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Abstract

We consider a family of multivariate autoregressive stochastic
sequences that restart when hit a neighbourhood of the origin, and
study their distributional limits when the autoregressive coefficient
tends to one, the noise scaling parameter tends to zero, and the
neighbourhood size varies. We obtain a non-standard limit
theorem where the limiting distribution is a mixture of an atomic
distribution and an absolutely continuous distribution whose
marginals, in turn, are mixtures of distributions of signed absolute
values of normal random variables. In particular, we provide
conditions for the limiting distribution to be normal, like in the
case where there is no the restart mechanism.



The Model

Let a ∈ (0,∞). Let {αm}m≥1 be positive random variables with
Eα2

m <∞ and {βm}m≥1 constants: as m→∞,

1− Eαm ∼
a

m
and 1− Eα2

m ∼
2a

m
as well as βm ∼ 1/

√
m.

Let {ξt}t≥0 be i.i.d. copies of a random vector ξ in Rd , where
Eξ = 0 and E||ξ||2 <∞.
For m ≥ 1, let {αm,t}t≥0 be i.i.d. copies of αm that do not depend
on the ξ’s.
Autoregressive model in Rd : for any m = 1, 2, . . .,

X
(m)
t+1 = αm,t+1X

(m)
t + βmξt+1, t = 0, 1, . . . with X

(m)
0 = 0.



Basic facts:

(1) For m large: There exists a unique stationary/limiting

distribution π(m) for X
(m)
t as t →∞ and, for X (m) ∼ π(m),

X (m) d
= αmX

(m) + βmξ.

(2) Further, X (m) d−→ 1√
2a
NΣ as m→∞, where NΣ is a

centred Gaussian random vector with covariance matrix
Σ := E ξξT .



Restart mechanism:

{γm}m≥1, a sequence of positive real-valued numbers
A ⊆ Rd , a measurable set such that

Bd(r) ⊆ A ⊆ Bd(r)

with some r , r ∈ (0,∞). Here Bd(r) is the d-dimensional radius-r
open ball centred at 0.
Let

Y
(m)
t+1 := αm,t+1Y

(m)
t 1{Y (m)

t /∈ γmA}+ βmξt+1, t ≥ 0 with Y
(m)
0 := 0.

The elements of the sequences {X (m)
t }t≥0 and {Y (m)

t }t≥0 coincide
until time

τ (m) = min{t ≥ 1 : X
(m)
t ∈ γmA} ≤ ∞,

and then Y
(m)
t restarts from the origin.



Y (m): a random vector having the stationary distribution of

{Y (m)
t }t≥0,

Y (m) d
= αmY

(m)1{Y (m) /∈ γmA}+ βmξ.

What is the limiting distribution for Y (m), as m→∞, and how
does it differ from the normal distribution?



Main Result

THEOREM. Assume that the matrix Σ := E ξξT has full rank.
Assume further that

EY (m) → µ ∈ Rd as m→∞

and

E τ (m) → τ̂ ∈ [1,∞] as m→∞.

If τ̂ ∈ [1,∞), assume additionally that there exists a random

variable τ such that τ (m) P−→ τ as m→∞.



Then

Y (m) d−→ Y := B1 · Z as m→∞,

where B1 and Z are mutually independent. The random variable
B1 takes values 0 and 1 with probabilities

p := P(B1 = 1) = 1− P(B1 = 0) =

{
1− E τ/τ̂ , τ̂ ∈ [1,∞),

1, τ̂ =∞,

and the d-dimensional random vector Z has an absolutely
continuous distribution that is characterised by the following
properties:



(i) The characteristic function of Z is

ϕZ (u) =

(
1 + i

〈u, µ〉
p
√
uTΣu

∫ √uT Σu√
2a

0
exp

(
t2

2

)
dt

)
exp

(
− uTΣu

4a

)
.

(ii) The density of Z is given by

fZ (x) =

√
a
d√

det(Σ)
√
π
d

exp(−axTΣ−1x) + f̃Z (x), x ∈ Rd ,

where, for odd dimensions d = 1, 3, 5, . . .,

f̃Z (x) =
(−2)

d−1
2 a

d+2
2√

det(Σ)κd−1(d − 1)!!p
〈Σ−

1
2µ, x〉h((d−1)/2)(axTΣ−1x),

and for even d = 2, 4, . . .

f̃Z (x) =
(−2)

d
2 a

d+3
2

κdd!!p
〈Σ−

1
2µ, x〉

∫ ∞
−∞

h(d/2)(a(xTΣ−1x + z2)) dz .

Here h(s) = e−s/
√
s for s > 0, h(k) is its kth derivative, and κd

the volume of the d-dimensional unit ball.



(iii) For any v ∈ Rd ,

〈v ,Z 〉 d
=

√
vTΣv√

2a
B2,v |N|,

where N and B2,v are two independent random variables, with N
having the standard normal distribution and B2,v having a
two-point distribution,

P(B2,v = 1) =
1

2
+

√
πa〈v , µ〉

2p
√
vTΣv

and P(B2,v = −1) =
1

2
−
√
πa〈v , µ〉

2p
√
vTΣv

.



