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Introduction

The problem of the spread of population of
particles (bacteria, individuals and etc.) or, in
another context, the propagation of �re or epidemic
has been attracting interest of many researchers.
It is su�cient to recall the works by
A.N.Kolmogorov, I.G.Petrovskiy, N.C.Piskunov
and their celebrated KPP-equation (1937),
B.A.Sevastyanov (1958), J.Biggins (1978),
R.Durrett (1983), F.Comets, S.Popov (2007),
M.A.Lifshits (2012), M.Roberts (2013), B.Mallein
(2015), Z.Shi (2015), S.Bocharov, S.Harris (2016),
E.Neuman, X.Zheng (2017), L.Wang, G.Zong
(2019), Y.Nishimori, Y.Shiozawa (2020) and etc.
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A frequent assumption in the model, describing the
spread of particle population, is a behavioral
homogeneity in space.

However, a special approach is needed to
investigate the models with spatially
non-homogeneous particles evolution.

We are interested in a model of catalytic branching
random walk (CBRW) on Zd , d ∈ N. There the
particles may produce o�spring at the presence of
catalysts only, located at some �xed points of an
integer lattice Zd , whereas outside these catalysts
the particles perform a random walk without
branching.
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The contribution to the study of CBRW is due to
the following researchers

E.B. Yarovaya (1991,. . . , 2019),

S.Albeverio, L.Bogachev (1998,. . . , 2000),

V.A.Vatutin, V.A.Topchij (2003,. . . , 2011),

V.A.Vatutin, J.Xiong (2007),

S.A.Molchanov, E.B.Yarovaya (2012, 2013),

L.Doering, M.Roberts (2013),

Ph.Carmona, Y.Hu (2014),

M.Platonova, K.Ryadovkin (2017,. . . ,2019),

E.Vl.Bulinskaya (2008,. . . , 2019)

and others.
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Description of CBRW on Zd

Catalytic branching random walk (CBRW) is a
probabilistic model of the particles population
evolution due to o�spring production and
movement on integer lattice Zd, d ∈N.

The particles move on Zd according to
irreducible Markov chain S = {S(t), t ≥ 0}
generated by the in�nitesimal matrix
Q = (q(x , y))x ,y∈Zd .

The particles split at the locations of catalysts
only.
W = {w1, . . . ,wN} ⊂ Zd is a set of catalysts.

Ekaterina Vl. Bulinskaya Catalytic branching random walk



Description of CBRW on Zd

Catalytic branching random walk (CBRW) is a
probabilistic model of the particles population
evolution due to o�spring production and
movement on integer lattice Zd, d ∈N.

The particles move on Zd according to
irreducible Markov chain S = {S(t), t ≥ 0}
generated by the in�nitesimal matrix
Q = (q(x , y))x ,y∈Zd .

The particles split at the locations of catalysts
only.
W = {w1, . . . ,wN} ⊂ Zd is a set of catalysts.

Ekaterina Vl. Bulinskaya Catalytic branching random walk



Description of CBRW on Zd

When a particle reaches wk , it spends there
random time having exponential distribution
with parameter βk > 0. Then it either
produces a random number ξk of o�springs
with probability αk or leaves wk with
probability 1− αk .

The new particles behave as independent
copies of the parent particle.

At the initial time t = 0 there is a single
particle on the lattice located at point x .
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Classi�cation of CBRW

Similar to ordinary Galton-Watson branching
process, CBRW can be classi�ed as supercritical,
critical or subcritical, see E.Vl.Bulinskaya (2014).

As shown in E.Vl.Bulinskaya (2015), only in
supercritical CBRW both total and local particle
numbers grow exponentially to in�nity (with
positive probability) as time tends to in�nity.
The rate of exponential growth is called
Malthusian parameter and denoted by ν > 0.

In critical or subcritical CBRW the total number
of particles does not change after some time and is
a random variable in time-limit, which might be 0.
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Notation and assumptions

Let Z (t) be a (random) set of particles existing in
CBRW at time t ≥ 0.
For a particle z ∈ Z (t) denote by X z(t) its
position at time t .

Let I stand for the event of in�nite number of
visits of the catalysts set.

