

The probabilistic representation of the exponent of a class of pseudo-differential operators

N. Smorodina

St.-Petersburg State University, St.-Petersburg, Russia

We consider an evolution equation $\frac{\partial u}{\partial t} = \mathcal{A}u$, where \mathcal{A} is a linear operator. Given an operator \mathcal{A} let $e^{t\mathcal{A}}$, $t \geq 0$ denote the operator exponent that is a family of linear operators such that for every t > 0 the operator $e^{t\mathcal{A}}$ maps the real or complex-valued function $\varphi(x), x \in \mathbb{R}$ into a solution u(t, x) of the Cauchy problem of the equation with an initial condition $u(0, x) = \varphi(x)$.

It is well known, that the exponents of some pseudo-differential operators and the exponent of the operator $\frac{d^2}{dx^2}$ have probabilistic representations. Namely, for the operator $\mathcal{A} = \frac{d^2}{dx^2}$ we have $e^{t\mathcal{A}}\varphi(x) = \mathbb{E}\varphi(x+w(t))$, where w(t) is a standard Wiener process, and for the integro-differential operator \mathcal{A} , that acts as $\mathcal{A}\varphi(x) = \int_{\mathbb{R}} (\varphi(x+y) - \varphi(x))\Lambda(dy)$, (or as $\mathcal{A}\varphi(x) = \int_{\mathbb{R}} (\varphi(x+y) - \varphi(x) - y\varphi'(x)\mathbf{1}_{[-1,1]}(y))\Lambda(dy))$ we have

$$e^{t\mathcal{A}}\varphi(x) = \mathbb{E}\varphi(x+\xi(t)) \tag{1}$$

where $\xi(t)$ is a jump Lévy process. Note that the representation (1) can be directly generalized neither for higher order differential operators nor for integro-differential operators that include higher order derivatives of φ . The simplest explanation of this fact is based on the maximum principle. An analogy of the representation (1) was considered in a number of papers (see [F79, DF83]). In this representation instead of usual probability processes so-called pseudo-processes were used. Note that there is no probabilistic interpretation of the the pseudo-processes.

We construct a probabilistic representation of the operator exponent $e^{t\mathcal{A}}$, where \mathcal{A} belongs to a class of pseudo-differential operators. First we describe this class of operators.

Let g be a generalized function on \mathbb{R} , such that for every $\varepsilon > 0$ the restriction of g on $\mathbb{R}_{\varepsilon} = \mathbb{R} \setminus (-\varepsilon, \varepsilon)$ is a finite signed measure that is $|g|(\mathbb{R}_{\varepsilon}) < \infty$, and at the point 0 the generalized function g can have a singularity of a finite order. For every generalized function g we construct an operator \mathcal{A}_g , by $\mathcal{A}_g f(x) = (g_y, f(x+y))$, where we denote the action of g on f with respect to the variable y by g_y .

To construct a probabilistic representation of the operator exponent of \mathcal{A}_g we consider two objects defined by the generalized function g. The first object is a probability space $(\Omega, \mathcal{F}, P_g)$. Next we consider a subset Ω^0 of Ω (in all interesting cases $P_g(\Omega^0) = 0$) and on Ω^0 instead of a probability measure we define a generalized function L_g So our second object will be a triple $(\Omega^0, \mathcal{G}, L_g)$, where \mathcal{G} is a set of test functions of L_g .

All random processes we define on the space Ω^0 , and in the classical representation (1) instead of the mathematical expectation we use the generalized function L_g (for the same functional). Then we study the connection between the probability measure P_g and the generalized function L_g .

- [DF83] Yu.L.Daletskii, S.V.Fomin. Measures and differential equations in functional spaces. Moscow: Nauka, 1983.
- [F79] T.Funaki. Probabilistic construction of the solution of some higher order parabolic differential equations. Proc. Japan Acad. A 55, 176-179, 1979.