A continuous-time version of the Derrida–Retaux model

Bastien Mallein Joint work with

Yueyun Hu (Université Sorbonne Paris Nord) and Michel Pain (NYU)

LAGA — Université Sorbonne Paris Nord

Applied Probability Workshop 2020 From home

The Derrida–Retaux model

Let X_0 be a non-negative random variable. We set for all $n \in \mathbb{N}$,

$$X_{n+1} = (X_n^{(1)} + X_n^{(2)} - 1)_+,$$

where $X_n^{(1)}, X_n^{(2)}$ are two independent versions of X_n .

Question

What can be said of the asymptotic behavior of X_n as $n \to \infty$.

The Derrida–Retaux model

Let X_0 be a non-negative random variable. We set for all $n \in \mathbb{N}$,

$$X_{n+1} = (X_n^{(1)} + X_n^{(2)} - 1)_+,$$

where $X_n^{(1)}, X_n^{(2)}$ are two independent versions of X_n .

Question

What can be said of the asymptotic behavior of X_n as $n \to \infty$.

Plan

Motivation

- Pinning models
- Parking in trees

2 A continuous-time version of this model

- Three intertwined models
- Results and open questions

3 An exactly solvable version of this model

Plan

Motivation

- Pinning models
- Parking in trees

A continuous-time version of this model

- Three intertwined models
- Results and open questions

3 An exactly solvable version of this model

Poland–Scheraga model (1966)

Description

- DNA molecule of length N.
- Bounding energy ω_j in each site $j \leq N$.
- S_i distance between the two strands.

Poland–Scheraga model (1966)

Description

- DNA molecule of length N.
- Bounding energy ω_j in each site $j \leq N$.
- S_j distance between the two strands.

$$(S_i, 0 \le i \le N)$$
 path with $S_0 = S_N = 0$
 $(\omega_i, 0 \le i \le N)$ i.i.d.

Definition

Polymer measure of length N is defined by

$$\mathcal{P}_{N,\omega}(\mathrm{d}S) = rac{1}{Z_N} \exp\left(\sum_{i=1}^n \omega_i \mathbf{1}_{\{S_i=S_{i-1}=0\}}\right).$$

Remark

If $\omega_i > 0$, the strands are attracted to one another $\omega_i < 0$ they are repulsed.

Random polymer models, G. Giacomin, 2017.

Definition

Polymer measure of length N is defined by

$$P_{N,\omega}(\mathrm{d}S) = rac{1}{Z_N} \exp\left(\sum_{i=1}^n \omega_i \mathbf{1}_{\{S_i=S_{i-1}=0\}}\right).$$

Remark

If $\omega_i > 0,$ the strands are attracted to one another $\omega_i < 0$ they are repulsed.

Random polymer models, G. Giacomin, 2017.

Definition

Polymer measure of length N is defined by

$$P_{N,\omega}(\mathrm{d}S) = rac{1}{Z_N} \exp\left(\sum_{i=1}^n \omega_i \mathbf{1}_{\{S_i=S_{i-1}=0\}}\right).$$

Remark

If $\omega_i > 0$, the strands are attracted to one another $\omega_i < 0$ they are repulsed.

Random polymer models, G. Giacomin, 2017.

Définition

Set $F_{\omega} = \lim_{n \to \infty} N^{-1} \log Z_N$ the free energy of the model.

 $F_{\omega} = \log 2 \iff$ unpinned phase

$$\mathsf{F}_\omega < \mathsf{log}\, 2 \iff \mathsf{pinned} \mathsf{ phase}$$

Open problem

Find for which (ω_j) the model is in the pinned/unpinned phase. Find the behavior of the free energy around the pinned/unpinned phase transition.

Définition

Set $F_{\omega} = \lim_{n \to \infty} N^{-1} \log Z_N$ the free energy of the model.

 $F_{\omega} = \log 2 \iff$ unpinned phase

 $F_{\omega} < \log 2 \iff$ pinned phase

Open problem

Find for which (ω_j) the model is in the pinned/unpinned phase. Find the behavior of the free energy around the pinned/unpinned phase transition.

• Set $B \ge 2$ an integer.

- There is a unique edge at stage 0.
- Each edge is divided into *B* couple of edges when going from stage *k* to stage *k* + 1.
- Bounding energies are on the smallest edges.

- Set $B \ge 2$ an integer.
- There is a unique edge at stage 0.
- Each edge is divided into *B* couple of edges when going from stage *k* to stage *k* + 1.
- Bounding energies are on the smallest edges.

- Set $B \ge 2$ an integer.
- There is a unique edge at stage 0.
- Each edge is divided into *B* couple of edges when going from stage *k* to stage *k* + 1.
- Bounding energies are on the smallest edges.

- Set $B \ge 2$ an integer.
- There is a unique edge at stage 0.
- Each edge is divided into *B* couple of edges when going from stage *k* to stage *k* + 1.
- Bounding energies are on the smallest edges.

- Set $B \ge 2$ an integer.
- There is a unique edge at stage 0.
- Each edge is divided into *B* couple of edges when going from stage *k* to stage *k* + 1.
- Bounding energies are on the smallest edges.

 ω_{\emptyset}

Figure: 0th stage

Bastien Mallein (Paris 13)

Continuous Derrida–Retaux model

Figure: 2nd stage

Figure: 3rd stage

Figure: 3rd stage

Partition function

Set Z_k the sum of the energies of all possible paths at stage k, normalized by B^k . Note that the recursion equation implies

$$Z_{k+1} = rac{Z_k^{(1)}Z_k^{(2)} + B - 1}{B}.$$

The free energy is
$$F_{\omega} = \lim_{k \to \infty} \frac{1}{2^k} \log Z_k$$
.

