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Introduction

Let ξ1, ξ2, . . . be i.i.d. random variables with mean zero and finite

variance σ2 := Eξ21 > 0. Put S0 := 0. Denote Sk :=
k∑

i=1

ξi , k = 1, 2, ..., n.

We define the sojourn time for a trajectory of the random walk
{S1, . . . ,Sn} above a level xg(·) as the random variable

τn(xg) :=
n∑

k=1

I{Sk ≥ xg(k/n)},

where I (·) is the indicator of an event, x ≡ x(n)→∞ as n→∞
characterizes the speed of the boundary moving, and a bounded positive
function g(t), t ∈ (0, 1], determines the configuration of the curvilinear
boundary in dependence on time.
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The mean sojourn time asymptotics

First, we study the asymptotic behavior of the mean

Eτn(xg) =
n∑

k=1

P
{
Sk > xg(k/n)

}
as n→∞.
Introduce the function

G (t) := g2(t)/t, t ∈ (0, 1].

We put G (t) := g2(1)/t for all t on a right semi-neighborhood of the
point t = 1. Suppose that there exists a point t0 ∈ (0, 1] in which the
function G (·) attains its minimum and the following four conditions hold:
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The mean sojourn time asymptotics

1) For some 0 < r ≤ g(t0),

G (t) ≥ max

{
c0(t),

r2

t

}
for all t ∈ (0, 1],

where a positive function c0(t) decreases on (0, t0) and increases on
(t0, 1], and c0(t0) = G (t0);
2) The function G (t) is m1-times continuously differentiable on a left
semi-neighborhood of the point t0, and is m2-times differentiable on a
right semi-neighborhood of t0; here m1 and m2 are the respective orders
of the left and right first nonzero derivatives of G (t) at the point t = t0;
3) x/

√
n→∞ and x/n1−γm → 0 as n→∞, where

γm :=
1− 1/m

3− 2/m
, m := max{m1,m2};

4) Eeλ|ξ1| <∞ for some λ > 0.
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The mean sojourn time asymptotics

Theorem 1. Under the conditions 1—4, and n→∞,

Eτn(xg) ∼ M(G , t0,m1,m2)
n(2m!)1/m

√
t0√

2πg(t0)

×
(
σ

βn

)1+2/m

Γ

(
m + 1

m

)
exp

{
−nt0Λ

(
βng(t0)√

nt0

)}
, (1)

where

βn :=
x√
n
, Γ(z) :=

∫ ∞
0

y z−1e−y dy , z > 0,

Λ(z) is the deviation function (Cramér’s function) of the random variable
ξ1, i.e.,

Λ(z) := sup
t

{
tz − logψξ1(t)

}
≥ 0, where ψξ1(t) := Eetξ1

(here log(∞) =∞ and c −∞ = −∞ by definition),
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The mean sojourn time asymptotics

M(G , t0,m1,m2) :=

1∣∣G (m1)(t0−0)
∣∣1/m1

if t0 ∈ (0, 1) and m1>m2,

1∣∣G (m2)(t0+0)
∣∣1/m2

if t0 ∈ (0, 1) and m1<m2,

1∣∣G (m1)(t0−0)
∣∣1/m1

+
1∣∣G (m2)(t0+0)

∣∣1/m2
if t0 ∈ (0, 1) and m1=m2,

1∣∣G (m1)(1−0)
∣∣1/m1

if t0=1.

If m ≥ 2 then the argument of the exponential function in (1) can be
replaced with the following expression:

−β
2
ng

2(t0)

2t0σ2
+

Eξ31β
3
ng

3(t0)

6t20σ
6
√
n

.
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The mean sojourn time asymptotics

The particular case g(·) ≡ 1 of Theorem 1, which is included in the case
t0 = 1 and m = 1, proved by Lotov and Tarasenko (2015).
Theorem 1 considered the case where the graph of the function g(t)
touched the rotated parabola at one point (or at a finite number of
points) of the semi-open interval (0, 1]. The following theorem considers
the case in which, on a nondegenerate subinterval within (0, 1], the
function g(t) coincides with the rotated parabola or, in other words, the
function G (t) is identically equal to its minimum value on some
nondegenerate interval [t1, t2] ⊂ (0, 1].
We assume that the following conditions similar to conditions 1 and 2 of
Theorem 1, are satisfied:
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The mean sojourn time asymptotics

1′) There exists a positive r ≤ g(t1) such that

G (t) ≥ max

{
c0(t),

r2

t

}
for all t ∈ (0, 1],

where a positive function c0(t) decreases on [0, t1) and increases on
(t2, 1], and c0(t) = G (t1) for all t ∈ [t1, t2];
2′) The function G (t) is m1-times continuously differentiable in a left
semi-neighborhood of the point t1 and is m2-times continuously
differentiable in a right semi-neighborhood of the point t2; here m1 and
m2 are the orders of the first nonzero left and right derivatives of the
function G (t) at the points t1 and t2, respectively.
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The mean sojourn time asymptotics

To formulate Theorem 2 we introduce the following notation:

Λ0(z) := Λ(z)− z2/2σ2.

