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Introduction

The motivation for this work was the procedure for writing essays
by students in the Internet age: a student’s essay sometimes is
simply a combination of two or more texts found using a search
engine. As a result, we cannot determine the student’s intellectual
contribution. Therefore, we need an algorithm that allows us to
quickly identify the presence of heterogeneous fragments in a text.
Our models and methods are completely probabilistic.
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Forward and backward processes of numbers of different
words

Hamlet: To be or not to be

hamlet to be or not to be
k 0 1 2 3 4 5 6 7
Rk 0 1 2 3 4 5 5 5

be to not or be to hamlet
k 0 1 2 3 4 5 6 7
R ′
k 0 1 2 3 4 4 4 5
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An infinite urn scheme

There is a countably infinite dictionary where the words are
numbered 1, 2, . . .. Words are chosen one-by-one independently of
each other.
Let Xi be the number of the word at ith position, 1 ≤ i ≤ n.

P(Xi = j) = pj > 0, j ≥ 1

p1 + p2 + . . . = 1

p1 ≥ p2 ≥ . . .
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General theorems

Denote by Rn the number of different words in the text of length n

ERn =
∞∑
i=1

(1 − (1 − pi )
n)

VarRn ≤ ERn

ERn → ∞, ERn/n → 0

[Bahadur, 1960]

Rn/ERn
a.s.→ 1

[Karlin, 1967]
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Example: Shakespeare’s sonnets

n = 17516, Rn = 3258
Most frequent words:
’and’: 489, ’the’: 444,
’to’: 409, ’of’: 371,
’my’: 364, ’i’: 341,
’in’: 322, ’that’: 320,
’thy’: 266, ’thou’: 234,
’with’: 181, ’for’: 171,
’is’: 169, ’not’: 167,
’but’: 164, ’me’: 164,
’a’: 163, ’thee’: 162,
’love’: 160, ’so’: 145,

— end of top 20 —
’be’: 141, ’as’: 121,
’all’: 117, ’you’: 110,
... ...
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Frequences of words in Shakespeare’s sonnets
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Logs of frequences of words to logs of ranks in
Shakespeare’s sonnets (Zipfian diagram)

8 / 35



The process of numbers of different words in
Shakespeare’s sonnets (Heaps’ diagram)
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Remember the formula

ERk =
∞∑
i=1

(1 − (1 − pi )
k).

We estimate the unknown expectation by

R∗
k =

Rn∑
i=1

(1 − (1 − p∗i )
k)

with
p∗i = ni/n,

ni be the number of occurences of a word with rank i .
The next figure illustrates the badness of this approximation.
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The process of Rk with its empirical
approximation R∗

k
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A regular case

Regularity condition:

α(x) := max{k > 0 : pk ≥ 1/x} = xθL(x), 0 < θ < 1,

L(·) is the slowly varying function of the real argument:
L(tx)/L(x) → 1 as x → +∞ for any real t > 0.

Equivalent condition:
pi = i−1/θl(i),

l(·) is the another slowly varying function.
The model is the elementary probability model that corresponds to
the Zipf’s Law (Zipf, 1936) of power decreasing of word
probabilities.
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Poissonization

Let (see Karlin (1967)) Π = {Π(t), t ≥ 0} be a Poisson process
with parameter 1. We denote by Xi (n) a number of balls in urn i .
According to well-known property of splitting of Poisson flows,
stochastic processes {Xi (Π(t)), t ≥ 0} are Poisson with intensities
pi and are mutually independent for different i ’s. The definition
implies that

RΠ(t) =
∞∑
i=1

I(Xi (Π(t)) ≥ 1).
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[Theorem 1 in Karlin (1967)]
Let θ ∈ [0, 1). Then ERΠ(t) ∼ α(t)Γ(1 − θ) as t → ∞.

Proof
Clearly

RΠ(t) =
∞∑
i=1

I(Xi (Π(t)) ≥ 1),

ERΠ(t) =
∞∑
i=1

P(Xi (Π(t)) ≥ 1) =
∞∑
i=1

(1 − e−pi t).

In view of the definition of α(x) we may write

ERΠ(t) =

∫ ∞

0
(1 − e−t/x)dα(x).

