
Harris Ergodicity of a Split Transmission Control
Protocol

joint work with Sergey Foss

Mikhail Chebunin

Institute of Stochastics, Karlsruhe Institute of Technology

Borovkov meeting
26.08.2022



Introduction

We are considering one of such systems proposed in [1] 1, i.e. we consider
a 3-component Markov process in continuous time, the first and second
components of which follow their TCP protocols, and the third component
describes the accumulated work, with the first component functioning
autonomously, and the dynamics of the second component depends on the
first and third components.

1Baccelli, F., Carofiglio, G., Foss, S.: Proxy caching in split TCP: dynamics, stability
and tail asymptotics. From Semantics to Computer Science: Essays in Honour of Gilles
Kahn. Cambridge University Press, pp. 437-464 (2009).
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Introduction

This Markov process describes the operation of an open queuing system
(data transmission), in which the intensity of arrival of customers X (t) is
given by a left-continuous Markov process that satisfies the equation

dX (t) = adt − kX (t)M(dt), (1)

where a > 0, k ∈ (0, 1) and M(t) is a Poisson process with intensity λ1 > 0.
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The rate of transmission (leaving) of messages Y (t) depends on the value
of work in progress accumulated in the system by the time t

Q(t) = max

(
sup

0≤u≤t

∫ t

u
(X (v)− Y (v))dv ,

Q(0) +

∫ t

0
(X (u)− Y (u))du

)
.

(2)

Namely, if Q(t) > 0, then the intensity increment Y (t) satisfies the equation

dY (t) = bdt − lY (t)N(dt), (3)

and if Q(t) = 0, then the equation

dY (t) = b
X (t)

Y (t)
dt − lY (t)N(dt). (4)

Here b > 0, l ∈ (0, 1) and N(t) are another Poisson process with parameter
λ2 > 0, independent of the first one.
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Main result

Theorem 1

If

alλ2 < bkλ1, (5)

then there exists a distribution π in the three-dimensional positive orthant
to which the distribution of the process (X (t),Y (t),Q(t)) converges in the
total variation metric, i.e.

sup
A

|P((X (t),Y (t),Q(t)) ∈ A)− π(A)| → 0 as t → ∞

for any finite initial values (X (0),Y (0),Q(0)). Here the supremum is taken
over all Lebesgue measurable sets A in three-dimensional Euclidean space.
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Notations

The main step in proving the main theorem is obtaining a similar statement
for an embedded Markov chain.

Let W (t) be a superposition of the processes M(t) and N(t), i.e., a
Poisson process, each point of which, independently of the others,
belongs either to the process M(t) (with probability λ1

λ1+λ2
) or process

N(t) (with probability λ2
λ1+λ2

).

Let 0 < T1 < T2 < . . . – consecutive points of the W (t) process.
Denote by (Xn,Yn,Qn) = (X (Tn + 0),Y (Tn + 0),Q(Tn + 0)), n ≥ 1
the values of the process (X (t),Y (t),Q(t)) at the corresponding
embedded times.
Let (X0,Y0,Q0) = (X (0),Y (0),Q(0)).
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Embedded Markov chain

Theorem 2

Under the condition (5), the Markov chain (Xn,Yn,Qn) is Harris ergodic
and, in particular, there exists a probability measure π∗ such that

sup
A

|P((Xn,Yn,Qn) ∈ A)− π∗(A)| → 0 as t → ∞ (6)

for any initial value (X0,Y0,Q0).
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On the necessity of the condition (5) in Theorem 1

Let Ŷ (t) be a process that independently satisfies the equation (3) for all
values of Q(t) for t ≥ 0, and

QX (t) =

∫ t

0
X (u)du, QŶ (t) =

∫ t

0
Ŷ (u)du.

Let (X 0, Ŷ 0) be a two-dimensional limit distribution to which the distributions
(Xn, Ŷn) converge in the total variation metric as n → ∞. Then for t → ∞

QX (t)

t
∼
∑∫ Ti

Ti−1
(Xi + au)du

n

n

t
→

E
∫ T1

0 (X 0 + au)du

ET1

= EX 0 + a
ET 2

1

2ET1
= EX 0 +

a

(λ1 + λ2)
.

M. Chebunin (Inst. of Stochastics, KIT) Harris Ergodicity of a Split TCP 26.08.2022 8 / 19



On the necessity of the condition (5) in Theorem 1
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(Xn, Ŷn) converge in the total variation metric as n → ∞. Then for t → ∞

QX (t)

t
∼
∑∫ Ti

Ti−1
(Xi + au)du

n

n

t
→

E
∫ T1

0 (X 0 + au)du

ET1

= EX 0 + a
ET 2

1

2ET1
= EX 0 +

a

(λ1 + λ2)
.

M. Chebunin (Inst. of Stochastics, KIT) Harris Ergodicity of a Split TCP 26.08.2022 8 / 19



For stability of the system, it is necessary that the limit of QX (t)/t at t → ∞
be no greater than the limit of QŶ (t)/t.

Therefore, we necessarily obtain that the following inequality must hold:

(λ1 + λ2)EX 0 + a < (λ1 + λ2)EŶ 0 + b.

Since X 0, Ŷ 0 are stationary distributions, then

EX 0 =
(1− k)λ1 + λ2

λ1 + λ2

(
EX 0+

a

λ1 + λ2

)
⇒ (λ1+λ2)EX 0+a = a

λ1 + λ2

kλ1

and inequality holds if and only if the condition (5) holds.
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Harris chain

Let {Xn} be a time-homogeneous Markov chain taking values in the Polish
space X . For some fixed set V ∈ BX , we define a random variable

τV (x) = min{k ≥ 1 : Xk(x) ∈ V },

which is the time of the first hit from the state x to the set V
(here τV (x) = ∞ if Xk(x) /∈ V for all k ≥ 1).

