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1. Problem:

Let £(t) be a random process with continuous trajectories,

®: C[0,T] = R and n = ®(£(-)) be a random variable. When do
we have P,, < m? What are the properties of the density?

2. Another problem:

Let R : C[0, T] — CJ[O, T] be a linear mapping:

R(f +g) = Rf + Rg, R(af) = oRf and suppose that
R = R(w) is a random linear mapping.

The question is if R is a.s. an integral operator and what is its
domain?

Rf(x) = [ r(x,y)f(y)dy
What are the properties of the kernel?
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Example: Let w(s), s > 0 be a standard Wiener process.

Rf(x) = /0 f(x — w(r))dr,

Let us find the expression for the kernel:
F(x) = Jg f(y)d(x — y)dy

Rf(x):/Rf(y)/o 0(x —y —w(r))drdy = f *r(t,x),

where .
r(t,x) = /0 d(x — w(r))dT.

Consider the Fourier transform

t .
At p) = /0 ) i
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To prove r(t,-) € Lo(R) a.s., it is sufficient to prove
r(t,-) € L(Q2 X R,P xm) or

t .
/ dpE’ / eP(T) g1
R 0

For |p| > 1 we have

t .
E‘ | e ar
0

t T1 2 C
= 2/ d7'1/ dTge_p?(Tl_Tz) < =
0 0 P

Additional possibilities: r(t,-) € H, for any a € [0,1/2), where

Ho ={g: E[(1+|p|*)[g(p)]* dp < oo}
So we have proved that r(t,-) € W5'(R) a.s.
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Let & (t), t >0, x € R be a solution of a stochastic differential
equation

d&x(t) = b(&x(t))b'(6x(t)) dt + b(&x(t)) dw(t),
&x(0) = x.

Assume that
1. b e C2(R).
2.60p= ;Iel]%b(x) > 0.
3.3 by > 0 such that limy_, 1o b(x) = bp.
4. limy 100 b'(x) = limy_s 100 b”’(x) = 0.
5. b(X) — by € Ll(R) N LQ(R).
Suppose that
by = 1.

N.V.Smorodina On kernels of some random operators.



The Markov family &,(t), x € R generates a semigroup
Pt : C(R) — C(R), where for any f € C(R)

u(t,x) = Ptf(x) = Ef(&(t)).

The function u(t, x) satisfies the backward Kolmogorov equation

ou
E — —AU,

with an initial condition

u(0,x) = Iti[g u(t, x) = f(x),

where L 4
__+14d 9
A= 2 dx(b (x)
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Define P*f(x) for f € Ls.
PHf(x) = Ef (&(1)).

Consider the self-adjoint operator A, on the domain
D(A) = Wi(R).
We have

Pt — e—t.A

9

and
e Mf(x) = EF(&(1).

We are interested in a probabilistic representation of the resolvent
operator.
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Some ideas:
For any A such that Re A < 0 and any f € C(R) we have

(A=) = / eMe TAf dr
0

(A=) "M (x) = E/Ooo eMF(&(r)) dr = tILn;OE/t e f(&x(T)) d.

0
Consider a random operator RR where

Ry :frs / t M f(&x(T)) dr.
0

What can we say about R}7 If A = 0 the kernel is a local time.
D(R}) =? How to define an operator in the case Re A > 07
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Let A= a+ bi.
First suppose that a = Re A < 0. In this case set

LF(x) = t 7))e dr.
Rif(0 = [ Al d
Using f(x) = [ f(y —y)dy we get
Rif(x) - / ) /0 o)) dray = [ nlex ),
where

n(tx) = [ @) - ) o

0

First idea is to use the Fourier transform.
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The operator A = —%di(b2(x)d%) is self-adjoint,

o(A) = 0.c(A) = [0, 00).

Let ¢(x, k) be generalized eigenfunctions of the continuous
spectrum of the operator A. For any k € R it is a solution

k2
A@(Xa k) = 790()(7 k)

such that

/ o(x, k)o(x, k') dx = 6(k — k)
and

/ o(x, k)o(x', k) dk = 6(x — x').

The choice of ¢(x, k) is not unique, so we choose ¢(x, k) such that
they have an analytical continuation on k to the upper half—plane
and for Im k > 0 we have limy_, 1o (X, k) =0. (If A= _EW

then ¢(x, k) = \/12? e,
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The functions ¢(x, k) define the kernel of an unitary operator
V: [H(R) — Ly(R). The operator W weaves the operator A and
the multiplication operator by the function %2
Namely define the unitary operator by

M
V:f(x) — (L) MITOO/_M f(x)o(x, k) dx = (Vf)(k),

-1. . M _ -1
Vg = (L) Jim [ gk)e(x k) dk = (Wg)(x),

2
Af=g & SRk = (V8)(K).

FAf =g & FCo)WN(K) = (Vg)(k)

N.V.Smorodina On kernels of some random operators.