Similarly to Ph.Carmona, Y.Hu (2014) study for
d = 1 we assume for any d that the random walk
is space-homogeneous.
It means that q(x , y) = q(x − y ,0) = q(0, y − x).
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Light tails. Assumptions

Assume also that the function

H(s) :=
∑

x∈Zd
e〈s,x〉q(0, x)

is �nite for any s ∈ Rd where 〈·, ·〉 stands for the
inner product of vectors. This assumption is
Cram�er's condition for the jump value of the
random walk S. It is easy to check that the
Hessian of H is positive de�nite and, consequently,
H is a convex function. Put also

R =
{

r ∈ Rd : H(r) = ν
}
,

that is, R is the level set of the function H for the
level ν.
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Light tails. Assumptions

Finally, let
Oε :={x ∈Rd: ∃ r ∈R s.t.〈x , r〉>ν + ε}, ε≥0,
Qε :={x ∈Rd : 〈x , r〉<ν − ε ∀r ∈ R}, ε ∈ [0, ν),
O := O0, Q := Q0, P := ∂Q = ∂O,
where ∂S stands for the boundary of set S⊂Rd .

It follows from the de�nition of P that
P =

{
x ∈ Rd : 〈x , r〉≤ν for all r ∈ R

and 〈x , r〉=ν for at least one r ∈ R} .
Note that each set Qε, Q or P ∪Q is convex as an
intersection of half-spaces.
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Light tails. Main results

Theorem (1)

Let the formulated assumptions be satis�ed for a
supercritical CBRW on Zd . Then, for any x ∈ Zd ,
one has

Px (ω : ∀ε > 0 ∃t0 = t0(ω, ε) such that
∀t ≥ t0 and ∀v ∈ Z (t), X v (t)/t /∈ Oε) = 1,

Px (ω :∀ε ∈ (0, ν)∃t1 = t1(ω, ε) such that
∀t ≥ t1 ∃v ∈ Z (t), X v (t)/t /∈ Qε| I)=1.
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Light tails. Main results

Theorem 1 means that if we divide the position
coordinates of each particle existing in CBRW at
time t by t and then let t tend to in�nity, then in
the limit there are a.s. no particles outside set
P ∪Q and under condition of in�nite number of
visits of catalysts there are a.s. particles on P .

In this sense it is natural to call the set P the
propagation front of the particles population.
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Light tails. Main results

The next theorem states that each point of P can
be considered as a limiting point for the
normalized particles positions in CBRW.

Theorem (2)

Let conditions of Theorem 1 be satis�ed. Then, for
each y ∈ P , one has

Px (ω : ∀t ≥ 0 ∃vy = vy(t , ω) ∈ Z (t) such that

limt→∞
X vy (t)

t = y
∣∣∣ I) = 1.
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Light tails. Main results

Theorem 3 yields one more way to determine the
propagation front P .

Theorem (3)

The set P can also be speci�ed as
P = {z(r) : r ∈ R}, where
z(r) = ν

〈∇H(r),r〉∇H(r).
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Light tails. Main results

Note that our results show that the particles
population spreads asymptotically linearly on Zd

with respect to growing time and the form of the
propagation front does not depend on the number
of catalysts and their locations but depends only
on the value of the Malthusian parameter ν and
the function H(·) characterizing the random walk.

In other words, in our limit theorems the
normalizing factor of the particles positions is
equal to t−1 and does not depend on the dimension
of the lattice.
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Methods of the Study

The many-to-one formula is derived in the most
general form in S.Harris, M.Roberts (2017) and
being applied for CBRW is of the following form

Ex
∑

v∈N(t) g(Xv (t)) = Exg(S(t))

×
∏N

k=1 exp{αkβk(mk − 1)L(t ; wk)},

where L(t ; y) :=
t∫

0
I(S(u) = y) du, y ∈ Zd , t ≥ 0,

is the local time of the random walk S at level y ,
and g : Rd → R is a measurable function.
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Methods of the Study

renewal theorems for systems of renewal
equations

martingale change of measure

convex analysis

large deviation theory

the coupling method

our results E.Vl.Bulinskaya (2014) and
E.Vl.Bulinskaya (2015).
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Light tails. Examples

The limiting shape of the front in a simple CBRW
on Z2
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Light tails. Examples

