On kernels of some random operators.

N.V.Smorodina
(joint with I.A.Ibragimov and M.M.Faddeev.)

PDMI RAS, St.Petersburg State University, Physical Department

24-26 August, 2022, Novosibirsk

1. Problem:

Let $\xi(t)$ be a random process with continuous trajectories, $\Phi: C[0, T] \rightarrow \mathbb{R}$ and $\eta=\Phi(\xi(\cdot))$ be a random variable. When do we have $\mathcal{P}_{\eta} \ll \mathfrak{m}$? What are the properties of the density?
2. Another problem:

Let $\mathcal{R}: C[0, T] \rightarrow C[0, T]$ be a linear mapping:
$\mathcal{R}(f+g)=\mathcal{R} f+\mathcal{R} g, \quad \mathcal{R}(\alpha f)=\alpha \mathcal{R} f$ and suppose that $\mathcal{R}=\mathcal{R}(\omega)$ is a random linear mapping.

The question is if \mathcal{R} is a.s. an integral operator and what is its domain?
$\mathcal{R} f(x)=\int r(x, y) f(y) d y$
What are the properties of the kernel?

Example: Let $w(s), s \geqslant 0$ be a standard Wiener process.

$$
\mathcal{R} f(x)=\int_{0}^{t} f(x-w(\tau)) d \tau
$$

Let us find the expression for the kernel: $f(x)=\int_{\mathbb{R}} f(y) \delta(x-y) d y$

$$
\mathcal{R} f(x)=\int_{\mathbb{R}} f(y) \int_{0}^{t} \delta(x-y-w(\tau)) d \tau d y=f * r(t, x)
$$

where

$$
r(t, x)=\int_{0}^{t} \delta(x-w(\tau)) d \tau
$$

Consider the Fourier transform

$$
\widehat{r}(t, p)=\int_{0}^{t} e^{i p w(\tau)} d \tau
$$

To prove $r(t, \cdot) \in L_{2}(\mathbb{R})$ a.s., it is sufficient to prove $\widehat{r}(t, \cdot) \in L_{2}(\Omega \times \mathbb{R}, \mathbf{P} \times \mathfrak{m})$ or

$$
\int_{\mathbb{R}} d p \mathbf{E}\left|\int_{0}^{t} e^{i p w(\tau)} d \tau\right|^{2}<\infty
$$

For $|p|>1$ we have

$$
\begin{gathered}
\mathbf{E}\left|\int_{0}^{t} e^{i p w(\tau)} d \tau\right|^{2}=2 \operatorname{Re} \int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \mathbf{E} e^{i p\left(w\left(\tau_{1}\right)-w\left(\tau_{2}\right)\right)}= \\
=2 \int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} e^{-\frac{p^{2}}{2}\left(\tau_{1}-\tau_{2}\right)} \leqslant \frac{C}{p^{2}}
\end{gathered}
$$

Additional possibilities: $r(t, \cdot) \in \mathcal{H}_{\alpha}$ for any $\alpha \in[0,1 / 2)$, where $\mathcal{H}_{\alpha}=\left\{g: E \int\left(1+|p|^{2 \alpha}\right)|\widehat{g}(p)|^{2} d p<\infty\right\}$.
So we have proved that $r(t, \cdot) \in W_{2}^{\alpha}(\mathbb{R})$ a.s.

Let $\xi_{x}(t), \quad t \geqslant 0, x \in \mathbb{R}$ be a solution of a stochastic differential equation

$$
\begin{gathered}
d \xi_{x}(t)=b\left(\xi_{x}(t)\right) b^{\prime}\left(\xi_{x}(t)\right) d t+b\left(\xi_{x}(t)\right) d w(t) \\
\xi_{x}(0)=x
\end{gathered}
$$

Assume that

1. $b \in C_{b}^{2}(\mathbb{R})$.
2. $\theta_{0}=\inf _{x \in \mathbb{R}} b(x)>0$.
3. $\exists \quad b_{0}>0$ such that $\lim _{x \rightarrow \pm \infty} b(x)=b_{0}$.
4. $\lim _{x \rightarrow \pm \infty} b^{\prime}(x)=\lim _{x \rightarrow \pm \infty} b^{\prime \prime}(x)=0$.
5. $b(x)-b_{0} \in L_{1}(\mathbb{R}) \cap L_{2}(\mathbb{R})$.

