Improvement and analysis of statistical estimators of unknown parameter in one class of power regression problems

Ekaterina Savinkina

Applied Probability Workshop, Novosibirsk

August 27, 2020

Problem statement

Suppose we observe random variables $\left\{Y_{i}\right\}$ represented in a way

$$
\begin{equation*}
Y_{i}=\left(1+\alpha X_{i}\right)^{r}+\varepsilon_{i}, i=1,2, \ldots, \tag{1}
\end{equation*}
$$

where $\left\{X_{i}>0\right\}$ is some known numerical sequence, $r \neq 0$-a known number and $\left\{\varepsilon_{i}\right\}$ - unobservable random errors ${ }^{1}$.
${ }^{1}$ E. N. Savinkina, A. I. Sakhanenko Improvement of statistical estimates in one power regression problem // Siberian Electronic Mathematical Reports. - 2019. - Vol. 16. - 1901-1912.

Problem statement

Suppose we observe random variables $\left\{Y_{i}\right\}$ represented in a way

$$
\begin{equation*}
Y_{i}=\left(1+\alpha X_{i}\right)^{r}+\varepsilon_{i}, i=1,2, \ldots, \tag{1}
\end{equation*}
$$

where $\left\{X_{i}>0\right\}$ is some known numerical sequence, $r \neq 0$-a known number and $\left\{\varepsilon_{i}\right\}$ - unobservable random errors.

Our aim is to estimate an unknown parameter $\alpha>0$ using the first n observations.

Improved estimator

Let α_{n}^{*} be the previously obtained consistent estimate of α. To improve it we propose using

$$
\begin{equation*}
\alpha_{n}^{* *}(c)=\alpha_{n}^{*}-\frac{S_{n, r}^{\prime}\left(\alpha_{n}^{*}\right)}{c S_{n, r}^{\prime \prime}\left(\alpha_{n}^{*}\right)+(1-c) 2 r^{2} E_{n}^{2}\left(\alpha_{n}^{*}\right)}, \tag{2}
\end{equation*}
$$

where c is a constant chosen by the statistician,

$$
S_{n, r}(\alpha)=\sum_{i \leq n}\left(Y_{i}-\left(1+\alpha X_{i}\right)^{r}\right)^{2}
$$

and

$$
E_{n}^{2}(t):=\sum_{i \leq n} \frac{X_{i}^{2}}{\left(1+t X_{i}\right)^{2-2 r}}
$$

Preliminary remarks

Notation:

- $A_{p, n}(t):=\sum_{i \leq n} \frac{X_{i}^{p}}{\left(1+t X_{i}\right)^{p-2 r}}, p>0$
- $\rho_{1, n}:=\left(\alpha_{n}^{*}-\alpha\right)^{2} A_{3, n}(\alpha) / E_{n}(\alpha)$
- $\rho_{2, n}:=\left|\alpha_{n}^{*}-\alpha\right|^{3} A_{4, n}(\alpha) / E_{n}(\alpha)$

Assumption 1

Random errors ε_{i} are i.i.d. with

$$
\mathbb{E} \varepsilon_{1}=0,0<\operatorname{Var}\left(\varepsilon_{1}\right)=\sigma^{2}<\infty
$$

Assumption 2

For all X_{i} holds

$$
\frac{\max _{i \leq n} X_{i}^{2} /\left(1+\alpha X_{i}\right)^{2-2 r}}{E_{n}^{2}(\alpha)} \rightarrow 0
$$

Main results

Theorem 1

Let Assumptions $1 \& 2$ hold. If $\rho_{1, n} \xrightarrow{p} 0$ and α_{n}^{*} is a consistent estimate of α, then for all c the following convergence takes place:

$$
\begin{equation*}
\frac{\alpha_{n}^{* *}(c)-\alpha}{d_{n}} \Rightarrow \mathcal{N}(0,1) \quad \text { where } \quad d_{n}=\frac{\sigma}{r E_{n}(\alpha)} \tag{3}
\end{equation*}
$$

Theorem 2

Let Assumptions $1 \& 2$ hold. If $\rho_{2, n} \xrightarrow{p} 0$ and α_{n}^{*} is a consistent estimate of α, then convergence (3) takes place for $c=-1 / 2$.

Relationship between the two Theorems

Remark 1

If α_{n}^{*} is a consistent estimate of α and $\rho_{1, n} \xrightarrow{p} 0$ then

$$
\alpha \rho_{2, n} \leq\left|\alpha_{n}^{*}-\alpha\right| \cdot \rho_{1, n} \xrightarrow{p} 0,
$$

hence conditions of Theorem 2 are weaker than conditions of Theorem 1.
\checkmark Improved estimator - constructed
\checkmark Statistical properties - investigated

Thank you for your attention!

