

Günter Last Institut für Stochastik Karlsruher Institut für Technologie

How to find an extra excursion

Günter Last (Karlsruhe) joint work with Wenpin Tang (Berkeley) and Hermann Thorisson (Reykjavik)

presented at the VI-th conference Modern Problems in Theoretical and Applied Probability

Sobolev Institute of Mathematics Novosibirsk, August 22-28, 2016

1. Four problems on random shifts

1. Extra head problem

Consider a two-sided sequence of independent and fair coin tosses. Find a coin that landed heads so that the other coin tosses (centered around the picked one) are still independent and fair.

2. Marriage of Lebesgue and Poisson

Let η be a stationary Poisson process in \mathbb{R}^d . Find a point T of η such that

$$\theta_T \eta \stackrel{a}{=} \eta + \delta_0.$$

3. Poisson matching

Let η and ξ be two independent stationary Poisson processes with equal intensity. Find a point *T* of ξ such that

$$\theta_T(\eta + \delta_0, \xi) \stackrel{d}{=} (\eta, \xi + \delta_0)$$

4. Unbiased embedding of Brownian excursions

Let $B = (B_t)_{t \in \mathbb{R}}$ be a two-sided standard Brownian motion. Let A be a property of an excursion with positive and finite Itô measure. Find a random time T with $B_T = 0$ such that the shifted process $B = (B_{T+t})_{t \in \mathbb{R}}$ splits into three independent pieces: a time reversed Brownian motion on $(-\infty, 0]$, an excursion distributed according to the conditional Itô law (given A) and a Brownian motion starting after this excursion.

2. Invariant transports of random measures

Setting

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a σ -finite measure space.

Definition

A random measure on \mathbb{R} is a random element in the space of all locally finite measures on \mathbb{R} equipped with the Kolmogorov product σ -field.

Setting

We consider mappings $\theta_s : \Omega \to \Omega$, $s \in \mathbb{R}$, satisfying $\theta_0 = id_\Omega$ and the flow property

$$\theta_{s} \circ \theta_{t} = \theta_{s+t}, \quad s, t \in \mathbb{R}.$$

The mapping $(\omega, s) \mapsto \theta_s \omega$ is supposed to be measurable. We assume that \mathbb{P} is stationary, that is

$$\mathbb{P} \circ \theta_{s} = \mathbb{P}, \quad s \in \mathbb{R}.$$

Definition

A random measure ξ is invariant if the following holds for \mathbb{P} -a.e. $\omega \in \Omega$:

$$\xi(\theta_{s}\omega, B-s) = \xi(\omega, B), \quad s \in \mathbb{R}, B \in \mathcal{B}.$$

Let ξ be an invariant random measure on \mathbb{R} . The measure

$$\mathbb{P}_{\xi}(A) := \iint \mathbf{1}\{ heta_{m{s}}\omega \in A, m{s} \in B\} \, \xi(\omega, dm{s}) \, \mathbb{P}(d\omega), \quad A \in \mathcal{F},$$

is called the Palm measure of ξ (with respect to \mathbb{P}), where $B \in \mathcal{B}$ satisfies $\lambda_1(B) = 1$.

Theorem (Refined Campbell theorem)

Let ξ be an invariant random measure on \mathbb{R} . Then

$$\mathbb{E}_{\mathbb{P}}\int f(heta_s,s)\,\xi(ds)=\mathbb{E}_{\mathbb{P}_{\xi}}\int f(heta_0,s)\,ds$$

for all measurable $f : \Omega \times \mathbb{R} \to [0, \infty)$.

An allocation is a measurable mapping $\tau : \Omega \times \mathbb{R} \to \mathbb{R}$ that is equivariant in the sense that

$$au(heta_t\omega, \mathbf{s} - t) = au(\omega, \mathbf{s}) - t, \quad \mathbf{s}, t \in \mathbb{R}, \mathbb{P} ext{-a.e.} \ \omega \in \Omega.$$

Theorem (L. and Thorisson '09)

Let ξ and η be two invariant random measures with positive and finite intensities. Let τ be an allocation and define $T := \tau(\cdot, 0)$. Then

$$\mathbb{P}_{\xi}(heta_{T} \in \cdot) = \mathbb{P}_{\eta}$$

iff τ is balancing ξ and η , that is

$$\int \mathbf{1}\{ au(m{s})\in\cdot\}\xi(m{ds})=\eta$$
 \mathbb{P} -a.e.

3. Local time of Brownian motion

Setting

 $B = (B_t)_{t \in \mathbb{R}}$ is a two-sided standard Brownian motion with $B_0 = 0$, defined on its canonical probability space $(\Omega, \mathcal{F}, \mathbb{P}_0)$.

