Novosibirsk State University
Theoretical Cybernetic Department
A. Kononov
Approximation Algorithms
PresentationMaster Course. First year.
Lecture 1. Introduction AppEngLect1-2017.pdf Lecture 2. Combinatorial algorithms. Set cover AppEngLect2-2017.pdf Lecture 3. Combinatorial algorithms. Metric problemsAppEngLect3-2017.pdf Lecture 4. Combinatorial algorithms. Local search AppEngLect4-2017.pdf Lecture 5. Approximation schemes. Scheduling problems AppEngLect5-2017.pdf Lecture 6. Approximation schemes. Bin packing problems AppEngLect6-2017.pdf Lecture 7. Approximation schemes. Open shop AppEngLect7-2017.pdf Lecture 8. Linear programming. Scheduling problems AppEngLect8-2017.pdf Lecture 9. Linear programming. Set cover AppEngLect9-2017.pdf Lecture 10. Randomized algorithms. MAX-SAT
AppEngLect10-2017.pdf Lecture 11. Linear programming. Separation oracle
AppEngLect11-2017.pdf
Textbooks
1. М. Гэри, Д. Джонсон. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982. с. 154–191. (djvu-file 10 Mb)
2. B. Korte, J. Vygen. Combimatorial Optimization. Theory and Algorithms. Berlin: Springer-Verlag, 2002. (pdf-file 22 Mb)
3. V. Vazirani, Approximation Algorithms, Berlin: Springer-Verlag, 2001. (pdf-file 14 Mb)
4. Х. Пападимитриу, К. Стайглиц. Комбинаторная оптимизация. Алгоритмы и сложность. М.: Мир, 1985. (djvu-file 4,5 Mb)
5. P. Schuurman, G. Woeginger. Approximation Schemes – A Tutorial, chapter of the book “Lecture on Scheduling” (pdf-file 0,5 Mb)
6. D.Hochbaum (Ed.) Approximation Algorithms for NP-hard problems. PWS Publishing Company, 1997.
Professor Alexandr Kononov
e-mail: alvenko@math.nsc.ruРедакция 26.04.2017