Numerous results on that model : Monthus and Garet (2008), Derrida, Giacomin, Lacoin and Toninelli (2009), Lacoin and Toninelli (2009), Giacomin, Lacoin and Toninelli (2010, 2011), Berger and Toninelli (2013)...

Open question

Find the asymptotic behavior of the free energy around the pinning phase transition.

Bastien Mallein (Paris 13)

Partition function

Set Z_k the sum of the energies of all possible paths at stage k, normalized by B^k . Note that the recursion equation implies

$$Z_{k+1} = rac{Z_k^{(1)}Z_k^{(2)} + B - 1}{B}.$$

The free energy is $F_{\omega} = \lim_{k \to \infty} \frac{1}{2^k} \log Z_k$.

Numerous results on that model : Monthus and Garet (2008), Derrida, Giacomin, Lacoin and Toninelli (2009), Lacoin and Toninelli (2009), Giacomin, Lacoin and Toninelli (2010, 2011), Berger and Toninelli (2013)...

Open question

Find the asymptotic behavior of the free energy around the pinning phase transition.

Partition function

Set Z_k the sum of the energies of all possible paths at stage k, normalized by B^k . Note that the recursion equation implies

$$Z_{k+1} = rac{Z_k^{(1)}Z_k^{(2)} + B - 1}{B}.$$

The free energy is $F_{\omega} = \lim_{k \to \infty} \frac{1}{2^k} \log Z_k$.

Numerous results on that model : Monthus and Garet (2008), Derrida, Giacomin, Lacoin and Toninelli (2009), Lacoin and Toninelli (2009), Giacomin, Lacoin and Toninelli (2010, 2011), Berger and Toninelli (2013)...

Open question

Find the asymptotic behavior of the free energy around the pinning phase transition.

Bastien Mallein (Paris 13)

Continuous Derrida–Retaux mode

Derrida-Retaux model (2014)

Set $\bar{X}_k = \log Z_k$. The recursion equation can be rewritten

$$\bar{X}_{k+1} = \log(\exp(\bar{X}_k^{(1)} + \bar{X}_k^{(2)}) + B - 1)/B.$$

Derrida–Retaux model

Replace the function $x \mapsto \log((e^x + b - 1)/b)$ by $\max(x, -\log b)$.

Derrida-Retaux model (2014)

Set $\bar{X}_k = \log Z_k$. The recursion equation can be rewritten

$$\bar{X}_{k+1} = \log(\exp(\bar{X}_k^{(1)} + \bar{X}_k^{(2)}) + B - 1)/B.$$

Derrida–Retaux model

Replace the function $x \mapsto \log((e^x + b - 1)/b)$ by $\max(x, -\log b)$.

Derrida-Retaux model (2014)

Set $\bar{X}_k = \log Z_k$. The recursion equation can be rewritten

$$\bar{X}_{k+1} = \log(\exp(\bar{X}_k^{(1)} + \bar{X}_k^{(2)}) + B - 1)/B.$$

Derrida–Retaux model

Replace the function $x \mapsto \log((e^x + b - 1)/b)$ by $\max(x, -\log b)$.

We obtain the recursion

$$X_{n+1} = (X_n^{(1)} + X_n^{(2)} - 1)_+.$$

Free energy

Assume that $X_0 \sim p\delta_0 + (1-p)\mu$ with μ a probability distribution on $(0,\infty)$. Set

$$F_{\infty}(\rho) = \lim_{n \to \infty} 2^{-n} \mathbf{E}(X_n) \in [0, \infty],$$

and define $p_c \in [0,1]$ such that $F_{\infty}(p) > 0 \iff p < p_c$. We have $F_{\infty} = 0$ in the pinned phase, et $F_{\infty} > 0$ in the unpinned phase.

Conjecture

If $p_c>0$, we have $F_\infty(p)=\exp(-(c+o(1))(p-p_c)^{-1/2})$ as $p
ightarrow p_c.$

We obtain the recursion

$$X_{n+1} = (X_n^{(1)} + X_n^{(2)} - 1)_+.$$

Free energy

Assume that $X_0 \sim p\delta_0 + (1-p)\mu$ with μ a probability distribution on $(0,\infty)$. Set $F_{-}(p) = \lim_{n \to \infty} 2^{-n} F(X_n) \subset [0,\infty]$

$$\mathcal{F}_{\infty}(p) = \lim_{n \to \infty} 2^{-n} \mathbf{E}(X_n) \in [0, \infty],$$

and define $p_c \in [0,1]$ such that $F_{\infty}(p) > 0 \iff p < p_c$. We have $F_{\infty} = 0$ in the pinned phase, et $F_{\infty} > 0$ in the unpinned phase.

Conjecture

If $p_c > 0$, we have $F_{\infty}(p) = \exp(-(c+o(1))(p-p_c)^{-1/2})$ as $p \to p_c$.

We obtain the recursion

$$X_{n+1} = (X_n^{(1)} + X_n^{(2)} - 1)_+.$$

Free energy

Assume that $X_0 \sim p\delta_0 + (1-p)\mu$ with μ a probability distribution on $(0,\infty)$. Set

$$F_{\infty}(p) = \lim_{n \to \infty} 2^{-n} \mathbf{E}(X_n) \in [0, \infty],$$

and define $p_c \in [0,1]$ such that $F_{\infty}(p) > 0 \iff p < p_c$. We have $F_{\infty} = 0$ in the pinned phase, et $F_{\infty} > 0$ in the unpinned phase.

Conjecture

If
$$p_c > 0$$
, we have $F_\infty(p) = \exp(-(c+o(1))(p-p_c)^{-1/2})$ as $p o p_c.$

Remark

The recursion equation defining $(X_n, n \ge 0)$ is an equation in law: there is no process, no trajectorial version of the model to be imposed.

Nevertheless, it is reasonable to define Derrida–Retaux model on a tree.

