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Let S,, = X7 + Xo + ...+ X,, be arandom walk with i.i.d. incremnets.
We shall always assume that

EX; =0 and EX? € (0,00).

Define
. =inf{n>1:2+5, <0}, =>0.

It is well known that, as n — o0,
P(r, >n)=V(x)n Y24+ o(n~1/?),
where V' () is proportional to the renewal function of strict decreasing ladder heights.

We want to understand the behaviour of o(n~1/2)-term.



Let B(t) be a Brownian motion and set
M) .= inf{t > 0: z + B(t) < 0}.

Then, as t — o0,
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Remark: Ajfvj (x) = 0 for every j > 1. In other words, every v; is a polyhartmonic

function.



Conjecture:
oo
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This is a formal expansion. The number of accessible terms should depend on the number

of finite moments of X.



One of the consequences of the Wiener-Hopf factorisation is the following exact

expression:
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If the distribution of X is continuous and symmetric then P(.S,, < 0) = 1/2. This

implies that
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In general case we have
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fEX; =0and EX? < cothen % < o0 and, consequently,
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We have also
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In order to determine the behaviour of the remainder, we need to know asymptotic

properties of /\,,. This information can be taken from asymptotic expansions in CLT.

Difficulty: One deals here with convolutions of sequences, which have zero total sum.

Thus, one can not use standard subexponential estimates for convolutions.



Theorem 1. Assume that EE| X1 |" is finite for some integer r > 3. Assume also that either

the distribution of X is lattice or lim sup ;_, ‘Eeitxl‘ < 1. Then there exist numbers

Vi, V2, eV rot such that
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Using asymptotic expansions, we get

T Z pjn_j_1/2 + hna hn — O(TL—T/Q)

and
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If one changes the basis of the expansion, then one gets a simpler expression:
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Theorem 2. Assume that .S, is left-continuous and that 2| X1 |" is finite for some integer
r > 3. Then there exist polynomials V7 (x), Va(z), .. ., Ve, (x) (every Vy is of
degree 2k — 1) such that

uniformly in x = o(y/n).

The proof of this result is based on the formula

P(r, =n) = %P(Sn = 1)

and on asymptotic expansions in the local CLT.



Theorem 3. Assume that .S, is lattice and that £| X1 |" is finite for some integer r > 3.
Then there exist functions V1 (), Va(z), . . ., Ve () such that, for every fixed x,
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Koroljuk(1962) derived some expansions for the probability P (maxy<, Sy < z/n) for

every fixed x > 0.

Borovkov (1962) obtained a full expansion for P (max,<, Sx < z) for z = o(n) under

the assumption that X; has finite exponential moments. The remainder term in that result
is of order O (e~ "") with some v > 0. Thus, Borovkov’s expansion is not applicable in the

case of bounded x.

Nagaev (1970) has derived an expansion for P (maxkgn Sk < x\/ﬁ) under the

assumption that the moment of order m is finite. The remainder term in that paper is given

by

O (min {% (14 (z/vn)"™)nl=m™/2 log? n}> .

This implies that his expansion is also not applicable in the case of fixed .

All coefficients in that expansions are polynomials in x!



Consider a substochastic transition kernel
P(z,dy) =P(x+ S; € dy,x + S; > 0).

Then
P"f(x) =E[f(x + S,); Tz > n|, = >0.

It is well known that V' () is harmonic:

(P—1)V =0.

Theorem 4. Every function V; defined in Theorem 3 is polyharmonic of order j:

(P—-1)V; =0.



