management Science, vol. 146, 2nd edn. (Springer, New York, 2010),
pp. 363–397, chapter 9

102. Y. Malitsky, M. Sellmann, Instance-specific algorithm configuration as a method for non-
model-based portfolio generation, in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, ed. by N. Beldiceanu, N. Jussien,
E. Pinson. Lecture Notes in Computer Science, vol. 7298 (Springer, Heidelberg, 2012),
pp. 244–259

576 T. Stützle and M. López-Ibáñez

103. V. Maniezzo, T. Stützle, S. Voß (eds.), Matheuristics—Hybridizing Metaheuristics and Math-
ematical Programming. Annals of Information Systems, vol. 10 (Springer, New York, 2009)

104. M.-E. Marmion, F. Mascia, M. López-Ibáñez, T. Stützle, Automatic design of hybrid stochas-
tic local search algorithms, in Hybrid Metaheuristics, 8th International Workshop, HM 2013,
Ischia, May 23–25, 2013. Proceedings, ed. by M.J. Blesa, C. Blum, P. Festa, A. Roli,
M. Sampels. Lecture Notes in Computer Science, vol. 7919 (Springer, Heidelberg, 2013),
pp. 144–158

105. O. Maron, A.W. Moore, The racing algorithm: model selection for lazy learners. Artif. Intell.
Res. 11(1–5), 193–225 (1997)

106. F. Mascia, M. Birattari, T. Stützle, Tuning algorithms for tackling large instances: an exper-
imental protocol, in 7th International Conference on Learning and Intelligent Optimization,
LION 7, ed. by P.M. Pardalos, G. Nicosia. Lecture Notes in Computer Science, vol. 7997
(Springer, Heidelberg, 2013), pp. 410–422

107. F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, Grammar-based generation of
stochastic local search heuristics through automatic algorithm configuration tools. Comput.
Oper. Res. 51, 190–199 (2014)

108. F. Mascia, P. Pellegrini, T. Stützle, M. Birattari, An analysis of parameter adaptation in reac-
tive tabu search. Int. Trans. Oper. Res. 21(1), 127–152 (2014)

109. F. Massen, M. López-Ibáñez, T. Stützle, Y. Deville, Experimental analysis of pheromone-
based heuristic column generation using irace, in Hybrid Metaheuristics, 8th International
Workshop, HM 2013, Ischia, May 23–25, 2013. Proceedings, ed. by M.J. Blesa, C. Blum,
P. Festa, A. Roli, M. Sampels. Lecture Notes in Computer Science, vol. 7919 (Springer,
Heidelberg, 2013), pp. 92–106.

110. G. Melvin, T.J. Dodd, R. Groß, Why ‘GSA: a gravitational search algorithm’ is not genuinely
based on the law of gravity. Nat. Comput. 11(4), 719–720 (2012)

111. ML4AAD Group. SMAC v3 project (2017). https://github.com/automl/SMAC3, Version vis-
ited last on August 2017

112. J. Mockus, Bayesian Approach to Global Optimization: Theory and Applications (Kluwer
Academic Publishers, Dordrecht, 1989)

113. M.A. Montes de Oca, D. Aydın, T. Stützle, An incremental particle swarm for large-scale
continuous optimization problems: an example of tuning-in-the-loop (re)design of optimiza-
tion algorithms. Soft Comput. 15(11), 2233–2255 (2011)

114. D.C. Montgomery, Design and Analysis of Experiments, 8th edn. (Wiley, New York, 2012)
115. V. Nannen, A.E. Eiben, A method for parameter calibration and relevance estimation in evo-

lutionary algorithms, in Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO 2006, ed. by M. Cattolico et al. (ACM Press, New York, 2006), pp. 183–190

116. V. Nannen, A.E. Eiben, Relevance estimation and value calibration of evolutionary algorithm
parameters, in Proceedings of the Twentieth International Joint Conference on Artificial In-
telligence (IJCAI-07), ed. by M.M. Veloso (AAAI Press, Menlo Park, 2007), pp. 975–980

117. R. Olsson, A. Løkketangen, Using automatic programming to generate state-of-the-art algo-
rithms for random 3-SAT. J. Heuristics 19(5), 819–844 (2013)

118. F. Pagnozzi, T. Stützle, Automatic design of hybrid stochastic local search algorithms for
permutation flowshop problems. Technical Report TR/IRIDIA/2017-013, IRIDIA, Univer-
sité Libre de Bruxelles, Brussels, November 2017

119. P. Pellegrini, M. Birattari, Implementation effort and performance, in Engineering Stochas-
tic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics.
SLS 2007, ed. by T. Stützle, M. Birattari, H.H. Hoos. Lecture Notes in Computer Science,
vol. 4638 (Springer, Heidelberg, 2007), pp. 31–45

120. L. Pérez Cáceres, M. López-Ibáñez, T. Stützle, An analysis of parameters of irace, in Pro-
ceedings of EvoCOP 2014 – 14th European Conference on Evolutionary Computation in
Combinatorial Optimization, ed. by C. Blum, G. Ochoa. Lecture Notes in Computer Sci-
ence, vol. 8600 (Springer, Heidelberg, 2014), pp. 37–48

121. L. Pérez Cáceres, M. López-Ibáñez, T. Stützle, Ant colony optimization on a limited budget
of evaluations. Swarm Intell. 9(2–3), 103–124 (2015)

https://github.com/automl/SMAC3

17 Automated Design of Metaheuristic Algorithms 577

122. L. Pérez Cáceres, B. Bischl, T. Stützle, Evaluating random forest models for irace, in
GECCO’17 Companion, ed. by P.A.N. Bosman (ACM Press, New York, 2017)

123. L. Pérez Cáceres, M. López-Ibáñez, H.H. Hoos, T. Stützle, An experimental study of adaptive
capping in irace, in 11th International Conference on Learning and Intelligent Optimization,
LION 11, ed. by R. Battiti, D.E. Kvasov, Y.D. Sergeyev. Lecture Notes in Computer Science,
vol. 10556 (Springer, Cham, 2017), pp. 235–250

124. D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems. Comput. Oper. Res.
34(8), 2403–2435 (2007)

125. D. Plotnikov, D. Melnik, M. Vardanyan, R. Buchatskiy, R. Zhuykov, J.-H. Lee, Automatic
tuning of compiler optimizations and analysis of their impact, in 2013 International Con-
ference on Computational Science, ed. by V. Alexandrov, M. Lees, V. Krzhizhanovskaya,
J. Dongarra, P.M.A. Sloot. Procedia Computer Science, vol. 18 (Elsevier, Amsterdam, 2013),
pp. 1312–1321

126. M. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives.
Technical Report Cambridge NA Report NA2009/06, University of Cambridge, Cambridge,
2009

127. M. Püschel, F. Franchetti, Y. Voronenko, Spiral, in Encyclopedia of Parallel Computing, ed.
by D. Padua (Springer, New York, 2011), pp. 1920–1933

128. A. Radulescu, M. López-Ibáñez, T. Stützle, Automatically improving the anytime behaviour
of multiobjective evolutionary algorithms, in Evolutionary Multi-criterion Optimization,
EMO 2013, ed. by R.C. Purshouse, P.J. Fleming, C.M. Fonseca, S. Greco, J. Shaw. Lecture
Notes in Computer Science, vol. 7811 (Springer, Heidelberg, 2013), pp. 825–840

129. R.L. Rardin, R. Uzsoy, Experimental evaluation of heuristic optimization algorithms: a tuto-
rial. J. Heuristics 7(3), 261–304 (2001)

130. M.G.C. Resende, C.C. Ribeiro, Greedy randomized adaptive search procedures: advances,
hybridizations, and applications, in Handbook of Metaheuristics, ed. by M. Gendreau, J.-Y.
Potvin. International Series in Operations Research & Management Science, vol. 146, 2nd
edn. (Springer, New York, 2010), pp. 283–319

131. J.R. Rice, The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
132. E. Ridge, D. Kudenko, Tuning an algorithm using design of experiments, in Experimental

Methods for the Analysis of Optimization Algorithms, ed. by T. Bartz-Beielstein, M. Chiaran-
dini, L. Paquete, M. Preuss (Springer, Berlin, 2010), pp. 265–286

133. M.-C. Riff, E. Montero, A new algorithm for reducing metaheuristic design effort, in Pro-
ceedings of the 2013 Congress on Evolutionary Computation (CEC 2013) (IEEE Press, Pis-
cataway, 2013), pp. 3283–3290

134. S. Ropke, D. Pisinger, A unified heuristic for a large class of vehicle routing problems with
backhauls. Eur. J. Oper. Res. 171(3), 750–775 (2006)

135. R. Ruiz, C. Maroto, A comprehensive review and evaluation of permutation flowshop heuris-
tics. Eur. J. Oper. Res. 165(2), 479–494 (2005)

136. M. Schonlau, W.J. Welch, D.R. Jones, Global versus local search in constrained optimization
of computer models. Lect. Notes Monogr. Ser. 34, 11–25 (1998)

137. B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. de Freitas, Taking the human out of the
loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

138. S.K. Smit, A.E. Eiben, Beating the ‘world champion’ evolutionary algorithm via REVAC
tuning, in Proceedings of the 2010 Congress on Evolutionary Computation (CEC 2010), ed.
by H. Ishibuchi et al. (IEEE Press, Piscataway, 2010), pp. 1–8

139. S.K. Smit, A.E. Eiben, Parameter tuning of evolutionary algorithms: generalist vs. specialist,
in EvoApplications (1), ed. by C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A.I.
Esparcia-Alcázar, C.K. Goh, J.-J. Merelo, F. Neri, M. Preuss, J. Togelius, G.N. Yannakakis.
Lecture Notes in Computer Science, vol. 6024 (Springer, Heidelberg, 2010), pp. 542–551

140. J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning
algorithms, in Advances in Neural Information Processing Systems 25: 26th Annual Confer-
ence on Neural Information Processing Systems 2012, ed. by P.L. Bartlett, F.C.N. Pereira,
C.J.C. Burges, L. Bottou, K.Q. Weinberger (Curran Associates, Red Hook, 2012), pp. 2960–
2968

578 T. Stützle and M. López-Ibáñez

141. K. Sörensen, Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18
(2015)

142. T. Stützle, Some thoughts on engineering stochastic local search algorithms, in Proceedings
of the EU/MEeting 2009: Debating the Future: New Areas of Application and Innovative
Approaches, ed. by A. Viana et al., 2009, pp. 47–52

143. T. Stützle, M. López-Ibáñez, P. Pellegrini, M. Maur, M.A. Montes de Oca, M. Birattari,
M. Dorigo, Parameter adaptation in ant colony optimization, in Autonomous Search, ed. by
Y. Hamadi, E. Monfroy, F. Saubion (Springer, Berlin, 2012), pp. 191–215

144. J. Styles, H.H. Hoos, Ordered racing protocols for automatically configuring algorithms for
scaling performance, in Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO 2013, ed. by C. Blum E. Alba (ACM Press, New York, 2013), pp. 551–558

145. J. Styles, H.H. Hoos, M. Müller, Automatically configuring algorithms for scaling perfor-
mance, in Learning and Intelligent Optimization, 6th International Conference, LION 6, ed.
by Y. Hamadi, M. Schoenauer. Lecture Notes in Computer Science, vol. 7219 (Springer,
Heidelberg, 2012), pp. 205–219

146. C. Thornton, F. Hutter, H.H. Hoos, K. Leyton-Brown, Auto-WEKA: combined selection
and hyperparameter optimization of classification algorithms, in The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2013, ed. by I.S.
Dhillon, Y. Koren, R. Ghani, T.E. Senator, P. Bradley, R. Parekh, J. He, R.L. Grossman,
R. Uthurusamy (ACM Press, New York, 2013), pp. 847–855

