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Outline

Subcritical Erdős-Rényi random graphs

Geometric approximation for typical path lengths in subcritical
Erdős-Rényi graphs

Borel approximation for typical component size in subcritical
Erdős-Rényi graphs
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Erdős-Rényi random graphs

Consider the Erdős-Rényi graph G (n, λ/n) with n vertices. Each pair of
vertices are connected by an edge independently with probability λ/n, for
some parameter λ > 0.

Figure: n = 100, λ = 0.8
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Erdős-Rényi random graphs

Consider the Erdős-Rényi graph G (n, λ/n) with n vertices. Each pair of
vertices are connected by an edge independently with probability λ/n, for
some parameter λ > 0.

Figure: n = 100, λ = 2
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Erdős-Rényi random graphs

Consider the sizes of components (sets of connected vertices) in
G (n, λ/n). Asymptotically (as n→∞):

When λ < 1 (the subcritical case), with high probability all
components of the graph are small, of order at most log(n); two
uniformly chosen vertices are likely to be in different components.

When λ = 1 (the critical case), with high probability there are many
components with a size of order n2/3.

When λ > 1 (the supercritical case), with high probability there is a
single giant component with a non-zero proportion of the vertices,
and all other components are of order at most log(n).

Our interest in the subcritical case.
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Subcritical Erdős-Rényi random graphs

For the subcritical graph G (n, λ/n) for 0 < λ < 1, we define

L: the length of the shortest path between vertices 1 and 2 (if they
are connected; ∞ otherwise).

C : the number of vertices in the same component as vertex 1 (i.e.,
the typical component size).

We will derive explicit error bounds in the approximation of L|L <∞ by a
geometric random variable and in the approximation of C by a Borel
random variable.
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Geometric approximation for L|L <∞

With high probability, L is infinite. Conditioning on vertices 1 and 2 being
in the same component of the graph, L|L <∞ is known to be
asymptotically Geom(1− λ), as n→∞. See Katzav, Biham and
Hartmann (2018).

We write X ∼ Geom(p) if P(X = j) = p(1− p)j−1 for j = 1, 2, . . ..

We can explicitly calculate

P(L = 1|L <∞) =
P(L = 1)

P(L <∞)
= (1− λ) +

λ

n
.
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Geometric approximation for L|L <∞

We give an explicit error bound in total variation distance:

dTV (L(X ),L(Y )) = sup
A⊆N
|P(X ∈ A)− P(Y ∈ A)|

=
1

2
sup

h:N7→R
‖h‖≤1

|Eh(X )− Eh(Y )| = inf
(X ,Y )

P(X 6= Y ) ,

where the infimum is taken over all couplings of (X ,Y ).

To do this we use Stein’s method for geometric approximation, as
developed by Peköz (1996). This is based on the observation that
X ∼ Geom(p) if and only if

X + 1
d
= X |X > 1 ,

where “
d
=” denotes equality in distribution.
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Geometric approximation for L|L <∞

Letting pn = P(L = 1|L <∞) and Yn ∼ Geom(pn), define fA to be the
solution of

I (k ∈ A)− P(Yn ∈ A) = (1− pn)fA(k + 1)− fA(k) ,

for A ⊆ N. We have that supj ,k |fA(j)− fA(k)| ≤ 1
pn

for each A.

This ‘Stein equation’ is motivated by the fact that when replacing k by
L|L <∞, taking absolute values and taking the supremum over A ⊆ N:

The LHS is the total variation distance between L|L <∞ and Yn.

The RHS compares L + 1|L <∞ with L|1 < L <∞.
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Geometric approximation for L|L <∞

Then

dTV (L(L|L <∞),Geom(pn))

= sup
A⊆N
|(1− pn)E[fA(L + 1)|L <∞]− E[fA(L)|L <∞]|

= (1− pn) sup
A⊆N
|E[fA(L + 1)|L <∞]− E[fA(L)|1 < L <∞]|

≤ 1− pn
pn

dTV (L(L + 1|L <∞),L(L|1 < L <∞))

≤ λ

1− λ
dTV (L(L + 1|L <∞),L(L|1 < L <∞)) .
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Geometric approximation for L|L <∞

A realization of L|1 < L <∞ gives us a shortest path (of length at least
two) from vertex 1 to vertex 2. Give the penultimate vertex on this path
the label 3. The path from 1 to 3 gives us a realization of L|L <∞, up to
the fact that vertex 3 is not (quite) uniformly chosen. Hence,

dTV (L(L|1 < L <∞),L(L + 1|L <∞)) ≤ 1

n − 1
.

If we want an explicit error bound for the approximation of L|L <∞ by
Geom(1− λ), we can use the triangle inequality and a simple bound
between two geometric distributions to get the following.

Theorem

dTV (L(L|L <∞),Geom(1− λ)) ≤ λ(2− λ+ λ2)

(1− λ)3(n − 1)
.
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Borel approximation for C

Asymptotically (as n→∞), C is known to have a Borel(λ) distribution.
Z ∼ Borel(λ) satisfies

Z
d
= 1 +

ξ∑
i=1

Zi ,

where Z ,Z1,Z2, . . . are i.i.d. and ξ ∼ Po(λ) has a Poisson distribution.

Thus, Z represents the total progeny in a Galton–Watson process with
Poisson offspring distribution. Its appearance as the limit of C is a
consequence of the branching approximation for G (n, λ/n).