Remark

The recursion equation defining $(X_n, n \ge 0)$ is an equation in law: there is no process, no trajectorial version of the model to be imposed.

Nevertheless, it is reasonable to define Derrida-Retaux model on a tree.

Parking in a tree

Collet, Eckmann, Glaser, Martin (1984)

- Let X_0 be an integer-valued random variable.
- Consider a binary tree of height *n*.
- Put an independent copy of X₀ on each leaf of that tree.
- Then define recursively the value of each internal node to be $(a + b 1)_+$ if its children have value *a* and *b*.

Parking in a tree

Collet, Eckmann, Glaser, Martin (1984)

- Let X_0 be an integer-valued random variable.
- Consider a binary tree of height *n*.
- Put an independent copy of X_0 on each leaf of that tree.
- Then define recursively the value of each internal node to be $(a + b 1)_+$ if its children have value *a* and *b*.

Collet, Eckmann, Glaser, Martin (1984)

- Let X_0 be an integer-valued random variable.
- Consider a binary tree of height *n*.
- Put an independent copy of X₀ on each leaf of that tree.
- Then define recursively the value of each internal node to be $(a + b 1)_+$ if its children have value *a* and *b*.
Collet, Eckmann, Glaser, Martin (1984)

- Let X_0 be an integer-valued random variable.
- Consider a binary tree of height *n*.
- Put an independent copy of X₀ on each leaf of that tree.
- Then define recursively the value of each internal node to be $(a + b 1)_+$ if its children have value *a* and *b*.

Theorem (Collet, Eckmann, Glaser, Martin (1984)) Recall that $F_{\infty} = \lim_{n \to \infty} 2^{-n} \mathbf{E}(X_n)$. We have

$$F_{\infty}=0\iff \mathbf{E}(X_02^{X_0})\leq E(2^{X_0})<\infty.$$

Moreover, if $F_{\infty} = 0$ then $\lim_{n\to\infty} X_n = 0$ in probability and if $F_{\infty} > 0$ then $\lim_{n\to\infty} 2^{-n}X_n = F_{\infty}$ in probability.

Open questions

If X_0 is not integer-valued, can we find a similar criterion distinguishing the pinned and unpinned phases ? Can we show the Derrida–Retaux conjecture on the behavior of the free energy around the pinning transition ?

Theorem (Collet, Eckmann, Glaser, Martin (1984)) Recall that $F_{\infty} = \lim_{n \to \infty} 2^{-n} \mathbf{E}(X_n)$. We have

$$F_{\infty}=0\iff \mathbf{E}(X_02^{X_0})\leq E(2^{X_0})<\infty.$$

Moreover, if $F_{\infty} = 0$ then $\lim_{n\to\infty} X_n = 0$ in probability and if $F_{\infty} > 0$ then $\lim_{n\to\infty} 2^{-n}X_n = F_{\infty}$ in probability.

Open questions

If X_0 is not integer-valued, can we find a similar criterion distinguishing the pinned and unpinned phases ? Can we show the Derrida–Retaux conjecture on the behavior of the free energy around the pinning transition ?

Recall that $F_{\infty}(p)$ is the free energy of $X_0 \sim p\delta_0 + (1-p)\mu$.

Theorem (Chen, Dagard, Derrida, Hu, Lifshits, Shi 2019) If μ is integer-valued and $\int x^3 2^{x} \mu(dx) < \infty$, then

$$F_{\infty}(p) = \exp\left(-(p-p_c)^{-1/2+o(1)}
ight).$$

There exist measure μ such that $\int x^3 2^x \mu(dx) = \infty$, $p_c > 0$ and

$$F_{\infty}(p) = \exp\left(-(p-p_c)^{-lpha+o(1)}
ight).$$

with $\alpha < 1/2$.

Recall that $F_{\infty}(p)$ is the free energy of $X_0 \sim p\delta_0 + (1-p)\mu$.

Theorem (Chen, Dagard, Derrida, Hu, Lifshits, Shi 2019) If μ is integer-valued and $\int x^3 2^{x} \mu(dx) < \infty$, then

$$F_{\infty}(p) = \exp\left(-(p-p_c)^{-1/2+o(1)}\right).$$

There exist measure μ such that $\int x^3 2^x \mu(\mathrm{d} x) = \infty$, $p_c > 0$ and

$$F_{\infty}(p) = \exp\left(-(p-p_c)^{-\alpha+o(1)}\right).$$

with $\alpha < 1/2$.

Plan

Motivation

- Pinning models
- Parking in trees

2 A continuous-time version of this model

- Three intertwined models
- Results and open questions

3 An exactly solvable version of this model

In their article, Derrida and Retaux write that a "good" renormalisation of the DR model should converge in law towards a process $(X_t, t \ge 0)$ whose law $\tilde{\varrho}_t$ satisfies the partial differential equation

$$\forall x > 0, \partial_t \tilde{\varrho}(x) = \partial_x \tilde{\varrho}(x) + \tilde{\varrho} * \tilde{\varrho}(x) - \tilde{\varrho}(x).$$

Problem

This equation is not conservative : even if ρ_0 is a probability measure, the total mass of ρ_t will be different from 1 for t > 0 large enough.

In their article, Derrida and Retaux write that a "good" renormalisation of the DR model should converge in law towards a process $(X_t, t \ge 0)$ whose law $\tilde{\varrho}_t$ satisfies the partial differential equation

$$\forall x > 0, \partial_t \tilde{\varrho}(x) = \partial_x \tilde{\varrho}(x) + \tilde{\varrho} * \tilde{\varrho}(x) - \tilde{\varrho}(x).$$

Problem

This equation is not conservative : even if ρ_0 is a probability measure, the total mass of ρ_t will be different from 1 for t > 0 large enough.

Aim

Construct a stochastic process whose density satisfies a PDE close to the one given by Derrida and Retaux.