Integration by parts and a change of variable yelds

ERΠ(t) =

∫ ∞

0

t

x2 e
−t/xα(x) dx = t

∫ ∞

0
e−tyα(1/y) dy .
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A standard Abelian argument produces the result

ERΠ(t) ∼ α(t)Γ(1 − θ).

See Theorem A6.3.1 in Borovkov (2009) with V (t) = α(1/t) for
details.
The proof is complete.

[Theorem 1’ in Karlin (1967)]
Let θ ∈ [0, 1). Then ERn ∼ α(n)Γ(1 − θ) as n → ∞.
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Theorems under the regularity condition
Karlin (1967): (Rn − ERn)/

√
VarRn converges weakly to the

standard normal distribution,

ERn ∼ Γ(1 − θ)α(n),

VarRn/ERn → 2θ − 1,

Γ(·) is the Euler gamma.
So (Rn − ERn)/

√
ERn converges weakly to the centered normal

distribution with variance 2θ − 1.
Chebunin and Kovalevskii (2016):

Zn = {Zn(t), 0 ≤ t ≤ 1} = {(R[nt] − ER[nt])/
√

ERn, 0 ≤ t ≤ 1}

converges weakly in D(0, 1) with uniform metrics to a centered
Gaussian process Zθ with continuous a.s. sample paths and
covariance function

K (s, t) = (s + t)θ −max(sθ, tθ).
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New theorem under the regularity condition
Theorem (for joint distribution)
If the regularity condition holds then
(Zn,Z

′
n) = {(Zn(t),Z

′
n(t)), 0 ≤ t ≤ 1} converges weakly in the

uniform metrics in D(0, 1)2 to 2-dimensional Gaussian process
(Z ,Z ′) with zero expectation and covariance function

EZ (s)Z (t) = EZ ′(s)Z ′(t) = K (s, t), EZ (s)Z ′(t) = K ′(s, t),

K (s, t) = (s + t)θ −max(sθ, tθ),

K ′(s, t) = ((s + t)θ − 1)1(s + t > 1).

From the Theorem we have that the limiting process
{(Z (t)− Z ′(t))/

√
2, 0 ≤ t ≤ 1/2} is the stochastically self-similar

process which coinside in distribution with the limiting process of
Durieu and Wang (2016). So the Theorem gives an alternative way
to simulate these processes without additional randomization.
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Corollary under the regularity condition
Corollary (for the difference of processes) If the regularity
condition holds then

Jn =

∑n
k=1(Rk − R ′

k)

n
√
Rn

converges weakly to a centered normal random variable with
variance θ

θ+2 .

The Corollary gives the opportunity to test the homogeneity of the
sample using any consistent estimate θ∗ of parameter θ. Various
classes of such estimates have been obtained and analysed by Hill
(1975), Nicholls (1978), Zakrevskaya and Kovalevskii (2001, 2019),
Guillou and Hall (2002), Ohannessian and Dahleh (2012), Chebunin
(2014), Chebunin and Kovalevskii (2019a, 2019b), Chakrabarty et
al. (2020).

The p-value is calculated using the tail of the standard normal
distribution and the observed value Jobs of Jn:

p-value = 2Φ
(
|Jobs |

√
1 + 2/θ∗

)
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Parameter’s estimation

θn =

∫ 1

0
log+ R[nt] dA(t), θ′n =

∫ 1

0
log+ R ′

[nt] dA(t),

here log+ x = max(log x , 0). Function A(·) has bounded variation
and

A(0) = A(1) = 0, lim
x↓0

log x

∫ x

0
|dA(t)| = 0,

∫ 1

0
log t dA(t) = 1.

Let
θ̂ = (θn + θ′n)/2.

Theorem (consistence)
Let pi = i−1/θl(i , θ), θ ∈ [0, 1], and l(x , θ) is a slowly varying
function as x → ∞. Then the estimator θ̂ is strongly consistent.
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Corollary

Let

A(t) =


0, 0 ≤ t ≤ 1/2;
−(log 2)−1, 1/2 < t < 1;
0, t = 1.

Then

θn = log2
(
Rn/R[n/2]

)
,

θ′n = log2

(
Rn/R

′
[n/2]

)
,

θ̂ = log2

(
Rn/

√
R[n/2]R

′
[n/2]

)
, n ≥ 2.
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Zipf-Mandelbrot law

[Zipf, 1936], [Mandelbrot, 1965]

pi = c(i + q)−1/θ, i ≥ 1, 0 < θ < 1, q > −1.