Suppose that

$$
b_{0}=1
$$

The Markov family $\xi_{x}(t), x \in \mathbb{R}$ generates a semigroup $P^{t}: C(\mathbb{R}) \rightarrow C(\mathbb{R})$, where for any $f \in C(\mathbb{R})$

$$
u(t, x)=P^{t} f(x)=\mathbf{E} f\left(\xi_{x}(t)\right)
$$

The function $u(t, x)$ satisfies the backward Kolmogorov equation

$$
\frac{\partial u}{\partial t}=-\mathcal{A} u
$$

with an initial condition

$$
u(0, x)=\lim _{t \downarrow 0} u(t, x)=f(x)
$$

where

$$
\mathcal{A}=-\frac{1}{2} \frac{d}{d x}\left(b^{2}(x) \frac{d}{d x}\right)>0
$$

Define $P^{t} f(x)$ for $f \in L_{2}$.

$$
P^{t} f(x)=\mathbf{E} f\left(\xi_{x}(t)\right)
$$

Consider the self-adjoint operator \mathcal{A}, on the domain $\mathcal{D}(\mathcal{A})=W_{2}^{2}(\mathbb{R})$.
We have

$$
P^{t}=e^{-t \mathcal{A}}
$$

and

$$
e^{-t \mathcal{A}} f(x)=\mathbf{E} f\left(\xi_{x}(t)\right)
$$

We are interested in a probabilistic representation of the resolvent operator.

Some ideas:
For any λ such that $\operatorname{Re} \lambda<0$ and any $f \in C(\mathbb{R})$ we have

$$
\begin{gathered}
(\mathcal{A}-\lambda I)^{-1} f=\int_{0}^{\infty} e^{\lambda \tau} e^{-\tau \mathcal{A}} f d \tau \\
(\mathcal{A}-\lambda I)^{-1} f(x)=\mathbf{E} \int_{0}^{\infty} e^{\lambda \tau} f\left(\xi_{x}(\tau)\right) d \tau=\lim _{t \rightarrow \infty} \mathbf{E} \int_{0}^{t} e^{\lambda \tau} f\left(\xi_{x}(\tau)\right) d \tau
\end{gathered}
$$

Consider a random operator $\mathcal{R}_{\lambda}^{t}$, where

$$
\mathcal{R}_{\lambda}^{t}: f \mapsto \int_{0}^{t} e^{\lambda \tau} f\left(\xi_{x}(\tau)\right) d \tau
$$

What can we say about $\mathcal{R}_{\lambda}^{t}$? If $\lambda=0$ the kernel is a local time. $\mathcal{D}\left(\mathcal{R}_{\lambda}^{t}\right)=$? How to define an operator in the case $\operatorname{Re} \lambda>0$?

Let $\lambda=a+b i$.
First suppose that $a=\operatorname{Re} \lambda \leqslant 0$. In this case set

$$
\mathcal{R}_{\lambda}^{t} f(x)=\int_{0}^{t} f\left(\xi_{x}(\tau)\right) e^{\lambda \tau} d \tau
$$

Using $f(x)=\int f(y) \delta(x-y) d y$ we get
$\mathcal{R}_{\lambda}^{t} f(x)=\int f(y) \int_{0}^{t} e^{\lambda \tau} \delta\left(\xi_{x}(\tau)-y\right) d \tau d y=\int f(y) r_{\lambda}(t, x, y) d y$,
where

$$
r_{\lambda}(t, x, y)=\int_{0}^{t} e^{\lambda \tau} \delta\left(\xi_{x}(\tau)-y\right) d \tau
$$

First idea is to use the Fourier transform.