We have that

P(Z = j) =
e−λj(λj)j−1

j!
,

for j = 1, 2, . . . and that EZ = 1
1−λ .
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Borel approximation for C

For any non-negative integer valued random variable X (with EX > 0), we
can define X ?, the size-biased version of X , with

P(X ? = j) =
jP(X = j)

EX
,

for j = 1, 2, . . ..

Using rules for size biasing random sums [see Arratia, Goldstein and
Kochman (2019)], we can use the random sum representation of
Z ∼ Borel(λ) to get that

Z ?
d
= (1− I )Z + I (Z + Z ?) ,

where I is independent of all else with

P(I = 1) = 1− P(I = 0) = λ .
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Borel approximation for C

By comparing C with the total number of infected individuals in a
Reed–Frost epidemic model, results of Ball and Donnelly (1995) give an
upper bound of order O(n−1) on dTV (L(C ),Borel(λ)).

Here we will analyse this problem using Stein’s method, based on the
above characterisation of the Borel distribution. Unfortunately we will only
obtain a bound of order O( log(n)

n ), and for a restricted range of values of
λ. This should be thought of as a first attempt at using Stein’s method
for Borel approximation, which leaves open research questions we will
highlight at the end.
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Borel approximation for C

We construct a Stein equation that compares the distribution of C ? with
(1− I )C + I (Z + C ?).

Let fA be the solution of

I (k ∈ A)− P(Z ∈ A) = (1− λ)(k − 1)fA(k)

− λ(1− λ)k
∞∑
i=1

fA(i + k)P(Z = i) ,

where Z ∼ Borel(λ), so that

dTV (L(C ),Borel(λ)) = sup
A⊆N
|EfA(C ?)− EfA((1− I )C + I (Z + C ?))| .
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Borel approximation for C

We can show that supk |fA(k)| ≤ (1− λ)−2 for each A, and hence

dTV (L(C ),L(Z )) ≤ 1

(1− λ)2
dTV (L(C ?),L((1− I )C + I (Z + C ?))) ,

Writing C = 1 +
∑n

j=2 I (vertex j is connected to vertex 1), we can
calculate

C ?
d
= (1− I ′)C + I ′(C |L <∞) ,

where P(I ′ = 1) = λ− λ
n .
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Borel approximation for C

Coupling I and I ′ monotonically, and conditioning on their values, we thus
get

dTV (L(C ),L(Z )) ≤ λ

(1− λ)2

(
dTV (L(C |L <∞),L(Z + C ?)) +

1

n

)
.

Replacing the remaining Z on the RHS by C (using the triangle
inequality), we get

dTV (L(C ),L(Z ))

≤ λ

1− 3λ+ λ2

(
dTV (L(C |L <∞),L(C + C ?)) +

1

n

)
,

as long as λ < 1
2 (3−

√
5) ≈ 0.38.
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Borel approximation for C

There is another copy of I ′ ‘hidden’ in the C ? here: we ‘match’ this with
an indicator I (L > 1|L <∞) and get

dTV (L(C ),L(Z ))

≤ λ

1− 3λ+ λ2

(
dTV (L(C |L = 1),L(C + C̃ )) + λα0 +

1

n

)
,

where C̃ is an independent copy of C , and

αj = dTV (L(C |j + 1 < L <∞),L(C̃ + C |j < L <∞)) .

By conditioning on the presence of an edge between vertices 1 and 2, we
can bound

dTV (L(C |L = 1),L(C + C̃ )) ≤ P(L <∞) ≤ λ

(1− λ)n
.
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Borel approximation for C

It remains only to bound α0. By conditioning on the value of L,

αj ≤ θjαj+1 + dTV (L(C |L = j + 2),L(C̃ + C |L = j + 1)) + |θj − θj+1| ,

where θj = P(L > j + 1|j < L <∞) and as above we can bound

dTV (L(C |L = j + 2),L(C̃ + C |L = j + 1)) ≤ λ(j + 2)

(1− λ)n
.

Applying this m = O(log(n)) times to bound α0 we get

α0 ≤
λ

(1− λ)n

 m∑
j=0

(j + 2)Θj

 =
m∑
j=0

|θj − θj+1|Θj + Θm+1 ,

where Θj = P(L > j |L <∞).
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Borel approximation for C

We use our geometric approximation results from above to bound
Θj = P(L > j |L <∞):

λj − a(λ)

n − 1
≤ Θj ≤ λj +

a(λ)

n − 1
,

where a(λ) = λ(2−λ+λ2)
(1−λ)3 . Similarly for |θj − θj+1|.

These give us an upper bound on α0 of order O
(

log(n)
n

)
, which may be

combined with the above to obtain

dTV (L(C ),Borel(λ)) ≤ O

(
log(n)

n

)
.

This is (slightly) worse than the bound O(n−1) available from the results
of Ball and Donnelly (1995).
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Borel approximation for C

We have an explicit choice for m:

m =

⌊
log(n − 1)− log log(n)

− log(λ)
− 1

⌋
,

and a corresponding bound with an explicit (not too large) constant.

We have assumed that n ≥ 19 and 0 ≤ m ≤ n− 4, and that λ < 0.38.
This final condition seems to be an artefact of the proof only (in
particular, from the extra Z on the RHS of our Stein equation).

Can we remove the condition λ < 0.38 and/or match the O(n−1)
bound using Stein’s method? Is there a useful alternative Stein
equation?
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