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Matrix estimation



Matrix estimation

Let P ∈Mn,m(R) be a large rectangular matrix n = Θ(m).

We observe each entry independently with probability d/n. The
other entries remain hidden.

d = average number of observed entries per row.

We assume that the matrix P has a simple structure: notably
small rank and some spectral incoherence.



Completion and estimation

Matrix completion: can we reconstruct exactly P thanks to this
observation?

Possible in the regime d > C log n.

Matrix estimation: we look for a matrix with a small mean
square error

MSE(P̂ ) =
∑
i,j

|P̂ij − Pij |2 = ‖P̂ − P‖2F .

Best bounds for d� log n: MSE(P̂ ) = O(mn/d).

Candès-Tao 09, Candès-Recht 10, Keshavan-Montanari-Oh 09 . . .
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Principal component analysis

Singular value decomposition of P ∈Mn,m(C) :

P = UDV ∗ =

n∑
k=1

skukv
∗
k,

where D = diag(s1, . . . , sn) ∈Mn,m(C) and s1 > . . . > sn > 0

are the singular values de P .

v2

v1
P

s2u2

s1u1

‖P‖2F =
∑
k

s2k.



Matrix detection

? Above which value of d can we reconstruct a consistent
estimator of sk?

? Fix 0 < γ < 1. Find the smallest d such that there is with
high probability an estimator ûk of uk with

|〈ûk, uk〉| > γ.

? Fix 0 < γ < 1. Find the smallest d such that there is with
high probability an estimator P̂ of P with

MSE(P̂ ) = ‖P − P̂‖2F > γ‖P‖2F .
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Applications

Numerous applications in global positioning, remote sensing,
signal processing, computer vision, . . . but the most famous is
collaborative filtering.

Guess what a user likes even before she knows it. The Netflix
prize launched in 2006 consisted in minimizing the MSE (on a
sample) with respect to the matrix:

Pij = mark given by user i on movie j.
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Estimation of a symmetric matrix

Let P ∈Mn(R) be a symmetric matrix.

Let M = (Mij) ∈Mn(R) with Mij ∈ {0, 1} iid Bernoulli with
parameter d/n.

The non-symmetric observed matrix A ∈Mn(R) is

Aij =
n

d
PijMij .

The symmetric observed matrix H ∈Mn(C) is

H =
A+A∗

2
.

We have EA = EH = P , i.e. A and H are noisy unbiased
observations of P .



Estimation of a symmetric matrix

Let P ∈Mn(R) be a symmetric matrix.

Let M = (Mij) ∈Mn(R) with Mij ∈ {0, 1} iid Bernoulli with
parameter d/n.

The non-symmetric observed matrix A ∈Mn(R) is

Aij =
n

d
PijMij .

The symmetric observed matrix H ∈Mn(C) is

H =
A+A∗

2
.

We have EA = EH = P , i.e. A and H are noisy unbiased
observations of P .



Estimation of a symmetric matrix

Let P ∈Mn(R) be a symmetric matrix.

Let M = (Mij) ∈Mn(R) with Mij ∈ {0, 1} iid Bernoulli with
parameter d/n.

The non-symmetric observed matrix A ∈Mn(R) is

Aij =
n

d
PijMij .

The symmetric observed matrix H ∈Mn(C) is

H =
A+A∗

2
.

We have EA = EH = P , i.e. A and H are noisy unbiased
observations of P .



Estimation of a symmetric matrix

Let P ∈Mn(R) be a symmetric matrix.

Let M = (Mij) ∈Mn(R) with Mij ∈ {0, 1} iid Bernoulli with
parameter d/n.

The non-symmetric observed matrix A ∈Mn(R) is

Aij =
n

d
PijMij .

The symmetric observed matrix H ∈Mn(C) is

H =
A+A∗

2
.

We have EA = EH = P , i.e. A and H are noisy unbiased
observations of P .



Estimation of a symmetric matrix

We would like to compare the k-th largest eigenvalues of P and
A or H and their corresponding eigenspaces

It is smarter to consider the spectrum of A rather than the
spectrum of H.

Benefits of asymmetry: in some situations, the spectrum of a
matrix P is much less perturbed by a random asymmetric noise
than by a random symmetric noise.
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Detection threshold

We set
Qij = n|Pij |2 and ρ = ‖Q‖.

The detection threshold is defined as

θ = max

(√
ρ

d
,
L

d

)
,

with
L = nmax

i,j
|Pij |.



Incoherence

We order the real eigenvalues of P ,

|µ1| > · · · > |µr0 | > θ > |µr0+1| > · · · > |µn|.

In an ON basis of eigenvectors of P , for all 1 6 k 6 r0,

‖ϕk‖∞ = max
i
|ϕk(i)| 6 b√

n
.



