# Asymptotic expansions for first-passage times of random walks. 

Vitali Wachtel<br>Bielefeld University

(joint work with Denis Denisov and Alexander Tarasov)

Let $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$ be a random walk with i.i.d. incremnets.
We shall always assume that

$$
\mathbf{E} X_{1}=0 \quad \text { and } \quad \mathbf{E} X_{1}^{2} \in(0, \infty)
$$

Define

$$
\tau_{x}:=\inf \left\{n \geq 1: x+S_{n} \leq 0\right\}, \quad x \geq 0
$$

It is well known that, as $n \rightarrow \infty$,

$$
\mathbf{P}\left(\tau_{x}>n\right)=V(x) n^{-1 / 2}+o\left(n^{-1 / 2}\right)
$$

where $V(x)$ is proportional to the renewal function of strict decreasing ladder heights.
We want to understand the behaviour of $o\left(n^{-1 / 2}\right)$-term.

Let $B(t)$ be a Brownian motion and set

$$
\tau_{x}^{(b m)}:=\inf \{t \geq 0: x+B(t) \leq 0\}
$$

Then, as $t \rightarrow \infty$,

$$
\begin{aligned}
\mathbf{P}\left(\tau_{x}^{(b m)}>t\right) & =\mathbf{P}\left(\max _{s \leq t} B(s)<x\right)=\frac{2}{\sqrt{2 \pi}} \int_{0}^{x / \sqrt{t}} e^{-u^{2} / 2} d u \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{x / \sqrt{t}}\left(\sum_{j=0}^{\infty} \frac{1}{j!2^{j}} u^{2 j}\right) d u \\
& =\sqrt{\frac{2}{\pi}} \sum_{j=0}^{\infty} \frac{x^{2 j+1}}{j!2^{j}(2 j+1)} t^{-j-1 / 2}=: \sum_{j=1}^{\infty} v_{j}(x) t^{-j+1 / 2}
\end{aligned}
$$

Remark: $\Delta^{j} v_{j}(x)=0$ for every $j \geq 1$. In other words, every $v_{j}$ is a polyhartmonic function.

## Conjecture:

$$
\mathbf{P}\left(\tau_{x}>n\right)=\sum_{j=1}^{\infty} V_{j}(x) n^{-j+1 / 2}
$$

This is a formal expansion. The number of accessible terms should depend on the number of finite moments of $X_{1}$.

One of the consequences of the Wiener-Hopf factorisation is the following exact expression:

$$
1-\mathbf{E} s^{\tau_{0}}=\exp \left\{-\sum_{n=1}^{\infty} \frac{s^{n}}{n} \mathbf{P}\left(S_{n} \leq 0\right)\right\}
$$

If the distribution of $X_{1}$ is continuous and symmetric then $\mathbf{P}\left(S_{n} \leq 0\right)=1 / 2$. This implies that

$$
\sum_{n=0}^{\infty} \mathbf{P}\left(\tau_{0}>n\right) s^{n}=\frac{1-\mathbf{E} s^{\tau_{0}}}{1-s}=(1-s)^{-1 / 2}
$$

and

$$
\mathbf{P}\left(\tau_{0}>n\right)=(-1)^{n}\binom{-\frac{1}{2}}{n}, \quad n \geq 0
$$

In general case we have

$$
\sum_{n=0}^{\infty} \mathbf{P}\left(\tau_{0}>n\right) s^{n}=\frac{1-\mathbf{E} s^{\tau_{0}}}{1-s}=(1-s)^{-1 / 2} \exp \left\{\sum_{n=1}^{\infty} \frac{s^{n}}{n} \Delta_{n}\right\}
$$

where

$$
\Delta_{n}:=\frac{1}{2}-\mathbf{P}\left(S_{n} \leq 0\right)
$$

If $\mathbf{E} X_{1}=0$ and $\mathbf{E} X_{1}^{2}<\infty$ then $\sum \frac{\Delta_{n}}{n}<\infty$ and, consequently,

$$
\mathbf{P}\left(\tau_{0}>n\right) \sim e^{Q} a_{n}, \quad Q:=\sum \frac{\Delta_{n}}{n} .
$$

We have also

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathbf{P}\left(\tau_{0}>n\right) s^{n} \\
& =e^{Q}(1-s)^{-1 / 2} \exp \left\{-Q+\sum_{n=1}^{\infty} \frac{s^{n}}{n} \Delta_{n}\right\} \\
& =e^{Q}(1-s)^{-1 / 2}+e^{Q}(1-s)^{-1 / 2}\left(\exp \left\{-Q+\sum_{n=1}^{\infty} \frac{s^{n}}{n} \Delta_{n}\right\}-1\right)
\end{aligned}
$$

In order to determine the behaviour of the remainder, we need to know asymptotic properties of $\Delta_{n}$. This information can be taken from asymptotic expansions in CLT.

Difficulty: One deals here with convolutions of sequences, which have zero total sum. Thus, one can not use standard subexponential estimates for convolutions.

