Pavel Tesemnikov

Novosibirsk State University, Sobolev Institute of Mathematics and MCA, Russia

August 27, 2020

Presentation outline

1 Branching Processes in Varying environment (BPVE)

2 Branching Random Walk (BRW)

Branching Processes in Varying environment (BPVE)

Presentation outline

1 Branching Processes in Varying environment (BPVE)

2 Branching Random Walk (BRW)

Branching Processes in Varying environment (BPVE)

BPVE

Branching Processes in Varying environment (BPVE)

BPVE

Let $\{\zeta_{n,j}\}_{n,j\geq 0}$ the sequence of r.v.'s such that

Branching Processes in Varying environment (BPVE)

BPVE

Let $\{\zeta_{n,j}\}_{n,j\geq 0}$ the sequence of r.v.'s such that

• $\zeta_{n,j}, n, j \ge 0$ are mutually independent;

Branching Processes in Varying environment (BPVE)

BPVE

Let $\{\zeta_{n,j}\}_{n,j\geq 0}$ the sequence of r.v.'s such that

- $\zeta_{n,j}, n, j \ge 0$ are mutually independent;
- for any $n \ge 0$ r.v.'s $\zeta_{n,1}, \zeta_{n,2}, \ldots$ have common distribution \mathcal{P}_n .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣��

Branching Processes in Varying environment (BPVE)

BPVE

Let $\{\zeta_{n,j}\}_{n,j\geq 0}$ the sequence of r.v.'s such that

- $\zeta_{n,j}, n, j \ge 0$ are mutually independent;
- for any $n \ge 0$ r.v.'s $\zeta_{n,1}, \zeta_{n,2}, \ldots$ have common distribution \mathcal{P}_n .

$$Z_0 = 1, \ Z_{n+1} = \sum_{j=1}^{Z_n} \zeta_{n,j} \text{ for } n \ge 0.$$

Branching Processes in Varying environment (BPVE)

BPVE

Let $\{\zeta_{n,j}\}_{n,j\geq 0}$ the sequence of r.v.'s such that

- $\zeta_{n,j}, n, j \ge 0$ are mutually independent;
- for any $n \ge 0$ r.v.'s $\zeta_{n,1}, \zeta_{n,2}, \ldots$ have common distribution \mathcal{P}_n .

$$Z_0 = 1, \ Z_{n+1} = \sum_{j=1}^{Z_n} \zeta_{n,j} \ \text{for} \ n \ge 0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - 釣��

•
$$\zeta_{n,1} \ge 1$$
 a.s. for any $n \ge 1$.

Branching Processes in Varying environment (BPVE)

Evolution of BPVE

Branching Processes in Varying environment (BPVE)

Evolution of BPVE

.

Branching Processes in Varying environment (BPVE)

Evolution of BPVE

$$Z_n - \mathsf{BPVE}$$

.

Branching Processes in Varying environment (BPVE)

Evolution of BPVE

$$Z_n - \mathsf{BPVE}$$

$$Z_0 = 1$$

Branching Processes in Varying environment (BPVE)

Evolution of BPVE

$$Z_n - \mathsf{BPVE}$$

$$\mathcal{P}_0$$
 • $Z_0 = 1$

Branching Processes in Varying environment (BPVE)

Evolution of BPVE

 $Z_n - \mathsf{BPVE}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

Branching Processes in Varying environment (BPVE)

Evolution of BPVE

 $Z_n - \mathsf{BPVE}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

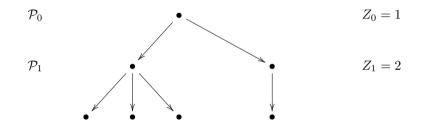
Branching Processes in Varying environment (BPVE)

Evolution of BPVE

 $Z_n - \mathsf{BPVE}$

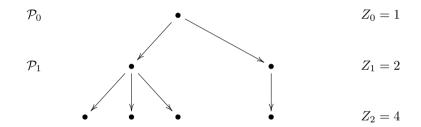
Branching Processes in Varying environment (BPVE)

Evolution of BPVE



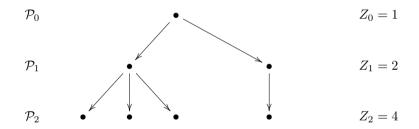
Branching Processes in Varying environment (BPVE)

Evolution of BPVE



Branching Processes in Varying environment (BPVE)

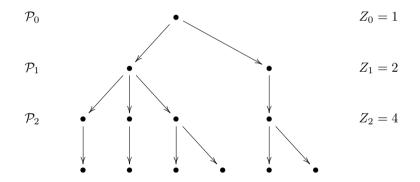
Evolution of BPVE



Branching Processes in Varying environment (BPVE)

Evolution of BPVE

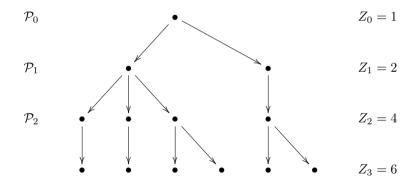
 $Z_n - \mathsf{BPVE}$



Branching Processes in Varying environment (BPVE)

Evolution of BPVE

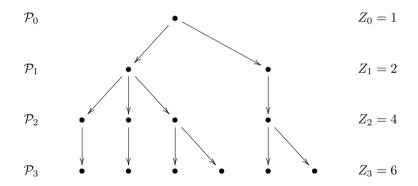
 $Z_n - \mathsf{BPVE}$



Branching Processes in Varying environment (BPVE)

Evolution of BPVE

 $Z_n - \mathsf{BPVE}$



.

