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• Dassios and Wu (2008): “Parisian type ruin will occur if the

surplus falls below zero and stays below zero for a continuous

time interval of length d. In some respects, this might be a more

appropriate measure of risk than classical ruin as it gives the

office some time to put its finances in order.”

• The time period during which the surplus is allowed to remain

negative: [implementation] delay (or grace) period.

• The idea & name go back to Parisian options : payoff depends on

the lengths of the excursions of the underlying asset price above

or below a barrier (e.g., a Parisian down-and-out option expires

if the underlying price drops below a given level and stays

constantly below that level for longer than d).
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• Stopping times of this kind were first considered by Chesney,

Jeanblanc-Picque and Yor (1997).

• The idea appeared in the actuarial literature even earlier. E.g.,

Dos Reis (1993): if a company has many portfolios and only one

of them < 0, it can have enough funds (either from another line

of business or as a loan from a bank) to support the affected

portfolio for some time.

• More recently: Parisian ruin ≈ theor’l descr’n of reorganization

under Ch. 11 of the US Bankruptcy Code of a company in

distress rather than its immediate liquidation under Ch. 7.

Ch. 11 allows the company to control its operations with a

bankruptcy court oversight. The court grants the company an

observation period.
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When the delay period length d = const (and fixed):

• Dassios and Wu (2008) derived the Laplace transform of the time

until the Parisian ruin & the probability thereof for the classical

Cramér–Lundberg (CL) model.

• Loeffen, Czarna, Palmowski (2013): an elegant compact formula

for the Parisian ruin prob’ty in the case when the risk process

X = {Xt}t≥0 is a spectrally negative Lévy process (SNLP) (in

terms of the scale function of X and the distribution of Xd).

• Czarna (2016): in the SNLP framework, Parisian ruin prob’s

with an “ultimate bankruptcy level”, when ruin will also occur if

the deficit reaches a given deterministic negative level. Simpler

proofs & further results: Czarna & Renaud (2016).
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When the delay period length is random:

• Landriault, Renaud & Zhou (2014), SNLP (bdd variation), delay

times are i.i.d.: Laplace transform of the Parisian ruin time when

delays were exp–distributed or followed Erlang mixture

distributions (NB: switching to stochastic delays with such

distr’ns improves the tractability).

• Frostig and Keren-Pinhasik (2020): studied Parisian ruin with

ultimate bankruptcy barrier for i.i.d. exp– and

Erlang–distributed random delays.

• Baurdoux, Pardo, Pérez & Renaud (2016) studied the

Gerber-Shiu distribution at Parisian ruin with exp-distributed

delays in the SNLP setup.
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In the present talk: a natural interesting extension to the Parisian

ruin problem with a risk reserve SNLP, where the distr’n of the

random delay lengths can depend on the deficit at the epochs

when the risk reserve process turns negative, starting a new negative

excursion. This includes the possibility of an immediate ruin when

the deficit hits a certain subset.

In this general setting, we derive a closed-from expression for the

Parisian ruin probability and the joint Laplace transform of the

Parisian ruin time and the deficit at ruin.

Examples: the risk reserve follows the classical CL dynamics, whereas

the delay period distr’ns are finite mixtures of Erlang distr’ns with

parameters depending on the deficit value at the beginning of the

respective negative excursion.
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• X := {Xt}t≥0 is an SNLP with càdlàg paths, starting at

X0 = u ∈ R (we use: Pu, Eu).

• First assume: trajectories are of locally bounded variation. The

cumulant generating function ψ(θ) := ln E0e
θX1 of X:

ψ(θ) := aθ +

∫
(−∞,0)

(eθx − 1)Π(dx), θ ≥ 0,

where the measure Π is such that
∫

(−1,0)
|x|Π(dx) <∞.

• Our X is just a linear drift minus a pure jump subordinator.

• Also assume satisfied the standard safety loading condition

E0X1 > 0 (1)

(clearly, E0|X1| <∞ under the above condition as X is SN).
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Denote by F := {Ft}t≥0 the natural filtration for X. For x, y ∈ R,
introduce the first hitting times

τ−x := inf{t > 0 : Xt < x} and τ+
y := inf{t > 0 : Xt > y}.

In view of (1), τ−x is an improper random variable when x ≤ X0.

Setting τ+
0,0 := 0, we further define recursively for k = 1, 2, . . . the

following (improper, due to (1)) F-stopping times:

τ−0,k := inf{t > τ+
0,k−1 : Xt < 0} and τ+

0,k := inf{t > τ−0,k : Xt > 0}.

NB: due to (1), the time τ+
0,k is always finite on the event {τ−0,k <∞}.

