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Derrida–Retaux model

The Derrida–Retaux model
Let X0 be a non-negative random variable. We set for all n ∈ N,

Xn+1 = (X (1)
n + X (2)

n − 1)+,

where X (1)
n ,X (2)

n are two independent versions of Xn.

Question
What can be said of the asymptotic behavior of Xn as n→∞.
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Poland–Scheraga model (1966)

Description
DNA molecule of length N.
Bounding energy ωj in each site j ≤ N.
Sj distance between the two strands.
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(ωi , 0 ≤ i ≤ N) i.i.d.
(Si , 0 ≤ i ≤ N) path with S0 = SN = 0
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Pinning model on Z

Definition
Polymer measure of length N is defined by

PN,ω(dS) = 1
ZN

exp
( n∑

i=1
ωi1{Si =Si−1=0}

)
.

Remark
If ωi > 0, the strands are attracted to one another ωi < 0 they are
repulsed.

Random polymer models, G. Giacomin, 2017.
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Pinning model on Z

Définition
Set Fω = limn→∞N−1 logZN the free energy of the model.

Fω = log 2 ⇐⇒ unpinned phase
Fω < log 2 ⇐⇒ pinned phase

Open problem
Find for which (ωj) the model is in the pinned/unpinned phase.
Find the behavior of the free energy around the pinned/unpinned phase
transition.
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Hierarchical pinning model (1992)

Set B ≥ 2 an integer.
There is a unique edge at stage 0.
Each edge is divided into B couple of edges when going from stage k
to stage k + 1.
Bounding energies are on the smallest edges.

Simplified model introduced by Derrida, Hakim et Vannimenus (1992).
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Hierarchical pinning model

•

•

•• •
ω∅

Figure: 0th stage
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Hierarchical pinning model
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Hierarchical pinning model
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Hierarchical pinnning model
Partition function
Set Zk the sum of the energies of all possible paths at stage k, normalized
by Bk . Note that the recursion equation implies

Zk+1 = Z (1)
k Z (2)

k + B − 1
B .

The free energy is Fω = limk→∞ 1
2k logZk .

Numerous results on that model : Monthus and Garet (2008), Derrida,
Giacomin, Lacoin and Toninelli (2009), Lacoin and Toninelli (2009),
Giacomin, Lacoin and Toninelli (2010, 2011), Berger and Toninelli
(2013)...

Open question
Find the asymptotic behavior of the free energy around the pinning phase
transition.
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Derrida–Retaux model (2014)

Set X̄k = logZk . The recursion equation can be rewritten

X̄k+1 = log(exp(X̄ (1)
k + X̄ (2)

k ) + B − 1)/B.

Derrida–Retaux model
Replace the function x 7→ log((ex + b − 1)/b) by max(x ,− log b).

x
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Derrida–Retaux model

We obtain the recursion

Xn+1 = (X (1)
n + X (2)

n − 1)+.

Free energy
Assume that X0 ∼ pδ0 + (1− p)µ with µ a probability distribution on
(0,∞). Set

F∞(p) = lim
n→∞ 2−nE(Xn) ∈ [0,∞],

and define pc ∈ [0, 1] such that F∞(p) > 0 ⇐⇒ p < pc . We have
F∞ = 0 in the pinned phase, et F∞ > 0 in the unpinned phase.

Conjecture
If pc > 0, we have F∞(p) = exp(−(c + o(1))(p − pc)−1/2) as p → pc .
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Derrida–Retaux model

Remark
The recursion equation defining (Xn, n ≥ 0) is an equation in law: there is
no process, no trajectorial version of the model to be imposed.

Nevertheless, it is reasonable to define Derrida–Retaux model on a tree.
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Parking in a tree

Collet, Eckmann, Glaser, Martin (1984)
Let X0 be an integer-valued random variable.
Consider a binary tree of height n.
Put an independent copy of X0 on each leaf of that tree.
Then define recursively the value of each internal node to be
(a + b − 1)+ if its children have value a and b.
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Parking in a tree

0 0 2 0 3 1 4 0 0 0 1 0 0 3 0 0
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Parking in a tree

0 0 2 0 3 1 4 0 0 0 1 0 0 3 0 0

0 1 3 3 0 0 2 0

0 5 0 1

4 0

3

Bastien Mallein (Paris 13) Continuous Derrida–Retaux model 1/04/2020 15 / 36



Parking in a tree
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Parking in a tree

Theorem (Collet, Eckmann, Glaser, Martin (1984))
Recall that F∞ = limn→∞ 2−nE(Xn). We have

F∞ = 0 ⇐⇒ E(X02X0) ≤ E (2X0) <∞.

