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Statement of the Problem — I

Consider a random walk S1, S2, . . . with S0 = 0.

For arbitrary non-random real numbers g1, g2, . . . let

(1) T := min{n ≥ 1 : Sn ≤ gn}

be the time of the first crossing of the moving boundary {gn} by the random walk {Sn}.

We are going to study the asymptotic behaviour of the distributions of first-passage times

over moving (non-constant) boundaries

(2) P(T > n) = P( min
1≤k≤n

(Sk − gk) > 0) ↓

for non-classical random walks {Sn}.

(In what follows, all unspecified limits are taken with respect to n→∞.)
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Natural assumptions — I

Assumptions (A).
(A1) increments Xk = Sk − Sk−1, k = 1, 2, . . . , are independent random variables;

(A2) they have zero means;

(A3) they satisfy the classical Lindeberg condition.

In particular, (A4) B2
n :=

∑n
i=1 EX

2
i,n →∞.

Assumption (G) gn = o(Bn), i.e. the boundary {gn} is of a small magnitude;

in particular, (G+) Gn := maxk≤n |gk| = o(Bn).

Main notation:

(3) En := E[Sn − gn : Tn > n] ≥ 0.

Note that for all n ≥ 1

(4) En > 0 iff P(T > n) > 0.
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Theorem 1+. Under Assumptions (A) and (G)

BnP(T > n) =
√

2/πEn(1 + αn), (AM)

where αn → 0.

In particular, we have the universal formula (M) for asymptotic of P(T > n):

Theorem 1. (See [1]) Suppose that

P(T > n) > 0 for all n ≥ 1. (T+)

Then under Assumptions (A) and (G)

P(T > n) ∼
√

2

π

En
Bn

=

√
2

π

E[Sn − gn;T > n]

Bn
. (M)

[1] Denisov, D., Sakhanenko, A. and Wachtel, V.

First-passage times for random walks with non-identically distributed increments.

Ann. Probab. 46(6): 3313-3350, 2018.
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Theorem 1. (See [1]) Suppose that

P(T > n) > 0 for all n ≥ 1. (T+)

Then under Assumptions (A) and (G)

P(T > n) ∼
√

2

π

En
Bn
→ 0. (M)

Remark 1. When condition (T+) is not true, then there exists an N0 <∞ such that

(5) En = 0 = P(T > n) ∀n > N0.

But Theorem 1+ remains valid in all cases for all n ≥ 1.

Theorem 1+. Under Assumptions (A) and (G)

BnP(T > n) =
√

2/πEn(1 + αn)→ 0, where αn → 0. (AM)
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Statement of the Problem — II

a) to generalize Theorem 1 for the case of random walks in the triangular array setting;

b) to obtain a rate of convergence for αn → 0;

c) to obtain an estimate for αn up to some absolute constants.

Assumptions — II

Assumptions (B).
(A1-) increments X1, . . . , Xn, are independent for a fixed n ≥ 1;

(A2-) they have zero means;

(B3) they are bounded by a constant rn <∞, i.e.

P
(
|Xi| ≤ rn

)
= 1 for all i = 1, . . . , n; (B3)

(A4-) B2
n :=

∑n
i=1 EX

2
i,n > 0.
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Main result

Theorem 2+. Under Assumptions (B)

αn ≤ Cρ2/3n if ρn :=
rn +Gn
Bn

≤ 1

24
, (BM)

where C <∞ is an absolute constant and Gn := maxk≤n |gk|.

Under additional Assumptions (G+) and (T+) a weaker variant of Theorem 2+ have been

proved in our joint paper:

[2] Denisov, D., Sakhanenko, A. and Wachtel, V.

First-passage times for random walks in the triangular array setting.

(invited to the volume in Honor of R.A. Doney in the series Progress in Probability)

https://arxiv.org/pdf/2005.00240.pdf
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A comment on the main result

Theorem 2+. Under Assumptions (B)

P(T > n) =

√
2

π

En
Bn

(
1 + Cθnρ

2/3
n

)
if ρn :=

rn +Gn
Bn

≤ 1

24
, (BM)

where |θn| ≤ 1 and C <∞ is an absolute constant.

Assumptions (B).
(A1-) increments X1, . . . , Xn, are independent for a fixed n ≥ 1;

(A2-) they have zero means;

(B3) they are bounded by a constant rn <∞, i.e.

P
(
|Xi| ≤ rn

)
= 1 for all i = 1, . . . , n; (B3)

(A4-) B2
n :=

∑n
i=1 EX

2
i,n > 0.
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Natural assumptions in the triangular array setting

Assumptions (A+).
(A1+) For each n ≥ 1 we are given independent random variables X1,n, . . . , Xn,n

such that

(A2+) they have zero means;

(A3+) they satisfy the classical Lindeberg condition.

In particular, for some n0 <∞ (A4) B2
n :=

∑n
i=1 EX

2
i,n > 0 for all n > n0.

Assumption (G+) Let g1,n, . . . , gn,n be deterministic real numbers such that

Gn := maxk≤n |gk| = o(Bn).

For each n ≥ 1 we consider a random walk

Sk,n := X1,n + · · ·+Xk,n, k = 1, 2, . . . , n;(6)

and let

Tn := inf{k ≥ 1 : Sk,n ≤ gk,n},(7)

be the first crossing of the moving boundary {gk,n} by the random walk {Sk,n}.
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Here the main purpose is to study the asymptotic behavior of the probability

P(Tn > n) = P

(
min

1≤k≤n
(Sk,n − gk,n) > 0

)
.