147. T. Vidal, T.G. Crainic, M. Gendreau, C. Prins, Heuristics for multi-attribute vehicle routing
problems: a survey and synthesis. Eur. J. Oper. Res. 231(1), 1–21 (2013)

148. T. Vidal, T.G. Crainic, M. Gendreau, C. Prins, A unified solution framework for multi-
attribute vehicle routing problems. Eur. J. Oper. Res. 234(3), 658–673 (2014)

149. B.W. Wah, Y.X. Chen, Optimal anytime constrained simulated annealing for constrained
global optimization, in Principles and Practice of Constraint Programming, CP 2000, ed.
by R. Dechter. Lecture Notes in Computer Science, vol. 1894 (Springer, Heidelberg, 2000),
pp. 425–440

150. S. Wessing, N. Beume, G. Rudolph, B. Naujoks, Parameter tuning boosts performance of
variation operators in multiobjective optimization, in Parallel Problem Solving from Nature,
PPSN XI, ed. by R. Schaefer, C. Cotta, J. Kolodziej, G. Rudolph. Lecture Notes in Computer
Science, vol. 6238 (Springer, Heidelberg, 2010), pp. 728–737

151. D. Weyland, A rigorous analysis of the harmony search algorithm: how the research com-
munity can be misled by a “novel” methodology. Int. J. Appl. Metaheuristic Comput. 12(2),
50–60 (2010)

152. C.R. Whaley, Atlas (automatically tuned linear algebra software), in Encyclopedia of Parallel
Computing, ed. by D. Padua (Springer, New York, 2011), pp. 95–101

153. L. Xu, F. Hutter, H.H. Hoos, K. Leyton-Brown, SATzilla: portfolio-based algorithm selection
for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

154. L. Xu, H.H. Hoos, K. Leyton-Brown, Hydra: automatically configuring algorithms for
portfolio-based selection, in AAAI, ed. by M. Fox, D. Poole. (AAAI Press, Menlo Park, 2010)

155. L. Xu, F. Hutter, H.H. Hoos, K. Leyton-Brown, Hydra-MIP: automated algorithm configu-
ration and selection for mixed integer programming. Technical Report TR-2011-01, Depart-
ment of Computer Science, University of British Columbia, 2011

156. Z. Yuan, M.A. Montes de Oca, T. Stützle, M. Birattari, Continuous optimization algorithms
for tuning real and integer algorithm parameters of swarm intelligence algorithms. Swarm
Intell. 6(1), 49–75 (2012)

157. S. Zilberstein, Using anytime algorithms in intelligent systems. AI Mag. 17(3), 73–83 (1996)
158. E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary algorithms – a com-

parative case study, in Parallel Problem Solving from Nature, PPSN V, ed. by A.E. Eiben,
T. Bäck, M. Schoenauer, H.-P. Schwefel. Lecture Notes in Computer Science, vol. 1498
(Springer, Heidelberg, 1998), pp. 292–301

17 Automated Design of Metaheuristic Algorithms 579

159. E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V. Grunert da Fonseca, Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput.
7(2), 117–132 (2003)

160. E. Zitzler, L. Thiele, J. Bader, On set-based multiobjective optimization. IEEE Trans. Evol.
Comput. 14(1), 58–79 (2010)

Chapter 18
Computational Comparison of
Metaheuristics

John Silberholz, Bruce Golden, Swati Gupta, and Xingyin Wang

Abstract Metaheuristics are truly diverse in nature—under the overarching theme of
performing operations to escape local optima, algorithms as different as ant colony
optimization, tabu search, harmony search, and genetic algorithms have emerged.
Due to the unique functionality of each type of metaheuristic, the computational
comparison of metaheuristics is in many ways more difficult than other algorithmic
comparisons. In this chapter, we discuss techniques for the meaningful computa-
tional comparison of metaheuristics. We discuss how to create and classify instances
in a new testbed and how to make sure other researchers have access to these test
instances for future metaheuristic comparisons. In addition, we discuss the disad-
vantages of large parameter sets and how to measure complicated parameter inter-
actions in a metaheuristic’s parameter space. Finally, we explain how to compare
metaheuristics in terms of both solution quality and runtime and how to compare
parallel metaheuristics.

J. Silberholz
Ross School of Business, University of Michigan, Ann Arbor, MI, USA
e-mail: josilber@umich.edu

B. Golden (�)
R. H. Smith School of Business, University of Maryland, College Park, MD, USA
e-mail: bgolden@rhsmith.umd.edu

S. Gupta
Simons Institute for the Theory of Computing, UC Berkeley, CA, USA
e-mail: swatig@alum.mit.edu

X. Wang
Engineering Systems and Design, Singapore University of Technology and Design, Singapore,
Singapore
e-mail: xingyin_wang@sutd.edu.sg

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_18

581

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_18&domain=pdf
mailto:josilber@umich.edu
mailto:bgolden@rhsmith.umd.edu
mailto:swatig@alum.mit.edu
mailto:xingyin_wang@sutd.edu.sg
https://doi.org/10.1007/978-3-319-91086-4_18

582 J. Silberholz et al.

18.1 Introduction

Metaheuristics are truly diverse in nature—under the overarching theme of perform-
ing operations to escape local optima (we assume minima in this chapter without
loss of generality), algorithms as different as ant colony optimization, tabu search,
harmony search, and genetic algorithms have emerged. Due to the unique function-
ality of each type of metaheuristic, the computational comparison of metaheuristics
is in many ways more difficult than other algorithmic comparisons. For example, if
we compare two exact solution procedures, we can focus solely on runtime. With
metaheuristics, we must compare with respect to both solution quality and runtime;
these measures are influenced by the selected parameter values. It is also the case
that, unlike simple heuristics, metaheuristics may be difficult to replicate by another
researcher.

In this chapter, we discuss techniques for the meaningful computational compar-
ison of metaheuristics. In Sect. 18.2, we discuss how to create and classify instances
(e.g., based on source (real-world vs. artificial), size (large vs. small), difficulty (hard
vs. easy), and specific instance features (such as the distribution of item weights in
bin packing) in a new testbed and how to make sure other researchers have access to
these test instances for future metaheuristic comparisons. In Sect. 18.3, we discuss
the disadvantages of large parameter sets and how to measure complicated param-
eter interactions in a metaheuristic’s parameter space. In Sects. 18.4 and 18.5, we
discuss how to compare metaheuristics in terms of both solution quality and run-
time. Finally, in Sect. 18.6, we discuss how to compare parallel metaheuristics.

We point out that we do not discuss multi-objective metaheuristics (MOMHs) in
this chapter, although many of the ideas presented here are applicable to MOMHs.
We refer the interested reader to articles [11, 29, 32, 61].

18.2 The Testbed

One of the most important components of a meaningful comparison among meta-
heuristics is the set of test instances or the testbed. The heterogeneity of test in-
stances is key to identifying instance spaces where one metaheuristic might out-
perform the other. In this section, we will highlight the nuances of using existing
testbeds, augmenting them with diverse new test instances, and using instance char-
acteristics to systematically compare metaheuristics.

18.2.1 Using Existing Testbeds

When comparing a new metaheuristic to existing ones, it is advantageous to test on
the problem instances already tested by previous papers. Then, results will be com-
parable on a by-instance basis, allowing relative gap calculations between the two

18 Computational Comparison of Metaheuristics 583

heuristics. Additionally, the trends in the performance of the new metaheuristic on
existing testbeds can help in providing insights to the behavior of the metaheuristic.

18.2.2 Developing New Testbeds

While ideally testing on an existing testbed should be sufficient, there are many
cases when this is either not possible or not sufficient. For instance, when writing
a metaheuristic for a new problem, there will be no testbed for that problem, so a
new one will need to be developed. In addition, even on existing problems where
heuristic solutions were tested on non-published, often randomly generated problem
instances, such as those presented in [23] and [44], a different testbed will need to
be used. Last, if the existing testbed is insufficient (often due to containing instances
that are too simple or too homogeneous) to effectively test a heuristic, a new one will
need to be developed. Given the increases in available computing power observed
through time, it is often the case that a difficult instance from 10 years ago may be
simple today, necessitating the development of more challenging instances.

18.2.2.1 Goals in Creating the Testbed

The goals of a problem suite include mimicking real-world problem instances while
providing test cases that are of various types and difficulty levels. Further, if one
metaheuristic outperforms all others on the testbed then it is important to add new
test instances, as one would expect that no metaheuristic can be best on all instances
by the no free lunch theorems [67]. As an example of the value of a broad testbed,
the authors of [19] show that for the NP-hard Max-Cut and Quadratic Unconstrained
Binary Optimization problems, 23 heuristics out of the 37 heuristics they tested were
not the best heuristic for any instance in the standard testbed but outperformed all the
other heuristics on at least one instance when the standard testbed was expanded to
include a more heterogeneous set of instances. Thus, the testbed used for evaluating
and comparing heuristics or more sophisticated metaheuristics must be heteroge-
neous so that the performance over the testbed reflects the weaknesses and strengths
of metaheuristics.

In order to generate heterogenous test instances, it is common to define a set of
instance features and to cover the feasible feature space. For graph-related problems,
common practice in the literature includes using various random graph generators
like the machine-independent generator Rudy [51], the Python NetworkX library
[25], and the Culberson random graph generators [15]. These random graph genera-
tors can be sampled appropriately such that the constructed instances have a desired
range of various feature values, like average degree, connectivity, etc. To estimate
which types of instances should be included in a testbed, one can either visualize the
instance space projected down to a two-dimensional plane across the most predictive
features [55] to check for instance types that are underrepresented or estimate the

584 J. Silberholz et al.

coverage of normalized features (in [0,1]) as the fraction of the interval covered by
the testbed[19]. The missing feature values can then be included in the testbed us-
ing appropriately parameterized random graph generation. In a recent line of work,
genetic algorithms have also been used to evolve random instances until they have
features in the desired range [55].

Another key requirement of the testbed that is especially important in the testing
of metaheuristics is that large problem instances must be tested. For small instances,
optimal solution techniques often run in reasonable runtimes and they generate a
guaranteed optimal solution. It is, therefore, critical that metaheuristic testing oc-
curs on the large problems for which optimal solutions cannot be calculated in rea-
sonable runtimes using known techniques. As discussed in [28], it is not enough to
test on small problem instances and extrapolate the results for larger instances; algo-
rithms can perform differently in both runtime and solution quality on large problem
instances.

While it is desirable that the new testbed be based on problem instances found
in industrial applications of the problem being tested (like the TSPLib [50]), it is
typically time intensive to do this sort of data collection. Often real-world data is
proprietary and, therefore, difficult to obtain and potentially not publishable [45].
Still, capturing real aspects of a problem is important in developing a new testbed.
For example, in the problem instances found in [21], the clustering algorithm placed
nodes in close proximity to each other in the same cluster, capturing real-life char-
acteristics of this problem.

It is more common to create a testbed based on existing well-known problem in-
stances than it is to create one from scratch. For example, many testbeds have been
successfully made using instances from the TSPLib [50]. Recent examples include
testbeds both for variants of the Traveling Salesman Problem (TSP) like the Prize-
Collecting TSP with a Budget Constraint [46] or the TSP with Time-Dependent
Service Windows [62] as well as a wide variety of other problems like the Hamilto-
nian p-median problem [20] and the graph search problem [36]. It is also beneficial
to use well-studied reductions of NP-hard problems [33] to combine test instances
of various interesting problems. For example, the SATLIB benchmark library for
the Satisfiability Problem contains SAT-encoded benchmark instances for the Graph
Coloring Problem [31], which is also NP-hard.

