Exponential inequalities for the number of triangles in the Erdös-Rényi random graph

Alexander Bystrov
Novosibirsk State University
Nadezhda Volodko
Sobolev Institute of Mathematics

August 26, 2020

Outline

(2) Exponential inequalities

Outline

(2) Exponential inequalities

Random field

Let $\left\{\xi_{i j k}\right\}_{i<j<k}$ be a field of bounded random variables, not necessarilly identically distributed. Two different elements of the field are independent if at least two indices of the triples do not coincide.

Random field

Let $\left\{\xi_{i j k}\right\}_{i<j<k}$ be a field of bounded random variables, not necessarilly identically distributed. Two different elements of the field are independent if at least two indices of the triples do not coincide.

If exactly two indices of the triples coincide then the covariance is separated from zero:

$$
\operatorname{cov}\left(\xi_{i j k}, \xi_{i j l}\right) \geq \rho>0, k \neq I ; \quad \mathbb{D} \xi_{i j k}=\sigma^{2}>0 ; \quad\left|\xi_{i j k}\right| \leq C \text { a.s. }
$$

The object

The object of our interest is the centered and normalised sum

$$
R_{n}=b_{n}^{-1 / 2}\left(T_{n}-\mathbb{E} T_{n}\right),
$$

where

$$
T_{n}=\sum_{1 \leq i<j<k \leq n} \xi_{i j k} ;
$$

The object

The object of our interest is the centered and normalised sum

$$
R_{n}=b_{n}^{-1 / 2}\left(T_{n}-\mathbb{E} T_{n}\right)
$$

where

$$
\begin{gathered}
T_{n}=\sum_{1 \leq i<j<k \leq n} \xi_{i j k} ; \\
b_{n}=\mathbb{D} T_{n} \geq \sigma^{2}\binom{n}{3}+\rho \frac{P_{n, 4}}{2} .
\end{gathered}
$$

The object

The object of our interest is the centered and normalised sum

$$
R_{n}=b_{n}^{-1 / 2}\left(T_{n}-\mathbb{E} T_{n}\right)
$$

where

$$
\begin{gathered}
T_{n}=\sum_{1 \leq i<j<k \leq n} \xi_{i j k} ; \\
b_{n}=\mathbb{D} T_{n} \geq \sigma^{2}\binom{n}{3}+\rho \frac{P_{n, 4}}{2} .
\end{gathered}
$$

Our aim is obtaining Hoeffding-type inequalities for the distribution tails of R_{n} with the explicit constant in the exponent.

The number of triangles in the Erdös-Rényi graph

The most natural example of T_{n} is the number of triangles in the Erdös-Rényi graph, i.e. the random graph on n vertices where each edge is added independently with probability p.

The number of triangles in the Erdös-Rényi graph

The most natural example of T_{n} is the number of triangles in the Erdös-Rényi graph, i.e. the random graph on n vertices where each edge is added independently with probability p. Here

$$
\xi_{i j k}=X_{i j} X_{j k} X_{k i},
$$

where independent $X_{i j} \in \mathbb{B}_{p}$,

The number of triangles in the Erdös-Rényi graph

The most natural example of T_{n} is the number of triangles in the Erdös-Rényi graph, i.e. the random graph on n vertices where each edge is added independently with probability p. Here

$$
\xi_{i j k}=X_{i j} X_{j k} X_{k i},
$$

where independent $X_{i j} \in \mathbb{B}_{p}$,

$$
\sigma^{2}=p^{3}\left(1-p^{3}\right), \quad \operatorname{cov}\left(\xi_{i j k}, \xi_{i j l}\right)=\rho=p^{5}(1-p), \quad k \neq I, \quad C=1
$$

Outline

(1) Introduction

(2) Exponential inequalities

History for the number of triangles

- CLT - A. Rucinski (1988)
- Large deviations - S. Chatterjee and S.R.S. Varadhan (2011) and others
- Exponential inequalities - S. Janson, K. Oleszkiewicz, A. Rucinski (2002)

History for the number of triangles

- CLT - A. Rucinski (1988)
- Large deviations - S. Chatterjee and S.R.S. Varadhan (2011) and others
- Exponential inequalities - S. Janson, K. Oleszkiewicz, A. Rucinski (2002)
Let us cite the result of S . Janson, K. Oleszkiewicz and A.
Rucinski concerning exponential inequalities for the distribution tails of the number of triangles:

History for the number of triangles

- CLT - A. Rucinski (1988)
- Large deviations - S. Chatterjee and S.R.S. Varadhan (2011) and others
- Exponential inequalities - S. Janson, K. Oleszkiewicz, A. Rucinski (2002)
Let us cite the result of S . Janson, K. Oleszkiewicz and A.
Rucinski concerning exponential inequalities for the distribution tails of the number of triangles:

$$
\mathbb{P}\left(T_{n} \geq \mathbb{E} T_{n}+\varepsilon n^{3} p^{3}\right) \leq \exp \left(-\alpha(\varepsilon) n^{2} p^{2}\right)
$$

$\alpha(\varepsilon)$ has no explicit form here.

Theorem

Theorem

Under conditions (1) for $n \geq 7$ the following upper estimate holds:

$$
\begin{equation*}
\mathbb{P}\left(\left|R_{n}\right|>x\right) \leq \exp \left\{-\frac{1}{2 e}\left(\frac{x}{C_{0}}\right)^{2}\right\} \tag{2}
\end{equation*}
$$

where

$$
C_{0}=C\left(\frac{27 \sqrt{2}}{\rho}\right)^{1 / 2}
$$

