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1. Four problems on random shifts

1. Extra head problem

Consider a two-sided sequence of independent and fair coin
tosses. Find a coin that landed heads so that the other coin
tosses (centered around the picked one) are still independent
and fair.

2. Marriage of Lebesgue and Poisson

Let η be a stationary Poisson process in Rd . Find a point T of η
such that

θTη
d
= η + δ0.
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3. Poisson matching

Let η and ξ be two independent stationary Poisson processes
with equal intensity. Find a point T of ξ such that

θT (η + δ0, ξ)
d
= (η, ξ + δ0)

4. Unbiased embedding of Brownian excursions

Let B = (Bt )t∈R be a two-sided standard Brownian motion. Let
A be a property of an excursion with positive and finite Itô
measure. Find a random time T with BT = 0 such that the
shifted process B = (BT +t )t∈R splits into three independent
pieces: a time reversed Brownian motion on (−∞,0], an
excursion distributed according to the conditional Itô law (given
A) and a Brownian motion starting after this excursion.
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2. Invariant transports of random measures

Setting

(Ω,F ,P) is a σ-finite measure space.

Definition

A random measure on R is a random element in the space of
all locally finite measures on R equipped with the Kolmogorov
product σ-field.
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Setting

We consider mappings θs : Ω→ Ω, s ∈ R, satisfying θ0 = idΩ

and the flow property

θs ◦ θt = θs+t , s, t ∈ R.

The mapping (ω, s) 7→ θsω is supposed to be measurable. We
assume that P is stationary, that is

P ◦ θs = P, s ∈ R.

Definition

A random measure ξ is invariant if the following holds for P-a.e.
ω ∈ Ω:

ξ(θsω,B − s) = ξ(ω,B), s ∈ R,B ∈ B.
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Definition

Let ξ be an invariant random measure on R. The measure

Pξ(A) :=

∫∫
1{θsω ∈ A, s ∈ B} ξ(ω,ds)P(dω), A ∈ F ,

is called the Palm measure of ξ (with respect to P), where
B ∈ B satisfies λ1(B) = 1.

Theorem (Refined Campbell theorem)

Let ξ be an invariant random measure on R. Then

EP

∫
f (θs, s) ξ(ds) = EPξ

∫
f (θ0, s) ds

for all measurable f : Ω× R→ [0,∞).
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Definition

An allocation is a measurable mapping τ : Ω× R→ R that is
equivariant in the sense that

τ(θtω, s − t) = τ(ω, s)− t , s, t ∈ R,P-a.e. ω ∈ Ω.

Theorem (L. and Thorisson ’09)

Let ξ and η be two invariant random measures with positive and
finite intensities. Let τ be an allocation and define T := τ(·,0).
Then

Pξ(θT ∈ ·) = Pη

iff τ is balancing ξ and η, that is∫
1{τ(s) ∈ ·}ξ(ds) = η P-a.e.
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3. Local time of Brownian motion

Setting

B = (Bt )t∈R is a two-sided standard Brownian motion with
B0 = 0, defined on its canonical probability space (Ω,F ,P0).

Definition

For t ∈ R the shift θt : Ω→ Ω is given by

(θtω)s := ωt+s, s ∈ R.

For x ∈ R let

Px := P0(B + x ∈ ·), x ∈ R,

where B is the identity on Ω.
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Definition

The local time measure `x at x ∈ R can be defined by

`x (C) := lim
h→0

1
h

∫
1{s ∈ C, x ≤ Bs ≤ x + h}ds.

Hence ∫
f (Bs, s)ds =

∫∫
f (x , s)`x (ds)dx P0-a.s.

for all measurable f : R2 → [0,∞).
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Remark

It is a possible to choose a perfect version of local times, that is
a (measurable) kernel satisfying for all x ∈ R and Px -a.e. that `x

is diffuse and

`x (θtω,C − t) = `x (ω,C), C ∈ B, t ∈ R, Px -a.e. ω ∈ Ω,

`x (ω, ·) = `0(θxω, ·), ω ∈ Ω, x ∈ R,
supp `x (ω) = {t ∈ R : Bt = x}, ω ∈ Ω, x ∈ R.
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Definition

Let

P :=

∫
Pxdx

be the distribution of a Brownian motion with a ”uniformly
distributed“ starting value.