18.2.2.2 Accessibility of New Test Instances

When creating a new testbed, the focus should be on providing others access to
the problem instances. This will allow other researchers to more easily make com-
parisons, ensuring the problem instances are widely used. One way to ensure this
would be to create a simple generating function for the problem instances. For ex-
ample, the clustering algorithm proposed in [21] that converted TSPLib instances
into clustered instances for the Generalized Traveling Salesman Problem was sim-
ple, making it easy for others to create identical problem instances. Additionally,

18 Computational Comparison of Metaheuristics 585

publishing problem instances in the paper [40] or on the Internet [19, 45] are other
common ways to make problem instances accessible.

18.2.2.3 Problem Instances with Known Optimal Solutions

One problem in the analysis of metaheuristics, as discussed in more detail in
Sect. 18.4, is finding optimality gaps for the procedures. Even when using advanced
techniques, it is typically difficult to determine optimal solutions for large problem
instances; indeed, this motivates the use of metaheuristics. A way to minimize the
difficulty in this step is to construct instances where optimal or near-optimal solu-
tions are known, often via geometric construction techniques or reduction from an-
other optimization problem. This removes the burden on a metaheuristics designer
to also implement an exact approach, relaxation results, or a tight lower bound. In-
stead, the designer can use the specially designed problem instances and provide a
good estimate of the error of each metaheuristic tested.

A number of papers in the literature have used this approach. For instance, in
[8], problem instances for the split delivery vehicle routing problem were generated
with customers in concentric circles around the depot, making estimation of optimal
solutions possible visually. Other examples of this approach are found in [7, 18, 37–
39].

18.2.3 Problem Instance Classification

Apart from identifying instance types that are underrepresented in the testbed, prob-
lem instance classification is critical to the proper analysis of metaheuristics. It is
first important to identify features or metrics that might correlate well with the al-
gorithmic performance, and then extensively test and report performance over in-
stances that have a wide spread across these metrics (see Sect. 18.2.2.1 for expand-
ing the testbed). The choice of the features depends on the problem domain; for in-
stance, for graph problems one can consider the number of nodes, density of edges,
spectral analysis of the adjacency matrix [10], eigenvalues of the Laplacian, or pla-
narity [56]. Another technique is to use predictive features in the study of phase
transitions to identify hard instances for various NP-hard problems. For example,
the k-colorability problem has been shown to undergo a phase-transition on regular
random graphs with finite connectivity dependent on the average degree of the ver-
tices [35]. Typically, heuristics are known to take a long time on instances that are
closer to the phase transitions (thus providing a proxy for hard instances). Recently,
the solutions from fast heuristics for a related NP-hard problem have been used to
predict heuristic performance on a different problem [19].

A thorough comparison of performance of heuristics over a broad heterogenous
testbed opens up many possibilities for further analysis. Machine learning tech-
niques like classification and regression trees can be used to interpret heuristic per-

586 J. Silberholz et al.

formance for different instance types [19]. Especially in testbeds based on real-
world data, this classification of problem instances and subsequent analysis could
help algorithm writers in industry with a certain type of dataset determine which
method will work the best for them.

18.3 Parameters

One way to compare two heuristics is to compare their complexity; if two algo-
rithms produce similar results but one is significantly simpler than the other, then
the simpler of the two could be considered superior. Algorithms with a low degree
of complexity have a number of advantages, including being simple to implement in
an industrial setting, being simple to reimplement by researchers, and being simpler
to explain.

A number of measures of simplicity exist. Reasonable metrics include the num-
ber of steps of pseudocode needed to describe the algorithm or the number of lines
of code needed to implement the algorithm. However, these metrics are not particu-
larly useful, since they vary based on programming language and style in the case of
the lines of code metric and pseudocode level of detail in the case of the pseudocode
length metric. A more meaningful metric for metaheuristic complexity is the num-
ber of parameters used in the metaheuristic, as a larger number of parameters makes
it harder to analyze the method.

Parameters are the configurable components of an algorithm that can be changed
to alter the performance of that algorithm. Parameters can either be set statically
(for example, creating a genetic algorithm with a population size of 50) or based on
the problem instance (for example, creating a genetic algorithm with a population
size of 5

√
n, where n is the number of nodes in the problem instance). In either of

these cases, the constant value of the parameter or the function of problem instance
attributes used to generate the parameter must be set to run the procedure.

Different classes of metaheuristics have a number of parameters that must be
set before algorithm execution. Consider Table 18.1, which lists basic parameters
required for major types of metaheuristics. Though these are guidelines for the min-
imum number of parameters typical in different types of algorithms, in practice,
most metaheuristics have more parameters. For instance, a basic tabu search proce-
dure can have just one parameter, the tabu list length. However, some procedures
have many more than that one parameter. The tabu search for the vehicle routing
problem presented in [69] uses 32 parameters. Likewise, algorithms can have fewer
than the “minimum” number of parameters by combining parameters with the same
value. For instance, the genetic algorithm for the minimum label spanning tree prob-
lem in [68] uses just one parameter, which functions to both control the population
size and to serve as a termination criterion.

18 Computational Comparison of Metaheuristics 587

Table 18.1 Popular metaheuristics and their standard parameters

Name Parameters

Ant colony optimization Pheromone evaporation parameter
Pheromone weighting parameter

Genetic algorithm Crossover probability
Mutation probability
Population size

Harmony search Distance bandwidth
Memory size
Pitch adjustment rate
Rate of choosing from memory

Simulated annealing Annealing rate
Initial temperature

Tabu search Tabu list length

Variable neighborhood search Maximum neighborhood size

All metaheuristics also must include a termination criterion

18.3.1 Parameter Space Visualization and Tuning

The effort needed to tune or understand a metaheuristic’s parameters increases as
the number of parameters increases. A brute-force technique for parameter tuning
involves testing m parameter values for each of the n parameters, a procedure that
should test mn configurations over a subset of the problem instances. Assuming we
choose to test just 3 values for each parameter, we must test 9 configurations for an
algorithm with 2 parameters and 2187 values for an algorithm with 7 parameters.
While this number of configurations is likely quite reasonable, the number needed
for a 32-parameter algorithm, 1,853,020,188,851,841, is clearly not reasonable. The
size of the parameter space for an algorithm with a large number of parameters
expands in an exponential manner, making the search for a good set of parame-
ters much more difficult as the number of parameters increases. While, of course,
there are far better ways to search for good parameter combinations than brute-force
search, such as automatic parameter tuning packages like irace [41], the size of
the search space still increases exponentially with the number of parameters, mean-
ing a large number of parameters makes this search much more difficult.

A large number of parameters also makes the parameter space much harder to
visualize or understand. As a motivating example, consider the relative ease with
which the parameter space of an algorithm with two parameters can be analyzed. For
example, we applied the two-parameter metaheuristic in [54] for solving the Gen-
eralized Orienteering Problem on a few random problems from the TSPLib-based
large-scale Orienteering Problem dataset considered in that paper. To analyze this

588 J. Silberholz et al.

3600

3900

4200

4500

4800

5100

5400

3 4 5

Parameter i

P
ar

am
et

er
 t

4

5

6

Error (%)

Fig. 18.1 Depiction of solution quality of a metaheuristic for the Generalized Orienteering Prob-
lem over its two-dimensional parameter space. The x-axis is the parameter i at three separate values
and the y-axis is the parameter t over a large range of values. The colors in the figure represent the
optimality gap of the metaheuristic at the indicated parameter setting

algorithm, we chose a number of parameter configurations in which each parameter
value was close to the parameter values used in that paper. For each parameter set,
the algorithm was run 20 times on each of five randomly selected problem instances
with known optima from all the TSPLib-based instances used.

The resulting image, shown in Fig. 18.1, is a testament to the simplicity of anal-
ysis of an algorithm with just two parameters. In this figure, different values of
the parameter i are shown on the x-axis, while different values of the parameter t
are shown on the y-axis. Parameter i is an integral parameter with small values, so
results are plotted in three columns representing the three values tested for that pa-
rameter: 3, 4, and 5. For each parameter set (a pair of i and t), a rectangle is plotted
with a color indicating the average optimality gap of the algorithm over the 20 runs

18 Computational Comparison of Metaheuristics 589

for each of the five problem instances tested. It is immediately clear that the two
lower values tested for i, 3 and 4, are superior to the higher value of 5 on the prob-
lem instances tested. Further, it appears that higher values of t are preferred over
lower ones for all of the values of i tested. This sort of simplistic visual analysis
becomes more difficult as the dimensionality of the parameter space increases.

18.3.2 Parameter Interactions

Parameter space visualization and tuning are not the only downside of metaheuris-
tics with a large number of parameters. It is also difficult to analyze parameter inter-
actions in metaheuristics with a large set of parameters. These complex interactions
might lead to, for instance, multiple locally optimal solutions in the parameter space
in terms of solution quality. In a more practical optimization sense, this concept of
parameter interaction implies that optimizing parameters individually or in small
groups will become increasingly ineffective as the total number of parameters in-
creases.

Parameter interaction is a topic that has been documented in a variety of works.
For instance, in [16] the authors observe non-trivial parameter interactions in genetic
algorithms with just three parameters. These authors note that the effectiveness of a
given parameter mix is often highly based on the set of problem instances consid-
ered and the function being optimized, further noting the interdependent nature of
the parameters. To a certain extent, it is often very difficult to avoid parameter inter-
actions such as these. In the case of genetic algorithms, for instance, a population
size parameter, crossover probability parameter, and mutation probability parame-
ter are typically used, meaning these algorithms will often have at least the three
parameters considered in [16]. However, there have been genetic algorithms devel-
oped that operate using only one parameter [68] or none [52, 53], eliminating the
possibility of parameter interactions.

Given three or more parameters, an effective and efficient design of experiments
method is the Plackett-Burman method [48], which tests a number of configurations
that is linear in the number of parameters considered. Though this method is lim-
ited in that it can only show second-order parameter interactions (the interactions
between pairs of parameters), this is not an enormous concern as most parameter
interactions are of the second-order variety [43].

18.3.3 Fair Testing Involving Parameters

Though the effect of parameters on algorithmic simplicity is an important considera-
tion, it is not the only area of interest in parameters while comparing metaheuristics.
The other major concern is one of fairness in parameter tuning—if one algorithm is
tuned very carefully to the particular set of problem instances on which it is tested,

590 J. Silberholz et al.

this can make comparisons on those instances unfair. Instead of tuning parameters
on all the problem instances used for testing, a fairer methodology for parameter
setting involves choosing a representative subset of the problem instances to train
parameters on, to avoid overtraining the data. A full description of one such method-
ology can be found in [14]. To ensure reproducibility of results, the resultant param-
eters, which are used to solve the test instances, must also be published along with
the running time and the quality of solutions obtained.

18.4 Solution Quality Comparisons

While it is important to gather a meaningful testbed and to compare the metaheuris-
tics in terms of simplicity by considering their number of parameters, one of the
most important comparisons involves solution quality. Metaheuristics are designed
to give solutions of good quality in runtimes better than those of exact approaches.
To be meaningful, a metaheuristic must give acceptable solutions, for some defini-
tion of acceptable.

Depending on the application, the amount of permissible deviation from the op-
timal solution varies. For instance, in many long-term planning applications or ap-
plications critical to a company’s business plan, the amount of permissible error is
much lower than in optimization problems used for short-term planning or for which
the solution is tangential to a company’s business plan. Even for the same problem,
the amount of permissible error can differ dramatically. For instance, a parcel com-
pany planning its daily routes to be used for the next year using the capacitated ve-
hicle routing problem would likely have much less error tolerance than a planning
committee using the capacitated vehicle routing problem to plan the distribution of
voting materials in the week leading up to Election Day.