Stable numerical rank

The stable numerical rank is

r =

∑
k µ

2
k

µ21
6 rank(P ).

In this talk, we assume that r, b, L, d, r0 are no(1). All results are
quantitative but will be stated in an asymptotic way.



Estimation of eigenvalues

Recall:

Aij =
n

d
PijMij and θ = max

(√
ρ

d
,
L

d

)
.

Eigenvalues of P :

|µ1| > · · · > |µr0 | > θ > |µr0+1| > · · · > |µn|.

Theorem
With high probability, there exists an ordering of the
eigenvalues λ1, . . . , λn of A such that

max
16k6r0

|λk − µk| = o(1) and max
r0+16k6n

|λk| 6 (1 + o(1))θ.
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Simulation

For n = 2000 and P = 3ϕ1ϕ
∗
1 + 2ϕ2ϕ

∗
2 + ϕ3ϕ

∗
3 with ϕk uniform.
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Estimation of eigenvectors

Recall:

Aij =
n

d
PijMij and θ = max

(√
ρ

d
,
L

d

)
.

We assume that the large eigenvalues of

P =
∑
k

µkϕkϕ
∗
k

are well separated:∣∣∣∣1− µk
µl

∣∣∣∣ > log d

log n
for all 1 6 k 6= l 6 r0.

Theorem
Let ψk be a unit eigenvector associated to k-th eigenvalue of A.
There exists γk > 0 such that, with high probability, for
1 6 k 6 r0,

|〈ψk, ϕk〉| = γk + o(1).
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Estimation of eigenvectors

The asymptotic scalar product γk = |〈ψk, φk〉|+ o(1) has an
explicit formula:

γk =
1√
Γk,k

with, for 1 6 k, l 6 r0,

Γk,l =

n∑
i=1

wk,l(i)ϕk(i)ϕl(i),

and

wk,l(i) =
∑
j

(
I − Q

µkµld

)−1
i,j

.

Remark: |〈ψk, ψl〉| = |Γk,l|/
√

Γk,kΓl,l + o(1) is non-zero for k 6= l

if 1 is not an eigenvector of Q.



Rank one projector

If P = ϕϕ∗, we find

θ =

√
n
∑

i |ϕ(i)|4
d

γ =

√
1−

n
∑

i |ϕ(i)|4
d

.



Estimation of eigenvectors

It is also possible to compute the scalar between the left ψ′k and
right ψk unit eigenvectors of the k-th eigenvalue of A:

〈ψ′k, ψk〉 = γ2k + o(1) =
1

Γk,k
+ o(1).

We get an estimator

ϕ̂k =
ψk + ψ′k
‖ψk + ψ′k‖2

such that

|〈ϕk, ϕ̂k〉| =

√
2γ2k

1 + γ2k
+ o(1).



Simulation

For n = 6000 and P = ϕϕ∗ with ϕ uniform on the sphere.



Improved estimation with

non-backtracking matrices



Put some symmetry back

We can improve the factor d in 2d in the detection threshold:

θ = max

(√
ρ

d
,
L

d

)
.

We have not taken into account the information

Pij = Pji.

There is in fact an average of 2d observed entries per row.



Non-backtracking matrix

The set of symmetric observed entries is

E = {(i, j) : (i, j) or (j, i) is observed}.

We have |E| ∼ 2dn.

We consider the non-symmetric matrix B ∈ME(C) defined for
all (i, j), (k, l) in E by

B(i,j),(k,l) =
nPkl

2d
1(j = k, l 6= i).

e f

i j = k l 6= i



Non-backtracking matrix

A vector ϕ ∈ Cn is lifted in CE as

ϕ+(i, j) = ϕ(j).

Theorem
The preceding results on A are true for the matrix B (with
minor extra changes) with d replaced by 2d.



Simulation

For n = 5000 and P = ϕϕ∗ with ϕ uniform on the sphere.



The detection threshold

θ = max

(√
ρ

d
,
L

d

)
.



Lift of a matrix

Fix j0 ∈ [n] = {1, . . . , n}. Let V be the set of finite integer
sequences in [n], (j0, j1, . . . , jk) starting with j0.

We build an infinite matrix P = (Puv)u,v∈V by setting
u = (j0, . . . , jk) ∈ V and j ∈ [n]

Pu,(u,j) = Pjk,j .

Otherwise Puv = 0.

j0 j0j1 j0j1j2

This defines a non-symmetric bounded operator on `2(V ) build
on an infinite n-ary tree.



Lift of a matrix

If Pϕ = µϕ then Φ defined on V as

Φ(j0 · · · jk) = ϕ(jk)

satisfies
PΦ = µΦ.

j0 j0j1 j0j1j2

The function Φ is not in `2(V ).



