

## On the sojourn time of a random walk

Vladimir I. Lotov Sobolev Institute of Mathematics 630090 Novosibirsk, Russia lotov@math.nsc.ru

Let  $\{X_n, n \ge 1\}$  be a sequence of independent identically distributed random variables,  $S_n = X_1 + \ldots + X_n$ ,  $n \ge 1$ . Given  $b \ge 0$ , we introduce the sojourn time

$$T_n(b) = \sum_{k=1}^n I_{\{S_k > b\}},$$

i.e. the number of points k,  $1 \le k \le n$ , such that  $S_k > b$ .

The study of the sojourn time (by its type) relates to the boundary problems for random walks. It is well known that, for many boundary problems, the in-depth results can be obtained on using factorization method.

We apply factorization method to the study of the distribution of  $T_n(b)$  under the Cramér type condition on the distribution of  $X_1$ . We give an explicit representation for the moment generating function of  $T_n$  in the case b = const and study asymptotic properties of the distribution of  $T_n$  as  $n \to \infty$ ,  $b = b(n) \to \infty$ . Both cases  $\mathbf{E}X_1 = 0$  and  $\mathbf{E}X_1 < 0$  are considered.