Main notation:

(8) En := E[Sn,n − gn,n : Tn > n] ≥ 0.

Note that for all n ≥ 1

(9) En > 0 iff P(Tn > n) > 0.

Assumptions (T+). P(Tn > n) > 0 for all n > n1 with some n1 <∞.
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Natural Hypothesis.

Based on the validity of Theorem 1 from [1] one can expect that the Lindeberg condition

will again be sufficient for the following natural generalization of (M):

P(Tn > n) ∼
√

2

π

En
Bn

=

√
2

π

E[Sn,n − gn,n;Tn > n]

Bn
. (M+)

However the following result shows that this is not the case and the situation is more

complicated.

Proposition 1. There exists a triangular array of independent random variables {Xk,n}
such that conditions (A+), (G+), (T+) hold with B2

n = n, but

(10) P(Tn > n) = o(En/Bn).
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Main result from [2] in the triangular array setting

Assumptions (B+). Conditions (A1+), (A2+), (A4+) hold; in addition

(B3+) for each n, i random variablesXn,i are bounded by a constant rn = o(Bn), i.e.

rn = o(Bn) and P
(

max
1≤i≤n

|Xi,n| ≤ rn
)

= 1 for all n ≥ 1. (B3+)

Corollary 1. Under conditions (G+), (T+) and (B+) ( with rn = o(Bn) ) relation (M+)

takes place.

Thus, we have obtained the desired asimptotic (M+) but under assumption (B3+) with

rn = o(Bn), which is stronger than the Lindeberg condition (A3+).
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A generalization of Corollary 1.

For an arbitrary random variable Yn let

τn := inf {k ≥ 1 : Yn + Sk,n ≤ gk,n} ,(11)

be the first crossing of the moving boundary {gk,n} by the random walk {Yn + Sk,n}.
From Theorem 2 with variable Yn truncated on the level hn = o(Bn) we obtain that

P (τn > n : |Yn| ≤ hn) ∼
√

2

π

En(hn)

Bn
, where(12)

En(h) := E [Yn + Sn,n − gn,n : τn > n, |Yn| ≤ h] , h > 0.

On the other hand, from known estimates in functional CLT it is not difficult to find that

P (τn > n : Yn > hn) ∼ E

[
Ψ

(
Yn
Bn

)
: Yn > hn

]
with(13)

Ψ(x) := 2

∫ x

0

1√
2π
e−u

2/2du = P

(
min
0≤t≤1

W (t) > −x
)
, (x > 0),

when rn +Gn = o(hn), where W (t) is a standard Wiener process.
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Summing up (12) and (13) we obtain:

Corollary 2. Suppose that for each n = 1, 2, . . . random variable Yn is independent of

X1,n, . . . , Xn,n. Then under assumptions of Corollary 1

P (τn > n) ∼
√

2

π

En(hn)

Bn
+ E

[
Ψ

(
Yn
Bn

)
: Yn > hn

]
(14)

for all non-random numbers hn > 0 such that

hn = o(Bn) and rn +Gn = o(hn).(15)

In particular, we may everywhere take

hn =
√

(rn +Gn)Bn.(16)

Simple proof of Corollary 2 (given above) shows the power of Theorem 2.
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Proof of Proposition 1.

For a sequence of integers rn ≥ 1 let random variables X1,n be defined as follows

X1,n :=


rn, with probability pn := 1

2r2n
≤ 1

2 ,

0, with probability 1− 2pn,

−rn, with probability pn.

(17)

Let each X1,n is independent of the sequence X2, X3, . . . of i.i.d. random variables with

the Rademacher distribution: P(Xk = ±1) = 1/2.

So that EXk,n = 0 and EX2
k,n = 1 for all k ≥ 1; and the triangular array

X1,n, Xk,n := Xk, k = 2, 3, . . . , n; n ≥ 1(18)

satisfies the Lindeberg condition with B2
n = n.

Put gk,n ≡ 0; then conditions (G+) and (T+) also hold.
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Lemma 1. En = pnrn.

Proof. For integers m ≥ 2 and rn ≥ 1 define

Um := X2 +X3 + . . .+Xm,(19)

ν := inf{m ≥ 2 : rn + Um ≤ 0} = inf{m ≥ 2 : rn + Um = 0}.(20)

Since Um is a martingale and ν is a stopping time, we obtain from (20) that

E2,n := E [rn + Un : ν > n]

= E [rn + Un]−E [rn + Un : ν ≤ n]

= [rn + 0]−E [rn + Uν : ν ≤ n] = rn −E[0] = rn.

Now, with gk,n ≡ 0 one has:

En = E[Sn,n;Tn > n] = P(X1,n = rn)E2,n(rn) = pnrn.(21)

17



Proof of Proposition 1. In particular, from (17) and (21) we conclude that

P(Tn > n) < P(X1,n = rn) = pn =
En
rn

=
En
Bn
× Bn
rn
.(22)

Thus, Proposition 1 is proved since (10) follows from (22) when rn/Bn →∞.

Proposition 2. More precise calculations in [2] show that, for the triangular array from (17)

and (18) with gk,n ≡ 0, the desired asymptotic (M+) takes place iff rn = o(Bn).

———————————————————————
Theorem 2 and Propositions 1 and 2 have been proved in our joint paper:

[2] Denisov, D., Sakhanenko, A. and Wachtel, V.

First-passage times for random walks in the triangular array setting.

(invited to the volume in Honor of R.A. Doney in the series Progress in Probability)

https://arxiv.org/pdf/2005.00240.pdf

==============================================
THANK YOU !
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