Remarks

Remark 1. Note that Z has a multivariate normal distribution if
and only if µ = 0. The latter condition holds if, say, the
distribution of the ξ’s is symmetric and the set A is symmetric too
(e.g. a ball).
Remark 2. One may notice that if γm →∞, then τ = 1 a.s. and
{τ (m)} are uniformly integrable, so τ̂ = 1. In this “extreme” case,

the result is clear: we get that Y
(m)
t = βmξt ∈ (−γm, γm) with

high probability for large m, then Y
(m)
t tends to 0 a.s. as m→∞

for each t, and the limiting stationary distribution is an atom at 0.



Remark 3. It follows that, for the limiting vector Z = (Z1, . . . ,Zd)
in the Theorem, the vector consisting of its absolute values
(|Z1|, . . . , |Zd |) has the same distribution as the vector
(|N1|, . . . , |Nd |) of absolute values of coordinates of a multivariate
zero-mean normal vector with covariance matrix Σ. In addition,
the marginal distribution of any projection of Z on an orthogonal
to µ projection in normal, and the distribution of a non-orthogonal
projection is a mixture of distributions of signed absolute values of
normal random variables. Therefore, it would look plausible for the
limiting vector Z to coincide in distribution with a random vector
(ψ1N1, . . . , ψdNd) where (N1, . . . ,Nd) is a multivariate normal
vector and (ψ1, . . . , ψd) an independent random vector whose
coordinates take values ±1 only. However, as it follows from the
formulae for the densities, this appears to be not the case if d > 1.



Remark 4. The assumption that the matrix Σ = E ξξT has full
rank is not restrictive. If Σ is not regular, the components of ξ

and, thus, the components of {X (m)
t }t≥0 are linearly dependent. In

this case, it is sufficient to study a maximal subset of linearly
independent components, for which the assumption on the
covariance matrix takes place.
Remark 5. One may consider a more general case where
{βm,t}t≥0 are i.i.d. random variables, for each m, and where
Eβm,1 ∼ K/

√
m for a constant K , as m→∞. However, this case

may be reduced to the case of constant β’s, by introducing new
random variables ξt,m = K

√
mβt,mξt and new β̂m ∼ 1/

√
m. Then

one can obtain a natural analogue of the Theorem in a general
setting.
Remark 6. In the paper, we provide sufficient conditions for the
main assumptions of the Theorem to hold and for the limiting
distribution to be continuous.



Examples

Consider two series of examples. Take d = 1 and let B2 := B2,1.
(1) Assume that γm = βm = 1/

√
m, αm = 1− a/m and that the

ξ’s have a uniform distribution on the interval (−1, 1).
(1.1) Assume first that A = (−1/2, 1/2). Then P(τm ≥ 2)→ 1/2
and Eτm →∞ and also lim infm→∞ P(τm ≥ k) > 0. So,
P(B1 = 1) = 1. Further, due to symmetry
P(B2 = 1) = P(B2 = −1) = 1/2.
(1.2) If instead A = (−1, 1/2), then again Eτm →∞ and also
lim infm→∞ P(τm ≥ k) > 0, so P(B1 = 1) = 1. However,
P(B2 = 1) = 1.
(1.3) If instead A = (−1 + δ, 1/2) with δ ∈ (0, 1/2), then again
Eτm →∞ and also lim infm→∞ P(τm ≥ k) > 0, so P(B1 = 1) = 1.
However, in this case P(B2 = 1) ∈ (1/2, 1).
(1.4) If instead A = (−1/2, 1/2) ∪ (1, 2) ∪ (−2,−1), then again
P(τm ≥ 2)→ 1. However, here random variables {τm} are
uniformly integrable and converge both a.s. and in L1 to
τ = min{n :

∑n
1 ξi ∈ A}. Therefore Eτ = τ̂ and P(B1 = 0) = 1.



(2) Assume that γm = βm = 1/
√
m, αm = α− a/m and that the

ξ’s have a uniform distribution on the interval (−1, 1). Here α is a
positive random variable with Eα = 1 and E logα < 0 (for
example,we may assume that P(α = 3/2) = P(α = 1/2) = 1/2).
(2.1) If A = (−1/2, 1/2), then τ̂ ∈ (1,∞), so P(B1 = 1) ∈ (0, 1)
and P(B2 = 1) = P(B2 = −1) = 1/2.
(2.2) If A = (−1, 1/2), then τ̂ ∈ (1,∞), so P(B1 = 1) ∈ (0, 1) and
P(B2 = 1) = 1.
(2.3) If instead A = (−1 + δ, 1/2) with δ ∈ (0, 1/2), then
P(B1 = 1) ∈ (0, 1) and P(B2 = 1) ∈ (1/2, 1).


