Asymptotic analysis of the distribution of the sojourn time for a random walk above a receding boundary

Borisov I.S., Shefer E.I.

August 26, 2020

Introduction

Let ξ_{1}, ξ_{2}, \ldots be i.i.d. random variables with mean zero and finite variance $\sigma^{2}:=\mathbf{E} \xi_{1}^{2}>0$. Put $S_{0}:=0$. Denote $S_{k}:=\sum_{i=1}^{k} \xi_{i}, k=1,2, \ldots, n$.
We define the sojourn time for a trajectory of the random walk $\left\{S_{1}, \ldots, S_{n}\right\}$ above a level $\operatorname{xg}(\cdot)$ as the random variable

$$
\tau_{n}(x g):=\sum_{k=1}^{n} I\left\{S_{k} \geq x g(k / n)\right\}
$$

where $I(\cdot)$ is the indicator of an event, $x \equiv x(n) \rightarrow \infty$ as $n \rightarrow \infty$ characterizes the speed of the boundary moving, and a bounded positive function $g(t), t \in(0,1]$, determines the configuration of the curvilinear boundary in dependence on time.

The mean sojourn time asymptotics

First, we study the asymptotic behavior of the mean

$$
\mathbf{E} \tau_{n}(x g)=\sum_{k=1}^{n} \mathbf{P}\left\{S_{k}>x g(k / n)\right\}
$$

as $n \rightarrow \infty$.
Introduce the function

$$
G(t):=g^{2}(t) / t, \quad t \in(0,1] .
$$

We put $G(t):=g^{2}(1) / t$ for all t on a right semi-neighborhood of the point $t=1$. Suppose that there exists a point $t_{0} \in(0,1]$ in which the function $G(\cdot)$ attains its minimum and the following four conditions hold:

1) For some $0<r \leq g\left(t_{0}\right)$,

$$
G(t) \geq \max \left\{c_{0}(t), \frac{r^{2}}{t}\right\} \text { for all } t \in(0,1]
$$

where a positive function $c_{0}(t)$ decreases on $\left(0, t_{0}\right)$ and increases on $\left(t_{0}, 1\right]$, and $c_{0}\left(t_{0}\right)=G\left(t_{0}\right)$;
2) The function $G(t)$ is m_{1}-times continuously differentiable on a left semi-neighborhood of the point t_{0}, and is m_{2}-times differentiable on a right semi-neighborhood of t_{0}; here m_{1} and m_{2} are the respective orders of the left and right first nonzero derivatives of $G(t)$ at the point $t=t_{0}$; 3) $x / \sqrt{n} \rightarrow \infty$ and $x / n^{1-\gamma_{m}} \rightarrow 0$ as $n \rightarrow \infty$, where

$$
\gamma_{m}:=\frac{1-1 / m}{3-2 / m}, \quad m:=\max \left\{m_{1}, m_{2}\right\}
$$

4) $E e^{\lambda\left|\xi_{1}\right|}<\infty$ for some $\lambda>0$.

The mean sojourn time asymptotics

Theorem 1. Under the conditions 1-4, and $n \rightarrow \infty$,

$$
\begin{gather*}
\mathbf{E} \tau_{n}(x g) \sim M\left(G, t_{0}, m_{1}, m_{2}\right) \frac{n(2 m!)^{1 / m} \sqrt{t_{0}}}{\sqrt{2 \pi} g\left(t_{0}\right)} \\
\times\left(\frac{\sigma}{\beta_{n}}\right)^{1+2 / m} \Gamma\left(\frac{m+1}{m}\right) \exp \left\{-n t_{0} \Lambda\left(\frac{\beta_{n} g\left(t_{0}\right)}{\sqrt{n} t_{0}}\right)\right\}, \tag{1}
\end{gather*}
$$

where

$$
\beta_{n}:=\frac{x}{\sqrt{n}}, \quad \Gamma(z):=\int_{0}^{\infty} y^{z-1} e^{-y} d y, \quad z>0,
$$

$\Lambda(z)$ is the deviation function (Cramér's function) of the random variable ξ_{1}, i.e.,

$$
\Lambda(z):=\sup _{t}\left\{t z-\log \psi_{\xi_{1}}(t)\right\} \geq 0, \text { where } \psi_{\xi_{1}}(t):=\mathbf{E} e^{t \xi_{1}}
$$