Remark

Observe that a process version of the Derrida–Retaux model can written as follows: given (U_n) i.i.d. variables with uniform distributions on [0, 1], we set

$$\begin{cases} X_{n+1} = X_n + F_n^{-1}(U_{n+1}) - \mathbf{1}_{\{X_n + F_n^{-1}(U_{n+1}) > 0\}} \\ F_{n+1}(x) = \mathbf{P}(X_{n+1} \le x) \text{ for all } x \ge 0. \end{cases}$$

Aim

Construct a stochastic process whose density satisfies a PDE close to the one given by Derrida and Retaux.

Remark

Observe that a process version of the Derrida–Retaux model can written as follows: given (U_n) i.i.d. variables with uniform distributions on [0, 1], we set

$$\begin{cases} X_{n+1} = X_n + F_n^{-1}(U_{n+1}) - \mathbf{1}_{\{X_n + F_n^{-1}(U_{n+1}) > 0\}} \\ F_{n+1}(x) = \mathbf{P}(X_{n+1} \le x) \text{ for all } x \ge 0. \end{cases}$$

Aim

Construct a stochastic process whose density satisfies a PDE close to the one given by Derrida and Retaux.

Definition

A continuous-time DR model is a solution of the following SDE:

$$\begin{cases} X_t = X_0 - \int_0^t \mathbf{1}_{\{X_s > 0\}} \mathrm{d}s + \int_0^t \int_0^1 F_s^{-1}(u) \mathcal{N}(\mathrm{d}s, \mathrm{d}u) \\ F_t(x) = \mathbf{P}(X_t \le x) \text{ for all } x \ge 0 \end{cases}$$

where N is a PPP on $\mathbb{R}_+ \times [0,1]$ with intensity $\mathrm{d}s\mathrm{d}u$.

Let us compute the equation satisfied by the law ρ_t of X_t . Let f be a C^1 function, we have

$$\mathbf{E}(f(X_t)) = \mathbf{E}(f(X_0)) - \int_0^t \mathbf{E}(f'(X_s)\mathbf{1}_{\{X_s>0\}}) \mathrm{d}s$$

+ $\int_0^t \mathbf{E}(f(X_s + X'_s) - f(X_s)) \mathrm{d}s$
$$\int f(x) \mathrm{d}\varrho_t(x) = \int f \mathrm{d}\varrho_0(x) - \int_0^t \int f'(x)\mathbf{1}_{\{x>0\}} \mathrm{d}\varrho_s(x) \mathrm{d}s$$

+ $\int_0^t \int f(y) \mathrm{d}\varrho_s * \varrho_s(y) \mathrm{d}s - \int_0^t \int f(x) \mathrm{d}\varrho_s(x) \mathrm{d}s.$

As a result, we obtain the PDE

$$\partial_t \varrho = \partial_x \left(\mathbf{1}_{\{x > \mathbf{0}\}} \varrho \right) + \varrho * \varrho - \varrho.$$

Let us compute the equation satisfied by the law ρ_t of X_t . Let f be a C^1 function, we have

$$\begin{split} \mathbf{E}(f(X_t)) &= \mathbf{E}(f(X_0)) - \int_0^t \mathbf{E}(f'(X_s)\mathbf{1}_{\{X_s>0\}}) \mathrm{d}s \\ &+ \int_0^t \mathbf{E}(f(X_s + X'_s) - f(X_s)) \mathrm{d}s \\ \int f(x) \mathrm{d}\varrho_t(x) &= \int f \mathrm{d}\varrho_0(x) - \int_0^t \int f'(x)\mathbf{1}_{\{x>0\}} \mathrm{d}\varrho_s(x) \mathrm{d}s \\ &+ \int_0^t \int f(y) \mathrm{d}\varrho_s * \varrho_s(y) \mathrm{d}s - \int_0^t \int f(x) \mathrm{d}\varrho_s(x) \mathrm{d}s. \end{split}$$

As a result, we obtain the PDE

$$\partial_t \varrho = \partial_x \left(\mathbf{1}_{\{x > \mathbf{0}\}} \varrho \right) + \varrho * \varrho - \varrho.$$

Let us compute the equation satisfied by the law ρ_t of X_t . Let f be a C^1 function, we have

$$\begin{split} \mathbf{E}(f(X_t)) &= \mathbf{E}(f(X_0)) - \int_0^t \mathbf{E}(f'(X_s)\mathbf{1}_{\{X_s>0\}}) \mathrm{d}s \\ &+ \int_0^t \mathbf{E}(f(X_s + X'_s) - f(X_s)) \mathrm{d}s \\ \int f(x) \mathrm{d}\varrho_t(x) &= \int f \mathrm{d}\varrho_0(x) - \int_0^t \int f'(x)\mathbf{1}_{\{x>0\}} \mathrm{d}\varrho_s(x) \mathrm{d}s \\ &+ \int_0^t \int f(y) \mathrm{d}\varrho_s * \varrho_s(y) \mathrm{d}s - \int_0^t \int f(x) \mathrm{d}\varrho_s(x) \mathrm{d}s. \end{split}$$

As a result, we obtain the PDE

$$\partial_t \varrho = \partial_x \left(\mathbf{1}_{\{x > \mathbf{0}\}} \varrho \right) + \varrho * \varrho - \varrho.$$

time↓

Figure: Solving the stochastic differential equation

$$X_t = X_0 - \int_0^t \mathbf{1}_{\{X_s > 0\}} \mathrm{d}s + \int_0^t \int_0^1 F_s^{-1}(u) N(\mathrm{d}s, \mathrm{d}u).$$

time↓

Figure: Solving the stochastic differential equation

$$X_t = X_0 - \int_0^t \mathbf{1}_{\{X_s > 0\}} \mathrm{d}s + \int_0^t \int_0^1 F_s^{-1}(u) N(\mathrm{d}s, \mathrm{d}u).$$

$$X_{0}$$

$$X_{t} = (X_{0} - t)_{+} +$$

time↓

Figure: Solving the stochastic differential equation

$$X_t = X_0 - \int_0^t \mathbf{1}_{\{X_s > 0\}} \mathrm{d}s + \int_0^t \int_0^1 F_s^{-1}(u) N(\mathrm{d}s, \mathrm{d}u).$$

