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Introduction

Let &,&o,... bei.i.d. random variables with mean zero and finite
variance 02 := E£$ > 0. Put Sp := 0. Denote Sy := Z & k=1,2,.

=1
We define the sojourn time for a trajectory of the random walk
{S1,...,S,} above a level xg(-) as the random variable

= " I{Sk > xg(k/n)},
k=1

where /(-) is the indicator of an event, x = x(n) — o0 as n — o
characterizes the speed of the boundary moving, and a bounded positive
function g(t), t € (0, 1], determines the configuration of the curvilinear
boundary in dependence on time.
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The mean sojourn time asymptotics

First, we study the asymptotic behavior of the mean

E7,(xg) ZP{Sk > xg(k/n)}

as n — oo.
Introduce the function

G(t) :=g?(t)/t, t€(0,1].

We put G(t) := g?(1)/t for all t on a right semi-neighborhood of the
point t = 1. Suppose that there exists a point ty € (0,1] in which the
function G(+) attains its minimum and the following four conditions hold:
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The mean sojourn time asymptotics

1) For some 0 < r < g(tp),

2

G(t) > max{co(t)7 rt} for all t € (0,1],

where a positive function ¢(t) decreases on (0, ty) and increases on

(to, 1], and Co(to) = G(fo);

2) The function G(t) is m;-times continuously differentiable on a left
semi-neighborhood of the point tg, and is my-times differentiable on a
right semi-neighborhood of ty; here m; and my are the respective orders
of the left and right first nonzero derivatives of G(t) at the point t = to;
3) x/v/n — o0 and x/n'~7m — 0 as n — oo, where

1—-1/m
Ym ‘= /

=3"2/m’ m := max{my, my};

4) EeMél < 0o for some A > 0.
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The mean sojourn time asymptotics

Theorem 1. Under the conditions 1—4, and n — oo,

2mY ™./t
ETn(Xg) ~ M(Ga to, my, mZ)M

V2rg(to)
y <;ﬂ)1+2/mr(m;:1> exp {—ntoA(ﬁ:’;(;;)) }, (1)

x
vn
A(z) is the deviation function (Cramér's function) of the random variable
&, e,

where

o0
Bn = , T(2) ::/ vy leVdy, z>0,
0

N(z) :=sup {tz — log )¢, (t)} >0, where v (t) := Ee'™

(here log(o0) = o0 and ¢ — 0o = —oo by definition),
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The mean sojourn time asymptotics

M(Ga th my, m2) =

1
‘ (m) ‘l/ml if th € (O, ].) and my>my,
Gm)(t—0)
‘ (my) - ‘1/m2 if th € (O, 1) and my<my,
G(m)(t+0)
1 1
T if to €(0,1) and my=m,
‘G(m1)(t0_0)‘1/m1 ’G(mQ)(to+0)’1/mz
! if to=1
1/m T to=1.
|G(m)(1-0)|

If m > 2 then the argument of the exponential function in (1) can be
replaced with the following expression:

_ Bg*(t) | E&IBr8%(to)
2ty02 6t20%/n
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The mean sojourn time asymptotics

The particular case g(-) = 1 of Theorem 1, which is included in the case
to =1 and m =1, proved by Lotov and Tarasenko (2015).

Theorem 1 considered the case where the graph of the function g(t)
touched the rotated parabola at one point (or at a finite number of
points) of the semi-open interval (0, 1]. The following theorem considers
the case in which, on a nondegenerate subinterval within (0, 1], the
function g(t) coincides with the rotated parabola or, in other words, the
function G(t) is identically equal to its minimum value on some
nondegenerate interval [t, t2] C (0, 1].

We assume that the following conditions similar to conditions 1 and 2 of
Theorem 1, are satisfied:
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The mean sojourn time asymptotics

1’) There exists a positive r < g(t;) such that

G(t) > max {co(t)7 rtz} for all t € (0,1],

where a positive function ¢(t) decreases on [0, t;) and increases on
(t2,1], and cp(t) = G(ty) for all t € [ty to];

2') The function G(t) is m;-times continuously differentiable in a left
semi-neighborhood of the point t; and is my-times continuously
differentiable in a right semi-neighborhood of the point t,; here m; and
my are the orders of the first nonzero left and right derivatives of the
function G(t) at the points t; and t,, respectively.
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The mean sojourn time asymptotics

To formulate Theorem 2 we introduce the following notation:

No(2) == N(z) — 2% /202

Notice that z2/202 is the first term of the Cramér series, i.e., the first
nonzero term of the Taylor expansion of the deviation function A(z) in a
neighborhood of zero.
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The mean sojourn time asymptotics

Theorem 2. Under the conditions 1/, 2/, 3, and 4,

n20\/t x2g%(t1)
Ern(xg) ~ —————expq ———=> ¢ Jo(t1, t2),
(g) \/EXg(tl) { 2nt102 } (1 2)

as n — oo, where

In(t1, t2) := /: exp {—nt/\o (ig\—/(;iz)} dt.