Theorem 1. Assume that $\mathbf{E}\left|X_{1}\right|^{r}$ is finite for some integer $r \geq 3$. Assume also that either the distribution of $X_{1}$ is lattice or $\lim \sup _{|t| \rightarrow \infty}\left|\mathbf{E} e^{i t X_{1}}\right|<1$. Then there exist numbers $\nu_{1}, \nu_{2}, \ldots, \nu_{\left\lfloor\frac{r-1}{2}\right\rfloor}$ such that

$$
\mathbf{P}\left(\tau_{0}>n\right)=\sum_{j=1}^{\left\lfloor\frac{r-1}{2}\right\rfloor} \nu_{j} a_{n}^{(j)}+o\left(\frac{\log n}{n^{(r-1) / 2}}\right)
$$

where

$$
a_{n}^{(j)}=(-1)^{n}\binom{j-\frac{3}{2}}{n}
$$

Using asymptotic expansions, we get

$$
\frac{\Delta_{n}}{n}=\sum_{j=1}^{\left\lfloor\frac{r-1}{2}\right\rfloor} p_{j} n^{-j-1 / 2}+h_{n}, \quad h_{n}=o\left(n^{-r / 2}\right)
$$

and

$$
\sum_{n=1}^{\infty} \frac{s^{n}}{n} \Delta_{n}=\sum_{j=1}^{\left\lfloor\frac{r-1}{2}\right\rfloor} p_{j} \sum_{n=1}^{\infty} n^{-j-1 / 2} s^{n}+\sum_{n=1}^{\infty} h_{n} s^{n}
$$

If one changes the basis of the expansion, then one gets a simpler expression:

$$
\frac{\Delta_{n}}{n}=\sum_{j=1}^{\left\lfloor\frac{r-1}{2}\right\rfloor} q_{j} a_{n}^{(j+1)}+\tilde{h}_{n}, \quad \tilde{h}_{n}=o\left(n^{-r / 2}\right)
$$

and

$$
\sum_{n=1}^{\infty} \frac{s^{n}}{n} \Delta_{n}=\sum_{j=1}^{\left\lfloor\frac{r-1}{2}\right\rfloor} q_{j}\left((1-s)^{j-1 / 2}-1\right)+\tilde{H}(s)
$$

Theorem 2. Assume that $S_{n}$ is left-continuous and that $\mathbf{E}\left|X_{1}\right|^{r}$ is finite for some integer $r \geq 3$. Then there exist polynomials $V_{1}(x), V_{2}(x), \ldots, V_{\left\lfloor\frac{r-1}{2}\right\rfloor}(x)$ (every $V_{k}$ is of degree $2 k-1$ ) such that

$$
\mathbf{P}\left(\tau_{x}>n\right)=\sum_{j=1}^{\left\lfloor\frac{r-1}{2}\right\rfloor} V_{j}(x) a_{n}^{(j)}+o\left(\frac{x^{r-1}}{n^{(r-1) / 2}}\right)
$$

uniformly in $x=o(\sqrt{n})$.

The proof of this result is based on the formula

$$
\mathbf{P}\left(\tau_{x}=n\right)=\frac{x}{n} \mathbf{P}\left(S_{n}=-x\right)
$$

and on asymptotic expansions in the local CLT.

Theorem 3. Assume that $S_{n}$ is lattice and that $\mathbf{E}\left|X_{1}\right|^{r}$ is finite for some integer $r \geq 3$. Then there exist functions $V_{1}(x), V_{2}(x), \ldots, V_{\left\lfloor\frac{r-1}{2}\right\rfloor}(x)$ such that, for every fixed $x$,

$$
\mathbf{P}\left(\tau_{x}>n\right)=\sum_{j=1}^{\left\lfloor\frac{r-1}{2}\right\rfloor} V_{j}(x) a_{n}^{(j)}+o\left(\frac{\log n}{n^{(r-1) / 2}}\right)
$$

Koroljuk(1962) derived some expansions for the probability $\mathbf{P}\left(\max _{k \leq n} S_{k}<x \sqrt{n}\right)$ for every fixed $x>0$.

Borovkov (1962) obtained a full expansion for $\mathbf{P}\left(\max _{k \leq n} S_{k}<x\right)$ for $x=o(n)$ under the assumption that $X_{1}$ has finite exponential moments. The remainder term in that result is of order $O\left(e^{-\gamma x}\right)$ with some $\gamma>0$. Thus, Borovkov's expansion is not applicable in the case of bounded $x$.

Nagaev (1970) has derived an expansion for $\mathbf{P}\left(\max _{k \leq n} S_{k}<x \sqrt{n}\right)$ under the assumption that the moment of order $m$ is finite. The remainder term in that paper is given by

$$
O\left(\min \left\{\frac{1}{\sqrt{n}},\left(1+(x / \sqrt{n})^{1-m}\right) n^{1-m / 2} \log ^{2} n\right\}\right) .
$$

This implies that his expansion is also not applicable in the case of fixed $x$.
All coefficients in that expansions are polynomials in $x$ !

Consider a substochastic transition kernel

$$
P(x, d y)=\mathbf{P}\left(x+S_{1} \in d y, x+S_{1}>0\right)
$$

Then

$$
P^{n} f(x)=\mathbf{E}\left[f\left(x+S_{n}\right) ; \tau_{x}>n\right], \quad x>0 .
$$

It is well known that $V(x)$ is harmonic:

$$
(P-I) V=0
$$

Theorem 4. Every function $V_{j}$ defined in Theorem 3 is polyharmonic of order $j$ :

$$
(P-I)^{j} V_{j}=0
$$