The limiting shape of the front in an asymmetric
CBRW on Z2
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Light tails. Examples

The limiting shape of the front in CBRW on Z2.
Coordinates of the jump have the corresponding

Poisson and Bernoulli distribution.
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Light tails. Examples

The limiting shape of the front in CBRW on Z3
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Semi-exponential distribution of jump.
Assumptions

Let components of the jump vector
Y = (Y1, . . . ,Yd) of the random walk S have
semi-exponential distribution, i.e. for any
i = 1, . . . ,d and y ∈ Z+ one has

P(Yi>y)=L(1,+)
i (y) exp

{
−yγ

+
i L(2,+)

i (y)
}

:=R+
i (y),

P(Yi<−y)=L(1,−)
i (y) exp

{
−yγ

−
i L(2,−)

i (y)
}

:=R−i (y).

Symbol �+� refers to the right tail, whereas symbol
�−� refers to the left one. For i = 1, . . . ,d and

κ ∈ {+,−}, functions L(1,κ)
i (y) and L(2,κ)

i (y),
y ∈ Z+, vary slowly and γκi ∈ (0,1).
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Semi-exponential distribution of jump.
Assumptions

It follows from the latter assumptions that
− ln Rκ

i (y), y ∈ Z+, is a regularly varying function
of index γκi . It is known that there exists an
asymptotically uniquely determined inverse
function R−1, κ

i (s), s ≥ 0, in the sense that

− ln R κ
i

(
R−1, κ

i (y)
)
∼ y , R−1, κ

i (− ln R κ
i (y)) ∼ y

as y →∞, y ∈ Z+, and

R−1,κ
i (s) = s1/γκi L(3,κ)

i (s),

where function L(3,κ)
i (s), s ≥ 0, varies slowly.
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Assume that for each x = (x1, . . . , xd), xi 6= 0,
i = 1, . . . ,d , one has
P0
(
sgn(x)S(u)/R−1,κ(x)(t)∈ [|x | ,+∞)

)
=(1+δ(u, t))

×h(u)
∏d

i=1

(
P
(

sgn(xi)Yi ≥ |xi |R−1,κ(xi)
i (t)

))(1−εi(u,t))
,

where h(u) = h(u, x), u ≥ 0, is a positive
non-decreasing function such that h(u) ∼ cud ,
u →∞, for some constant c > 0.
For each i = 1, . . . ,d , the non-negative function
εi(u, t) = εi(u, t , x)→ 0, as t →∞, uniformly in
u/t ∈ [0,1], and for all t large enough the
inequality εi(u1, t) ≤ εi(u2, t) is valid, whenever
u1 ≤ u2, u1,u2 ∈ [0, t ].
Function δ(u, t) = δ(u, t , x)→ 0, as t →∞,
uniformly in u/t ∈ [0,1].
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The notation sgn(x)S(u)/R−1,κ(x)(t) is a vector in

Rd with ith coordinate sgn(xi)Si(t)/R−1,κ(xi)
i (t),

and [|x |,+∞) := [|x1|,+∞)× . . .× [|xd |,+∞).
Here κ(xi) =�+�, if xi ≥ 0, and κ(xi) =�−�, if
xi < 0.

In the paper E.Vl.Bulinskaya, 2020 (Mathematical
Population Studies: an International Journal of
Mathematical Demography) we show that the
important condition above is satis�ed, in
particular, for the case of independent coordinates
of the walk jump when the absolute values of
positive and negative components have discrete
Weibull distribution.
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De�ne the following sets in Rd

Oε :=

{
x ∈ Rd :

d∑
i=1

|xi |γ
κ(xi )
i > ν + ε

}
, ε ≥ 0,

Qε :=

{
x ∈ Rd :

d∑
i=1

|xi |γ
κ(xi )
i < ν − ε

}
, ε ∈ [0, ν),

O := O0, Q := Q0,

P := ∂O = ∂Q =

{
x ∈ Rd :

d∑
i=1

|xi |γ
κ(xi )
i = ν

}
.
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Semi-exponential distribution of jump.
Results

Stipulate that X v (u)/R−1,κ(t) is a vector in Rd

with ith coordinate equal to X v
i (u)/R−1,κ(X v

i (u))
i (t).