Percolation on the lift

We keep each edge with probability d/n.

j0 j0j1 j0j1j2

We denote by Pperc the corresponding operator and set

A =
n

d
Pperc.

The operator A is a local approximation of the matrix
A = (n/d)P �M .



Percolation on the lift

A =
n

d
Pperc.

j0 j0j1 j0j1j2

Since PΦ = µΦ, for all v ∈ V , the process in t ∈ N,

Ψt(v) = µ−t(AtΦ)(v)

is a discrete martingale for the filtration of the successive
generations in the tree.



Percolation on the lift

The bracket of the martingale can be computed and we find:

E|Ψt+1(v)−Ψt(v)|2 =
Qt(ϕ2)(v)

(µ2d)t
.

Recall: Qij = n|Pij |2 and ρ = ‖Q‖.

Hence Ψt(v) = µ−t(AtΦ)(v) converges a.s. and in L2 toward
Ψ(v) if

|µ| >
√
ρ

d
.

This is called the Kesten-Stigum threshold.



Percolation on the lift

If |µ| >
√
ρ/d, then Ψt(v) = µ−t(AtΦ)(v) converges a.s. and in

L2 toward Ψ(v).

Since
AΨt = µΨt+1,

we can define a.s. a random eigenwave Ψ on V which satisfies

AΨ = µΨ.



Back to finite dimension

This analysis and concentration inequalities allow to show that
if t� 1 but not too large,

‖At+1ϕk − µkAtϕk‖2 = o(‖Atϕk‖2).

Similarly ϕ∗kA
t is an approximate left eigenvector.

We decompose At in

At =

r0∑
k=1

µtkukv
∗
k +Rt,

with uk = Atϕk/µ
t
k and vk = (At)∗ϕk/µ

t
k. We have

〈uk, vl〉 = δkl + o(1).



Proof strategy

For t = c lnn/ log d well chosen,

At =

r0∑
k=1

µtkukv
∗
k +Rt.

? Compute the inner products between these r20 vectors;

? Show that the Gram matrix is well-conditioned;

? Show that ‖Rt‖ 6 (log n)cθt;

? Use an ad-hoc spectral perturbation theorem of a
non-symmetric matrix of Bauer-Fike type.

B-Lelarge-Massoulié 18.



Rectangular matrices



Linearization trick

If P ∈Mm,n(C), the matrix

P̃ =

(
0 P

P ∗ 0

)

is of size (m+ n)× (m+ n) and is Hermitian.

The singular value decomposition of P =
∑

k skukv
∗
k is

equivalent to the diagonalization of P̃ :

P̃ =
∑
k

skw
+
k (w+

k )∗ − skw−k (w−k )∗,

with w±k = (uk,±vk)′/
√

2.



A randomized asymmetric SVD

Recall
P =

∑
k

skukv
∗
k.

Consider Z = (Zij) ∈Mm,n(R) with iid {0, 1}-Bernoulli entries
with parameter 1/2 and define

P1P
∗
2 with P1 = P � Z , P2 = P − P1.

The k-th largest eigenvalue, say λk, of P1P
∗
2 is a proxy for s2k/4.

The average of the left and right eigenvectors associated to λk is
a proxy for the left singular vector uk.



Matrix completion

Let M = (Mij) ∈Mm,n(R) with iid {0, 1}-Bernoulli entries with
parameter d/n.

The observed matrix is

A =
n

d
P �M.

We perform the randomized asymmetric SVD on A.

At a higher computational cost, we may also consider the
non-backtracking matrix associated to the linearized matrix Ã.

In either case, if n � m, we have explicit detection thresholds
and formulas for the asymptotic inner products.



Matrix completion

Recall
P =

∑
k

skukv
∗
k.

Once we have estimators ûk, v̂k of uk and vk, it is possible to
design an estimator of P :

P̂ =

r0∑
k=1

xkûkv̂
∗
k

for some vector x = (xk) ∈ Rr0 which asymptotically minimizes

‖P̂ − P‖F

and compute an explicit asymptotic formula for

MSE(P̂ ) = ‖P̂ − P‖2F .

Nadakuditi 14.



Simulation

We take d = 9.7, (m,n) = (2000, 3000) and P = uv∗ with u, v
independent standard Gaussian vectors.



Concluding words



Conclusion

Spectral analysis methods on random non-symmetric matrices
can be very efficient, Chen-Cheng-Fan 18.

Numerous possible extensions, for example include some extra
noise, or models where the probability of observing an entry
depends on the entry, Stephan-Massoulié 20.

There is nowadays a lot of activities on tensor completion.



Thank you for your attention!




