The probability of exceeding a high boundary by a heavy-tailed branching random walk in varying environment

Pavel Tesemnikov, Novosibirsk State University, Sobolev Institute of Mathematics and MCA, Russia

Branching Process in Varying Environment

Let $\left\{\zeta_{n, j}\right\}_{n, j \geq 0}$ be the sequence of r.v.'s such that

- $\zeta_{n, j}, n, j \geq 0$ are mutually independent;
- for any $n \geq 0$ r.v.'s $\zeta_{n, 1}, \zeta_{n, 2}, \ldots$ have common distribution \mathcal{P}_{n};

Then the process Z_{n} defined as follows:

$$
Z_{0}=0, \quad Z_{n+1}=\sum_{j=1}^{Z_{n}} \zeta_{n, j}, n \geq 0
$$

is the Branching Process in Varying Environment (BPVE). Throughout we will assume that

$$
\begin{equation*}
\zeta_{n, 1} \geq 1 \text { a.s. for any } n \geq 1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E} \zeta_{n, 1}<\infty \quad \text { for all } n \geq 0 \tag{2}
\end{equation*}
$$

The genealogical tree $\mathcal{T}=(\mathcal{V}, \mathcal{E})$ for BPVE:

Properties of BPVE with fading

We assume that the following condition for fading holds:

$$
\begin{equation*}
L:=\prod_{n \geq 0} \mathbb{E} \zeta_{n, 1}<\infty \tag{3}
\end{equation*}
$$

Why "fading"?

Proposition 1

Let (1) and (3) hold. Then there exists $Z_{\infty} \in L_{1}(\Omega)$ such that

$$
Z_{n} \rightarrow Z_{\infty} \quad \text { a.s. and in } L_{1}
$$

and, in particular, $\mathbb{E} Z_{\infty}=L$.
Moreover, the fading time

$$
\nu:=\inf \left\{n \geq 1: Z_{n}=Z_{n+1}=\ldots=Z_{\infty}\right\}<\infty \quad \text { a.s. }
$$

In the left picture $\nu=3$ and $Z_{\infty}=6$.
Let $q_{n}=\mathbb{P}\left(\zeta_{n, 1} \neq 1\right)$. What are the conditions for the finiteness of the moments of ν and Z_{∞} ?

Proposition 2

Let (1) and (3) hold.
(i) For any nondecresing $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$we have

$$
\mathbb{E} g(\nu)<\infty \Longleftrightarrow \sum_{n \geq 0} g(n+1) q_{n}<\infty
$$

(ii) If, in addition to (3),

$$
\prod_{n \geq 0} \mathbb{E} \zeta_{n, 1}^{s}<\infty
$$

for some $s>1$, then $\mathbb{E} Z_{\infty}^{s}<\infty$.

Branching Random Walk

For arbitrary path π in \mathcal{T} started in the root of \mathcal{T} let

$$
S(\pi)=\sum_{e \in \pi} \xi_{n(e), j(e)}
$$

be a Branching Random Walk (BRW), where $n(e)$ is the generation in which edge e ends, and $j(e)$ is the number of particle in generation $n(e)$ in which e ends and $\left\{\xi_{n, j}\right\}$ is the sequence of i.i.d. zero-mean r.v.'s with distribution F. We assume also that

$$
\begin{equation*}
\sigma\left(\zeta_{n, j}, n, j \geq 0\right) \text { and } \sigma\left(\xi_{n, j}, n, j \geq 1\right) \text { are independent } \tag{4}
\end{equation*}
$$

For any non-negative function g on \mathbb{Z}_{+}let

$$
S^{g}(\pi)=S(\pi)-g(|\pi|)
$$

be a g-shifted BRW
Our main goal is to find the exact tail asymtotics

$$
\mathbb{P}\left(R_{\mu}^{g}>x\right) \sim ? \quad \text { as } x \rightarrow \infty
$$

where $R_{\mu}^{g}=\sup _{\pi \cdot|\pi| \leq \mu} S^{g}(\pi)$ is the rightmost point of g-shifted BRW up to random generation μ

We say that a conting r.v. $\mu \leq \infty$ does not depend on the future of displacements if, for any $n \geq 0$ and any events

$$
A \in \sigma\left(\xi_{e}, n(e) \leq n ; \mathbb{I}(\mu \leq n) ; \mathcal{T}\right) \text { and } B \in \sigma\left(\xi_{e}, n(e)>n ; \mathcal{T}\right)
$$

where $n(e)$ is the number of generation in which edge e ends, the following equality holds

The probability of exceeding a high boundary by a heavy-tailed branching random walk in varying environment
 Pavel Tesemnikov, Novosibirsk State University, Sobolev Institute of Mathematics and MCA, Russia