Theorem (4)

Let the conditions above be satis�ed for a
supercritical CBRW on Zd . Then for any z ∈ Zd

we have
Pz(ω : ∀ε > 0 ∃t1 = t1(ω, ε) s.t. ∀t ≥ t1 and
∀v ∈ Z (t), X v (t)/R−1,κ(t) /∈ Oε

)
= 1,

Pz(ω :∀ε∈ (0, ν)∃t2 = t2(ω, ε) s.t. ∀t ≥ t2
∃v ∈ Z (t), X v (t)/R−1,κ(t) /∈ Qε|I

)
= 1.

Ekaterina Vl. Bulinskaya Catalytic branching random walk



Semi-exponential distribution of jump.
Results

The following result states that each point of the
surface P can be considered as a limit point for
normalized locations of particles in CBRW, i.e. the
surface P is minimal in a sense.

Theorem (5)

Let conditions of Theorem 4 be satis�ed. Then, for
each z ∈ Zd and y ∈ P , one has
Pz (ω : ∀t ≥ 0 ∃vy = vy(t , ω) ∈ Z (t) s.t.
limt→∞ X vy (t)/R−1,κ(t) = y |I

)
= 1.
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Semi-exponential distribution. Examples

-4 -2 2 4
x1

-4

-2

2

4

x2

The limit shape of the front in a symmetric CBRW
on Z2
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Semi-exponential distribution. Examples

-1.0 -0.5 0.5 1.0
x1

-1.0

-0.5

0.5

1.0

x2

The limit shape of the front in a non-symmetric
CBRW on Z2
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Semi-exponential distribution. Examples

The limit shape of the front in a CBRW on Z3
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Heavy tails. Independent jump coordinates. Assumptions

Let the components of the vector jump
Y = (Y1, . . . ,Yd) of the random walk S have
regularly varying tails, i.e., for each i = 1, . . . ,d
and y ∈ Z+,

P(Yi ≥ y) = y−γ
+
i L(1,+)

i (y) =: R+
i (y),

P(Yi ≤ −y) = y−γ
−
i L(1,−)

i (y) =: R−i (y).

The symbol �+� refers to the right tail, whereas
the symbol �−� marks the left one. For

i = 1, . . . ,d and κ ∈ {+,−} the function L(1,κ)
i (y),

y ∈ Z+, is slowly varying and γκi ∈ (0,+∞).
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Heavy tails. Independent jump coordinates. Assumptions

The latter assumptions imply that Rκ
i (y), y ∈Z+,

is a regularly varying function of index −γκi .
It is known (see, e.g., E.Seneta (1976)) that there
exists an asymptotically uniquely determined
inverse function R−1, κ

i (s), s ≥ 0, in the sense that

1/R κ
i

(
R−1, κ

i (y)
)
∼ y , R−1, κ

i (1/R κ
i (y)) ∼ y as

y →∞, y ∈ Z+, and

R−1,κ
i (s) = s1/γκi L(2,κ)

i (s),

where the function L(2,κ)
i (s), s ≥ 0, varies slowly.
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Heavy tails. Independent jump coordinates. Assumptions

Let the following condition be true
P0
(
sgn(x)S(u)/R−1,κ(x)(eνt)∈ [|x | ,+∞)

)
=h(u)

× (1+δ(u, t , x))
∏d

i=1 P
(

sgn(xi)Yi ≥ |xi |R−1,κ(xi)
i (eνt)

)
.

Here h(u), u ≥ 0, is a positive non-decreasing
function such that h(u) ∼ cud , u →∞, for some
constant c > 0.
Function δ(u, t , x)→ 0 as t →∞ uniformly in
u/t ∈ [0,1] and min{x1, . . . , xd} ≥ ε, for each
ε > 0.
Write sgn(x)S(u)/R−1,κ(x)(eνt) for a vector in Rd

with ith coordinate sgn(xi)Si(t)/R−1,κ(xi)
i (eνt) and

[|x |,+∞) := [|x1|,+∞)× . . .× [|xd |,+∞). Here
κ(xi)=�+�, whenever xi≥0, and κ(xi)=�−�,
whenever xi<0.
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De�ne the following sets in Rd