The operator $\mathcal{A}=-\frac{1}{2} \frac{d}{d x}\left(b^{2}(x) \frac{d}{d x}\right)$ is self-adjoint,

$$
\sigma(\mathcal{A})=\sigma_{\mathrm{ac}}(\mathcal{A})=[0, \infty)
$$

Let $\varphi(x, k)$ be generalized eigenfunctions of the continuous spectrum of the operator \mathcal{A}. For any $k \in \mathbb{R}$ it is a solution

$$
\mathcal{A} \varphi(x, k)=\frac{k^{2}}{2} \varphi(x, k)
$$

such that

$$
\int \varphi(x, k) \overline{\varphi\left(x, k^{\prime}\right)} d x=\delta\left(k-k^{\prime}\right)
$$

and

$$
\int \varphi(x, k) \overline{\varphi\left(x^{\prime}, k\right)} d k=\delta\left(x-x^{\prime}\right)
$$

The choice of $\varphi(x, k)$ is not unique, so we choose $\varphi(x, k)$ such that they have an analytical continuation on k to the upper half-plane and for $\operatorname{Im} k>0$ we have $\lim _{x \rightarrow+\infty} \varphi(x, k)=0$. (If $\mathcal{A}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}$ then $\left.\varphi(x, k)=\frac{1}{\sqrt{2 \pi}} e^{i k x}\right)$.

The functions $\varphi(x, k)$ define the kernel of an unitary operator $\psi: L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R})$. The operator ψ weaves the operator \mathcal{A} and the multiplication operator by the function $\frac{k^{2}}{2}$. Namely define the unitary operator by

$$
\begin{gathered}
\Psi: f(x) \mapsto\left(L_{2}\right) \lim _{M \rightarrow \infty} \int_{-M}^{M} f(x) \overline{\varphi(x, k)} d x=(\Psi f)(k), \\
\Psi^{-1}: g(k) \mapsto\left(L_{2}\right) \lim _{M \rightarrow \infty} \int_{-M}^{M} g(k) \varphi(x, k) d k=\left(\Psi^{-1} g\right)(x) . \\
\mathcal{A} f=g \quad \Leftrightarrow \quad \frac{k^{2}}{2}(\Psi f)(k)=(\Psi g)(k) . \\
F(\mathcal{A}) f=g \quad \Leftrightarrow \quad F\left(\frac{k^{2}}{2}\right)(\Psi f)(k)=(\Psi g)(k)
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{E} \varphi\left(\xi_{x}(t), k\right)=e^{-\frac{k^{2} t}{2}} \varphi(x, k) . \\
\mathcal{D}(F(\mathcal{A}))=\left\{f \in L_{2}(\mathbb{R}): F\left(\frac{k^{2}}{2}\right)(\Psi f)(k) \in L_{2}(\mathbb{R})\right\} .
\end{gathered}
$$

Lemma

There exists a constant $L>0$ such that for any $x \in \mathbb{R}$, and $k \in \mathbb{R}$ we have $|\varphi(x, k)| \leqslant L$.

Lemma

$\varphi(x, k) \neq 0$ for $\operatorname{Im} k>0$.

Lemma

Let a function g satisfies the condition
$\int_{\mathbb{R}}\left(1+|k|^{2 \alpha}\right)|g(k)|^{2} d k<\infty$ for some $\alpha \in\left(0, \frac{1}{2}\right)$. Then $\psi^{-1} g \in W_{2}^{\alpha}(\mathbb{R})$.

Suppose that $a=\operatorname{Re} \lambda \leqslant 0$. In this case

$$
r_{\lambda}(t, x, y)=\int_{0}^{t} e^{\lambda \tau} \delta\left(\xi_{x}(\tau)-y\right) d \tau
$$

Let us calculate $\Psi r_{\lambda}(t, x, y)$ with respect to y. We have

$$
\delta\left(\xi_{x}(\tau)-y\right)=\int_{\mathbb{R}} \overline{\varphi(y, k)} \varphi\left(\xi_{x}(\tau), k\right) d k
$$

So that

$$
r_{\lambda}(t, x, y)=\int_{\mathbb{R}} \overline{\varphi(y, k)} \int_{0}^{t} \varphi\left(\xi_{x}(\tau), k\right) e^{\lambda \tau} d \tau d k
$$

We get

$$
\left(\overline{\Psi \bar{r}_{\lambda}}\right)(t, x, k)=\int_{0}^{t} \varphi\left(\xi_{x}(\tau), k\right) e^{\lambda \tau} d \tau
$$

(It is a kernel of the operator $\mathcal{R}_{\lambda}^{t} \Psi^{-1}=\mathcal{R}_{\lambda}^{t} \Psi^{*}$.)

