- **1.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 3\theta^3 y^{-4}$ на интервале $[\theta, +\infty)$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(3\theta) F_n^*(2\theta)$.
 - б) Найти при n=5 распределение этой случайной величины.
 - **2.** Пусть $X_1, ..., X_n$ выборка из распределения Пуассона с параметром λ .
 - а) Вычислить математическое ожидание случайной величины $5(\overline{X})^2 + S^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения \mathcal{F} и гипотезы $H_1 = \{\mathcal{F} = \mathrm{U}_{0,\,2}\}$ и $H_2 = \{\mathcal{F} = \mathrm{U}_{1,\,3}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \geqslant 1$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- **4.** Дана выборка объёма n=9 из нормального распределения $N_{a,\,16}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-2)$ для различения гипотез $H_1=\{a=1\}$ и $H_2=\{a=-1\}$. Какую гипотезу выбрал критерий при $\overline{X}=-1$?
- **5.** Для проверки симметричности монеты её подбросили n раз. Гипотеза симметричности принимается, если число выпадений герба заключено в границах $n/2 \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-3)$. Проверить симметричность монеты, если после $10\,000$ бросков герб выпал $5\,400$ раз.
 - **6.** Доказать теорему Гливенко Кантелли для выборки из распределения Бернулли $B_{0,25}$.

					Номер группы
2	3	4	5	6	
	2	2 3	2 3 4	2 3 4 5	2 3 4 5 6

- 1. Пусть X_1, \dots, X_n выборка объёма n из распределения с плотностью $f(y) = 4y^3\theta^{-4}$ на интервале $[0, \theta]$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(\theta/2) F_n^*(\theta/3)$.
 - б) Найти при n=6 распределение этой случайной величины.
 - **2.** Пусть X_1, \dots, X_n выборка из биномиального распределения с параметрами 2 и p.
 - а) Вычислить математическое ожидание случайной величины $5\overline{X^2} + 3(\overline{X})^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения $\mathcal F$ и гипотезы $H_1 = \{\mathcal F = \mathrm{U}_{1,\,3}\}$ и $H_2 = \{\mathcal F = \mathrm{U}_{0,\,2}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \leqslant 1$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- **4.** Дана выборка объёма n=16 из нормального распределения $N_{a,\,9}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-3)$ для различения гипотез $H_1=\{a=2\}$ и $H_2=\{a=0\}$. Какую гипотезу выбрал критерий при $\overline{X}=0$?
- 5. Для проверки симметричности игральной кости её подбросили n раз. Гипотеза симметричности принимается, если количество выпадений единички заключено в границах $n/6 \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-2)$. Проверить симметричность кости, если после $3\,600$ бросков единица выпала 540 раз.
- **6.** Дана выборка из показательного распределения с параметром 1. Выяснить, куда слабо сходится последовательность $\sqrt{n} |F_n^*(3) F(3)|$ при $n \to \infty$.

	ФИО							Номер группы
L								
	1	2	3	4	5	6		
							-	

- **1.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 5\theta^5 y^{-6}$ на интервале $[\theta, +\infty)$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(4\theta) F_n^*(3\theta)$.
 - б) Найти при n=4 распределение этой случайной величины.
 - **2.** Пусть X_1, \ldots, X_n выборка из показательного распределения с параметром α .
 - а) Вычислить математическое ожидание случайной величины $2(\overline{X})^2 5S^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения \mathcal{F} и гипотезы $H_1 = \{\mathcal{F} = \mathrm{U}_{1,3}\}$ и $H_2 = \{\mathcal{F} = \mathrm{U}_{2,5}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \geqslant 2$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- 4. Дана выборка объёма n=9 из нормального распределения $N_{a,4}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,1}(-2,5)$ для различения гипотез $H_1=\{a=2\}$ и $H_2=\{a=1\}$. Какую гипотезу выбрал критерий при $\overline{X}=1$?
- 5. Для проверки гипотезы о симметричности тетраэдра его подбросили n раз. Гипотеза симметричности принимается, если число выпадений помеченной грани заключено в границах $n/4 \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-2)$. Проверить симметричность тетраэдра, если после 1 600 бросков помеченная грань выпала 430 раз.
- **6.** Доказать асимптотическую нормальность несмещённой выборочной дисперсии, построенной по выборке из распределения Пуассона.