Oε :=

{
x ∈ Rd :

d∏
i=1

|xi |γ
κ(xi )
i ≥ ε

}
, ε ≥ 0,

V
(
~λ+, ~λ−

)
:=
[
−
(
λ−1
)−1/γ−1 ,

(
λ+1
)−1/γ+1

]
× . . .×

[
−
(
λ−d
)−1/γ−d ,

(
λ+d
)−1/γ+d

]
,

~λκ = (λκ1, . . . , λ
κ
d) , λκi ≥ 0,

Λ
(
~λ+, ~λ−

)
=

d⋃
i=1

{
xj = 0, j 6= i , j = 1, . . . ,d ,

xi ∈
[
−
(
λ−i
)−1/γ−i ,

(
λ+i
)−1/γ+i

]}
.
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Heavy tails. Independent jump coordinates. Main results

Stipulate that X z(u)/R−1,κ(eνt) is a vector in Rd

with ith coordinate X z
i (u)/R−1,κ(X v

i (u))
i (eνt).

Theorem (6)

Let the listed above conditions be satis�ed for
supercritical CBRW on Zd .
Then for any starting point x ∈ Zd one has
Px(ω : ∀ε > 0 ∃t1 = t1(ω, ε) s.t. ∀t ≥ t1 and
∀z ∈ Z (t), X z(t)/R−1,κ(eνt) /∈ Oε

)
= 1.

Hence, in the time-limit a.s. all the particles in
CBRW with properly normalized positions are
inside the surface Rd \ Oε.
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Heavy tails. Independent jump coordinates. Main results

Theorem (7)

Let conditions of Theorem 6 be valid. Moreover,
let Eξk ln (ξk + 1) <∞ for any k = 1, . . . ,N.
Then there exists a function ϕ(λ; x), λ ≥ 0,
x ∈ Zd , such that, for any λκi ≥ 0, κ ∈ {+,−},
i = 1, . . . ,d , and x ∈ Zd , one has

Px

(
∀z ∈ Z (t),X z(t)/R−1,κ(eνt) ∈ V

(
~λ+, ~λ−

))
→ ϕ

(∑
i ,κ λ

κ
i ; x
)
, t →∞.

It gives the distribution of the limiting surface Λ
(the limiting shape of the front) containing all the
particles with the normalized positions.
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Here ϕ(λ; x) ∈ (0,1), ϕ(0; x) = 1 and ϕ(λ; x)
tends to the probability of the local extinction of
the particles population in CBRW as λ→ +∞, for
each �xed x ∈ Zd .
Moreover, as x ∈ Zd \W , the function ϕ(λ; x),
λ ≥ 0, admits the following representation

ϕ(λ; x) =
N∑

k=1

∫ ∞
0

ϕ(λe−νu; wk) dWk Fx ,wk (u)

+1−
N∑

k=1
Wk Fx ,wk (∞),
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where the functions ϕ( · ; wj), j = 1, . . . ,N, satisfy
the system of integral equations

ϕ(λ; wj) = αj

∫ ∞
0

fj(ϕ(λe−νu; wj)) dGj(u)

+ (1− αj)
N∑

k=1

∫ ∞
0

ϕ(λe−νu; wk) dGj ,k(u)

+ (1− αj)

(
1−

N∑
k=1

Wk Fwj ,wk (∞)

)
.

This system has a unique solution in a certain
function class.

Ekaterina Vl. Bulinskaya Catalytic branching random walk



Heavy tails. Independent jump
coordinates. Examples

-2 -1 1 2
x1

-2

-1

1

2

x2

The limiting shape of the front in CBRW on Z2
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Heavy tails. Independent jump
coordinates. Examples

The limiting shape of the front in CBRW on Z3
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Heavy tails. Isotropic case. Assumptions

For a set A ⊂ Rd separated from the origin by a
ball of a radius b > 0, we assume that
P
(
Y 1 ∈ uA

)
∼ V (u)F (A), as u →∞,

where V (u) = u−γL1(u), u ≥ 0, is a regularly
varying function of index −γ, γ ∈ (0,+∞), L1(u),
u ≥ 0, is a slowly varying function at in�nity and
F (A) is a functional de�ned on a suitable class of
sets such that, as u →∞,
P
(
Y 1 ∈ s + uA

)
∼ P

(
Y 1 ∈ uA

)
for ‖s‖ = o(u).