Heavy-tailed distributions

F is heavy-tailed $(F \in \mathcal{H})$, if
$\mathbb{E} e^{\lambda \xi}=\infty$
for all $\lambda>0$.$\quad\left[\begin{array}{l}F \text { is long-tailed }(F \in \mathcal{L}) \text {, if } \bar{F}(x)>0 \text { for all } x \text { and } \\ \bar{F}(x+h) \sim \bar{F}(x) \text { as } x \rightarrow \infty \\ \text { for any fixed } h>0 .\end{array} \quad\left[\begin{array}{l}F \text { is subexponential }(F \in \mathcal{S}), \text { if } F \in \mathcal{L} \text { and } \\ \bar{F}+F \sim 2 \bar{F}(x) \text { as } x \rightarrow \infty \\ \text { for any fixed } h>0 .\end{array}\right.\right.$
F is strong subexponential $\left(F \in \mathcal{S}^{*}\right)$, if $\bar{F}(x)>0$ for all x and

$$
\int_{0}^{x} \bar{F}(x-y) \bar{F}(y) d y \sim 2 m_{+} \bar{F}(x) \text { as } x \rightarrow \infty
$$

where $m_{+}=\mathbb{E} \xi^{+}$must be finite.

Non Uniform Results

$$
\text { For } R_{\mu} \text { when } \mu<\infty \text { a.s.: }
$$

Theorem 1
Let $(1),(2)$ and (4) hold, the σ-algebras $\sigma\left(\mu ; \zeta_{j}^{(n)}, n \geq 0, j \geq 1\right)$
and $\sigma\left(\xi_{n, j}, n, j \geq 1\right)$ are independent and either
(i) $\mathbb{E} \mu Z_{\mu}<\infty$ and $F \in \mathcal{S}^{*}$ or
(ii) $\mathbb{E} Z_{\mu}(1+\delta)^{\mu}<\infty$ for some $\delta>0$ and $F \in \mathcal{S}$.

Then \quad| $\mathbb{P}\left(R_{\mu}^{\hat{c}}>x\right) \sim \mathbb{E} \eta_{\mu} \cdot \bar{F}(x)$ as $x \rightarrow \infty$ |
| ---: |
| for any $c>0$ where $\mathbb{E} \eta_{\nu}$ can be expressed as |
| $\mathbb{E} \eta_{\mu}=\sum_{n \geq 1} \mathbb{E}\left[Z_{n} \mathbb{I}(\mu \geq n)\right]$. |

For R_{∞} :
Theorem 2
Let (1), (3) and (4) hold and $F \in \mathcal{S}^{*}$. Rhen, given any $c>0$,

$$
\mathbb{P}\left(R_{\infty}^{\widehat{c}}>x\right) \sim \frac{L}{c} \cdot \bar{F}_{I}(x) \quad \text { as } x \rightarrow \infty
$$

where $\bar{F}_{I}(x)=\min \left\{1, \int_{x}^{\infty} \bar{F}(t) d t\right\}$.

Uniform Result

For any nonnegative function g on \mathbb{Z}_{+}and any counting r.v. μ, let

$$
H_{\mu}^{g}(x ; \widehat{\mathcal{P}})=\sum_{n \geq 1} \mathbb{E}\left[Z_{n} \mathbb{I}(\mu \geq n)\right] \bar{F}(x+g(n))
$$

where $\widehat{\mathcal{P}}=\left(\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots\right)$ is the sequence of offspring distributions.

Theorem 3

Let (1), (2) and (4) hold.
(i) Suppose that $F \in \mathcal{L}$. Then, given any independent of the future σ with $\mathbb{E} \eta_{\sigma}<\infty$, the inequality

$$
\mathbb{P}\left(R_{\mu}^{g}>x\right) \geq(1+o(1)) H_{\mu}^{g}(x ; \widehat{\mathcal{P}}) \quad \text { as } x \rightarrow \infty
$$

(5)
holds uniformly over all nondecreasing g and all independent of the future $\mu \leq \sigma$ a.s.
(ii) Suppose additionaly that $F \in \mathcal{S}$. Then, given any $N \geq 1$, the equality

$$
\mathbb{P}\left(R_{\mu}^{g}>x\right)=(1+o(1)) H_{\mu}^{g}(x ; \widehat{\mathcal{P}}) \quad \text { as } x \rightarrow \infty
$$

(6)
holds uniformly over all nondecreasing g and all independent of the future $\mu \leq N$ a.s.

Future Work

$$
\text { For any } c>0 \text {, let }
$$

$$
\mathcal{G}_{c}=\{\text { nonnegative } g: g(1) \geq c, g(n+1)-g(n)>c, n \geq 1\}
$$

We believe that the following fact is true

Conjecture

Let (1), (3), (4) and"something else" hold.
(i) Suppose that $F \in \mathcal{L}$. Then, given any $c>0$, the result (5) holds uniformly over all $g \in \mathcal{G}_{c}$ and all μ independet of the future.
(ii) Suppose additionally that $F \in \mathcal{S}^{*}$. Then, given any $c>0$, the result (6) holds uniformly over all $g \in \mathcal{G}_{c}$ and all μ independent of the future.

Acnowledgment

This talk is partially based on a joint work with Sergey Foss (HeriotWatt University, MCA, Novosibirsk State University and Sobolev Institute of Mathematics) and supported by the RSF grant 17-11-01173-Ext.