Branching Processes in Varying environment (BPVE)

Condition for fading

Branching Processes in Varying environment (BPVE)

Condition for fading

$$\prod_{n=0}^{\infty} \mathbb{E} \zeta_1^{(n)} < \infty.$$

(1)

Branching Processes in Varying environment (BPVE)

Condition for fading

$$\prod_{n=0}^{\infty} \mathbb{E} \zeta_1^{(n)} < \infty.$$

(1)

Proposition 1

Let (1) holds. Then there exists $Z_{\infty} \in L_1(\Omega)$ such that

$$Z_n \to Z_\infty$$
 a.s. and in $L_1(\Omega)$ as $n \to \infty$.

Moreover, the fading time

$$\nu = \inf\{n \ge 1 : Z_n = Z_{n+1} = \ldots = Z_\infty\} < \infty$$
 a.s.

Branching Processes in Varying environment (BPVE)

Properties of BPVE with fading

Goal: to obtain conditions for the finiteness of the moments of ν and Z_{∞} .

Presentation outline

1 Branching Processes in Varying environment (BPVE)

2 Branching Random Walk (BRW)

Branching Random Walk (BRW)

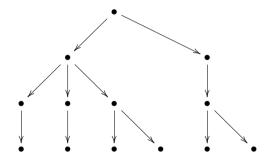
BRW

BRW

 $\{Z_n\}$

BRW

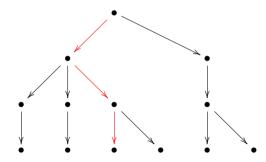
 $\{Z_n\} \leftrightarrow \mathcal{T} = (\mathcal{V}, \mathcal{E})$



.

BRW

 $\{Z_n\} \leftrightarrow \mathcal{T} = (\mathcal{V}, \mathcal{E})$

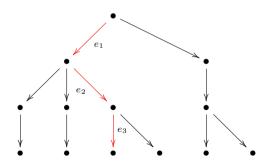


.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

BRW

$$\{Z_n\} \leftrightarrow \mathcal{T} = (\mathcal{V}, \mathcal{E})$$

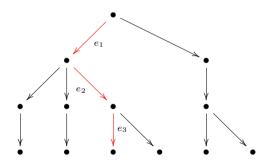


 $\pi = (e_1, e_2, \ldots) - path.$

.

BRW

$$\{Z_n\} \leftrightarrow \mathcal{T} = (\mathcal{V}, \mathcal{E})$$



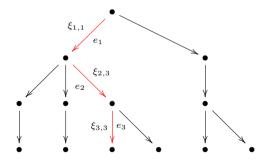
$$\pi = (e_1, e_2, \ldots) - path.$$

$$e \in \mathcal{E} \leftrightarrow \xi_{n(e),j(e)} \sim F$$
, $\mathbb{E}\xi_{1,1} = 0$

.

BRW

 $\{Z_n\} \leftrightarrow \mathcal{T} = (\mathcal{V}, \mathcal{E})$



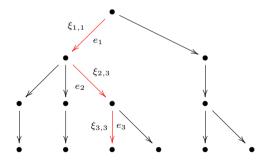
$$\pi = (e_1, e_2, \ldots) - path.$$

$$e \in \mathcal{E} \leftrightarrow \xi_{n(e),j(e)} \sim F$$
, $\mathbb{E} \xi_{1,1} = 0$

.

BRW

 $\{Z_n\} \leftrightarrow \mathcal{T} = (\mathcal{V}, \mathcal{E})$



 $\pi = (e_1, e_2, \ldots) - path.$

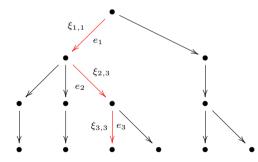
$$e \in \mathcal{E} \leftrightarrow \xi_{n(e),j(e)} \sim F$$
, $\mathbb{E}\xi_{1,1} = 0$

 $\xi_{n,j}, n, j \ge 1$ are independent

.

BRW

 $\{Z_n\} \leftrightarrow \mathcal{T} = (\mathcal{V}, \mathcal{E})$



 $\pi = (e_1, e_2, \ldots) - \mathsf{path}.$

$$e \in \mathcal{E} \leftrightarrow \xi_{n(e),j(e)} \sim F$$
, $\mathbb{E}\xi_{1,1} = 0$

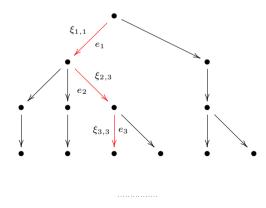
 $\xi_{n,j}, n, j \ge 1$ are independent

 $\{\xi_{n,j}\}$ and $\{\zeta_{n,j}\}$ are independent

.....

BRW

 $\{Z_n\} \leftrightarrow \mathcal{T} = (\mathcal{V}, \mathcal{E})$



 $\pi = (e_1, e_2, \ldots) - \mathsf{path}.$

$$e \in \mathcal{E} \leftrightarrow \xi_{n(e),j(e)} \sim F$$
, $\mathbb{E}\xi_{1,1} = 0$

 $\xi_{n,j}, n, j \ge 1$ are independent

 $\{\xi_{n,j}\}$ and $\{\zeta_{n,j}\}$ are independent

g-shifted BRW:

$$S^{g}(\pi) = \sum_{e \in \pi} \xi_{n(e), j(e)} - g(|\pi|)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

Branching Random Walk (BRW)

Goal

Branching Random Walk (BRW)

Goal

Let

$$R_n^g = \sup_{\pi: |\pi| \le n} S^g(\pi).$$

Branching Random Walk (BRW)

Goal

Let

$$R_n^g = \sup_{\pi: |\pi| \le n} S^g(\pi).$$

 $\mathbb{P}\left(R_\mu^g > x
ight) \sim ?$ as $x o \infty$

where $\mu \leq \infty$ is the counting r.v.