The latter property simply expresses the continuity
of the functional F : we have F (v + A) ∼ F (A), as
‖v‖ → 0.
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Heavy tails. Isotropic case. Assumptions

According to E.Seneta (1976) there exists an
asymptotically uniquely determined inverse
function V−1(u) = u1/γL2(u), u ≥ 0, where L2 is a
slowly varying function at in�nity.
Set N(t) := V−1

(
eνt
)

= eνt/γL2(eνt), t ≥ 0.
We also assume that the normalizing factor N(t),
t ≥ 0, belongs to the maximum jump
approximation zone of the random walk S, i.e.

P(S(u)/N(t) ∈ A) ∼ quP(Y 1 ∈ N(t)A), t →∞,

uniformly in u/t ∈ [0,1]. Broad su�cient
conditions for its validity can be found, e.g., in
Borovkov and Borovkov (2008).
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Heavy tails. Isotropic case. Main result

Theorem (8)

Let assumptions above be satis�ed for supercritical
CBRW on Zd . Then for the function ϕ(λ; x),
λ ≥ 0, x ∈ Zd , introduced above, and for any
x ∈ Zd , one has, as t →∞,

Px (∀z ∈ Z (t) : X z(t)/N(t) /∈ A)→ ϕ (F (A); x) .

Invoking di�erent sets A under speci�c
assumptions on common distribution of the
components of the random walk jump Y leads to
more detailed description for the limiting shape of
the front of the particles population.
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For its proof we use the system of equations
derived by us

Ewi (t ;U)=αi

∫ t

0
(1−fi (1−Ewi (t−s;U))) dGi(s)

+(1− αi)
N∑

j=1

∫ t

0
Ewj (t − s;U)dGi ,j(s) + Iwi (t ;U) ,

where Ewi (t ;U) := Pwi (∃z ∈ Z (t) : X z(t) ∈ U),
t ≥ 0, i = 1, . . . ,N, U ⊂ Rd , W ∩ U = ∅, and
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Iwi (t ;U) =
∑
y /∈W

(1− αi)
q(wi , y)

q

×
∫ t

0
Py(S(t−s) ∈ U ,Wkτy ,wk > t−s,k =1,. . . ,N) dGi(s).

Di�culties arising in analysis of the system of
equations consist in that we substitute a set which
depends on time instead of vector U . For this
reason the equations are no longer of
convolution-type and the renewal theory is not
applicable.
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Maximal displacement of critical and
subcritical CBRWs

Since the particle population in critical and
subcritical CBRW on Zd locally degenerates (it
also degenerates globally whenever the random
walk is recurrent), the problem of the spread of a
particle cloud on the lattice is naturally
reformulated in the following way: what is the
maximal displacement of particles in CBRW from
the origin for the whole history of the particle
population existence?
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Let Mt := max{X z(t), z ∈ Z (t)} be the maximum
of CBRW at time t and M := max{Mt , t ≥ 0} be
the maximal displacement for its whole history.
In the following 4 theorems we consider a simple
random walk S on Z. It means that
q(x ,x+1)
−q(x ,x) = p, q(x ,x−1)

−q(x ,x) = q, q(x , y) = 0, |x − y |≥2,
where p + q = 1 and p,q ∈ (0,1).
Such a random walk is symmetric, whenever
p = q, and asymmetric otherwise. In one jump a
particle performing a simple random walk on Z
moves to the nearest point to the right with
probability p and to the nearest point to the left
with probability q. A simple random walk on Z is
recurrent if and only if it is symmetric.
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The asymptotic results in Theorems 9�12 hold true
under wider assumptions of any �nite number of
catalysts and an arbitrary starting point. The
di�erence consists in the constants arising in the
asymptotics. However, for the sake of brevity we
concentrate on the case of a single catalyst located
at the origin being the starting point as well.