Figure: Solving the stochastic differential equation

$$X_t = X_0 - \int_0^t \mathbf{1}_{\{X_s > 0\}} \mathrm{d}s + \int_0^t \int_0^1 F_s^{-1}(u) N(\mathrm{d}s, \mathrm{d}u).$$

Figure: Solving the stochastic differential equation

$$X_t = X_0 - \int_0^t \mathbf{1}_{\{X_s > 0\}} \mathrm{d}s + \int_0^t \int_0^1 F_s^{-1}(u) N(\mathrm{d}s, \mathrm{d}u).$$

Figure: Solving the stochastic differential equation

$$X_t = X_0 - \int_0^t \mathbf{1}_{\{X_s > 0\}} \mathrm{d}s + \int_0^t \int_0^1 F_s^{-1}(u) N(\mathrm{d}s, \mathrm{d}u).$$

Figure: Solving the stochastic differential equation

$$X_t = X_0 - \int_0^t \mathbf{1}_{\{X_s > 0\}} \mathrm{d}s + \int_0^t \int_0^1 F_s^{-1}(u) N(\mathrm{d}s, \mathrm{d}u).$$

Figure: Solving the stochastic differential equation

$$X_t = X_0 - \int_0^t \mathbf{1}_{\{X_s > 0\}} \mathrm{d}s + \int_0^t \int_0^1 F_s^{-1}(u) N(\mathrm{d}s, \mathrm{d}u).$$

Figure: Solving the stochastic differential equation

$$X_t = X_0 - \int_0^t \mathbf{1}_{\{X_s > 0\}} \mathrm{d}s + \int_0^t \int_0^1 F_s^{-1}(u) N(\mathrm{d}s, \mathrm{d}u).$$

• Take a **Yule tree** of height *t*.

- Start with i.i.d. amout of paint on each leaf of the tree, sampled according to the law of X₀.
- Paint down the branches with a quantity 1 of paint per unit of branch length, until no more paint is left.
- When two painters meet, they put their remaining paint in common.
- X_t is the rest of paint at the root.

• Take a Yule tree of height t.

- Start with i.i.d. amout of paint on each leaf of the tree, sampled according to the law of X₀.
- Paint down the branches with a quantity 1 of paint per unit of branch length, until no more paint is left.
- When two painters meet, they put their remaining paint in common.
- X_t is the rest of paint at the root.

- Take a Yule tree of height t.
- Start with i.i.d. amout of paint on each leaf of the tree, sampled according to the law of X₀.
- Paint down the branches with a quantity 1 of paint per unit of branch length, until no more paint is left.
- When two painters meet, they put their remaining paint in common.
- X_t is the rest of paint at the root.

- Take a Yule tree of height t.
- Start with i.i.d. amout of paint on each leaf of the tree, sampled according to the law of X₀.
- Paint down the branches with a quantity 1 of paint per unit of branch length, until no more paint is left.
- When two painters meet, they put their remaining paint in common.
- X_t is the rest of paint at the root.

The tree construction

- Take a Yule tree of height t.
- Start with i.i.d. amout of paint on each leaf of the tree, sampled according to the law of X₀.
- Paint down the branches with a quantity 1 of paint per unit of branch length, until no more paint is left.
- When two painters meet, they put their remaining paint in common.
- X_t is the rest of paint at the root.

The tree construction

- Take a Yule tree of height t.
- Start with i.i.d. amout of paint on each leaf of the tree, sampled according to the law of X₀.
- Paint down the branches with a quantity 1 of paint per unit of branch length, until no more paint is left.
- When two painters meet, they put their remaining paint in common.
- X_t is the rest of paint at the root.

Connexion between the results

Proposition

There exists a unique weak solution to the McKean-Vlasov type SDE, with same law at time t as in the tree-painting scheme of height t.

Proposition

There exists a unique weak solution to the PDE

$$\partial_t \varrho = \partial_x (\mathbf{1}_{\{x>0\}} \varrho) + \varrho * \varrho - \varrho,$$

Moreover, ρ_t is the law of the solution of the SDE at time t.

Proof.

Using Itô calculus, the law of X_t is a solution to the SDE Reciprocally, we prove that any solution to this PDE can be rewritten in a tree-painting scheme.

Connexion between the results

Proposition

There exists a unique weak solution to the McKean-Vlasov type SDE, with same law at time t as in the tree-painting scheme of height t.

Proposition

There exists a unique weak solution to the PDE

$$\partial_t \varrho = \partial_x (\mathbf{1}_{\{x>0\}} \varrho) + \varrho * \varrho - \varrho,$$

Moreover, ρ_t is the law of the solution of the SDE at time t.

Proof.

Using Itô calculus, the law of X_t is a solution to the SDE Reciprocally, we prove that any solution to this PDE can be rewritten in a tree-painting scheme.

Proposition

- The free energy $F_{\infty} = \lim_{t \to \infty} e^{-t} \mathbf{E}(X_t)$ exists.
- If $F_{\infty} > 0$, then $\lim_{t\to\infty} e^{-t}X_t = F_{\infty} \operatorname{Exp}(1)$ in law.

Proof.