Moreover, if F∞ = 0 then limn→∞ Xn = 0 in probability and if F∞ > 0
then limn→∞ 2−nXn = F∞ in probability.

Open questions
If X0 is not integer-valued, can we find a similar criterion distinguishing the
pinned and unpinned phases ?
Can we show the Derrida–Retaux conjecture on the behavior of the free
energy around the pinning transition ?
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Parking in a tree

Recall that F∞(p) is the free energy of X0 ∼ pδ0 + (1− p)µ.

Theorem (Chen, Dagard, Derrida, Hu, Lifshits, Shi 2019)
If µ is integer-valued and

∫
x32xµ(dx) <∞, then

F∞(p) = exp
(
−(p − pc)−1/2+o(1)

)
.

There exist measure µ such that
∫
x32xµ(dx) =∞, pc > 0 and

F∞(p) = exp
(
−(p − pc)−α+o(1)

)
.

with α < 1/2.
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Continuous-time Derrida–Retaux model

In their article, Derrida and Retaux write that a “good” renormalisation of
the DR model should converge in law towards a process (Xt , t ≥ 0) whose
law %̃t satisfies the partial differential equation

∀x > 0, ∂t %̃(x) = ∂x %̃(x) + %̃ ∗ %̃(x)− %̃(x).

Problem
This equation is not conservative : even if %0 is a probability measure, the
total mass of %t will be different from 1 for t > 0 large enough.

Bastien Mallein (Paris 13) Continuous Derrida–Retaux model 1/04/2020 19 / 36



Continuous-time Derrida–Retaux model

In their article, Derrida and Retaux write that a “good” renormalisation of
the DR model should converge in law towards a process (Xt , t ≥ 0) whose
law %̃t satisfies the partial differential equation

∀x > 0, ∂t %̃(x) = ∂x %̃(x) + %̃ ∗ %̃(x)− %̃(x).

Problem
This equation is not conservative : even if %0 is a probability measure, the
total mass of %t will be different from 1 for t > 0 large enough.

Bastien Mallein (Paris 13) Continuous Derrida–Retaux model 1/04/2020 19 / 36



Continuous-time Derrida–Retaux model

Aim
Construct a stochastic process whose density satisfies a PDE close to the
one given by Derrida and Retaux.

Remark
Observe that a process version of the Derrida–Retaux model can written
as follows: given (Un) i.i.d. variables with uniform distributions on [0, 1],
we set Xn+1 = Xn + F−1n (Un+1)− 1{Xn+F −1

n (Un+1)>0}
Fn+1(x) = P(Xn+1 ≤ x) for all x ≥ 0.
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Continuous-time Derrida–Retaux model

Aim
Construct a stochastic process whose density satisfies a PDE close to the
one given by Derrida and Retaux.

Definition
A continuous-time DR model is a solution of the following SDE:{

Xt = X0 −
∫ t
0 1{Xs>0}ds +

∫ t
0
∫ 1
0 F−1s (u)N(ds,du)

Ft(x) = P(Xt ≤ x) for all x ≥ 0

where N is a PPP on R+ × [0, 1] with intensity dsdu.
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Continuous-time Derrida–Retaux model
Let us compute the equation satisfied by the law %t of Xt . Let f be a C1
function, we have

E(f (Xt)) = E(f (X0))−
∫ t

0
E(f ′(Xs)1{Xs>0})ds

+
∫ t

0
E(f (Xs + X ′s)− f (Xs))ds∫

f (x)d%t(x) =
∫

f d%0(x)−
∫ t

0

∫
f ′(x)1{x>0}d%s(x)ds

+
∫ t

0

∫
f (y)d%s ∗ %s(y)ds −

∫ t

0

∫
f (x)d%s(x)ds.

As a result, we obtain the PDE

∂t% = ∂x
(
1{x>0}%

)
+ % ∗ %− %.
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Continuous-time Derrida–Retaux model
X ′

0

time

Figure: Solving the stochastic differential equation

Xt = X0 −
∫ t

0
1{Xs>0}ds +

∫ t

0

∫ 1

0
F−1s (u)N(ds,du).
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The tree construction

Take a Yule tree of height t.
Start with i.i.d. amout of paint
on each leaf of the tree, sampled
according to the law of X0.
Paint down the branches with a
quantity 1 of paint per unit of
branch length, until no more
paint is left.
When two painters meet, they
put their remaining paint in
common.
Xt is the rest of paint at the
root.

Xt

t
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Connexion between the results

Proposition
There exists a unique weak solution to the McKean-Vlasov type SDE, with
same law at time t as in the tree-painting scheme of height t.