	ФИО						Номер группы
L							
	1	2	3	4	5	6	
'							
L							

- **1.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 5y^4\theta^{-5}$ на интервале $[0, \theta]$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(2\theta/3) F_n^*(\theta/3)$.
 - б) Найти при n=8 распределение этой случайной величины.
 - **2.** Пусть X_1, \ldots, X_n выборка из равномерного распределения на отрезке [-a, a].
 - а) Вычислить математическое ожидание случайной величины $3\overline{X^2} 7(\overline{X})^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения $\mathcal F$ и гипотезы $H_1 = \{\mathcal F = \mathrm{U}_{2,\,4}\}$ и $H_2 = \{\mathcal F = \mathrm{U}_{1,\,3}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \leqslant 2$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- 4. Дана выборка объёма n=4 из нормального распределения $N_{a,\,9}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-2)$ для различения гипотез $H_1=\{a=1\}$ и $H_2=\{a=-1\}$. Какую гипотезу выбрал критерий при $\overline{X}=-1$?
- **5.** Проверяется гипотеза о том, что бутерброд падает маслом вниз с вероятностью 0,75. Эта гипотеза принимается, если после n экспериментов число упавших маслом вниз бутербродов заключено в границах $3n/4 \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-2,5)$. Проверить гипотезу, если из $10\,000$ бутербродов маслом вниз упали $7\,600$ штук.
- **6.** Дана выборка из распределения Пуассона с параметром 1. Выяснить, куда слабо сходится последовательность $\sqrt{n} |F_n^*(2) F(2)|$ при $n \to \infty$.

d	ОИО						Номер груп	пы
	1	2	3	4	5	6		
-							-	

- 1. Пусть X_1, \dots, X_n выборка объёма n из распределения с плотностью $f(y) = 4\theta^4 y^{-5}$ на интервале $[\theta, +\infty)$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(5\theta) F_n^*(2\theta)$.
 - б) Найти при n=7 распределение этой случайной величины.
 - **2.** Пусть X_1, \ldots, X_n выборка из биномиального распределения с параметрами 3 и p.
 - а) Вычислить математическое ожидание случайной величины $7(\overline{X})^2 + S^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения \mathcal{F} и гипотезы $H_1 = \{\mathcal{F} = \mathrm{U}_{-1,1}\}$ и $H_2 = \{\mathcal{F} = \mathrm{U}_{0,3}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \geqslant 0$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- 4. Дана выборка объёма n=25 из нормального распределения $N_{a,36}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,1}(-2)$ для различения гипотез $H_1=\{a=3\}$ и $H_2=\{a=1\}$. Какую гипотезу выбрал критерий при $\overline{X}=1$?
- 5. Проверяется гипотеза о том, что стрелок попадает по мишени с вероятностью 0,9. Гипотеза принимается, если число попаданий после n выстрелов заключено в границах $0.9n \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-3)$. Проверить гипотезу, если после 400 выстрелов стрелок попал 340 раз.
 - **6.** Доказать теорему Гливенко Кантелли для выборки из распределения Бернулли $B_{0,75}$.

q	ONG						Номер группы
	1	2	3	4	5	6	
-							-

- 1. Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 6y^5\theta^{-6}$ на интервале $[0, \theta]$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(\theta/2) F_n^*(\theta/4)$.
 - б) Найти при n=10 распределение этой случайной величины.
 - **2.** Пусть X_1, \ldots, X_n выборка из равномерного распределения на отрезке [1, b].
 - а) Вычислить математическое ожидание случайной величины $\overline{X^2} + 5(\overline{X})^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения \mathcal{F} и гипотезы $H_1 = \{\mathcal{F} = \mathrm{U}_{2,4}\}$ и $H_2 = \{\mathcal{F} = \mathrm{U}_{0,3}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \leqslant 2$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- **4.** Дана выборка объёма n=36 из нормального распределения $N_{a,\,25}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-2)$ для различения гипотез $H_1=\{a=2\}$ и $H_2=\{a=1\}$. Какую гипотезу выбрал критерий при $\overline{X}=1$?
- 5. Для проверки гипотезы о том, что вероятность обнаружить приз-брелок в пачке чипсов «Lays» равна 0,2, куплены n пачек чипсов. Гипотеза принимается, если количество обнаруженных призов заключено в границах $0,2n\pm\Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon=2\Phi_{0,1}(-3)$. Проверить гипотезу, если в 10 000 проверенных пачек чипсов обнаружены 1 600 призов.
- **6.** Доказать асимптотическую нормальность несмещённой выборочной дисперсии, построенной по выборке из показательного распределения.

ФИО							Номер группы
1	2	3	4	5	6		