If τ−0,k−1 <∞ but τ−0,k =∞ for some k ≥ 1, then there are exactly

k − 1 negative excursions of the risk reserve process.
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To construct random delay times: assume Px(B) is a stoch. kernel on

(−∞, 0)×B([0,∞)): ∀B ∈ B([0,∞)), Px(B) is a measurable function

of x; ∀x < 0, Px(B) is a probability measure in B ∈ B([0,∞)).

Let Fx(s) := Px((−∞, s]), s ≥ 0, be the DF of Px, F x(s) := 1−Fx(s),

F←x (y) := inf{s ≥ 0 : Fx(s) ≥ y}, y ∈ (0, 1), the gen’d inverse of Fx.

NB: F←x (y), (x, y) ∈ D := (−∞, 0)× (0, 1), is a measurable function.

Let {Un}n≥1 be i.i.d. U(0, 1), independent of X. The length ηk of the

k-th delay window, k = 1, 2, . . . , is then defined on {τ−0,k <∞} as

ηk := F←χk
(Uk), where χk := Xτ−0,k

(on {τ−0,k =∞} we can leave both χk and ηk undefined).

This includes situations where ηk = 0 for some values of χk.
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We say that Parisian ruin occurs in our model if

N := inf{k ≥ 1 : τ−0,k <∞, τ
−
0,k + ηk < τ+

0,k} <∞,

and define on the event {N <∞} the Parisian ruin time as

T := τ−0,N + ηN .
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Figure 1: Parisian ruin occurs at time T during the second negative excur-

sion (N = 2) as the recovery time exceeded the window length.

10



For q ≥ 0, the q-scale function W (q) for X is a function on R s.t.

(i) W (q)(x) = 0 for x < 0 and (ii) W (q)(x) is continuous on [0,∞) and∫
[0,∞)

e−βxW (q)(x)dx =
1

ψ(β)− q
, β > Φ(q),

where Φ(q) := sup{θ ≥ 0 : ψ(θ) = q}, q ≥ 0

One refers to W := W (0) as just the scale function for X.

The q-scale functions can be obtained as the scale functions for

SNLPs with “tilted distributions”: for q ≥ 0,

W (q)(x) = eΦ(q)xWΦ(q)(x), x ∈ R,

where Wν(x) is the scale function for the Lévy process with the

cumulant function ψν(θ) := ψ(θ + ν)− ψ(ν).
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Several important characteristics of and fluctuation identities for

SNLPs can be expressed in terms of their scale functions.

In particular, the distr’n Pu(χ1 ∈ · , τ−0 <∞) of the first negative

value χ1 of X given X0 = u > 0 has (defective) density

hu(x) =

∫
(0−,u]

Π((−∞, x+ z − u])dW (z), x < 0.

Another one: for q ≥ 0 and t, y > 0,

E0(e−qτ
+
y ; τ+

y ≤ t) = e−qtΛ(q)(−y, t), (2)

where

Λ(q)(x, t) :=

∫ ∞
0

W (q)(x+ z)
z

t
P0(Xt ∈ dz), x ∈ R, t > 0.
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Finding a closed-form expression for the scale function is a

non-trivial problem.

A “robust” numerical method for computing W (q) was described in

Surya (2008), whereas Egami & Yamazaki (2014) presented a

possible “phase-type-fitting approach” to approximating scale

functions, and Hubalek & Kyprianou (2010) presented several

examples where closed form expressions for the scale function are

available and described a methodology for finding such expression.
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Further notation:

Gy(t) := P0(τ+
y ≤ t) = −y ∂

∂y

∫ t

0

P0(Xs > y)
ds

s
, y, t > 0,

where the expression on the RHS comes from Kendall’s formula,

K(x) := E0F x(τ
+
|x|) =

∫ ∞
0

F x(t)dG|x|(t), x < 0,

H(v) :=

∫ 0

−∞
K(x)hv(x)dx, v ≥ 0.
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Theorem 1 Under the above assumptions, the probability of no

Parisian ruin when the initial reserve is X0 = u ≥ 0 is equal to

Pu(N =∞) = E0X1

(
W (u) +

W (0)

1−H(0)
H(u)

)
. (3)

The probability of no “usual ruin” given X0 = u ≥ 0 is E0X1W (u).
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To state more results, need more notations. For v, w ≥ 0, x < 0, set

M1(v, w, x) :=

∫ 1

0

[
e(ψ(w)−v)F←x (s)+wx − e−vF←x (s)Λ(ψ(w))(x, F←x (s))

]
ds,

M2(v, x) :=

∫ 1

0

e−vF
←
x (s)Λ(v)(x, F←x (s)) ds.