As a result, determining a target solution quality for a combinatorial optimization
problem is often difficult or impossible. Therefore, when comparing metaheuristics
it is not sufficient to determine if each heuristic meets a required solution quality
threshold; comparison among the heuristics is necessary.

18.4.1 Solution Quality Metrics

To compare two algorithms in terms of solution quality, a metric to represent the so-
lution quality is needed. In this discussion of the potential metrics to be selected, we
assume that solution quality comparisons are being made over the same problem in-
stances. Comparisons over different instances are generally weaker, as the instances
being compared often have different structures and almost certainly have different
optimal values and difficulties.

Of course, the best metric to use in solution quality comparison is the deviation
of the solutions returned by the algorithms from optimality. Finding the average
percentage error over all problems is common practice, because this strategy gives

18 Computational Comparison of Metaheuristics 591

equal weight to each problem instance (instead of, for instance, giving preference to
problem instances with larger optimal solution values).

However, using this metric requires knowledge of the optimal solution for ev-
ery problem instance tested. This is an assumption that likely cannot always be
made except in the case of instances constructed with known optima, as described in
Sect. 18.2.2.3. If exact algorithms can compute optimal solutions for every problem
instance tested in reasonable runtimes, then the problem instances being considered
are likely not large enough.

This introduces the need for new metrics that can provide meaningful informa-
tion without access to the optimal solution for all (or potentially any) problem in-
stances. Two popular metrics that fit this description are deviation from best-known
solutions for a problem and deviation between the algorithms being compared.

Deviation from best-known solution or tightest lower bound can be used on prob-
lems for which an optimal solution was sought using an exact approach, but optimal
solutions were not obtained for some problem instances within a predetermined time
limit. In these cases, deviation from best-known solution or tightest relaxation is
meaningful because for most problem instances the best-known solution or tightest
relaxation will be a near-optimal solution. An example of the successful application
of this approach can be found in [22]. In this paper, the authors implement three
approaches for solving the multilevel capacitated minimum spanning tree problem.
One of these approaches is a metaheuristic, another uses mixed integer program-
ming, and the third is a linear programming relaxation. Though the optimal solution
was not provably computed for the largest problem instances due to the excessive
runtime required, the low average deviation of the metaheuristic from the optimal
solution on smaller problem instances (0.3%) and the moderate average deviations
from the relaxed solutions over all problem instances (6.1%) conveyed a notion of
the solution quality achieved by the metaheuristic.

The deviation from best-known solution could be used for problems for which
no optimal solution has been published, though the resulting deviations are less
meaningful. It is unclear in this case how well the metaheuristic performs without
an understanding of how close the best-known solutions are to optimal solutions.
One way to construct such a bound is to consider a relaxation PR of the original
problem P. Typically PR is much easier to solve than P, and the optimal solution of
PR provides a lower (upper) bound to the minimization (maximization) problem P.
The gap from optimality of any solution to P can then be bounded using the gap
from the optimal solutions to the relaxed problem PR. We refer the reader to [64] for
an introduction to such techniques.

Though the metric of deviation between the metaheuristics being compared
also addresses the issue of not having access to optimal solutions, it operates
differently—any evaluation of solution quality is done in relation to the other meta-
heuristic(s) being considered. This method has the advantage of making the compar-
ison between the metaheuristics very explicit—all evaluations, in fact, compare the
two or more procedures. However, these comparisons lack any sense of the actual
error of solutions. Regardless of how a metaheuristic fares against another metaheu-
ristic, its actual error as compared to the optimal solution is unavailable using this
metric. Therefore, using a metric of deviation from another algorithm loses much

592 J. Silberholz et al.

of its meaningfulness unless accompanied by additional information, such as opti-
mal solutions for some of the problem instances, relaxation results for the problem
instances, or deviation from tight lower bounds (to give a sense of the global opti-
mality of the algorithms).

When comparing two stochastic metaheuristics, whenever possible one should
generate a number of replicates (say 10) for each instance. For each metaheuristic,
one should record the average, worst, and best solutions, as well as the standard
deviation. Furthermore, one should try to compare the distribution of solutions ob-
tained from each metaheuristic. Statistical tests might be applied to compare the
average or minimum solution values. See [8] for an interesting comparison based
on the binomial distribution and [49] for more on statistical analysis.

18.4.2 Comparative Performance on Different Types of Problem
Instances

When comparing the performance of a portfolio of heuristics, it is often useful to
identify instance types where one heuristic outperforms all the others. As noted ear-
lier, such a comparison does not require the knowledge of the optimal solutions for
hard problems and the comparison can be made with respect to the best solution
attained by any heuristic in the portfolio. A comparative analysis highlighting the
weaknesses and strengths of heuristics in the instance space is known as an algorith-
mic footprint [13]. Instances are represented as points in a high dimensional feature
space, and these points can be colored on a continuous scale (e.g., a gradation from
red to blue where red depicts worst performance and blue depicts best performance)
in order to reveal heuristic performance. It helps to visualize the instance space
on a 2-dimensional plane, by performing a principal component analysis [58] or
self-organizing maps [57]. Important insights into the effectiveness of various algo-
rithmic techniques can be gained by analyzing the footprints of classes of heuristics,
for instance, evolutionary, tabu search, simulated annealing approaches, etc.

Interpretable machine learning models like regression trees can also be used
to identify problem instances where a given heuristic performs better or worse,
using instance features or metrics that are the most predictive of performance (see
Sect. 18.2.3 for details). Such heuristic-specific models make it harder to directly
compare the footprints of different heuristics, since the most significant features
used in each model might be different across heuristics. However, the results of such
an analysis remain interpretable without losing much information due to dimension
reduction [19].

18.5 Runtime Comparisons

One can find examples in the metaheuristics literature where a metaheuristic A out-
performs another metaheuristic B in terms of solution quality using the metrics de-
scribed in Sect. 18.4 but was also run for a substantially longer time before termina-

18 Computational Comparison of Metaheuristics 593

tion. This makes it challenging to interpret the comparison of A and B because most
metaheuristics will continue making progress toward optimality if they are allowed
to run for longer; the reader cannot determine if the solution quality difference is due
to the additional computational resources given to A or due to superior algorithmic
performance.

To address this concern, researchers must allocate the same amount of compu-
tational resources when comparing heuristics. One way to do this is to limit the
heuristics to the same fixed runtime, an approach that we describe in Sects. 18.5.1
and 18.5.2. Runtime growth rate is discussed in Sect. 18.5.3. Alternatives to runtime-
based limits are described in Sect. 18.5.4.

18.5.1 Runtime Limits Using the Same Hardware

When making a comparison between metaheuristics A and B using a fixed runtime
limit for each problem instance, the best approach is to get the source code for each
algorithm, compile them with the same compilation flags, and run both algorithms
on the same computer. Since the hardware and software environments are the same
for both metaheuristics, one can argue that the runtime limit gives each the same
computational resources, enabling us to focus on solution quality differences when
comparing A and B. However, this technique for imposing runtime limits is often
not possible.

One case in which it is not possible is if the algorithms were programmed in dif-
ferent languages. This implies that their runtimes are not necessarily directly com-
parable. Though attempts have been made to benchmark programming languages
in terms of speed (see, for instance, [6]), these benchmarks are susceptible to the
types of programs being run, again rendering any precise comparison difficult. Fur-
ther invariants in these comparisons include compiler optimizations. The popular C
compiler gcc has over 100 optimization flags that can be set to fine-tune the perfor-
mance of a C program. While the technique of obtaining a scalar multiplier between
programming languages will allow comparisons to be more accurate within an order
of magnitude between algorithms coded in different programming languages, these
methods cannot provide precise comparisons.

It is sometimes not possible to obtain the source code for the algorithm being
compared to. The source code may have been lost (especially in the case of older
projects) or the authors may be unwilling to share their source code. Another way
to proceed when comparing heuristics with a runtime limit is to reimplement the
other code in the same language as your code and run it on the same computer on
the same problem instances. However, this approach suffers from two major weak-
nesses. First, the exposition of some algorithms is not clear on certain details of the
approach, making an exact reimplementation difficult. Second, there is no guarantee
that the approach used to reimplement another researcher’s code is really similar to
their original code. For instance, the other researcher may have used a clever data
structure or algorithm to optimize a critical part of the code, yielding better runtime
efficiency. As there is little incentive for a researcher to perform the hard work of

594 J. Silberholz et al.

optimizing the code to compare against, but much incentive to optimize one’s own
code, at times reimplementations tend to overstate the runtime performance of a
new algorithm over an existing one (see [5] for a humorous view of issues such as
these). One way to address these concerns is to make the implementations of pre-
viously published heuristics open source, so that an active research community can
optimize implementations as required.

18.5.2 Runtime Limits Using Different Hardware

As indicated previously, it can be challenging to compare two heuristics using a
runtime-based termination criterion without access to source code or reimplemen-
tation. One approach is to compare the performance of a metaheuristic A to the
published results of another metaheuristic B on the publicly available problem in-
stances reported in B’s publication. While the instances being tested are the same
and the algorithms being compared are the algorithms as implemented by their de-
velopers, the computer used to test these instances is different, and the compiler and
compiler flags used are likely also not the same. This approach has the advantage of
ease and simplicity for the researcher—no reimplementation of other algorithms is
needed. Further, the implementations of each algorithm are the implementations of
their authors, meaning there are no questions about implementation as there were in
the reimplementation approach.

However, the problem then remains to provide a meaningful comparison between
the two runtimes. Researchers typically solve this issue by using computer runtime
comparison tables such as the one found in [17] to derive approximate runtime mul-
tipliers between the two computers. These comparison tables are built by running
a benchmarking algorithm (in the case of [17], this algorithm is a system of linear
equations solved using LINPACK) and comparing the time to completion for the
algorithm. However, it is well known that these sorts of comparisons are impre-
cise and highly dependent on the program being benchmarked, and the very first
paragraph of the benchmarking paper mentions the limitations of this sort of bench-
marking: “The timing information presented here should in no way be used to judge
the overall performance of a computer system. The results only reflect one problem
area: solving dense systems of equations.” In fact, [30] argues that new and more
relevant benchmark codes in the field of combinatorial optimization (perhaps based
on metaheuristics for the Traveling Salesman Problem) would be quite useful. Be-
yond limitations of the code being benchmarked, these scaling factors do not take
into account RAM, operating system, compiler and its optimization level, and other
factors known to impact the runtime of metaheuristics. Hence, the multipliers gath-
ered in this way can only provide a rough idea of runtime performance, clearly a
downside of the approach. In situations where the systems used for testing seem
roughly comparable, there may be no benefit to performing runtime scaling in this
way, and indeed the scaling may only introduce noise to the comparison.

18 Computational Comparison of Metaheuristics 595

18.5.3 Runtime Growth Rate

Regardless of the comparison method used to compare algorithms’ runtimes, the
runtime growth rate can be used as a universal language for the comparison of run-
time behaviors of two algorithms. While upper bounds on runtime growth play an
important role in the discussion of heuristic runtimes, metaheuristic analysis often
does not benefit from these sorts of metrics. Consider, for instance, a genetic algo-
rithm that terminates after a fixed number of iterations without improvement in the
solution quality of the best solution to date. No meaningful worst-case analysis can
be performed, as there could be many intermediate best solutions encountered dur-
ing the metaheuristic’s execution. (For example, the nearest neighbor heuristic for
the TSP is a simple heuristic with an unambiguous stopping point. It has a running
time that grows with n2 in the worst case, where n is the number of nodes. For meta-
heuristics such as tabu search, simulated annealing, genetic algorithms, etc., there is
no unambiguous stopping point.)