1. By the SDE representation of the DR model, we have

$$\mathbf{E}(X_t) = \mathbf{E}(X_0) - \int_0^t \mathbf{P}(X_s > 0) \mathrm{d}s + \int_0^t \mathbf{E}(X_s) \mathrm{d}s$$

Solving this ODE we have $\mathbf{E}(X_t) = e^t(\mathbf{E}(X_0) + \int_0^t e^{-s} \mathbf{P}(X_s > 0) ds)$, hence the limit exists. **2.** We use that for a Yule tree, $e^{-s} \# \mathcal{N}_s \to \text{Exp}(1)$ in law.

Proposition

- The free energy $F_{\infty} = \lim_{t \to \infty} e^{-t} \mathbf{E}(X_t)$ exists.
- If $F_{\infty} > 0$, then $\lim_{t \to \infty} e^{-t}X_t = F_{\infty} \operatorname{Exp}(1)$ in law.

Proof.

1. By the SDE representation of the DR model, we have

$$\mathbf{E}(X_t) = \mathbf{E}(X_0) - \int_0^t \mathbf{P}(X_s > 0) \mathrm{d}s + \int_0^t \mathbf{E}(X_s) \mathrm{d}s$$

Solving this ODE we have $\mathbf{E}(X_t) = e^t(\mathbf{E}(X_0) + \int_0^t e^{-s} \mathbf{P}(X_s > 0) ds)$, hence the limit exists. **2.** We use that for a Yule tree, $e^{-s} \# \mathcal{N}_s \to \text{Exp}(1)$ in law.

Proposition

- The free energy $F_{\infty} = \lim_{t \to \infty} e^{-t} \mathbf{E}(X_t)$ exists.
- If $F_{\infty} > 0$, then $\lim_{t \to \infty} e^{-t} X_t = F_{\infty} \mathrm{Exp}(1)$ in law.

Proof.

1. By the SDE representation of the DR model, we have

$$\mathsf{E}(X_t) = \mathsf{E}(X_0) - \int_0^t \mathsf{P}(X_s > 0) \mathrm{d}s + \int_0^t \mathsf{E}(X_s) \mathrm{d}s$$

Solving this ODE we have $\mathbf{E}(X_t) = e^t(\mathbf{E}(X_0) + \int_0^t e^{-s} \mathbf{P}(X_s > 0) ds)$, hence the limit exists. **2.** We use that for a Yule tree, $e^{-s} \# \mathcal{N}_s \to \text{Exp}(1)$ in law.

Proposition

- The free energy $F_{\infty} = \lim_{t \to \infty} e^{-t} \mathbf{E}(X_t)$ exists.
- If $F_{\infty} > 0$, then $\lim_{t \to \infty} e^{-t} X_t = F_{\infty} \mathrm{Exp}(1)$ in law.

Proof.

1. By the SDE representation of the DR model, we have

$$\mathsf{E}(X_t) = \mathsf{E}(X_0) - \int_0^t \mathsf{P}(X_s > 0) \mathrm{d}s + \int_0^t \mathsf{E}(X_s) \mathrm{d}s$$

Solving this ODE we have $\mathbf{E}(X_t) = e^t(\mathbf{E}(X_0) + \int_0^t e^{-s} \mathbf{P}(X_s > 0) ds)$, hence the limit exists.

2. We use that for a Yule tree, $e^{-s} \# \mathcal{N}_s \to \operatorname{Exp}(1)$ in law.

Proposition

- The free energy $F_{\infty} = \lim_{t \to \infty} e^{-t} \mathbf{E}(X_t)$ exists.
- If $F_{\infty} > 0$, then $\lim_{t \to \infty} e^{-t} X_t = F_{\infty} \operatorname{Exp}(1)$ in law.

Proof.

1. By the SDE representation of the DR model, we have

$$\mathsf{E}(X_t) = \mathsf{E}(X_0) - \int_0^t \mathsf{P}(X_s > 0) \mathrm{d}s + \int_0^t \mathsf{E}(X_s) \mathrm{d}s$$

Solving this ODE we have $\mathbf{E}(X_t) = e^t(\mathbf{E}(X_0) + \int_0^t e^{-s} \mathbf{P}(X_s > 0) ds)$, hence the limit exists.

2. We use that for a Yule tree, $e^{-s} \# \mathcal{N}_s \to \operatorname{Exp}(1)$ in law.

Open questions

Conjecture

If $F_{\infty} = 0$, then $\lim_{t \to \infty} X_t = 0$ in probability.

Conjecture

If $F_{\infty} = 0$, the law of X_t , conditioned on $X_t > 0$ converges in law to a standard exponential distribution.

Open question

Can we find a criterion on ϱ_0 predicting if $F_{\infty} > 0$?

Open questions

Conjecture

If $F_{\infty} = 0$, then $\lim_{t \to \infty} X_t = 0$ in probability.

Conjecture

If $F_{\infty} = 0$, the law of X_t , conditioned on $X_t > 0$ converges in law to a standard exponential distribution.

Open question

Can we find a criterion on $arrho_0$ predicting if $F_\infty > 0$?

Open questions

Conjecture

If $F_{\infty} = 0$, then $\lim_{t \to \infty} X_t = 0$ in probability.

Conjecture

If $F_{\infty} = 0$, the law of X_t , conditioned on $X_t > 0$ converges in law to a standard exponential distribution.

Open question

Can we find a criterion on ϱ_0 predicting if $F_{\infty} > 0$?

Plan

Motivation

- Pinning models
- Parking in trees
- 2 A continuous-time version of this model
 - Three intertwined models
 - Results and open questions

3 An exactly solvable version of this model

We look for solution of the PDE taking the form

$$\varrho_t(\mathrm{d} x) = p_t \delta_0(\mathrm{d} x) + (1 - p_t) \lambda_t e^{-\lambda_t x} \mathrm{d} x.$$

The PDE can then be rewritten as

$$\begin{cases} p' = (1 - p)(\lambda - p)\\ \lambda' = -\lambda(1 - p) \end{cases}$$

Property

Mixtures of exponential random variables are stable under the action of the PDE (interpreting Dirac mass at 0 as exponential random variable with infinite parameter).