In case m> 2,

[%] 3 t 3E 3
In(t1, ) ~ / exp {g(;kgl} dt,
t 600t “n?\/t
in particular,

. 3
th — t1, |fE§f:Oor§—2%O,

12r°t}o® g (t)EE} . 3 3

In(ts, t2) ~ X3g3(t11)55§ exp{ 6n2(t%<)76 Lt, ifE§ >0 and %5 — oo,
12n°50° e’ (n)EE H 3 X3

3¢5 () [EE| eXp{ omios f+ TEEG <0 and % — oo
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The tail distribution asymptotics

Next we assume that g(t) =1, i.e. we consider the case when the
moving boundary is straight-line. Our goal is to study the asymptotic
behavior, as n — oo, of the distribution tail of the normed random
variable 7,(x)/n, i.e, of the probability

P{ra(x)/n =y} = P{7a(x) > ny}

for any fixed y € (0, 1) in the case where x = x(n) tends to infinity in the
moderate large deviations range.
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The tail distribution asymptotics

We assume the following moment restrictions on &; as well as on the
moving speed of x: For some A > 0 and r € [1,2], it is fulfilled:

1) EeMél < 00 and E{e?i/(& > 0)} < oo;

2) = 2= o0, x= o(min{n+V/(+2) (n/log n)¥/*}).

It is easy to see that condition 1 for r = 1 coincides with Cramér's

condition and, in this case, the range of deviations has the order
x = o(n?/3).
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The tail distribution asymptotics

Theorem 3. Under conditions 1 and 2, for any fixed y € (0,1) and
n — oo, the following asymptotic relation is valid-

Pira(e) 2 ) ~ 20 o [onyn (o)

in case r = 1, the argument of the exponential function in (1) can be
replaced with —x?/(202n(1 — y)), and in case r € (1,2], with
x2 n x3EE
202n(1 —y) = 60%n2(1 —y)?’
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Geometrical and Exponential cases

We consider two special cases of distribution of &;:
(): The one-sided exponential distribution

P{¢ € dt} = pae ™, t >0,

where p > 0, > 0. Here another component of the distribution (on the
non-positive real line) can be arbitrary at that satisfying Cramér's
condition.

(I1): The one-sided generalized geometric distribution

P{¢&1 =k} =ap"!, keN,

where p > 0, > 0 under the agreement 0° = 1. Here another
component of the distribution must be arithmetic satisfying Cramér's
condition. Notice that, in case p = 0, we deal with an upper
semicontinuous random walk.

The condition E¢; = 0 still has to be fulfilled.
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Geometrical and Exponential cases

Notice that, for the above-mentioned distributions, condition 1 is not
fulfilled for r > 1. In this case, the phenomenon of “memorylessness” is
well known, in which the distribution of overshooting an arbitrary level of
a random walk coincides with the distribution of &;. This remarkable
property allows us to improve the result of Theorem 3 in this special case
replacing condition 2 with the following:

2') % =00, x= o((n/log n)3/4).

Theorem 4. Let & have a distribution from Classes (1) or (1I). Then
under conditions 1 and 2', for any fixed y € (0,1) and n — oo, the
following asymptotic relation is valid-:

P{rs(x) > ny} ~ ij =P {‘"(1 —on (ux—y)) } '
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Simple random walk

Now we consider another special case called a simple symmetric random
walk, i.e., if & = £1 with probabilities 1/2. We proved that, in this
special case, the asymptotic relation (2) is valid in the whole moderate
large deviations range xn—/2 — 0o and x = o(n).

Theorem 5. For a simple symmetric random walk and all sequences

x = x(n) satisfying the conditions = — oo and % — 0 as n — oo, the
following asymptotic relation is valid for any fixed y € (0,1):

P{ra(x) = myy ~ 20 {0 (55}

where

1 1-—
ANz) = Zlog(l42)+ 22

5 log(1—2), |z] <1.
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