An alternative approach to asymptotic runtime analysis for metaheuristics is fit-
ting a curve to the runtimes measured for each of the algorithms across a range of
problem instance sizes. These results help indicate how an algorithm might perform
as the problem size increases. Though there is no guarantee that trends will continue
past the endpoint of the sampling (motivating testing on large problem instances) or
on problem instances with different structural properties than the ones used for the
analysis, runtime trends are key to runtime analyses. Even if one algorithm runs
slower than another on small- or medium-sized problem instances, a favorable run-
time trend suggests the algorithm may well perform better on large-sized problem
instances, where metaheuristics are most helpful. Curve-fitting for runtime analysis
has been recommended or used in a number of metaheuristics articles [9, 12, 66].

18.5.4 Alternatives to Runtime Limits

The focus thus far has been on using runtime limits to control the computational re-
sources allocated to each metaheuristic. This sounds like a fair comparison, but, as
[30] points out, the results are not reproducible. Another researcher, using a slightly
different computing environment, might obtain distinctly different results. Instead of
controlling computational resources with runtime limits, codes might be designed
to count easy-to-measure basic combinatorial operations, such as the number of
neighborhoods searched or the number of branching steps. Then, solution quality
and running time can be reported after a stopping rule of at most k basic combinato-
rial operations, as recommended in [1, 30]. A number of studies compare heuristic
runtimes using representative operation counts or give all heuristics the same budget
of these operations [2, 3, 47].

Beyond improved reproducibility, there are several clear advantages to this ap-
proach over runtime comparisons. As described in [1], it removes the invariants of
compiler choice, programmer skill, and power of computation platform. However,
this approach suffers from the fact that it is often difficult to identify good oper-

596 J. Silberholz et al.

ations that each algorithm being compared will implement. Also, some operations
may take longer than others. The only function sure to be implemented by every pro-
cedure is the evaluation of the function being optimized. As a result, comparisons of
this type often only compare on the optimization function, losing information about
other operations, which could potentially be more expensive or more frequently
used. As a result, in the context of metaheuristic comparison, this technique is best
if used along with more traditional runtime comparisons.

A related approach is to predetermine a percentage or several percentages above
a well-established tight lower bound (e.g., the Held and Karp TSP lower bound)
and compare metaheuristics based on how long each one takes to reach these targets
(see [26, 27] for details). A maximum runtime is typically specified. Of course,
these tight lower bounds are often difficult to obtain. We point out that this notion of
setting a level of solution quality and comparing runtimes is used in the definition of
speedup for parallel algorithms (e.g., see Fig. 18.2 in Sect. 18.6.1). It has also been
used with MOMHs [29].

18.6 Parallel Algorithms

Until 15 or so years ago, the use of parallel computers was largely restricted to com-
puter scientists at major research universities or national laboratories; they were the
only ones with access to these resources. More recently, parallel computing has be-
come a very practical tool in the computational sciences (and in industry). In this
section, we devote our attention to the use of parallel computing in metaheuristic
optimization and, in particular, to the theme of assessing the relative performance
of metaheuristic algorithms. For example, suppose we have a serial (or sequential)
metaheuristic (called A), a parallel metaheuristic (called B) designed to run on m
processors, and another parallel metaheuristic (called C) designed to run on n pro-
cessors. How should we compare the performance of these three metaheuristics?
What are the right metrics to look at and report? Accuracy, runtime, and cost of
computation are measures that come to mind, but some of these issues are more
subtle than they may seem at first glance.

Furthermore, there are at least two key scenarios to consider. In the first, we have
access to the three codes (A, B, and C) and we can fully control the computational
experiments. That is, we can select the benchmark instances and the experimental
environment (computer, network protocol, operating system, etc.). In the second, we
have access to the literature but not the codes themselves. The three codes were run
on three different machines and in different experimental environments at different
times. How should we perform a computational comparison that is fair, revealing,
and informative?

This topic will be the focus of this section. Although we will offer some detailed
suggestions, we point out that our recommendations are tentative. This is a topic of
discussion that has not been widely covered in the literature. Two recent exceptions
deal specifically with parallel genetic algorithms [4, 42].

18 Computational Comparison of Metaheuristics 597

18.6.1 Evaluating Parallel Metaheuristics

Although parallel algorithms have been proposed and analyzed with respect to ge-
netic algorithms, the operations research community has been slow to take advan-
tage of this readily available technology. This is somewhat surprising, since most
modern desktop computers already have CPUs with at least four cores, and the num-
ber of cores will surely increase over the next few years. In addition, new research
from M.I.T. by [59] seeks to make it easier to write parallel computer programs.

The motivation behind parallel computing is to reduce the elapsed or wall-clock
time needed to solve a particular problem or problem instance. In other words, we
want to solve larger problems in minutes or hours, rather than weeks or months.
For some applications, parallel computing may be the only way to solve a problem.
For example, nearly 400 computers were used to create the 2017 NFL schedule
[34]; the elapsed time to solve the problem on a single machine would have been
prohibitively long.

Given the importance of elapsed time, speedup is a key metric in evaluating par-
allel algorithms. A standard speedup metric is given by

Sn =
E(T1)

E(Tn)

where E(Tn) is the mean parallel execution time of a given task using n proces-
sors and E(T1) is the mean serial execution time of the same task. Numerous other
measures of speedup are discussed in Chapter 2 of [42] and in [60].

20

19

18

17

16

15

O
b

je
ct

iv
e

va
lu

e

14

13

12

11

10
0 100 200 300 400

Time (s)
500 600

8 processors
16 processors
32 processors
64 processors

700 800

Fig. 18.2 Average solution trajectories

We will illustrate the notion of speedup in Fig. 18.2 where four trajectories are
shown for an algorithm running with four different numbers of processors (8, 16,
32, and 64). Each trajectory (solution value improvement over time) represents an

598 J. Silberholz et al.

average over 20 runs of a stochastic metaheuristic. This figure is an adaptation of
several figures in [24]. For example, we observe that the trajectories for 64 proces-
sors and 16 processors can obtain the same low objective value of about 11.0. The
latter requires 400 s vs. 100 s for the former. This reduction in elapsed or wall-clock
time is the key motivation behind parallel computing.

18.6.2 Comparison When Competing Approaches Can Be Run

We first consider the computational comparison of a parallel metaheuristic against
other metaheuristics (either serial or parallel) when we are able to run all the relevant
procedures. As in Sect. 18.5, this is the ideal scenario for computational compari-
son, because we can test all the procedures on a wide range of test instances and
using the same computing environment. We can see how well each code performs
with respect to quality of solution as we increase a predetermined limit on elapsed
runtime. In addition, we are better able to specify most of the key characteristics
of each metaheuristic. However, in practice, such a comparison might not be pos-
sible due to unavailability of the source code for competing approaches or due to
difficulties in getting that code to work in one’s own computing environment.

In comparing two parallel metaheuristics, ideally each metaheuristic would be
run with the same number of processors and the same limit on elapsed runtime.
Then, solution qualities could be directly compared. However, parallel algorithms
are often designed for a specific computer environment with a pre-determined num-
ber of processors, so it may not be possible to run them with the exact same number
of processors. In some parallel algorithms, all the processors essentially perform the
same task. In more heterogeneous parallel algorithms, different processors play dif-
ferent roles. For example, in [24] some processors perform local search, while others
solve set-covering problems. In addition, there is a master processor responsible for
controlling the flow and timing of communication. It also coordinates the search for
the best set of vehicle routes and tries to ensure that bottlenecks are avoided or min-
imized. The relative numbers of the three types of processors are determined in the
algorithm design process; the goal is to maximize the performance of the parallel al-
gorithm. An algorithm designed to run on 129 processors may not make sense on 29
processors. Even if it does run, it is likely to be a substantially different algorithm.
In such scenarios, it may only be possible to run the two parallel metaheuristics with
a similar number of processors.

Now suppose we want to compare a serial (stochastic) metaheuristic and a par-
allel metaheuristic that runs on n processors. While we could simply run each pro-
cedure for the same elapsed time, this provides an unfair advantage to the parallel
metaheuristic, which uses more processors. To perform a more evenhanded compar-
ison, we could instead build a simple parallel algorithm on n processors for the serial
metaheuristic, simply running the procedure with a different random seed on each of
the n processors and then taking the best of the n solutions produced. Furthermore,
we could give each of the two (now) parallel algorithms t units of elapsed time

18 Computational Comparison of Metaheuristics 599

and compare the resulting solution values. This approach can be implemented using
software such as the SNOW package in R (see [63] for details). Equivalently (from
a conceptual point of view), we could run the serial code n times in succession, ide-
ally allowing t units of time per run. Next, we would record the best of the n solution
values. Of course, if the serial metaheuristic is deterministic, this will not work.

18.6.3 Comparison When Competing Approaches Cannot Be Run

Given that source code is often unavailable for heuristics published in the literature,
it is often the case that a new parallel metaheuristic must be compared against pro-
cedures that cannot be further tested. In this case, the comparison must be based on
published information about the competing metaheuristics.

First, consider the comparison of a new parallel metaheuristic (A) against a par-
allel metaheuristic (B) published in the literature. Assume B was tested using n
processors and that information was published about average elapsed runtimes and
solution qualities on a testbed of problem instances. Following our approach from
Sect. 18.6.2, we would ideally like to test A on the same instances for the same
elapsed runtime using n processors and the same hardware configuration. However,
it is very unlikely that we have access to the same hardware that was used in the pub-
lished study. Instead, we might scale the elapsed runtimes of the procedures based
on the hardware used, as described in Sect. 18.5.2. Such scaling should be done with
a good deal of caution—in addition to the limitations described in Sect. 18.5.2, the
scaling also does not control for details of the communication network connecting
the processors, which can also have a significant impact on the performance of a
parallel algorithm. As discussed in Sect. 18.6.2, additional complications may arise
if metaheuristic A cannot be run on exactly n processors; in such cases, it may only
be possible to test on approximately the same number of processors.

Next, consider the comparison of a new stochastic serial metaheuristic (A)
against a parallel metaheuristic (B) published in the literature. Again, assume that
B was tested using n processors and that information was published about average
elapsed runtimes and solution qualities on a testbed of problem instances. Follow-
ing our approach from Sect. 18.6.2, we “parallelize” A by running it with different
random seeds on n different processors and returning the best result from the n in-
dependent runs. Ideally, we would perform our comparison by running each of the
n copies of A for the elapsed time that was reported by B, using the same hardware.
As before, the same hardware is likely unavailable, so some form of elapsed time
scaling might be warranted.

We think this approach is more equitable than comparing the solution of B to
the solution obtained by running A once with elapsed time equal to the total CPU
time (elapsed runtime summed across all processors) of B. Under this alternative ap-
proach to comparing metaheuristics, both metaheuristics have the same total CPU
time but A is given more elapsed time than B. Having a larger elapsed time than B
might be especially beneficial to metaheuristic A if it is an evolutionary procedure

600 J. Silberholz et al.

that slowly evolves toward high-quality solution spaces, as such procedures might
not find good solutions if run many times for a short runtime, but might find better
solutions if run once for an extended period of time. Meanwhile, we would expect
little difference between the two evaluation approaches if metaheuristic A is a proce-
dure that makes frequent random restarts, e.g., an iterated local search metaheuristic
with random restarts.

It is also unfair, by extension, to ignore elapsed runtime and only consider to-
tal CPU time when comparing serial and parallel metaheuristics published in the
literature, a comparison approach that has been used previously (see, e.g., [65]). Af-
ter all, the objective of parallelization is to minimize elapsed runtime. Therefore,
parallel metaheuristics should be judged, in large part, by the elapsed runtimes as-
sociated with them. It is perfectly reasonable, however, to parallelize a stochastic
serial metaheuristic A in order to compare it to a parallel metaheuristic B given a
predetermined elapsed runtime of t units.