We look for solution of the PDE taking the form

$$\varrho_t(\mathrm{d} x) = p_t \delta_0(\mathrm{d} x) + (1 - p_t) \lambda_t e^{-\lambda_t x} \mathrm{d} x.$$

The PDE can then be rewritten as

$$egin{cases} p' = (1-p)(\lambda-p)\ \lambda' = -\lambda(1-p) \end{cases}$$

Property

Mixtures of exponential random variables are stable under the action of the PDE (interpreting Dirac mass at 0 as exponential random variable with infinite parameter).

We look for solution of the PDE taking the form

$$\varrho_t(\mathrm{d} x) = p_t \delta_0(\mathrm{d} x) + (1 - p_t) \lambda_t e^{-\lambda_t x} \mathrm{d} x.$$

The PDE can then be rewritten as

$$\begin{cases} p' = (1-p)(\lambda - p) & \text{Instead of } p' = -p(1-p) \\ \lambda' = -\lambda(1-p) \end{cases}$$

Property

Mixtures of exponential random variables are stable under the action of the PDE (interpreting Dirac mass at 0 as exponential random variable with infinite parameter).

We look for solution of the PDE taking the form

$$\varrho_t(\mathrm{d} x) = p_t \delta_0(\mathrm{d} x) + (1 - p_t) \lambda_t e^{-\lambda_t x} \mathrm{d} x.$$

The PDE can then be rewritten as

$$egin{cases} p' = (1-p)(\lambda-p)\ \lambda' = -\lambda(1-p) \end{cases}$$

Property

Mixtures of exponential random variables are stable under the action of the PDE (interpreting Dirac mass at 0 as exponential random variable with infinite parameter).

Integral quantity

Lemma

Consider a solution of the system of differential equations

$$egin{cases} p' = (1-p)(\lambda-p)\ \lambda' = -\lambda(1-p) \end{cases}$$

The quantity $H := \frac{p_t}{\lambda_t} - \log \lambda_t$ is a preserved quantity.

Observe as well that λ is non-increasing.

Integral quantity

Lemma

Consider a solution of the system of differential equations

$$egin{cases} p' = (1-p)(\lambda-p)\ \lambda' = -\lambda(1-p) \end{cases}$$

The quantity $H := \frac{p_t}{\lambda_t} - \log \lambda_t$ is a preserved quantity.

Observe as well that λ is non-increasing.

Proposition

Let (p, λ) be a solution of the differential system.

• If (p_0, λ_0) in the supercritical phase, then

 $\lambda_t \sim Ke^{-t}$ and $p_t \sim Kte^{-t}$.

If (p_0, λ_0) in the subcritical phase phase, then for some x > 1,

$$\lambda_t - x \sim K e^{-t(x-1)}$$
 and $1 - p_t \sim K rac{x-1}{x} e^{-(x-1)t}$

If (p₀, λ₀) on the critical line, then
$$\lambda_t = 1 + \frac{2}{t} + \frac{8\log t(1+o(1))}{3t^2} \quad \text{and} \quad p_t = 1 - \frac{2}{t^2} + \frac{16\log t(1+o(1))}{3t^3}.$$

Proposition

Let (p, λ) be a solution of the differential system.

• If (p_0, λ_0) in the supercritical phase, then

$$\lambda_t \sim Ke^{-t}$$
 and $p_t \sim Kte^{-t}$.

2 If (p_0, λ_0) in the subcritical phase phase, then for some x > 1,

$$\lambda_t - x \sim K e^{-t(x-1)}$$
 and $1 - p_t \sim K rac{x-1}{x} e^{-(x-1)t}$

If (p₀, λ₀) on the critical line, then
$$\lambda_t = 1 + \frac{2}{t} + \frac{8\log t(1+o(1))}{3t^2} \quad \text{and} \quad p_t = 1 - \frac{2}{t^2} + \frac{16\log t(1+o(1))}{3t^3}.$$

Proposition

Let (p, λ) be a solution of the differential system.

1 If (p_0, λ_0) in the supercritical phase, then

$$\lambda_t \sim Ke^{-t}$$
 and $p_t \sim Kte^{-t}$.

2 If (p_0, λ_0) in the subcritical phase phase, then for some x > 1,

$$\lambda_t - x \sim K e^{-t(x-1)}$$
 and $1 - p_t \sim K rac{x-1}{x} e^{-(x-1)t}$

• If
$$(p_0, \lambda_0)$$
 on the critical line, then
 $\lambda_t = 1 + \frac{2}{t} + \frac{8\log t(1+o(1))}{3t^2}$ and $p_t = 1 - \frac{2}{t^2} + \frac{16\log t(1+o(1))}{3t^3}$.

The Derrida-Retaux conjecture

Recall that

$$F_{\infty} = \lim_{t \to \infty} e^{-t} \mathbf{E}(X_t) = \lim_{t \to \infty} e^{-t} \frac{1 - p_t}{\lambda_t}.$$

With careful analysis of the differential equation, one proves

Theorem

Fix $\lambda \in (0, e)$ and set $p_c = \lambda \log \lambda - \log \lambda$, we have

$$\begin{split} F_{\infty}(p,\lambda) &\sim C \exp(-\pi\sqrt{2\lambda}(p_c-p)^{-1/2}) \text{ as } p \uparrow p_c \text{ if } \lambda > 1\\ F_{\infty}(p,\lambda) &\sim C(1-p)^{2/3} \exp(-\frac{\pi}{\sqrt{2}}(1-p)^{-1/2}) \text{ as } p \uparrow 1 \text{ if } \lambda = 1\\ F_{\infty}(p,\lambda) &\sim C(1-p)^{1/(1-\lambda)} \text{ as } p \uparrow 1 \text{ if } \lambda < 1 \end{split}$$