There exists a constant L > 0 such that for any x € R, and k € R
we have |p(x, k)| < L.

©(x, k) #0 for Imk > 0.

Let a function g satisfies the condition
J(L+1k?*)|g(k)|? dk < oo for some a € (0, 3). Then
Vlg € We(R).
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Suppose that a = Re A < 0. In this case

r)\(ta)(v)/) = /Ot e/\75(§x(7) —y) dr.

Let us calculate Wry(t, x, y) with respect to y. We have
(er) =) = | A Rele(o). o dk
So that
n(t,x,y) = /R@(y,k)/otcp(&x(r),k)e)“ dr dk.

We get )
wmm&m—ﬁw@m¢wwr

(It is a kernel of the operator REW—! = R{W*))
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Now suppose that a = Re A > 0. For |k| > v/2a we define Wry as
before. For |k| < v/2a set

(U7) (2. x k) = *O(X’k)) | et iepe ™ ar.

(0, ilk|

Define the space H, of Ly(R)-valued random variables g
Ho={g+ E [ (15 ) (V)P dk < o)

If g € Hq, then g € WS (R) aus.
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Theorem

1. For any a € [0, %) there exists the uniform in x € R limit:

r,\(t,x, ) = (Ha) I\/lllm I’)\(t,X, ) M)a

—00

where
t
(W) (£, x, k, M) = 1y py(K) /0 (W) (r, x, k) dr.

2. Ifa=Re\ < 0 then for any o € [0, %) there exists the uniformly
in x € R limit:

r(oo, x, ) = (Ha) tlrgo ra(t, x,-).
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For any fixed 0 < t < oo with probability 1 the operator R} is a
bounded operator in L(R).

V.
Theorem

There exists a constant C > 0 such that for any f € Ly(R) we have

E[IR5FIIZ < CIIFII3.

A\

N.V.Smorodina On kernels of some random operators.



Theorem
1. If Re A < 0 then for any f € La(R) we have

E [ oo y)f(y)dy = (A=A,
R
2. IfReX >0 and X\ ¢ o(.A) then for any f € Lo(R) we have
(t2) Jim E [ n(ten)f)dy =(A- ) ()
t—00 R

3. If X € o(A) then (1) holds for any f € D(A — \I)~1L.
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Some generalizations

1d,, .d
A= —Ea(b (X)&) + V(x),

where V/(x) is a rapidly decreasing potential.
o(A)={—k%,...,—kj} U[0,00).
L2(R) = span{eps,...,on} @ Hz
@i € L(R), j=1,2,...,N; ¢(, k) & L2(R).
Using o(x, k) we define an isometric operator
WV (R) = [(R), W' :L(R) — HA.
YV =d V'V =Py

the projector onto an absolutely continuous subspace.
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In this case for Re A < 0 set

Rgf(x):/oteA (Pef)(éx(T))e™ Jg V(e(s)) ds g

where P;“C is the projector onto an absolutely continuous subspace.
The kernel t:2 of the projector P has the form

Ghxuy) = [ o k127, R)
We get
Witxk) = [ @plendr). e K VSO g
We use the identity

E(€x(r), K)o~ Jo VIEEOD & — =57 o k),
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Non-self-adjoint case.

1, d? d
B = —Eb (X)@ — a(X)a + W(X)

bb' — a € L1(R)
The operator B is similar to a self-adjoint one. Let A be
self-adjoint.

B = ’CilAK, H’CHL2—>L2 < 00, ||]C71||L2—>L2 <0
F(B) = K 'F(A)K.

The operator B is self-adjoint in the scalar product

(u,v)k = (Ku, Kv).
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Consider the operator

1 d? d
B = —gbz(X)@ —a(x )dx + W(x).

This operator is similar to the operator

_ 1d 2

where K~1f(x) = G(x)f(x)

d

)+ W) + V(x),

b(y)b'(y) — a(y)
b2(y) '

60) = el | “H(y)dy). H(y) =
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Let &(t), t >0, x € R be a solution of the stochastic differential
equation

d&x(t) = a(&x(t)) dt + b(§x(t)) dw(t), &(0) = x.

In this case
t
R§F(x) = / T (PF) (Ex(m)e o WEEN & g,
0

where P = K1PAK is the projector on the absolute continuous
subspace.
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