Now suppose that $a=\operatorname{Re} \lambda>0$. For $|k|>\sqrt{2 a}$ we define ψr_{λ} as before. For $|k|<\sqrt{2 a}$ set

$$
\left(\overline{\Psi_{r_{\lambda}}}\right)(t, x, k)=-\frac{\varphi(x, k)}{\varphi(0, i|k|)} \int_{0}^{t} \varphi\left(\xi_{0}(\tau), i|k|\right) e^{-\lambda \tau} d \tau
$$

Define the space \mathcal{H}_{α} of $L_{2}(\mathbb{R})$-valued random variables g

$$
\mathcal{H}_{\alpha}=\left\{g: \mathbf{E} \int_{\mathbb{R}}\left(1+|k|^{2 \alpha}\right)|(\Psi g)(k)|^{2} d k<\infty\right\}
$$

If $g \in \mathcal{H}_{\alpha}$, then $g \in W_{2}^{\alpha}(\mathbb{R})$ a.s.

Theorem

1. For any $\alpha \in\left[0, \frac{1}{2}\right)$ there exists the uniform in $x \in \mathbb{R}$ limit:

$$
r_{\lambda}(t, x, \cdot)=\left(\mathcal{H}_{\alpha}\right) \lim _{M \rightarrow \infty} r_{\lambda}(t, x, \cdot, M)
$$

where

$$
\left(\Psi r_{\lambda}\right)(t, x, k, M)=\mathbf{1}_{[-M, M]}(k) \int_{0}^{t}\left(\Psi r_{\lambda}\right)(\tau, x, k) d \tau
$$

2. If $a=\operatorname{Re} \lambda<0$ then for any $\alpha \in\left[0, \frac{1}{2}\right)$ there exists the uniformly in $x \in \mathbb{R}$ limit:

$$
r_{\lambda}(\infty, x, \cdot)=\left(\mathcal{H}_{\alpha}\right) \lim _{t \rightarrow \infty} r_{\lambda}(t, x, \cdot)
$$

Theorem

For any fixed $0 \leqslant t<\infty$ with probability 1 the operator $\mathcal{R}_{\lambda}^{t}$ is a bounded operator in $L_{2}(\mathbb{R})$.

Theorem

There exists a constant $C>0$ such that for any $f \in L_{2}(\mathbb{R})$ we have $\mathbf{E}\left\|\mathcal{R}_{\lambda}^{t} f\right\|_{2}^{2} \leqslant C\|f\|_{2}^{2}$.

Theorem

1. If $\operatorname{Re} \lambda<0$ then for any $f \in L_{2}(\mathbb{R})$ we have

$$
\mathbf{E} \int_{\mathbf{R}} r_{\lambda}(\infty, \cdot, y) f(y) d y=(\mathcal{A}-\lambda I)^{-1} f
$$

2. If $\operatorname{Re} \lambda \geqslant 0$ and $\lambda \notin \sigma(\mathcal{A})$ then for any $f \in L_{2}(\mathbb{R})$ we have

$$
\begin{equation*}
\left(L_{2}\right) \lim _{t \rightarrow \infty} \mathbf{E} \int_{\mathbb{R}} r_{\lambda}(t, \cdot, y) f(y) d y=(\mathcal{A}-\lambda /)^{-1} f \tag{1}
\end{equation*}
$$

3. If $\lambda \in \sigma(\mathcal{A})$ then (1) holds for any $f \in \mathcal{D}(\mathcal{A}-\lambda I)^{-1}$.

Some generalizations

$$
\mathcal{A}=-\frac{1}{2} \frac{d}{d x}\left(b^{2}(x) \frac{d}{d x}\right)+V(x)
$$

where $V(x)$ is a rapidly decreasing potential.

$$
\begin{gathered}
\sigma(\mathcal{A})=\left\{-k_{1}^{2}, \ldots,-k_{N}^{2}\right\} \cup[0, \infty) \\
L_{2}(\mathbb{R})=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\} \oplus H_{a c}^{\mathcal{A}} \\
\varphi_{j} \in L_{2}(\mathbb{R}), j=1,2, \ldots, N ; \quad \varphi(\cdot, k) \notin L_{2}(\mathbb{R}) .
\end{gathered}
$$

Using $\varphi(x, k)$ we define an isometric operator

$$
\begin{gathered}
\Psi: L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R}), \quad \Psi^{*}: L_{2}(\mathbb{R}) \rightarrow H_{a c}^{\mathcal{A}} \\
\Psi \Psi^{*}=\text { Id } \quad \Psi^{*} \Psi=\mathrm{P}_{\mathrm{ac}}^{\mathcal{A}}
\end{gathered}
$$

the projector onto an absolutely continuous subspace.