The Derrida-Retaux conjecture

Recall that

$$F_{\infty} = \lim_{t \to \infty} e^{-t} \mathbf{E}(X_t) = \lim_{t \to \infty} e^{-t} \frac{1 - p_t}{\lambda_t}.$$

With careful analysis of the differential equation, one proves

Theorem

Fix
$$\lambda \in (0, e)$$
 and set $p_c = \lambda \log \lambda - \log \lambda$, we have

$$egin{aligned} F_\infty(p,\lambda) &\sim C \exp(-\pi\sqrt{2\lambda}(p_c-p)^{-1/2}) ext{ as } p \uparrow p_c ext{ if } \lambda > 1 \ F_\infty(p,\lambda) &\sim C(1-p)^{2/3} \exp(-rac{\pi}{\sqrt{2}}(1-p)^{-1/2}) ext{ as } p \uparrow 1 ext{ if } \lambda = 1 \ F_\infty(p,\lambda) &\sim C(1-p)^{1/(1-\lambda)} ext{ as } p \uparrow 1 ext{ if } \lambda < 1 \end{aligned}$$

$$egin{cases} p' = (1-p)(\lambda-p)\ \lambda' = -(1-p)\lambda \end{cases}$$

$$egin{cases} p' = (1-p)(\lambda-p)\ \lambda' = -(1-p)\lambda \end{cases}$$

$$egin{cases} p' = (1-p)(\lambda-p)\ \lambda' = -(1-p)\lambda \end{cases}$$

$$\left\{ egin{array}{l} p' = (1-p)(\lambda-p) \ \lambda' = -(1-p)\lambda \end{array}
ight.$$

$$\left\{ egin{array}{l} p' = (1-p)(\lambda-p) \ \lambda' = -(1-p)\lambda \end{array}
ight.$$

$$\left\{ egin{array}{l} p' = (1-p)(\lambda-p) \ \lambda' = -(1-p)\lambda \end{array}
ight.$$

$$\begin{cases} p = (1 - p)(\lambda - p) \\ \lambda' = -(1 - p)\lambda \end{cases}$$
On the phase diagram

$$\left\{ egin{array}{l} p' = (1-p)(\lambda-p)\ \lambda' = -(1-p)\lambda \end{array}
ight.$$

On the phase diagram

$$\left\{ egin{aligned} p' &= (1-p)(\lambda-p) \ \lambda' &= -(1-p)\lambda \end{aligned}
ight.$$

On the phase diagram

$$\left\{ egin{array}{ll} p' = (1-p)(\lambda-p)\ \lambda' = -(1-p)\lambda \end{array}
ight.$$

- On the event $X_t > 0$, $N_t = O(t^2)$ leaves will contribute to the mass of paint at the origin.
- The total mass M_t of paint that was put on these leaves is approximately c_*N_t .
- The tree of the origin of the paint scales towards a time-inhomogeneous branching Markov process: particles grow mass linearly, and a particle of mass m splits at rate $2m/(1-t)^2$.

- On the event $X_t > 0$, $N_t = O(t^2)$ leaves will contribute to the mass of paint at the origin.
- The total mass M_t of paint that was put on these leaves is approximately c_*N_t .
- The tree of the origin of the paint scales towards a time-inhomogeneous branching Markov process: particles grow mass linearly, and a particle of mass m splits at rate $2m/(1-t)^2$.

- On the event $X_t > 0$, $N_t = O(t^2)$ leaves will contribute to the mass of paint at the origin.
- The total mass M_t of paint that was put on these leaves is approximately c_*N_t .
- The tree of the origin of the paint scales towards a time-inhomogeneous branching Markov process: particles grow mass linearly, and a particle of mass m splits at rate $2m/(1-t)^2$.

- On the event $X_t > 0$, $N_t = O(t^2)$ leaves will contribute to the mass of paint at the origin.
- The total mass M_t of paint that was put on these leaves is approximately c_*N_t .
- The tree of the origin of the paint scales towards a time-inhomogeneous branching Markov process: particles grow mass linearly, and a particle of mass m splits at rate $2m/(1-t)^2$.

- Can the results given for exponential variables be extended to general initial measures ?
- ② Can the results be extended to the original Derrida–Retaux model ?
- Or a similar behavior be observed for a probability distribution satisfying

$$\partial_t \varrho = \partial_x (a\varrho) + \varrho * \varrho - \varrho,$$

where a is a smooth function satisfying a(0)=0 and $a(x)\sim 1$ as $x
ightarrow\infty$?

Can the results given for exponential variables be extended to general initial measures ?

② Can the results be extended to the original Derrida–Retaux model ?

③ Can a similar behavior be observed for a probability distribution satisfying

$$\partial_t \varrho = \partial_x(a\varrho) + \varrho * \varrho - \varrho,$$

where a is a smooth function satisfying a(0)=0 and $a(x)\sim 1$ as $x
ightarrow\infty$?

- Can the results given for exponential variables be extended to general initial measures ?
- 2 Can the results be extended to the original Derrida-Retaux model ?
- Ocan a similar behavior be observed for a probability distribution satisfying

$$\partial_t \varrho = \partial_x (a\varrho) + \varrho * \varrho - \varrho,$$

where a is a smooth function satisfying a(0)=0 and $a(x)\sim 1$ as $x
ightarrow\infty$?

- Can the results given for exponential variables be extended to general initial measures ?
- ② Can the results be extended to the original Derrida-Retaux model ?
- S Can a similar behavior be observed for a probability distribution satisfying

$$\partial_t \varrho = \partial_x (a\varrho) + \varrho * \varrho - \varrho,$$

where *a* is a smooth function satisfying a(0) = 0 and $a(x) \sim 1$ as $x \to \infty$?

Thank you for your attention!