Finally, consider the comparison of a new parallel metaheuristic (A) against a
stochastic serial metaheuristic (B) published in the literature. Assume that B was
tested with n replicates per problem instance to test its variability to seed, and as-
sume that for each problem instance the publication provides the maximum and/or
average elapsed runtime and best solution quality across the n replicates. Following
our approach from Sect. 18.6.2, the n experiments to test variability to seed represent
a “parallelized” version of B, so we would ideally perform a comparison between A
and B by running A on n processors of the same hardware, with elapsed time equal
to the maximum runtime of the n replicates of B (or the average elapsed time, if the
maximum is not reported). As before, the same hardware is likely unavailable, so
some form of elapsed time scaling might be warranted. Naturally, this approach can
only be used if variability to seed is assessed for metaheuristic B.

Though in this section we have provided some guidance on how to compare
parallel metaheuristics with other metaheuristics, it should be clear that there are
additional challenges that were not present when all approaches being compared
were serial. We leave several unanswered questions, such as how to compare par-
allel metaheuristics when they cannot be run on the same number of processors,
and how to compare a new parallel metaheuristic to a serial metaheuristic from the
literature when the serial heuristic’s code is not available and no variability to seed
information is reported. Clearly, much more work remains on the topic of computa-
tional comparisons with parallel metaheuristics.

In light of the challenges in comparisons involving parallel metaheuristics, we
conclude with the recommendation to report as many details as possible about the
comparison being performed, to give readers as much context as possible. Details
that could be helpful to the reader include: computing environment (including de-
tails of the network linking parallel processors), programming language used and
compiler flags, number of processors, final solution quality, elapsed runtime, test
datasets (real-world, standard, random), number of parameters (fewer is preferred),
whether stochastic or deterministic, if stochastic then the number of repetitions used
in testing, speed of convergence to an attractive solution, speed of convergence to
the final solution, stopping rules (based on time or solution quality), and lastly, for
a parallel algorithm a notion of speedup.

18 Computational Comparison of Metaheuristics 601

18.7 Conclusion

We believe following the procedures described in this chapter will increase the qual-
ity of metaheuristic comparisons. In particular, choosing an appropriate testbed and
distributing it so other researchers can access it will result in more high-quality com-
parisons of metaheuristics, as researchers will test on the same problem instances.
Further, expanding the practice of creating geometric problem instances with easy-
to-visualize optimal or near-optimal solutions will increase understanding of the
optimality gap of metaheuristic solutions.

Furthermore, it is important to recognize that the number of algorithm param-
eters has a direct effect on the complexity of the algorithm and on the number of
parameter interactions, which complicates analysis. If the number of parameters is
considered in the analysis of metaheuristics, this will encourage simpler, easier-to-
analyze procedures.

Finally, good techniques in solution quality and runtime comparisons will ensure
fair and meaningful comparisons are carried out between metaheuristics, producing
the most meaningful and unbiased results possible. Since parallel metaheuristics
have become much more widespread in the recent research literature than before, it
is important to establish fair and straightforward guidelines for comparing parallel
and serial metaheuristics with respect to computational effort. In this chapter, we
have taken a number of steps toward reaching this goal.

References

1. R. Ahuja, J. Orlin, Use of representative operation counts in computational testing of algo-
rithms.INFORMS J. Comput. 8(3), 318–330 (1996)

2. R.K. Ahuja, M. Kodialam, A.K. Mishra, J.B. Orlin, Computational investigations of maximum
flow algorithms. Eur. J. Oper. Res. 97(3), 509–542 (1997)

3. T. Akhtar, C.A. Shoemaker, Multi objective optimization of computationally expensive multi-
modal functions with RBF surrogates and multi-rule selection. J. Glob. Optim. 64(1), 17–32
(2016)

4. E. Alba, G. Luque, S. Nesmachnow, Parallel metaheuristics: recent advances and new trends.
Int. Trans. Oper. Res. 20(1), 1–48 (2013)

5. D. Bailey, Twelve ways to fool the masses when giving performance results on parallel com-
puters. Supercomput. Rev. 4(8), 54–55 (1991)

6. M. Bull, L. Smith, L. Pottage, R. Freeman, Benchmarking Java against C and Fortran for
scientific applications, in ACM 2001 Java Grande/ISCOPE Conference (2001), pp. 97–105

7. I.-M. Chao, Algorithms and solutions to multi-level vehicle routing problems. PhD thesis,
University of Maryland, College Park, MD, 1993

8. S. Chen, B. Golden, E. Wasil, The split delivery vehicle routing problem: applications, algo-
rithms, test problems, and computational results. Networks 49(4), 318–329 (2007)

9. P. Chen, B. Golden, X. Wang, E. Wasil, A novel approach to solve the split delivery vehicle
routing problem. Int. Trans. Oper. Res. 24(1–2), 27–41 (2017)

10. F.R.K. Chung, Spectral Graph Theory, vol. 92 (American Mathematical Society, Providence,
1997)

11. C. Coello, Evolutionary multi-objective optimization: a historical view of the field. IEEE
Comput. Intell. Mag. 1(1), 28–36 (2006)

602 J. Silberholz et al.

12. M. Coffin, M.J. Saltzman, Statistical analysis of computational tests of algorithms and heuris-
tics. INFORMS J. Comput. 12(1), 24–44 (2000)

13. D.W. Corne, A.P. Reynolds, Optimisation and generalisation: footprints in instance space, in
International Conference on Parallel Problem Solving from Nature (Springer, Berlin, 2010),
pp. 22–31

14. S. Coy, B. Golden, G. Runger, E. Wasil, Using experimental design to find effective parameter
settings for heuristics. J. Heuristics 7(1), 77–97 (2001)

15. J. Culberson, A. Beacham, D. Papp, Hiding our colors, in CP95 Workshop on Studying and
Solving Really Hard Problems (1995), pp. 31–42

16. K. Deb, S. Agarwal, Understanding interactions among genetic algorithm parameters, in Foun-
dations of Genetic Algorithms (Morgan Kauffman, San Mateo, 1998), pp. 265–286

17. J. Dongarra, Performance of various computers using standard linear equations software.
Technical Report CS-89-85, University of Tennessee, 2014

18. M.M. Drugan, Generating QAP instances with known optimum solution and additively de-
composable cost function. J. Comb. Optim. 30(4), 1138–1172 (2015)

19. I. Dunning, S. Gupta, J. Silberholz, What works best when? A systematic evaluation of heuris-
tics for Max-Cut and QUBO. INFORMS J. Comput. (2018, to appear)

20. G. Erdoğan, G. Laporte, A.M. Rodríguez Chía, Exact and heuristic algorithms for the Hamil-
tonian p-median problem. Eur. J. Oper. Res. 253(1), 280–289 (2016)

21. M. Fischetti, J.J. Salazar González, P. Toth, A branch-and-cut algorithm for the symmetric
generalized traveling salesman problem. Oper. Res. 45(3), 378–394 (1997)

22. I. Gamvros, B. Golden, S. Raghavan, The multilevel capacitated minimum spanning tree prob-
lem. INFORMS J. Comput. 18(3), 348–365 (2006)

23. M. Gendreau, G. Laporte, F. Semet, A tabu search heuristic for the undirected selective trav-
elling salesman problem. Eur. J. Oper. Res. 106(2–3), 539–545 (1998)

24. C. Groër, B. Golden, E. Wasil, A parallel algorithm for the vehicle routing problem.
INFORMS J. Comput. 23(2), 315–330 (2011)

25. A.A. Hagberg, D.A. Schult, P.J. Swart, Exploring network structure, dynamics, and function
using NetworkX, in Proceedings of the 7th Python in Science Conference, Pasadena, 2008,
pp. 11–15

26. M. Held, R.M. Karp, The traveling-salesman problem and minimum spanning trees. Oper.
Res. 18(6), 1138–1162 (1970)

27. M. Held, R.M. Karp, The traveling-salesman problem and minimum spanning trees: Part II.
Math. Program. 1(1), 6–25 (1971)

28. R. Jans, Z. Degraeve, Meta-heuristics for dynamic lot sizing: a review and comparison of
solution approaches. Eur. J. Oper. Res. 177(3), 1855–1875 (2007)

29. A. Jaszkiewicz, Do multi-objective metaheuristics deliver on their promises? A computational
experiment on the set-covering problem. IEEE Trans. Evol. Comput. 7(2), 133–143 (2003)

30. D.S. Johnson, A theoretician’s guide to experimental analysis of algorithms, in Data Struc-
tures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementa-
tion Challenges, Providence, 2002, ed. by M.H. Goldwasser, D.S. Johnson, C.C. McGeoch,
pp. 215–250

31. D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon, Optimization by simulated anneal-
ing: an experimental evaluation: part II, graph coloring and number partitioning. Oper. Res.
37(6), 865–892 (1989)

32. D.F. Jones, S.K. Mirrazavi, M. Tamiz, Multi-objective meta-heuristics: an overview of the
current state-of-the-art. Eur. J. Oper. Res. 137(1), 1–9 (2002)

33. R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations (Springer, Berlin, 1972), pp. 85–103

34. P. King, How the NFL schedule was made, 2017. Retrieved from https://www.si.com/mmqb/
2017/04/21/nfl-2017-schedule-howard-katz-roger-goodell

35. F. Krzkakała, A. Pagnani, M. Weigt, Threshold values, stability analysis, and high-q asymp-
totics for the coloring problem on random graphs. Phys. Rev. E 70(4), 046705 (2004)

36. M. Kulich, J.J. Miranda-Bront, L. Pr̆euc̆il, A meta-heuristic based goal-selection strategy for
mobile robot search in an unknown environment. Comput. Oper. Res. 84, 178–187 (2017)

https://www.si.com/mmqb/2017/04/21/nfl-2017-schedule-howard-katz-roger-goodell
https://www.si.com/mmqb/2017/04/21/nfl-2017-schedule-howard-katz-roger-goodell

18 Computational Comparison of Metaheuristics 603

37. F. Li, B. Golden, E. Wasil, Very large-scale vehicle routing: new test problems, algorithms,
and results. Comput. Oper. Res. 32(5), 1165–1179 (2005)

38. F. Li, B. Golden, E. Wasil, The open vehicle routing problem: algorithms, large-scale test
problems, and computational results. Comput. Oper. Res. 34(10), 2918–2930 (2007)

39. F. Li, B. Golden, E. Wasil, A record-to-record travel algorithm for solving the heterogeneous
fleet vehicle routing problem. Comput. Oper. Res. 34(9), 2734–2742 (2007)

40. J. Liu, D. Wang, K. He, Y. Xue, Combining Wang-Landau sampling algorithm and heuristics
for solving the unequal-area dynamic facility layout problem. Eur. J. Oper. Res. 262(3), 1052–
1063 (2017)

41. M. López-Ibánez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, T. Stützle, The irace
package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58
(2016)

42. G. Luque, E. Alba, Parallel Genetic Algorithms: Theory and Real World Applications
(Springer, Berlin, 2011)

43. D. Montgomery, Design and Analysis of Experiments (Wiley, New York, 2006)
44. J. Nummela, B. Julstrom, An effective genetic algorithm for the minimum-label spanning tree

problem, in Proceedings of the 8th Annual Conference on Genetic and Evolutionary Compu-
tation (ACM, New York, 2006), pp. 553–557

45. Y.W. Park, Y. Jiang, D. Klabjan, L. Williams, Algorithms for generalized clusterwise linear
regression. INFORMS J. Comput. 29(2), 301–317 (2017)

