

## Transient phenomena for random walks in the absence of the expected value of jumps

A. A. Borovkov, P. S. Ruzankin

Let  $\xi, \xi_1, \xi_2, \ldots$  be independent identically distributed random variables, and

$$S_n := \sum_{j=1}^n \xi_j, \qquad \overline{S} := \sup_{n \ge 0} S_n.$$

If  $\mathbf{E}\xi = -a < 0$  then we call transient those phenomena that happen to the distribution  $\overline{S}$  as  $a \to 0$  and  $\overline{S}$  tends to infinity in probability. We consider the case when  $\mathbf{E}\xi$  fails to exist and study transient phenomena as  $a \to 0$  for the following two random walk models:

1. The first model assumes that  $\xi_j$  can be represented as  $\xi_j = \zeta_j + a\eta_j$ , where  $\zeta_1, \zeta_2, \ldots$  and  $\eta_1, \eta_2, \ldots$  are two independent sequences of independent random variables, identically distributed in each sequence, such that  $\sup_{n\geq 0} \sum_{j=1}^n \zeta_j = \infty$ ,  $\sup_{n\geq 0} \sum_{j=1}^n \eta_j = \infty$ , and  $\overline{S} < \infty$  almost surely.

2. In the second model we consider a triangular array scheme with parameter a and assume that the right tail distribution  $\mathbf{P}(\xi_j \ge t) \sim V(t)$  as  $t \to \infty$  depends weakly on a, while the left tail distribution is  $\mathbf{P}(\xi_j < -t) = W(t/a)$ , where V and W are regularly varying functions and  $\overline{S} < \infty$  almost surely for every fixed a > 0. We obtain some results for identically and differently distributed  $\xi_j$ .

 A. A. Borovkov, P. S. Ruzankin. Transient phenomena for random walks in the absence of the expected value of jumps // Siberian Mathematical Journal, 2009, 50:5, 776-797.