(here $\log (\infty)=\infty$ and $c-\infty=-\infty$ by definition),

$$
\begin{aligned}
& M\left(G, t_{0}, m_{1}, m_{2}\right):= \\
& \int \frac{1}{\left|G^{\left(m_{1}\right)}\left(t_{0}-0\right)\right|^{1 / m_{1}}} 1 \begin{array}{l}
1
\end{array} \\
& \left\{\begin{array}{l}
\frac{1}{\left|G^{\left(m_{2}\right)}\left(t_{0}+0\right)\right|^{1 / m_{2}}} \\
\frac{1}{\left|G^{\left(m_{1}\right)}\left(t_{0}-0\right)\right|^{1 / m_{1}}}+\frac{1}{\left|G^{\left(m_{2}\right)}\left(t_{0}+0\right)\right|^{1 / m_{2}}} \\
\frac{1}{\left|G^{\left(m_{1}\right)}(1-0)\right|^{1 / m_{1}}}
\end{array}\right. \\
& \text { if } t_{0} \in(0,1) \text { and } m_{1}>m_{2}, \\
& \text { if } t_{0} \in(0,1) \text { and } m_{1}<m_{2} \text {, } \\
& \text { if } t_{0} \in(0,1) \text { and } m_{1}=m_{2} \text {, } \\
& \text { if } t_{0}=1 \text {. }
\end{aligned}
$$

If $m \geq 2$ then the argument of the exponential function in (1) can be replaced with the following expression:

$$
-\frac{\beta_{n}^{2} g^{2}\left(t_{0}\right)}{2 t_{0} \sigma^{2}}+\frac{\mathbf{E} \xi_{1}^{3} \beta_{n}^{3} g^{3}\left(t_{0}\right)}{6 t_{0}^{2} \sigma^{6} \sqrt{n}} .
$$

The particular case $g(\cdot) \equiv 1$ of Theorem 1 , which is included in the case $t_{0}=1$ and $m=1$, proved by Lotov and Tarasenko (2015).
Theorem 1 considered the case where the graph of the function $g(t)$ touched the rotated parabola at one point (or at a finite number of points) of the semi-open interval $(0,1]$. The following theorem considers the case in which, on a nondegenerate subinterval within $(0,1]$, the function $g(t)$ coincides with the rotated parabola or, in other words, the function $G(t)$ is identically equal to its minimum value on some nondegenerate interval $\left[t_{1}, t_{2}\right] \subset(0,1]$.
We assume that the following conditions similar to conditions 1 and 2 of Theorem 1, are satisfied:
1^{\prime}) There exists a positive $r \leq g\left(t_{1}\right)$ such that

$$
G(t) \geq \max \left\{c_{0}(t), \frac{r^{2}}{t}\right\} \text { for all } t \in(0,1]
$$

where a positive function $c_{0}(t)$ decreases on $\left[0, t_{1}\right)$ and increases on $\left(t_{2}, 1\right]$, and $c_{0}(t)=G\left(t_{1}\right)$ for all $t \in\left[t_{1}, t_{2}\right]$;
2^{\prime}) The function $G(t)$ is m_{1}-times continuously differentiable in a left semi-neighborhood of the point t_{1} and is m_{2}-times continuously differentiable in a right semi-neighborhood of the point t_{2}; here m_{1} and m_{2} are the orders of the first nonzero left and right derivatives of the function $G(t)$ at the points t_{1} and t_{2}, respectively.

To formulate Theorem 2 we introduce the following notation:

$$
\Lambda_{0}(z):=\Lambda(z)-z^{2} / 2 \sigma^{2} .
$$

Notice that $z^{2} / 2 \sigma^{2}$ is the first term of the Cramér series, i.e., the first nonzero term of the Taylor expansion of the deviation function $\Lambda(z)$ in a neighborhood of zero.