Definition

For $t \in \mathbb{R}$ the shift $\theta_t \colon \Omega \to \Omega$ is given by

$$(\theta_t \omega)_s := \omega_{t+s}, \quad s \in \mathbb{R}.$$

For $x \in \mathbb{R}$ let

$$\mathbb{P}_x := \mathbb{P}_0(B + x \in \cdot), \quad x \in \mathbb{R},$$

where *B* is the identity on Ω .

The local time measure ℓ^x at $x \in \mathbb{R}$ can be defined by

$$\ell^{x}(C) := \lim_{h \to 0} \frac{1}{h} \int \mathbf{1} \{ s \in C, x \leq B_{s} \leq x+h \} ds.$$

Hence

$$\int f(B_s,s)ds = \iint f(x,s)\ell^x(ds)dx \quad \mathbb{P}_0\text{-a.s.}$$

for all measurable $f : \mathbb{R}^2 \to [0, \infty)$.

Remark

It is a possible to choose a perfect version of local times, that is a (measurable) kernel satisfying for all $x \in \mathbb{R}$ and \mathbb{P}_x -a.e. that ℓ^x is diffuse and

$$\ell^{x}(heta_{t}\omega, C - t) = \ell^{x}(\omega, C), \quad C \in \mathcal{B}, t \in \mathbb{R}, \mathbb{P}_{x} ext{-a.e.} \ \omega \in \Omega, \ \ell^{x}(\omega, \cdot) = \ell^{0}(heta_{x}\omega, \cdot), \quad \omega \in \Omega, \ x \in \mathbb{R}, \ \mathrm{supp} \ \ell^{x}(\omega) = \{t \in \mathbb{R} : B_{t} = x\}, \quad \omega \in \Omega, \ x \in \mathbb{R}.$$

Günter Last

Let

$$\mathbb{P}:=\int\mathbb{P}_{x}dx$$

be the distribution of a Brownian motion with a "uniformly distributed" starting value.

Remark

Stationary increments of B imply that \mathbb{P} is stationary, that is

$$\mathbb{P}=\mathbb{P}\circ\theta_{\boldsymbol{s}},\quad \boldsymbol{s}\in\mathbb{R}.$$

< 17 ▶

Theorem (Geman and and Horowitz '73)

The Palm (probability) measure of the local time ℓ^x is \mathbb{P}_x .

Definition

Let ν be a probability measure on \mathbb{R} . Define

$$\mathbb{P}_{
u} := \int \mathbb{P}_{x}
u(dx), \qquad \ell^{
u} := \int \ell^{x}
u(dx).$$

Corollary

 \mathbb{P}_{ν} is the Palm probability measure of ℓ^{ν} .

Theorem (L., Mörters and Thorisson '14)

Let ν be a probability measure on \mathbb{R} with ν {0} = 0 and let

$$T := \inf\{t > 0 \colon \ell^0[0, t] = \ell^{\nu}[0, t]\}.$$

Then the process $(B_{T+t})_{t \in \mathbb{R}}$ has distribution \mathbb{P}_{ν} . (In particular B_T has distribution ν .)

Remark

The above stopping time above was introduced in Bertoin and Le Jan (1992) as a solution of the Skorokhod embedding problem.

5. Embedding excursions

Definition

Let

$$R_t := \inf\{s > t : B_s = 0\} - t$$

denote the return time to 0 and consider the random measure

$$\mathsf{N} := \sum_{\mathsf{s}:\mathsf{R}_{\mathsf{s}-}\neq\mathsf{R}_{\mathsf{s}}} \delta_{\mathsf{s}}.$$

For $N{s} > 0$ let the excursion ϵ_s starting at *s* given by

$$\epsilon_{s}(t) := \begin{cases} B_{s+t}, & \text{if } 0 \le t \le R_{s}, \\ 0, & \text{if } t > R_{s}. \end{cases}$$

< 17 ▶

The measure ν^{l} on the space *E* of all excursions (space of all continuous functions starting and ending in 0 with a positive finite lifetime) is implicitly defined by

$$\mathbb{E}\int \mathbf{1}\{(\boldsymbol{s},\epsilon_{\boldsymbol{s}})\in\cdot\}\,\boldsymbol{\textit{N}}(\boldsymbol{\textit{ds}})=\iint \mathbf{1}\{(\boldsymbol{s},\boldsymbol{\textit{e}})\in\cdot\}\,\boldsymbol{\textit{ds}}\,\nu^{\textit{l}}(\boldsymbol{\textit{de}}),$$

is Itô's excursion law (suitably normalized); see Pitman '87.

Problem 4

Let $A \subset E$ be a measurable set such that $0 < \nu^{I}(A) < \infty$. Find a random time *T* such that $\mathbb{P}_{0}(|T| < \infty) = 1$ and

$$\mathbb{P}_{0}(heta_{T}B\in \cdot)=\mathbb{P}^{-}\odot
u^{\prime}(\cdot|A)\odot \mathbb{P}^{+},$$

where \mathbb{P}^- (resp. \mathbb{P}^+) is the distribution of $(B_t)_{t \leq 0}$ (resp. $(B_t)_{t \geq 0}$) and \odot stands for independent concatenation.