In this case for $\operatorname{Re} \lambda \leqslant 0$ set

$$
\mathcal{R}_{\lambda}^{t} f(x)=\int_{0}^{t} e^{\lambda \tau}\left(\mathrm{P}_{a c}^{\mathcal{A}} f\right)\left(\xi_{x}(\tau)\right) e^{-\int_{0}^{\tau} V\left(\xi_{x}(s)\right) d s} d \tau
$$

where $\mathrm{P}_{a c}^{\mathcal{A}}$ is the projector onto an absolutely continuous subspace. The kernel $t_{a c}^{\mathcal{A}}$ of the projector $\mathrm{P}_{a c}^{\mathcal{A}}$ has the form

$$
t_{a c}^{\mathcal{A}}(x, y)=\int \varphi(x, k) \overline{\varphi(y, k)} d k
$$

We get

$$
\overline{\Psi \bar{r}_{\lambda}}(t, x, k)=\int_{0}^{t} e^{\lambda \tau} \varphi\left(\xi_{x}(\tau), k\right) e^{-\int_{0}^{\tau} V\left(\xi_{x}(s)\right) d s} d \tau
$$

We use the identity

$$
\mathbf{E}_{\varphi}\left(\xi_{x}(\tau), k\right) e^{-\int_{0}^{\tau} V\left(\xi_{x}(s)\right) d s}=e^{-\frac{k^{2} \tau}{2}} \varphi(x, k)
$$

Non-self-adjoint case.

$$
\mathcal{B}=-\frac{1}{2} b^{2}(x) \frac{d^{2}}{d x^{2}}-a(x) \frac{d}{d x}+W(x)
$$

$b b^{\prime}-a \in L_{1}(\mathbb{R})$
The operator \mathcal{B} is similar to a self-adjoint one. Let \mathcal{A} be self-adjoint.

$$
\begin{aligned}
\mathcal{B}=\mathcal{K}^{-1} \mathcal{A} \mathcal{K}, & \|\mathcal{K}\|_{L_{2} \rightarrow L_{2}}<\infty,\left\|\mathcal{K}^{-1}\right\|_{L_{2} \rightarrow L_{2}}<\infty \\
& F(\mathcal{B})=\mathcal{K}^{-1} F(\mathcal{A}) \mathcal{K} .
\end{aligned}
$$

The operator \mathcal{B} is self-adjoint in the scalar product

$$
\langle u, v\rangle_{K}=\langle K u, K v\rangle .
$$

Consider the operator

$$
\mathcal{B}=-\frac{1}{2} b^{2}(x) \frac{d^{2}}{d x^{2}}-a(x) \frac{d}{d x}+W(x)
$$

This operator is similar to the operator

$$
\mathcal{A}=-\frac{1}{2} \frac{d}{d x}\left(b^{2}(x) \frac{d}{d x}\right)+W(x)+V(x)
$$

where $\mathcal{K}^{-1} f(x)=G(x) f(x)$

$$
G(x)=\exp \left(\int_{0}^{x} H(y) d y\right), H(y)=\frac{b(y) b^{\prime}(y)-a(y)}{b^{2}(y)}
$$

Let $\xi_{x}(t), \quad t \geqslant 0, x \in \mathbb{R}$ be a solution of the stochastic differential equation

$$
d \xi_{x}(t)=a\left(\xi_{x}(t)\right) d t+b\left(\xi_{x}(t)\right) d w(t), \quad \xi_{x}(0)=x
$$

In this case

$$
\mathcal{R}_{\lambda}^{t} f(x)=\int_{0}^{t} e^{\lambda \tau}\left(\mathrm{P}_{a c}^{\mathcal{B}} f\right)\left(\xi_{x}(\tau)\right) e^{-\int_{0}^{\tau} W\left(\xi_{x}(s)\right) d s} d \tau
$$

where $\mathrm{P}_{a c}^{\mathcal{B}}=\mathcal{K}^{-1} \mathrm{P}_{a c}^{\mathcal{A}} \mathcal{K}$ is the projector on the absolute continuous subspace.