46. A. Paul, D. Freund, A. Ferber, D.B. Shmoys, D.P. Williamson, Prize-collecting TSP with
a budget constraint, in 25th Annual European Symposium on Algorithms (ESA 2017), ed.
by K. Pruhs, C. Sohler. Leibniz International Proceedings in Informatics (LIPIcs), vol. 87
(Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 2017), pp. 62:1–62:14

47. N. Pholdee, S. Bureerat, Comparative performance of meta-heuristic algorithms for mass min-
imisation of trusses with dynamic constraints. Adv. Eng. Softw. 75(1), 1–13 (2014)

48. R. Plackett, J. Burman, The design of optimum multifactorial experiments. Biometrika 33,
305–325 (1946)

49. R.L. Rardin, R. Uzsoy, Experimental evaluation of heuristic optimization algorithms: a tuto-
rial. J. Heuristics 7(3), 261–304 (2001)

50. G. Reinelt, TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384
(1991)

51. G. Rinaldi, RUDY: a generator for random graphs (1996). http://web.stanford.edu/~yyye/
yyye/Gset/rudy.c. Accessed 30 Sept 2014

52. K.L. Sadowski, D. Thierens, P.A.N. Bosman, GAMBIT: a parameterless model-based evolu-
tionary algorithm for mixed-integer problems. Evol. Comput. (2018, to appear)

53. H. Sawai, S. Kizu, Parameter-free genetic algorithm inspired by “disparity theory of evolu-
tion”, in Parallel Problem Solving from Nature – PPSN V, ed. by A. Eiben, T. Bäck, M. Schoe-
nauer, H.-P. Schwefel. LNCS, vol. 1498 (Springer, Berlin, 1998), pp. 702–711

54. J. Silberholz, B. Golden, The effective application of a new approach to the generalized ori-
enteering problem. J. Heuristics 16(3), 393–415 (2010)

55. K. Smith-Miles, S. Bowly, Generating new test instances by evolving in instance space. Com-
put. Oper. Res. 63, 102–113 (2015)

56. K. Smith-Miles, L. Lopes, Measuring instance difficulty for combinatorial optimization prob-
lems. Comput. Oper. Res. 39(5), 875–889 (2012)

57. K. Smith-Miles, J. van Hemert, Discovering the suitability of optimisation algorithms by
learning from evolved instances. Ann. Math. Artif. Intell. 61(2), 87–104 (2011)

58. K. Smith-Miles, D. Baatar, B. Wreford, R. Lewis, Towards objective measures of algorithm
performance across instance space. Comput. Oper. Res. 45, 12–24 (2014)

59. S. Subramanian, M.C. Jeffrey, M. Abeydeera, H.R. Lee, V.A. Ying, J. Emer, D. Sanchez,
Fractal: an execution model for fine-grain nested speculative parallelism, in Proceedings of
the 44th Annual International Symposium on Computer Architecture, ISCA ’17 (ACM, New
York, 2017), pp. 587–599

60. D. Sudholt, Parallel evolutionary algorithms, in Springer Handbook of Computational Intelli-
gence, ed. by J. Kacprzyk, W. Pedrycz (Springer, Berlin, 2015), pp. 929–959

http://web.stanford.edu/~yyye/yyye/Gset/rudy.c
http://web.stanford.edu/~yyye/yyye/Gset/rudy.c

604 J. Silberholz et al.

61. E.-G. Talbi, M. Basseur, A.J. Nebro, E. Alba, Multi-objective optimization using metaheuris-
tics: non-standard algorithms. Int. Trans. Oper. Res. 19(1–2), 283–305 (2012)

62. D. Taş, M. Gendreau, O. Jabali, G. Laporte, The traveling salesman problem with time-
dependent service times. Eur. J. Oper. Res. 248(2), 372–383 (2016)

63. L. Tierney, A.J. Rossini, N. Li, H. Sevcikova, Simple network of workstations (Package
‘snow’), 2016. https://cran.r-project.org/web/packages/snow/snow.pdf

64. V.V. Vazirani, Approximation Algorithms (Springer, Berlin, 2013)
65. T. Vidal, T.G. Crainic, M. Gendreau, C. Prins, Heuristics for multi-attribute vehicle routing

problems: a survey and synthesis. Eur. J. Oper. Res. 231(1), 1–21 (2013)
66. X. Wang, B. Golden, E. Wasil, The min-max multi-depot vehicle routing problem: heuristics

and computational results. J. Oper. Res. Soc. 66(9), 1430–1441 (2015)
67. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol.

Comput. 1(1), 67–82 (1997)
68. Y. Xiong, B. Golden, E. Wasil, A one-parameter genetic algorithm for the minimum labeling

spanning tree problem. IEEE Trans. Evol. Comput. 9(1), 55–60 (2005)
69. J. Xu, J. Kelly, A network flow-based tabu search heuristic for the vehicle routing problem.

Transp. Sci. 30(4), 379–393 (1996)

https://cran.r-project.org/web/packages/snow/snow.pdf

	Preface to the Third Edition
	Preface to the Second Edition
	Preface to the First Edition
	Contents
	Contributors
	1 Simulated Annealing: From Basics to Applications
	1.1 Introduction
	1.2 Basics
	1.2.1 Local Search (or Monte Carlo) Algorithms
	1.2.2 Metropolis Algorithm
	1.2.3 Simulated Annealing (SA) Algorithm

	1.3 Theory
	1.3.1 Statistical Equilibrium
	1.3.2 Asymptotic Convergence

	1.4 Practical Issues
	1.4.1 Finite-Time Approximation
	1.4.2 Geometric Cooling
	1.4.3 Cooling in Polynomial Time
	1.4.3.1 Initial Temperature c0
	1.4.3.2 Decay of the Control Parameter
	1.4.3.3 Length of Markov Chains
	1.4.3.4 Stopping Criterion
	1.4.3.5 Summary

	1.4.4 Simulation-Based Evaluation

	1.5 Illustrative Applications
	1.5.1 Knapsack Problem
	1.5.1.1 Mathematical Modeling
	1.5.1.2 Simulated Annealing Implementation

	1.5.2 Traveling Salesman Problem
	1.5.2.1 Mathematical Modeling
	1.5.2.2 Simulated Annealing Implementation

	1.6 Large-Scale Aircraft Trajectory Planning
	1.6.1 Mathematical Modeling
	1.6.2 Computational Experiments with SA

	1.7 Conclusion
	References

	2 Tabu Search
	2.1 Introduction
	2.2 The Classical Vehicle Routing Problem
	2.3 Basic Concepts
	2.3.1 Historical Background
	2.3.2 Tabu Search
	2.3.3 Search Space and Neighborhood Structure
	2.3.4 Tabus
	2.3.5 Aspiration Criteria
	2.3.6 A Template for Simple Tabu Search
	2.3.7 Termination Criteria
	2.3.8 Probabilistic TS and Candidate Lists

	2.4 Intermediate Concepts
	2.4.1 Intensification
	2.4.2 Diversification
	2.4.3 Allowing Infeasible Solutions
	2.4.4 Surrogate and Auxiliary Objectives

	2.5 Advanced Concepts
	2.6 Key References
	2.7 Tricks of the Trade
	2.7.1 Getting Started
	2.7.2 More Tips
	2.7.3 Additional Tips for Probabilistic TS
	2.7.4 Parameter Calibration and Computational Testing

	2.8 Conclusion
	References

	3 Variable Neighborhood Search
	3.1 Introduction
	3.2 Basic Schemes
	3.3 Some Extensions
	3.4 Changing Formulation Within VNS
	3.4.1 Variable Neighborhood-Based Formulation Space Search
	3.4.2 Variable Formulation Search

	3.5 Primal-Dual VNS
	3.6 VNS for Mixed Integer Linear Programming
	3.6.1 Variable Neighborhood Branching
	3.6.2 VNDS Based Heuristics for MILP
	3.6.2.1 VNDS for 0-1 MILPs with Pseudo-Cuts
	3.6.2.2 A Double Decomposition Scheme
	3.6.2.3 Comparison

	3.7 Variable Neighborhood Search for Continuous Global Optimization
	3.8 Variable Neighborhood Programming (VNP): VNS for Automatic Programming
	3.9 Discovery Science
	3.10 Conclusions
	References

	4 Large Neighborhood Search
	4.1 Introduction
	4.1.1 Example Problems
	4.1.2 Neighborhood Search

	4.2 Large Neighborhood Search
	4.3 Adaptive Large Neighborhood Search
	4.3.1 Designing an ALNS Algorithm
	4.3.2 Properties of the ALNS Framework
	4.3.3 Relation to Other Metaheuristics
	4.3.4 Parallelism

	4.4 Applications of LNS and ALNS
	4.4.1 Vehicle Routing Applications
	4.4.2 Other Applications

	4.5 Very Large-Scale Neighborhood Search
	4.5.1 Variable-Depth Methods
	4.5.2 Network Flow-Based Improvement Algorithms
	4.5.2.1 Neighborhoods Defined by Cycles
	4.5.2.2 Neighborhoods Defined by Paths
	4.5.2.3 Neighborhoods Defined by Assignments and Matching

	4.5.3 Other VLSN Algorithms

	4.6 Conclusion
	References

	5 Iterated Local Search: Framework and Applications
	5.1 Introduction
	5.2 Iterating a Local Search
	5.2.1 General Framework
	5.2.2 Random Restart
	5.2.3 Searching in S*
	5.2.4 Iterated Local Search

	5.3 Getting High Performance
	5.3.1 Initial Solution
	5.3.2 Perturbation
	5.3.2.1 Perturbation Strength
	5.3.2.2 Adaptive Perturbations
	5.3.2.3 More Complex Perturbation Schemes
	5.3.2.4 Speed

	5.3.3 Acceptance Criterion
	5.3.3.1 Example 1: TSP
	5.3.3.2 Example 2: QAP

	5.3.4 Local Search
	5.3.5 Global Optimization of ILS

	5.4 Selected Applications of ILS
	5.4.1 ILS for the TSP
	5.4.2 ILS for Other Routing Problems
	5.4.3 ILS for Scheduling Problems
	5.4.4 ILS for Other Problems
	5.4.5 Summary

	5.5 Relation to Other Metaheuristics
	5.5.1 Neighborhood-Based Metaheuristics
	5.5.2 Multi-Start-Based Metaheuristics

	5.6 Conclusions
	References

	6 Greedy Randomized Adaptive Search Procedures: Advances and Extensions
	6.1 Introduction
	6.2 Construction of the Restricted Candidate List
	6.3 Alternative Construction Mechanisms
	6.3.1 Random Plus Greedy and Sampled Greedy Construction
	6.3.2 Reactive GRASP
	6.3.3 Cost Perturbations
	6.3.4 Bias Functions
	6.3.5 Intelligent Construction: Memory and Learning
	6.3.6 POP in Construction
	6.3.7 Lagrangean GRASP Heuristics
	6.3.7.1 Lagrangean Relaxation and Subgradient Optimization
	6.3.7.2 A Template for Lagrangean Heuristics
	6.3.7.3 Lagrangean GRASP

	6.4 Path-Relinking
	6.4.1 Forward Path-Relinking
	6.4.2 Backward Path-Relinking
	6.4.3 Back and Forward Path-Relinking
	6.4.4 Mixed Path-Relinking
	6.4.5 Truncated Path-Relinking
	6.4.6 Greedy Randomized Adaptive Path-Relinking
	6.4.7 Evolutionary Path-Relinking
	6.4.8 External Path-Relinking and Diversification