Finally, assuming in addition that u ∈ [0, b], b > 0, we set

Q1(u, v, w) :=

∫ b

0

∫
(−∞,−y)
M1(v, w, y + θ)

(W (v)(u)W (v)(b− y)

W (v)(b)
−W (v)(u− y)

)
Π(dθ)dy,

Q2(u, v) :=

∫ b

0

∫
(−∞,−y)
M2(v, y + θ)

(W (v)(u)W (v)(b− y)

W (v)(b)
−W (v)(u− y)

)
Π(dθ)dy.

NB: all computable once you got access to the scale functions.
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Theorem 2 Under the above assumptions, for b, v, w ≥ 0 and

u ∈ [0, b], one has

Eu(e
−vT+wXT ;T < τ+

b ) = Q1(u, v, w) +
Q1(0, v, w)Q2(u, v)

1−Q2(0, v)
.

Can compute Eu(e
−vT+wXT ;T <∞) (a bit simpler expression).
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Now what to do if trajectories are of unbounded variation?

The recursive procedure used does not work! For non-random delays

of length d > 0, the Parisian ruin time was defined in Dassios

& Wu (2008) as

Td := inf{t > 0 : t− gt > d}, where gt := sup{s ∈ [0, t] : Xs ≥ 0},

using the convention that inf ∅ =∞, sup∅ = 0.

In the case of bounded variation trajectories and a common

degenerate distribution Fx(t) = 1(d ≤ t), x < 0, for delay windows,

the thus defined Td coincides with our T .
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Extending this to the case of random delay windows is non-trivial.

An approach to doing this in the simple situation where all the delay

windows are i.i.d. exp’l was suggested in Baurdoux et al. (2009):

denote by G the set of all left-end points of the negative excursions of

the process X and then, “for each g ∈ G,” consider “an independent,

exponentially distributed RV egq , also independent of X”

(q represents here the rate of the exponential distribution).

The time of the Parisian ruin with i.i.d. exponentially distributed

delay windows was defined as

inf{t > 0 : Xt < 0 and t− gt > egtq }.

Requires clarification with regard to exactly how these random times

egq are to be constructed.
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Moreover, from the practical viewpoint, this is hardly meaningful as

the mechanism is not feasible: if, say, Xt = X0 + ct+ σBt, t ≥ 0,

where B is the std BM process then, immediately after the start of

the first negative excursion at time τ−0 , one would have to generate

infinitely many i.i.d. exp’l random times as the process X will have

infinitely many negative excursions in any right neighborhood of τ−0 .

To avoid complications and end up with an implementable

Parisian-type ruin scheme: consider “ε-Parisian ruin times” T ε

constructed for ε > 0 by “activating the clock” for random delay

windows at the times when the value of Xt drops below −ε (such

times were considered in Loeffen et al. (2013), Bardoux et al. (2016)

as well). This makes it possible to use the recursive procedure we

used for processes with trajectories of bounded variation.
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To “recover”, the process needs to return to [0,∞).

Theorem 3 Under the above assumptions, in the case of a general

SNLP, the probability of no ε-Parisian ruin when the initial reserve

is X0 = u ≥ 0 is equal to

Pu(N
ε =∞) = E0X1

[
W (u+ ε) +

W (ε)Eu+ε(K(χ1 − ε); τ−0 <∞)

1− Eε(K(χ1 − ε); τ−0 <∞)

]
.
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How to prove Theorem 1? The first step is similar to the one in

Loeffen et al. (2013):

Pu(N =∞) = Pu(τ
−
0 =∞) + Pu(τ

−
0 <∞, N =∞)

= Pu(τ
−
0 =∞) + EuEu

(
1(τ−0 <∞)1(N =∞)|Fτ−0

)
= Pu(τ

−
0 =∞) + Eu

[
1(τ−0 <∞)Eu

(
1(N =∞)|Fτ−0

)]
.

By the strong Markov property and the absence of positive jumps, on

the event {τ−0 <∞} the process X̃ := {X̃t := Xτ+0,1+t}t≥0 is an

independent of Fτ+0,1 Lévy process with the same cumulant as X, but

with initial value X̃0 = 0.
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For the conditional expectation, on {τ−0 <∞}:

Eu

(
1(N =∞)|Fτ−0

)
= Eu

(
1(τ−0 + η1 ≥ τ+

0,1)1(Ñ =∞)|Fτ−0
)

= Eu

[
Eu

(
1(τ−0 + η1 ≥ τ+

0,1)1(Ñ =∞)|Fτ+0,1
)∣∣Fτ−0 ]

= P0(N =∞)Eu

[
Eu

(
1(η1 ≥ τ+

0,1 − τ−0 )|Fτ+0,1
)∣∣Fτ−0 ],

where the inner conditional expectation is

Eu

(
1(η1 ≥ τ+

0,1 − τ−0 )|Fτ+0,1
)

= Eu

[
1(U1 ≥ Fχ1(τ

+
0,1 − τ−0 ))|Fτ+0,1

]
= F χ1(τ

+
0,1 − τ−0 ).