Here
c = (ζ(1/θ, q + 1))−1 ,

ζ(α, x) =
∞∑
i=0

(i + x)−α

is the Hurvitz zeta function.
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Let

r(n) =
∞∑
i=1

(1 − (1 − p̂i )
n)

with
p̂i = ĉ(i + qn)

−1/θn , i ≥ 1,

qn is such that r(n) = Rn.

Theorem If the Zipf—Mandelbrot law is true then there is qn such
that r(n) = Rn a.s., and qn → q in probability.
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Shakespeare’s sonnets

The forward process of numbers of different words for
Shakespeare’s sonnets and its approximation.

n = 17516, Rn = 3258, θn = 0.6267, qn = 46.39.
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Omega squared statistics

Corollary If the regularity holds, 0 < θ < 1, then the statistics

ω2
n =

∫ 1

0
(Zn(t)− Z ′

n(t))
2dt

converges weakly to a random variable ω2
θ .
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Sonnets for analysis

Thomas Wyatt (32 sonnets), 1542
William Shakespeare (154 sonnets), 1609
Charlotte Smith, ELEGIAC SONNETS (sonnets I - LIX), 1784
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Forward and backward processes of numbers of
different words for Wyatt’s sonnets

Author Jn θn θ′n θ̂ p-value ω2
n

Wyatt -0.1139 0.7556 0.7459 0.7507 0.8275 0.0681
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Forward and backward processes of numbers of
different words for Shakespeare’s sonnets

Author Jn θn θ′n θ̂ p-value ω2
n

Shakespeare 0.2939 0.6267 0.6274 0.6271 0.5475 0.3868
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Forward and backward processes of numbers of
different words for Smith’s sonnets

Author Jn θn θ′n θ̂ p-value ω2
n

Smith -0.8748 0.6788 0.62 0.6494 0.0772 0.883
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Forward and backward processes of numbers of
different words for Shakespeare+Wyatt

Author Jn θn θ′n θ̂ p-value ω2
n

Shakespeare+Wyatt -3.7886 0.8082 0.5634 0.6858 0.0000 20.3048
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Forward and backward processes of numbers of
different words for Wyatt+Shakespeare

Author Jn θn θ′n θ̂ p-value ω2
n

Wyatt+Shakespeare 4.2126 0.5837 0.7948 0.6893 0.0000 22.4295
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Forward and backward processes of numbers of
different words for Smith+Shakespeare

Author Jn θn θ′n θ̂ p-value ω2
n

Smith+Shakespeare 4.6056 0.552 0.7925 0.6723 0.0000 27.3113
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Forward and backward processes of numbers of
different words for Shakespeare+Smith

Author Jn θn θ′n θ̂ p-value ω2
n

Shakespeare+Smith -4.8183 0.8146 0.5444 0.6795 0.0000 28.7613
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Forward and backward processes of numbers of
different words for Smith+Wyatt

Author Jn θn θ′n θ̂ p-value ω2
n

Smith+Wyatt -0.5909 0.8108 0.7256 0.7682 0.2620 4.5616
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Forward and backward processes of numbers of
different words for Wyatt+Smith

Author Jn θn θ′n θ̂ p-value ω2
n

Wyatt+Smith -0.4583 0.7627 0.7924 0.7775 0.3863 3.7753
34 / 35



Author(s) Jn θn θ′n θ̂ p-value ω2
n

Wyatt -0.1139 0.7556 0.7459 0.7507 0.8275 0.0681
Shakespeare 0.2939 0.6267 0.6274 0.6271 0.5475 0.3868

Smith -0.8748 0.6788 0.62 0.6494 0.0772 0.883
Shakespeare+Wyatt -3.7886 0.8082 0.5634 0.6858 0.0000 20.3048
Wyatt+Shakespeare 4.2126 0.5837 0.7948 0.6893 0.0000 22.4295
Smith+Shakespeare 4.6056 0.552 0.7925 0.6723 0.0000 27.3113
Shakespeare+Smith -4.8183 0.8146 0.5444 0.6795 0.0000 28.7613

Smith+Wyatt -0.5909 0.8108 0.7256 0.7682 0.2620 4.5616
Wyatt+Smith -0.4583 0.7627 0.7924 0.7775 0.3863 3.7753
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