	6.5 Restart Strategies
	6.6 Extensions
	6.7 Applications
	6.8 Concluding Remarks
	References

	7 Intelligent Multi-Start Methods
	7.1 Introduction
	7.2 An Overview
	7.2.1 Memory Based Designs
	7.2.2 GRASP
	7.2.3 Constructive Designs
	7.2.4 Hybrid Designs
	7.2.5 Theoretical Analysis

	7.3 A Classification
	7.4 The Maximum Diversity Problem
	7.4.1 Multi-Start Without Memory (MSWoM)
	7.4.2 Multi-Start With Memory (MSWM)
	7.4.3 Experimental Results

	7.5 Conclusion
	References

	8 Next Generation Genetic Algorithms: A User'sGuide and Tutorial
	8.1 Introduction
	8.2 Classic Simple Genetic Algorithms (SGA)
	8.2.1 The Population and Selection
	8.2.2 Tournament Selection

	8.3 Steady State and Monotonic Genetic Algorithms
	8.4 The Demise of Hyperplane Sampling Theory
	8.5 Gray Box Optimization
	8.6 The k-Bounded Pseudo-Boolean Functions
	8.6.1 Tunneling Between Optima
	8.6.2 How to Select Improving Moves in Constant Time
	8.6.3 Looking Multiple Steps Ahead

	8.7 The Traveling Saleman (TSP): Tunneling Between Optima
	8.8 An Iterated Hybrid Genetic Algorithm
	8.8.1 The Limitations of Tunneling and Partition Crossover

	8.9 The EAX Algorithms for the TSP
	8.10 Massively Parallel Genetic Algorithms
	8.11 Conclusions
	References

	9 An Accelerated Introduction to Memetic Algorithms
	9.1 Introduction and Historical Notes
	9.2 Memetic Algorithms
	9.2.1 Basic Concepts
	9.2.2 Search Landscapes
	9.2.3 Local vs. Population-Based Search
	9.2.4 Recombination
	9.2.5 A Memetic Algorithm Template
	9.2.6 Designing an Effective Memetic Algorithm

	9.3 Algorithmic Extensions of Memetic Algorithms
	9.3.1 Multiobjective Memetic Algorithms
	9.3.2 Continuous Optimization
	9.3.3 Memetic Computing Approaches
	9.3.4 Self- Memetic Algorithms
	9.3.5 Memetic Algorithms and Complete Techniques

	9.4 Applications of Memetic Algorithms
	9.5 Conclusions
	References

	10 Ant Colony Optimization: Overview and Recent Advances
	10.1 Introduction
	10.2 Approximate Approaches
	10.2.1 Construction Algorithms
	10.2.2 Local Search Algorithms

	10.3 The ACO Metaheuristic
	10.3.1 Problem Representation
	10.3.2 The Metaheuristic

	10.4 History
	10.4.1 Biological Analogy
	10.4.2 Historical Development
	10.4.2.1 The First ACO Algorithm: Ant System and the TSP
	10.4.2.2 Ant System and Its Extensions
	10.4.2.3 Applications to Dynamic Network Routing Problems
	10.4.2.4 Towards the ACO Metaheuristic

	10.5 Applications
	10.5.1 Example 1: The Single Machine Total Weighted Tardiness Scheduling Problem (SMTWTP)
	10.5.2 Example 2: The Set Covering Problem (SCP)
	10.5.3 Example 3: AntNet for Network Routing Applications
	10.5.4 Applications of the ACO Metaheuristic
	10.5.5 Main Application Principles
	10.5.5.1 Definition of Solution Components and Pheromone Trails
	10.5.5.2 Balancing Exploration and Exploitation
	10.5.5.3 ACO and Local Search
	10.5.5.4 Heuristic Information

	10.6 Developments
	10.6.1 Non-standard Applications of ACO
	10.6.1.1 Multi-Objective Optimization
	10.6.1.2 Dynamic Versions of NP-hard Problems
	10.6.1.3 Stochastic Optimization Problems
	10.6.1.4 Continuous Optimization

	10.6.2 Algorithmic Developments
	10.6.2.1 Hybridizations of ACO with Other Metaheuristics
	10.6.2.2 Hybridizations of ACO with Branch-and-Bound Techniques
	10.6.2.3 Combinations of ACO with Constraint and Integer Programming Techniques

	10.6.3 Parallel Implementations
	10.6.4 Theoretical Results

	10.7 Conclusions
	References

	11 Swarm Intelligence
	11.1 Introduction
	11.2 Biological Examples
	11.3 Particle Swarm Optimization
	11.3.1 Inertia Weighted and Constricted PSOs
	11.3.2 Memory-Swarm vs. Explorer-Swarm
	11.3.3 Particle Dynamics Through a Simplified Example
	11.3.3.1 One Particle
	11.3.3.2 Two Particles

	11.4 PSO Variants
	11.4.1 Fully Informed PSO
	11.4.2 Bare-Bones PSO
	11.4.3 Binary PSO
	11.4.4 Discrete PSO
	11.4.5 SPSO-2011
	11.4.6 Other PSO Variants

	11.5 PSO Applications
	11.5.1 Multiobjective Optimization
	11.5.2 Optimization in Dynamic Environments
	11.5.3 Multimodal Optimization

	11.6 PSO Theoretical Works
	11.7 Other SI Applications
	11.7.1 Swarm Robotics
	11.7.2 Swarm Intelligence in Data Mining

	11.8 Conclusion
	References

	12 Metaheuristic Hybrids
	12.1 Introduction
	12.2 Classification
	12.3 Finding Initial or Improved Solutions by Embedded Methods
	12.4 Multi-Stage Approaches
	12.5 Decoder-Based Approaches
	12.6 Solution Merging
	12.7 Strategic Guidance of Metaheuristics by Other Techniques
	12.7.1 Using Information Gathered by Other Algorithms
	12.7.2 Enhancing the Functionality of Metaheuristics

	12.8 Strategic Guidance of Other Techniques by Metaheuristics
	12.9 Decomposition Approaches
	12.9.1 Exploring Large Neighborhoods
	12.9.2 Hybrids Based on MIP Decomposition Techniques
	12.9.2.1 Lagrangian Decomposition
	12.9.2.2 Column Generation
	12.9.2.3 Benders Decomposition

	12.9.3 Using Metaheuristics for Constraint Propagation

	12.10 Summary and Conclusions
	References

	13 Parallel Metaheuristics and Cooperative Search
	13.1 Introduction
	13.2 Metaheuristics and Parallelism
	13.2.1 Sources of Parallelism
	13.2.2 Performance Measures
	13.2.3 Parallel Metaheuristics Strategies

	13.3 Low-Level Parallelization Strategies
	13.4 Domain Decomposition
	13.5 Independent Multi-Search
	13.6 Cooperative Search
	13.6.1 pC/KS Synchronous Cooperative Strategies
	13.6.2 pC/C Asynchronous Cooperative Strategies

	13.7 pC/KC Cooperation Strategies: Creating New Knowledge
	13.8 Conclusions
	References

	14 A Classification of Hyper-Heuristic Approaches: Revisited
	14.1 Introduction
	14.2 Previous Classifications
	14.3 The Proposed Classification and Definition
	14.4 Heuristic Selection Methodologies
	14.4.1 Approaches Based on Construction Low-Level Heuristics
	14.4.1.1 Representative Examples

	14.4.2 Approaches Based on Perturbation Low-Level Heuristics
	14.4.2.1 Representative Examples

	14.4.3 Recent Research Trends
	14.4.3.1 Software Frameworks
	14.4.3.2 Multi-Objective
	14.4.3.3 Theoretical and Foundational Studies

	14.5 Heuristic Generation Methodologies
	14.5.1 Representative Examples
	14.5.2 Some Recent Examples

	14.6 Conclusions
	References

	15 Reactive Search Optimization: Learning While Optimizing
	15.1 Introduction
	15.2 Different Reaction Possibilities
	15.2.1 Reactive Prohibitions
	15.2.2 Reacting on the Neighborhood
	15.2.3 Reacting on the Annealing Schedule
	15.2.4 Reacting on the Objective Function
	15.2.5 Reactive Schemes in Population-Based Methods

	15.3 Applications of Reactive Search Optimization
	15.3.1 Classic Combinatorial Tasks
	15.3.1.1 Knapsack and Related Problems
	15.3.1.2 Problems on Graphs
	15.3.1.3 Vehicle Routing Problems
	15.3.1.4 Satisfiability and Related Problems

	15.3.2 Neural Networks and Learning Systems
	15.3.3 Continuous Optimization
	15.3.4 Real-World Applications
	15.3.4.1 Power Distribution Networks
	15.3.4.2 Industrial Production and Delivery
	15.3.4.3 Telecommunication Networks
	15.3.4.4 Vehicle Routing and Dispatching
	15.3.4.5 Industrial and Architectural Design
	15.3.4.6 Biology

	15.4 Conclusion
	References

	16 Stochastic Search in Metaheuristics
	16.1 Introduction
	16.2 General Framework
	16.3 Convergence Results
	16.4 Runtime Results
	16.4.1 Some Methods for Runtime Analysis
	16.4.2 Instance Difficulty and Phase Transitions
	16.4.3 Some Notes on Special Runtime Results

	16.5 Parameter Choice
	16.6 No-Free-Lunch Theorems
	16.7 Fitness Landscape Analysis
	16.8 Black-Box Optimization
	16.9 Stochastic Search Under Noise
	16.10 Stochastic Search and Robustness
	16.11 Conclusions
	References

	17 Automated Design of Metaheuristic Algorithms
	17.1 Introduction
	17.2 Automatic Algorithm Configuration
	17.2.1 Design Choices for Metaheuristic Algorithms
	17.2.2 Parameters and the Configuration Problem
	17.2.3 Automatic Algorithm Configuration
	17.2.3.1 ParamILS
	17.2.3.2 SMAC
	17.2.3.3 irace

	17.3 Towards Metaheuristic Algorithm Design
	17.3.1 Basic Uses of Configurators
	17.3.2 Advanced Uses of Configurators

	17.4 Examples
	17.4.1 Improving the Anytime Behavior of Metaheuristics
	17.4.2 Multi-Objective Ant Colony Optimization
	17.4.3 Automated Design of Hybrid Stochastic Local Search Algorithms

	17.5 Relevant Connections and Related Work
	17.5.1 Online Parameter Control
	17.5.2 Algorithm Portfolios and Algorithm Selection
	17.5.3 Automated Design of Metaheuristics/Metaheuristic Algorithm
	17.5.4 Other Related Work

	17.6 Conclusions
	References

	18 Computational Comparison of Metaheuristics
	18.1 Introduction
	18.2 The Testbed
	18.2.1 Using Existing Testbeds
	18.2.2 Developing New Testbeds
	18.2.2.1 Goals in Creating the Testbed
	18.2.2.2 Accessibility of New Test Instances
	18.2.2.3 Problem Instances with Known Optimal Solutions

	18.2.3 Problem Instance Classification

	18.3 Parameters
	18.3.1 Parameter Space Visualization and Tuning
	18.3.2 Parameter Interactions
	18.3.3 Fair Testing Involving Parameters

	18.4 Solution Quality Comparisons
	18.4.1 Solution Quality Metrics
	18.4.2 Comparative Performance on Different Types of Problem Instances

	18.5 Runtime Comparisons
	18.5.1 Runtime Limits Using the Same Hardware
	18.5.2 Runtime Limits Using Different Hardware
	18.5.3 Runtime Growth Rate
	18.5.4 Alternatives to Runtime Limits

	18.6 Parallel Algorithms
	18.6.1 Evaluating Parallel Metaheuristics
	18.6.2 Comparison When Competing Approaches Can Be Run
	18.6.3 Comparison When Competing Approaches Cannot Be Run

	18.7 Conclusion
	References

