

On Limit Theorems for generalized sums

A. G. Grin' Omsk State University, Omsk, Russia

Let $\{\xi_n, n = 1, 2, ...\}$ be a sequence of i.i.d. random variables and $x \oplus y$ — binary operation on $\mathbb{D} \subseteq \mathbb{R}$, satisfying the following conditions:

- A_1 . associativity: $x \oplus (y \oplus z) = (x \oplus y) \oplus z, x, y, z \in \mathbb{D};$
- A₂. commutativity: $x \oplus y = y \oplus x$, $x, y \in \mathbb{D}$;
- A_3 . $x \oplus 0 = x$, $x \in \mathbb{D}$;

 A_4 . uniform continuity in the following sense: for all $\varepsilon > 0$ there exists $\delta > 0$ such that $|y| < \delta$ implies $|x \oplus y - x| < \varepsilon$, $\forall x \in \mathbb{D}$.

Conditions $A_1 - A_4$ are fulfilled, e.g. for $x \oplus y = x + y$, $x \oplus y = \max\{x, y\}$, $x \oplus y = \sqrt{x^2 + y^2}$, $\mathbb{D} = \mathbb{R}_+ = [0, +\infty)$, and so on, and not fulfilled, say, for $x \oplus y = xy$, $x \oplus y = x + y \pmod{d}$, d > 0 (does not satisfied A_4). Denote $X_n(b) = (\xi_1/b) \oplus \ldots \oplus (\xi_n/b)$, b > 0.

Theorem 1. If a sequence of positive numbers $\{c_n\}$ is such that for any $\delta > 0$

$$\max_{1 \le k \le n} \mathbb{P}\{X_k(c_n) \ge \delta\} \to 0, \ n \to \infty,$$

and for all x > 0, $\delta > 0$

$$\mathbb{P}\{|X_n(c_n)| \ge \delta\} = O\left(\mathbb{P}\{|X_n(c_n)| \ge x\}\right),$$

then

$$\mathbb{P}\{|X_n(c_n)| \ge x\} \sim n\mathbb{P}\{\xi_1 \ge xc_n\}, \ n \to \infty.$$

Theorem 1 means, that under the assumptions above asymptotics of the tails distributions of variables $X_n(c_n)$ does not depend on the type of operation \oplus . This result allows us to prove limit theorems as the following Theorem 2.

Let for any $n \in \mathbb{N}$ and z > 0 $\mathbb{E}|X_n(z)|^p < \infty$, and

$$b_n(p) = \inf\left\{z > 0 : \max_{1 \le k \le n} \mathbb{E} |X_k(z)|^p \le 1\right\}.$$

In the proof of limit theorems we will use the following conditions

$$\liminf_{n \to \infty} n \mathbb{P}\{\xi_1 \ge \varepsilon b_n(p)\} > 0, \text{ for some } \varepsilon > 0;$$
(1)

A₅. For any x > 0, $y_i > 0$, $n \in \mathbb{N}$ $(xy_1) \oplus \ldots \oplus (xy_n) = x(y_1 \oplus \ldots \oplus y_n)$.

Theorem 2. Assume that the operation \oplus satisfies $A_1 - A_5$ on $\mathbb{D} = [0, \infty)$ and for any x > 0 there exists a limit $1 - G(x) = \lim_{k \to \infty} \left(1 - \frac{x^{-\rho}}{k}\right)_+^{*k}$, where $F_{\xi} * F_{\eta} = F_{\xi \oplus \eta}$, $F_{\xi} - d.f.$ of ξ , $a_+ = \max(a, 0)$, and, besides, holds (1).

In order to exist regularly varying with the exponent $-\rho$, $\rho > 0$, limit

$$\lim_{n \to \infty} \mathbb{P}\{X_n(a_n) \ge x\} = G(x), \quad (a_n = \sup\{x > 0 : n\mathbb{P}\{\xi_1 \ge x\} \ge 1\})$$

it is necessary and sufficient, that $\mathbb{P}\{\xi_1 \geq x\}$ is regularly varying function with the exponent $-\rho$.