Notice that z2/2σ2 is the first term of the Cramér series, i.e., the first
nonzero term of the Taylor expansion of the deviation function Λ(z) in a
neighborhood of zero.
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The mean sojourn time asymptotics

Theorem 2. Under the conditions 1′, 2′, 3, and 4,

Eτn(xg) ∼ n3/2σ
√
t1√

2πxg(t1)
exp

{
−x2g2(t1)

2nt1σ2

}
Jn(t1, t2),

as n→∞, where

Jn(t1, t2) :=

∫ t2

t1

exp

{
−ntΛ0

(
xg(t1)

n
√
t1t

)}
dt.

In case m ≥ 2,

Jn(t1, t2) ∼
∫ t2

t1

exp

{
g3(t1)x3Eξ31

6σ6t
3/2
1 n2

√
t

}
dt,

in particular,

Jn(t1, t2) ∼


t2 − t1, if Eξ31 = 0 or x3

n2 → 0,
12n2t31σ

6

x3g3(t1)Eξ31
exp

{
x3g3(t1)Eξ

3
1

6n2t21σ
6

}
, if Eξ31 > 0 and x3

n2 →∞,
12n2t32σ

6

x3g3(t2)|Eξ31 |
exp

{
x3g3(t2)Eξ

3
1

6n2t22σ
6

}
, if Eξ31 < 0 and x3

n2 →∞.
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The tail distribution asymptotics

Next we assume that g(t) ≡ 1, i.e. we consider the case when the
moving boundary is straight-line. Our goal is to study the asymptotic
behavior, as n→∞, of the distribution tail of the normed random
variable τn(x)/n, i.e, of the probability

P{τn(x)/n ≥ y} = P{τn(x) ≥ ny}

for any fixed y ∈ (0, 1) in the case where x ≡ x(n) tends to infinity in the
moderate large deviations range.
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The tail distribution asymptotics

We assume the following moment restrictions on ξ1 as well as on the
moving speed of x : For some λ > 0 and r ∈ [1, 2], it is fulfilled:
1) Eeλ|ξ1| <∞ and E

{
eλξ

r
1 I (ξ1 ≥ 0)

}
<∞;

2) x√
n
→∞, x = o

(
min
{
n(r+1)/(r+2), (n/ log n)3/4

})
.

It is easy to see that condition 1 for r = 1 coincides with Cramér’s
condition and, in this case, the range of deviations has the order
x = o(n2/3).
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The tail distribution asymptotics

Theorem 3. Under conditions 1 and 2, for any fixed y ∈ (0, 1) and
n→∞, the following asymptotic relation is valid:

P{τn(x) ≥ ny} ∼ 2(1− y)3/2

π
√
y

nσ2

x2
exp

{
−n(1− y)Λ

(
x

n(1− y)

)}
;

(2)
in case r = 1, the argument of the exponential function in (1) can be
replaced with −x2/(2σ2n(1− y)), and in case r ∈ (1, 2], with

− x2

2σ2n(1− y)
+

x3Eξ31
6σ6n2(1− y)2

.
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Geometrical and Exponential cases

We consider two special cases of distribution of ξ1:
(I): The one-sided exponential distribution

P{ξ1 ∈ dt} = pαe−αt , t > 0,

where p > 0, α > 0. Here another component of the distribution (on the
non-positive real line) can be arbitrary at that satisfying Cramér’s
condition.
(II): The one-sided generalized geometric distribution

P{ξ1 = k} = αpk−1, k ∈ N,

where p ≥ 0, α > 0 under the agreement 00 = 1. Here another
component of the distribution must be arithmetic satisfying Cramér’s
condition. Notice that, in case p = 0, we deal with an upper
semicontinuous random walk.
The condition Eξ1 = 0 still has to be fulfilled.
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Geometrical and Exponential cases

Notice that, for the above-mentioned distributions, condition 1 is not
fulfilled for r > 1. In this case, the phenomenon of “memorylessness” is
well known, in which the distribution of overshooting an arbitrary level of
a random walk coincides with the distribution of ξ1. This remarkable
property allows us to improve the result of Theorem 3 in this special case
replacing condition 2 with the following:
2’) x√

n
→∞, x = o

(
(n/ log n)3/4

)
.

Theorem 4. Let ξ1 have a distribution from Classes (I) or (II). Then
under conditions 1 and 2′, for any fixed y ∈ (0, 1) and n→∞, the
following asymptotic relation is valid:

P{τn(x) ≥ ny} ∼ 2(1− y)3/2

π
√
y

nσ2

x2
exp

{
−n(1− y)Λ

(
x

n(1− y)

)}
.
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Simple random walk

Now we consider another special case called a simple symmetric random
walk, i.e., if ξ1 = ±1 with probabilities 1/2. We proved that, in this
special case, the asymptotic relation (2) is valid in the whole moderate
large deviations range xn−1/2 →∞ and x = o(n).
Theorem 5. For a simple symmetric random walk and all sequences
x ≡ x(n) satisfying the conditions x√

n
→∞ and x

n → 0 as n→∞, the
following asymptotic relation is valid for any fixed y ∈ (0, 1):

P{τn(x) ≥ ny} ∼ 2(1− y)3/2

π
√
y

n

x2
exp

{
−n(1− y)Λ

(
x

n(1− y)

)}
,

where

Λ(z) =
1 + z

2
log(1 + z) +

1− z

2
log(1− z), |z | < 1.
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