Theorem

Let

$$S_{A} := \inf\{t > 0 : t \in N, \epsilon_{t} \in A\}.$$

Then $\mathbb{P}_0(\epsilon_{S_A} \in \cdot) = \nu(\cdot \mid A)$. However, $(\theta_{S_A}B)^-$ is not a time reversed Brownian motion.

Proof of the second fact:

- By excursion theory *l*⁰[0, *S_A*] has an exponential distribution with rate *ν*(*A*).
- The same applies to $\ell^0[S'_A, 0]$, where

$$S'_{\mathcal{A}} := \sup\{t < 0 : t \in \mathcal{N}, \epsilon_t \in \mathcal{A}\}.$$

Hence S'_A(θ_{SA}B) has a Gamma distribution with shape parameter 2.

Theorem (L., Tang and Thorisson '16)

Let $A \subset E$ be a measurable set such that $0 < \nu^{l}(A) < \infty$ and define

$$N_{\mathcal{A}}(\mathcal{C}) := rac{1}{
u^{I}(\mathcal{A})} \int \mathbf{1} \{ m{s} \in \mathcal{C}, arepsilon_{m{s}} \in \mathcal{A} \} N(dm{s}), \quad \mathcal{C} \in \mathcal{B}(\mathbb{R}).$$

Then

$$T := \inf\{t > 0 \colon \ell^0[0, t] \le N_A[0, t]\}$$

solves Problem 4.

- 4 ∃ →

э

6. Ingredients of the proof

Theorem (L., Mörters and Thorisson '14; L., Tang and Thorisson '16)

Let ξ and η be jointly stationary orthogonal random measures on \mathbb{R} with finite and equal intensities. Assume that ξ is diffuse. Then the mapping $\tau : \Omega \times \mathbb{R} \to \mathbb{R}$, defined by

 $\tau(\mathbf{s}) := \inf\{t > \mathbf{s} : \xi[\mathbf{s}, t] \le \eta[\mathbf{s}, t]\}, \quad \mathbf{s} \in \mathbb{R},$

is an allocation balancing ξ and η .

Theorem (Excursion Theory)

Let

$$\tau_{\boldsymbol{s}} := \inf\{t \ge \mathbf{0} : \ell_t^{\mathbf{0}} > \boldsymbol{s}\}, \quad \boldsymbol{s} \ge \mathbf{0},$$

be the right-continuous generalized inverse of ℓ^0 . Then

$$\Phi := \sum_{\boldsymbol{s} > \boldsymbol{0}: \tau_{\boldsymbol{s}-} < \tau_{\boldsymbol{s}}} \delta_{(\boldsymbol{s}, \epsilon_{\tau_{\boldsymbol{s}-}})}$$

is a Poisson process on $(0, \infty) \times E$ under \mathbb{P}_0 with intensity measure $\lambda_+ \otimes \nu^l$.

Theorem (Pitman '87, L., Tang and Thorisson '16)

Let $A \subset E$ be such that $0 < \nu^{l}(A) < \infty$. The Palm measure of N_{A} is given by $\mathbb{P}^{-} \odot \nu^{l}(\cdot|A) \odot \mathbb{P}^{+}$.

6. References

- J. Bertoin and Y. Le Jan (1992). *Ann. Probab.* **20**, 538–548.
- A.E. Holroyd and Y. Peres (2005). Extra heads and invariant allocations. Ann. Probab. 33, 31–52.
- G. Last, P. Mörters and H. Thorisson (2014). Unbiased shifts of Brownian motion. Ann. Probab. 42, 431–463.
- G. Last, W. Tang and H. Thorisson (2016). Transporting random measures on the line and embedding excursions into Brownian motion. arXiv:1608.02016

- Last, G. and Penrose, M. (2016). Lectures on the Poisson Process. Cambridge University Press, to appear. http://www.math.kit.edu/stoch/~last/seite/ lehrbuch_poissonp/de
- G. Last and H. Thorisson (2009). Invariant transports of stationary random measures and mass-stationarity. *Ann. Probab.* 37, 790–813.
- T.M. Liggett (2002). Tagged particle distributions or how to choose a head at random. In *In and Out of Equibrium* (V. Sidoravicious, ed.) 133–162, Birkhäuser, Boston.
- B. Mandelbrot (1982). The Fractal Geometry of Nature.
 Freeman and Co., San Francisco.
- J. Pitman (1987). Stationary excursions. Séminaire de Probabilités, XXI, Lecture Notes in Math., 1247, 289-302, Springer, Berlin.

э