Theorem 2. Under the conditions $1^{\prime}, 2^{\prime}, 3$, and 4 ,

$$
\mathbf{E} \tau_{n}(x g) \sim \frac{n^{3 / 2} \sigma \sqrt{t_{1}}}{\sqrt{2 \pi} \times g\left(t_{1}\right)} \exp \left\{-\frac{x^{2} g^{2}\left(t_{1}\right)}{2 n t_{1} \sigma^{2}}\right\} J_{n}\left(t_{1}, t_{2}\right)
$$

as $n \rightarrow \infty$, where

$$
J_{n}\left(t_{1}, t_{2}\right):=\int_{t_{1}}^{t_{2}} \exp \left\{-n t \Lambda_{0}\left(\frac{x g\left(t_{1}\right)}{n \sqrt{t_{1}} t}\right)\right\} d t
$$

In case $m \geq 2$,

$$
J_{n}\left(t_{1}, t_{2}\right) \sim \int_{t_{1}}^{t_{2}} \exp \left\{\frac{g^{3}\left(t_{1}\right) x^{3} \mathbf{E} \xi_{1}^{3}}{6 \sigma^{6} t_{1}^{3 / 2} n^{2} \sqrt{t}}\right\} d t
$$

in particular,

$$
J_{n}\left(t_{1}, t_{2}\right) \sim \begin{cases}t_{2}-t_{1}, & \text { if } \mathbf{E} \xi_{1}^{3}=0 \text { or } \frac{x^{3}}{n^{2}} \rightarrow 0, \\ \frac{\left.12 n^{2}\right)_{1}^{3} \sigma^{6}}{x^{3} 3^{3}\left(t_{1}\right) \in \xi_{1}^{3}} \exp \left\{\frac{x^{3} g^{3}\left(t_{1}\right) E \xi_{1}^{3}}{6 n_{1}^{2} t_{1}^{2} \sigma_{1}^{6}}\right\}, & \text { if } \mathbf{E} \xi_{1}^{3}>0 \text { and } \frac{x^{3}}{n^{2}} \rightarrow \infty, \\ \frac{12 n^{2} t^{3} \sigma^{6}}{x^{3} g^{3}\left(t_{2}\right) \mid E \xi_{1}^{3}} \exp \left\{\frac{x^{3} g^{3}\left(t_{2}\right) E \xi_{1}^{3}}{6 n^{2} t_{2}^{2} \sigma^{6}}\right\}, & \text { if } \mathbf{E} \xi_{1}^{3}<0 \text { and } \frac{x^{3}}{n^{2}} \rightarrow \infty .\end{cases}
$$

The tail distribution asymptotics

Next we assume that $g(t) \equiv 1$, i.e. we consider the case when the moving boundary is straight-line. Our goal is to study the asymptotic behavior, as $n \rightarrow \infty$, of the distribution tail of the normed random variable $\tau_{n}(x) / n$, i.e, of the probability

$$
\mathbf{P}\left\{\tau_{n}(x) / n \geq y\right\}=\mathbf{P}\left\{\tau_{n}(x) \geq n y\right\}
$$

for any fixed $y \in(0,1)$ in the case where $x \equiv x(n)$ tends to infinity in the moderate large deviations range.

The tail distribution asymptotics

We assume the following moment restrictions on ξ_{1} as well as on the moving speed of x : For some $\lambda>0$ and $r \in[1,2]$, it is fulfilled:

1) $\mathbf{E} e^{\lambda\left|\xi_{1}\right|}<\infty$ and $\mathbf{E}\left\{e^{\lambda \xi_{1}^{t}} l\left(\xi_{1} \geq 0\right)\right\}<\infty$;
2) $\frac{x}{\sqrt{n}} \rightarrow \infty, x=o\left(\min \left\{n^{(r+1) /(r+2)},(n / \log n)^{3 / 4}\right\}\right)$.

It is easy to see that condition 1 for $r=1$ coincides with Cramér's condition and, in this case, the range of deviations has the order $x=o\left(n^{2 / 3}\right)$.

Theorem 3. Under conditions 1 and 2 , for any fixed $y \in(0,1)$ and $n \rightarrow \infty$, the following asymptotic relation is valid:

$$
\begin{equation*}
\mathbf{P}\left\{\tau_{n}(x) \geq n y\right\} \sim \frac{2(1-y)^{3 / 2}}{\pi \sqrt{y}} \frac{n \sigma^{2}}{x^{2}} \exp \left\{-n(1-y) \wedge\left(\frac{x}{n(1-y)}\right)\right\} ; \tag{2}
\end{equation*}
$$

in case $r=1$, the argument of the exponential function in (1) can be replaced with $-x^{2} /\left(2 \sigma^{2} n(1-y)\right)$, and in case $r \in(1,2]$, with

$$
-\frac{x^{2}}{2 \sigma^{2} n(1-y)}+\frac{x^{3} \mathbf{E} \xi_{1}^{3}}{6 \sigma^{6} n^{2}(1-y)^{2}}
$$