Proposition
There exists a unique weak solution to the PDE

∂t% = ∂x (1{x>0}%) + % ∗ %− %,

Moreover, %t is the law of the solution of the SDE at time t.

Proof.
Using Itô calculus, the law of Xt is a solution to the SDE
Reciprocally, we prove that any solution to this PDE can be rewritten in a
tree-painting scheme.
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Some general results in continuous settings

Proposition
The free energy F∞ = limt→∞ e−tE(Xt) exists.
If F∞ > 0, then limt→∞ e−tXt = F∞Exp(1) in law.

Proof.
1. By the SDE representation of the DR model, we have

E(Xt) = E(X0)−
∫ t

0
P(Xs > 0)ds +

∫ t

0
E(Xs)ds

Solving this ODE we have E(Xt) = et(E(X0) +
∫ t
0 e−sP(Xs > 0)ds),

hence the limit exists.
2. We use that for a Yule tree, e−s# Ns → Exp(1) in law.
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Open questions

Conjecture
If F∞ = 0, then limt→∞ Xt = 0 in probability.

Conjecture
If F∞ = 0, the law of Xt , conditioned on Xt > 0 converges in law to a
standard exponential distribution.

Open question
Can we find a criterion on %0 predicting if F∞ > 0 ?
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Plan

1 Motivation
Pinning models
Parking in trees

2 A continuous-time version of this model
Three intertwined models
Results and open questions

3 An exactly solvable version of this model
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An exactly solvable version of this model

We look for solution of the PDE taking the form

%t(dx) = ptδ0(dx) + (1− pt)λte−λtxdx .

The PDE can then be rewritten as{
p′ = (1− p)(λ− p) Instead of p′ = −p(1− p)
λ′ = −λ(1− p)

Property
Mixtures of exponential random variables are stable under the action of
the PDE (interpreting Dirac mass at 0 as exponential random variable with
infinite parameter).
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Integral quantity

Lemma
Consider a solution of the system of differential equations{

p′ = (1− p)(λ− p)
λ′ = −λ(1− p)

The quantity H := pt
λt
− log λt is a preserved quantity.

Observe as well that λ is non-increasing.
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Phase diagram of the differential system

λ0

p
1

1 e

F∞ = 0 and Xt → 0
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Asymptotic behavior of the solutions

Proposition
Let (p, λ) be a solution of the differential system.

1 If (p0, λ0) in the supercritical phase, then

λt ∼ Ke−t and pt ∼ Kte−t .

2 If (p0, λ0) in the subcritical phase phase, then for some x > 1,

λt − x ∼ Ke−t(x−1) and 1− pt ∼ K x−1
x e−(x−1)t .

3 If (p0, λ0) on the critical line, then

λt = 1+ 2
t + 8 log t(1 + o(1))

3t2 and pt = 1− 2
t2 + 16 log t(1 + o(1))

3t3 .
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The Derrida–Retaux conjecture

Recall that
F∞ = lim

t→∞ e−tE(Xt) = lim
t→∞ e−t 1− pt

λt
.

With careful analysis of the differential equation, one proves

Theorem
Fix λ ∈ (0, e) and set pc = λ log λ− log λ, we have

F∞(p, λ) ∼ C exp(−π
√
2λ(pc − p)−1/2) as p ↑ pc if λ > 1

F∞(p, λ) ∼ C(1− p)2/3 exp(− π√
2(1− p)−1/2) as p ↑ 1 if λ = 1

F∞(p, λ) ∼ C(1− p)1/(1−λ) as p ↑ 1 if λ < 1
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On the phase diagram

λ0 = 1

subcritical

supercritical

λ0

p
1

1 e

critical

•

•

{
p′ = (1− p)(λ− p)
λ′ = −(1− p)λ
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Behavior at criticality
One can also look at the asymptotic behavior of the continuous-time DR
model on the line:

On the event Xt > 0, Nt = O(t2) leaves will contribute to the mass
of paint at the origin.
The total mass Mt of paint that was put on these leaves is
approximately c?Nt .
The tree of the origin of the paint scales towards a
time-inhomogeneous branching Markov process: particles grow mass
linearly, and a particle of mass m splits at rate 2m/(1− t)2.
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Final open questions

1 Can the results given for exponential variables be extended to general
initial measures ?

2 Can the results be extended to the original Derrida–Retaux model ?
3 Can a similar behavior be observed for a probability distribution

satisfying
∂t% = ∂x (a%) + % ∗ %− %,

where a is a smooth function satisfying a(0) = 0 and a(x) ∼ 1 as
x →∞ ?
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Thank you for your attention!
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