Definition 1
The set V is called recurrent if Px (τV < ∞) = 1 for all x ∈ V .
It is called positive recurrent if supx∈V ExτV < ∞.
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Harris chain

Definition 2
A Markov chain {Xn} in (X ,BX ) is said to be a Harris chain (or Harris
irreducible) if there exists a set V ∈ BX , a probability measure µ on
(X ,BX ) and numbers m ≥ 1, p ∈ (0, 1) such that

(I) P(τV (x) < ∞) = 1 ∀x ∈ X ; sup
x∈V

EτV (x) < ∞;

(II) inf
x∈V

P(Xm ∈ B|X0 = x) ≥ pµ(B) ∀B ∈ BX .
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Harris ergodicity

Let τV (µ) = {k ≥ 1 : Xk(µ) ∈ V }. Obviously, due to (I) τV (µ) is proper
random variable. Denote by K the set of possible values of τV (µ), i.e.,
ki values such that P(τV (µ) = ki ) > 0. Let’s introduce additionally non-
periodicity condition for this Markov chain:
there exist i ≥ 1 and k1, k2, . . . , ki ∈ K such that

(III) g.c.d.{m + k1,m + k2, . . . ,m + ki} = 1,

Definition 3
Let conditions (I), (II), (III) be satisfied. Then the Markov chain {Xn} is
called Harris ergodic.
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Sufficient Conditions for Positive Recurrence

Let {Xn} ⊇ X .

Let L : X → R+ be a measurable test function.
g : X → N is another measurable function that is to be interpreted as
a state-dependent time.
h : X → R is a third measurable function such that −h will provide an
estimate on the size of the drift, in g(x) steps.
We assume that supx L(x) = ∞, and
(L1) h is bounded below: infx∈X h(x) > −∞.
(L2) h is eventually positive: limL(x)→∞ h(x) > 0.
(L3) g is locally bounded above: supL(x)≤N g(x) < ∞ for all N > 0.

(L4) g is eventually bounded by h: limL(x)→∞ g(x)/h(x) < ∞.
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Theorem 1 2

Theorem
Suppose that the drift of L in g(x) steps satisfies the "drift condition"

Ex

[
L
(
Xg(x)

)
− L (X0)

]
≤ −h(x),

where L, g , h satisfy (L1)− (L4). Let

τ ≡ τ (N) = inf {n > 0 : L (Xn) ≤ N}

Then there exists N0 > 0, such that for all N > N0 and any x ∈ X , we
have Exτ < ∞. Also, supL(x)≤N Exτ < ∞.

2Foss, S., Konstantopoulos, T.: An overview of some stochastic stability methods.
Journal of Operations Research, Society of Japan. vol. 47, No. 4, pp. 275-303 (2004).
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Theorem 29 3

Theorem
Let {Xn} be a time-homogeneous Markov chain with values in the
measurable space X . Let B ⊆ X be a subset, which is positively recurrent
for this chain. Let D be another non-empty set in the space X and
τD = min{n : Xn ∈ D}. Let’s pretend that supx∈D ExτB < ∞ and that
there is a positive integer N such that infx∈B Px(τD ≤ N) > 0. Then the
set D is also positively recurrent.

3Foss, S., Chernova N.: Stability of random processes. Novosibirsk State University
(2020).
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Ergodicity conditions for random process

Let X = {X (t) = X (t, x), t ∈ [0,∞)}, X (x , 0) = x be an arbitrary
random process with values in X .

One of the natural approaches to the study of ergodicity conditions for
the process X is connected with the construction of the so-called
«embedded» sequences, for which ergodicity can be established.
One usually calls a sequence embedded if it is constituted by the
values of the process at some «embedded» (usually, Markov) times.
Let for n → ∞

0 = T0 < T1 < T2 < · · · < Tn < . . . , Tn → ∞ a.s.

— be some random sequence.
It is natural to expect the ergodicity of the process X to follow from
the ergodicity of the sequence Xn = X (Tn) under fairly general
assumptions.
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It is natural to expect the ergodicity of the process X to follow from
the ergodicity of the sequence Xn = X (Tn) under fairly general
assumptions.
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Theorem 3, chapter 7 4

Theorem
Assume that the process X admits an embedded Markov chain Xn and the
conditions below are fulfilled:
1) Xn satisfies Conditions (I)–(III);
2) supx∈X E(T1|X (0) = x) < ∞;
3) the distribution of random variable τ̂ has an absolutely continuous
component, where

P(τ̂ > t) =

∫
µ(dy)P(TτV (y) > t|X (0) ∈ dy).

Then the distribution of the process X converges to the limit distribution in
the total variation metric.

4Borovkov, A., Foss, S.: Stochastically recursive sequences and their generalizations.
Siberian Advances in Mathematics, vol. 2, pp. 16-81 (1992).
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Main remark

Remark 1
Instead of the Poisson process W (t), we can consider a renewal process in
which the distribution of the lengths of time intervals between the
moments of jumps has a finite second moment and a continuous
component, the distribution density of which is uniformly separated from
zero in the neighborhood of the origin, and (regardless of everything else)
each moment of the jump belongs either to the process M(t) with
probability p ∈ (0, 1), or to the process N(t) with probability 1− p. The
(5) condition then takes the following form:

a

(
1− pk

pk
+

ET 2
1

2(ET1)2

)
< b

(
1− (1− p)l

(1− p)l
+

ET 2
1

2(ET1)2

)
.
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