Theorem (9)

Let f ′(1) = 1 and f ′′(1) = σ2 ∈ (0,∞), where
f (s) = Esξ, s ∈ [0,1], for CBRW on Z, in which
the random walk S is simple and symmetric. Then

P0 (M > x) ∼
√

1− α√
ασ2
√

x
, x →∞.
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The result of Theorem 9 is a counterpart of the
main result of S.P.Lalley, Y.Shao (2015) derived
for the model of a critical BRW on Z.
However in the latter model the decay rate of the
probability P0 (M > x) has an order 1/x2, as
x →∞.

Therefore, the particles in the critical CBRW
manage to go father away from the origin before
returning to it and, possibly, dying, than in the
model of BRW, in which the particles may die at
any point.
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Theorem 10 gives the solution to the same problem
as in Theorem 9. The only di�erence is that now
we consider a subcritical CBRW on Z.
Theorem (10)

Let m = f ′(1) < 1 for a CBRW on Z, in which the
random walk S is simple and symmetric. Then

P0 (M > x) ∼ 1− α
2α(1−m)x

, x →∞.

The result of Theorem 11 is a counterpart of the
main result of E.Neuman, X.Zheng (2017) devoted
to a subcritical BRW on Z. However, in the latter
case the probability P0 (M > x) decays
exponentially-fast that di�ers importantly from us.
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Theorems 9 and 10 are focused on the case of a
simple symmetric random walk on Z.
The two following theorems are devoted to
investigation of critical and subcritical CBRW in
which the random walk is a simple and asymmetric
one, i.e. it has a drift to the right, whenever p > q,
or to the left, whenever p < q.
Because of a drift the random walk is no longer a
recurrent one.
Correspondingly, the criticality condition of
CBRW changes as well.
Now r := 1− ∅F0,0(∞) ∈ (0,1), and the
criticality of CBRW implies that
αm + (1− α)(1− r) = 1 which is equivalent to
m = 1 + rα−1(1− α).
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In the next theorem we estimate the distribution
tail of the random variable M for a critical CBRW
on Z, in which the underlying random walk is
simple and asymmetric.

Theorem (11)

Let m = 1 + rα−1(1− α) and f ′′(1) = σ2 ∈ (0,∞)
for a CBRW on Z, in which the random walk is
simple and asymmetric. Then

P0 (M > x) ∼
√

2(1−α)(q−p)√
ασ2

(
p
q

) x+1
2
, if p < q,

P0 (M > x)→ s0, if p > q,
as x →∞, where s0 ∈ (0,1) is a unique solution
to equation α(1− f (1− s)) + (2q(1− α)− 1) s +
(1− α)(p − q) = 0 with respect to unknown
variable s, s ∈ [0,1].
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The following result contains solution to the same
problem which is the subject of Theorem 11, but
now for subcritical CBRW on Z.
Theorem (12)

Let m < 1 + rα−1(1− α), for CBRW on Z, in
which the random walk is simple and asymmetric.
Then
P0 (M > x) ∼

(1−α)(q−p)
1−2p(1−α)−αm

(
p
q

)x+1
, whenever p < q,

P0 (M > x)→ s0, whenever p > q,
as x →∞, where s0 ∈ (0,1) is a unique root of
equation α(1− f (1− s)) + (2q(1− α)− 1) s +
(1− α)(p − q) = 0 with respect to unknown
variable s, s ∈ [0,1].
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The results of Theorems 11 and 12 are expected.

Namely, if the random walk S has a drift to the
left (p < q), then the particles in CBRW do not
manage to go far away to the right, since they drift
to the left.

Conversely, if the random walk S has a drift to the
right (p > q), then there are particles in CBRW
which will go away to the right to �in�nity�, and
therefore M =∞ with positive probability s0.
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The results obtained by us are the �rst
investigation in the domain of description of
population propagation in critical and subcritical
CBRW. It is worthwhile to note that visible
di�erences in the propagation of particle
population in supercritical CBRW and
supercritical BRW were revealed only in the
second term of the asymptotic expansions for their
corresponding maximums, see Ph.Carmona, Y.Hu
(2014), B.Mallein (2016) and E.Vl.Bulinskaya
(2019). Meanwhile, as shown in our investigations,
in critical and subcritical CBRWs and the
corresponding critical and subcritical BRWs the
di�erences are noticeable already in the �rst
asymptotic approximation of the probability.
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