Geometrical and Exponential cases

We consider two special cases of distribution of ξ_{1} :
(I): The one-sided exponential distribution

$$
\mathbf{P}\left\{\xi_{1} \in d t\right\}=p \alpha e^{-\alpha t}, t>0,
$$

where $p>0, \alpha>0$. Here another component of the distribution (on the non-positive real line) can be arbitrary at that satisfying Cramér's condition.
(II): The one-sided generalized geometric distribution

$$
\mathbf{P}\left\{\xi_{1}=k\right\}=\alpha p^{k-1}, k \in \mathbb{N}
$$

where $p \geq 0, \alpha>0$ under the agreement $0^{0}=1$. Here another component of the distribution must be arithmetic satisfying Cramér's condition. Notice that, in case $p=0$, we deal with an upper semicontinuous random walk.
The condition $\mathbf{E} \xi_{1}=0$ still has to be fulfilled.

Geometrical and Exponential cases

Notice that, for the above-mentioned distributions, condition 1 is not fulfilled for $r>1$. In this case, the phenomenon of "memorylessness" is well known, in which the distribution of overshooting an arbitrary level of a random walk coincides with the distribution of ξ_{1}. This remarkable property allows us to improve the result of Theorem 3 in this special case replacing condition 2 with the following:
$\left.2^{\prime}\right) \frac{x}{\sqrt{n}} \rightarrow \infty, x=o\left((n / \log n)^{3 / 4}\right)$.
Theorem 4. Let ξ_{1} have a distribution from Classes (I) or (II). Then under conditions 1 and 2^{\prime}, for any fixed $y \in(0,1)$ and $n \rightarrow \infty$, the following asymptotic relation is valid:

$$
\mathbf{P}\left\{\tau_{n}(x) \geq n y\right\} \sim \frac{2(1-y)^{3 / 2}}{\pi \sqrt{y}} \frac{n \sigma^{2}}{x^{2}} \exp \left\{-n(1-y) \wedge\left(\frac{x}{n(1-y)}\right)\right\} .
$$

Simple random walk

Now we consider another special case called a simple symmetric random walk, i.e., if $\xi_{1}= \pm 1$ with probabilities $1 / 2$. We proved that, in this special case, the asymptotic relation (2) is valid in the whole moderate large deviations range $x n^{-1 / 2} \rightarrow \infty$ and $x=o(n)$.
Theorem 5. For a simple symmetric random walk and all sequences $x \equiv x(n)$ satisfying the conditions $\frac{x}{\sqrt{n}} \rightarrow \infty$ and $\frac{x}{n} \rightarrow 0$ as $n \rightarrow \infty$, the following asymptotic relation is valid for any fixed $y \in(0,1)$:

$$
\mathbf{P}\left\{\tau_{n}(x) \geq n y\right\} \sim \frac{2(1-y)^{3 / 2}}{\pi \sqrt{y}} \frac{n}{x^{2}} \exp \left\{-n(1-y) \wedge\left(\frac{x}{n(1-y)}\right)\right\}
$$

where

$$
\Lambda(z)=\frac{1+z}{2} \log (1+z)+\frac{1-z}{2} \log (1-z), \quad|z|<1 .
$$

[1] I. S. Borisov and E. I. Shefer, "The asymptotic behavior of the mean sojourn time for a random walk above a receding curvilinear boundary," Sib. Zh. Chist. i Prikl. Matem. 17(4), (2017). [J. Math. Sci. 237, (2019)].
[2] I. S. Borisov and E. I. Shefer, "Asymptotic behavior of the mean sojourn time for a random walk in a domain of large deviations," Mat. Trudy 22 (2), (2019) [Siberian Adv. Math. 30, (2020)].
[3] I. S. Borisov and E. I. Shefer, "Asymptotics of the distribution tail of the sojourn time for a random walk in a domain of moderate large deviations," Mat. Trudy 23 (2), (2020) [Siberian Adv. Math. 30, (2020)]. [4] V. I. Lotov and A. S. Tarasenko, "On the asymptotics of the mean sojourn time of a random walk on a semi-axis," Izvestiya: Mathematics 79 (3), (2015).