Can show:

Eu

(
F χ1(τ

+
0,1 − τ−0 )

∣∣Fτ−0 ) = K(χ1),
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End up with:

Pu(N =∞) = Pu(τ
−
0 =∞) + P0(N =∞)Eu(K(χ1); τ−0 <∞).

Setting now u = 0 yields

P0(N =∞) =
P0(τ−0 =∞)

1− E0(K(χ1); τ−0 <∞)
.

Plugging this in the previous formula and expressing the expectations

in terms of our function H completes the proof. �

Proving Theorem 2 is more fun (and work). See arXiv. �
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Examples. Consider the classical CL model:

Xt = X0 + ct−
At∑
j=1

ξj, t ≥ 0,

where c > 0 is a constant premium payment rate, the Poisson claims

arrival process {At}t≥0 with rate λ > 0 is independent of i.i.d.

exp–distributed claim sizes {ξn}n≥1 with rate α > 0.

Here ψ(θ) = cθ+ λ( α
α+θ
− 1), θ > −α, so that condition (1) turns into

E0X1 = c− λ/α > 0.

A well-known result:

Pu(τ
−
0 <∞) =

λ

αc
e−(α−λ/c)u, u ≥ 0.
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Elementary computation yields

Φ(q) =
1

2c

(√
(αc− λ− q)2 + 4qαc− (αc− λ− q)

)
, q ≥ 0,

W (x) =
α

αc− λ

(
1− λ

αc
e−(α−λ/c)x

)
1(x ≥ 0), with W (0) =

1

c
.

An series expr’n for W (q) is available in Behme & Oechsler (2020).

As claims are exp’l, one has hu(x) = λ
c
eαx−(α−λ/c)u, x < 0, and hence

H(v) =

∫ 0

−∞
K(x)hv(x) dx = H(0)e−(α−λ/c)v.

Now it follows from Theorem 1 that

Pu(N <∞) =
λ

αc

[
1− (αc− λ)H(0)

λ(1−H(0))

]
e−(α−λ/c)u, u ≥ 0.
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Need: H(0) = λ
c

∫ 0

−∞ e
αxK(x)dx, K(x) =

∫∞
0
F x(t)dG|x|(t), x < 0.

Let F x(t) = e−r(x)t, t > 0 for some Borel r : (−∞, 0)→ (0,∞]

(r(x) =∞ means immediate ruin when χ1 is equal to that x).

Known: K(x) = eΦ(r(x))x, x < 0, so H(0) = λ
c

∫ 0

−∞ e
[α+Φ(r(x))]xdx.

Can be evaluated, e.g., when r(x) is p/w constant: for some n ≥ 1,

rk ∈ (0,∞], k = 1, . . . , n, and −∞ =: a0 < a1 < · · · < an−1 < an := 0,

r(x) :=
n∑
k=1

rk1(x ∈ (ak−1, ak]).

Then

H(0) =
λ

c

n∑
k=1

∫ ak

ak−1

e(α+Φ(rk))xdx =
λ

c

n∑
k=1

e(α+Φ(rk))ak − e(α+Φ(rk))ak−1

α + Φ(rk)
.
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Suppose the conditional distribution of the window length is a finite

mixture of Erlang distr’ns with parameters depending on the deficit:

for an m ≥ 1, there are Borel functions pj : (−∞, 0)→ [0, 1],∑m
j=1 pj(x) ≡ 1, rj : (−∞, 0)→ (0,∞], and νj(x) : (−∞, 0)→ N,

j = 1, . . . ,m, such that, for x < 0,

F x(t) =
m∑
j=1

pj(x)

νj(x)−1∑
`=0

(rj(x)t)`

`!
e−rj(x)t, t > 0.

Such mixtures form a rather large class: it is well-known to be

everywhere dense in the weak convergence topology in the class of

continuous distributions on (0,∞).
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If we further assume, as above, that the functions participating in the

definition of F x are piece-wise constant, we can also get an explicit

expression for H(0):

H(0) =
λ

c

n∑
k=1

m∑
j=1

pj,k

νj,k−1∑
`=0

r`j,k

∫ ak

ak−1

eαxφ`(rj,k, x)dx,

where φ`(r, x) := (−1)`

`!
∂`

∂r`
eΦ(r)x.
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The End

(for today)
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