Remark

Stationary increments of B imply that P is stationary, that is

P = P ◦ θs, s ∈ R.
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Theorem (Geman and and Horowitz ’73)

The Palm (probability) measure of the local time `x is Px .

Definition

Let ν be a probability measure on R. Define

Pν :=

∫
Pxν(dx), `ν :=

∫
`xν(dx).

Corollary

Pν is the Palm probability measure of `ν .
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Theorem (L., Mörters and Thorisson ’14)

Let ν be a probability measure on R with ν{0} = 0 and let

T := inf{t > 0 : `0[0, t ] = `ν [0, t ]}.

Then the process (BT +t )t∈R has distribution Pν . (In particular
BT has distribution ν.)

Remark

The above stopping time above was introduced in Bertoin and
Le Jan (1992) as a solution of the Skorokhod embedding
problem.
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5. Embedding excursions

Definition

Let
Rt := inf{s > t : Bs = 0} − t

denote the return time to 0 and consider the random measure

N :=
∑

s:Rs− 6=Rs

δs.

For N{s} > 0 let the excursion εs starting at s given by

εs(t) :=

{
Bs+t , if 0 ≤ t ≤ Rs,

0, if t > Rs.
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Definition

The measure ν I on the space E of all excursions (space of all
continuous functions starting and ending in 0 with a positive
finite lifetime) is implicitly defined by

E
∫

1{(s, εs) ∈ ·}N(ds) =

∫∫
1{(s,e) ∈ ·}ds ν I(de),

is Itô’s excursion law (suitably normalized); see Pitman ’87.
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Problem 4

Let A ⊂ E be a measurable set such that 0 < ν I(A) <∞. Find
a random time T such that P0(|T | <∞) = 1 and

P0(θT B ∈ ·) = P− � ν I(·|A)� P+,

where P− (resp. P+) is the distribution of (Bt )t≤0 (resp. (Bt )t≥0)
and � stands for independent concatenation.
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Theorem

Let
SA := inf{t > 0 : t ∈ N, εt ∈ A}.

Then P0(εSA ∈ ·) = ν(· | A). However, (θSAB)− is not a time
reversed Brownian motion.

Proof of the second fact:

By excursion theory `0[0,SA] has an exponential
distribution with rate ν(A).
The same applies to `0[S′A,0], where

S′A := sup{t < 0 : t ∈ N, εt ∈ A}.

Hence S′A(θSAB) has a Gamma distribution with shape
parameter 2.
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Theorem (L., Tang and Thorisson ’16)

Let A ⊂ E be a measurable set such that 0 < ν I(A) <∞ and
define

NA(C) :=
1

ν I(A)

∫
1{s ∈ C, εs ∈ A}N(ds), C ∈ B(R).

Then

T := inf{t > 0 : `0[0, t ] ≤ NA[0, t ]}

solves Problem 4.
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6. Ingredients of the proof

Theorem (L., Mörters and Thorisson ’14; L., Tang and
Thorisson ’16)

Let ξ and η be jointly stationary orthogonal random measures
on R with finite and equal intensities. Assume that ξ is diffuse.
Then the mapping τ : Ω× R→ R, defined by

τ(s) := inf{t > s : ξ[s, t ] ≤ η[s, t ]}, s ∈ R,

is an allocation balancing ξ and η.
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Theorem (Excursion Theory)

Let

τs := inf{t ≥ 0 : `0t > s}, s ≥ 0,

be the right-continuous generalized inverse of `0. Then

Φ :=
∑

s>0:τs−<τs

δ(s,ετs− )

is a Poisson process on (0,∞)× E under P0 with intensity
measure λ+ ⊗ ν I .

Theorem (Pitman ’87, L., Tang and Thorisson ’16)

Let A ⊂ E be such that 0 < ν I(A) <∞. The Palm measure of
NA is given by P− � ν I(·|A)� P+.
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