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1. Hellinger Information 
A family of probability measures{ },Pθ θ ∈Θ ⊂ R is defined on a measurable space ( )X, B so that 

all the measures from the family are absolutely continuous with respect to some σ -finite 

measure λ on B . The square of Hellinger distance between any two parameter values can be 

defined in terms of densities ( , ) i
i

dP
p x

d
θθ
λ

= can be defined as 

( ) ( )
1/2

2

1 2 1 2, ( ; ) ( ; ) ( )h p x p x dxθ θ θ θ λ
 

= − 
 
∫
X

 

The following expression for the case of i.i.d. finite samples ( )1,..., nx x x= and ( )
( )

( ) ;
n

n
n

dPp x
d
θθ
λ

= : 

 ( ) ( )( )2 ( ) ( ) 21
1 2 1 22( ; ), ( ; ) 2 1 1 ( ; ), ( ; )

nn nh p x p x h p x p xθ θ θ θ = − −    
 
helps to reduce the analysis of finite samples to the case of sample size 1. 
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If for almost all θ  from Θ  (w.r.t. measure λ ) there exists ( ]0,2α ∈ (index of regularity) such 

that 

 ( ) ( )
0

lim , ,h jα

ε
θ θ ε ε θ−

→
+ ⋅ =

 
we will define Hellinger information at a point  θ  as  
 
 
 ( ) ( )2/J j αθ θ= . 

 
Alternatively, the definition can be reformulated as 

 

( ) ( )22/

0
lim , .h Jα

ε
θ θ ε ε θ−

→
+ ⋅ =  
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Notice that in regular situations (Ibragimov and Has’minskii (1976): ( ; )p x θ  is twice 

continuously differentiable w.r.t. θ  for almost all ∈x X  w.r.t. λ , ( )( )2

2

2
;E p x

θ
θ∂

∂
< ∞ ,  

Fisher information ( ) ( )( )2
log ;I E p xθθ θ∂

∂=  is continuous, strictly positive and finite for 

almost all θ  from Θ   ) it is true that ( ) ( )12, .
4

J Iα θ θ= =   

 

We will be interested in nonregular situations (including uniform densities ( ; )p x θ  with 

support depending on parameter), for which Fisher information is not defined, and Hellinger 

information may function as a substitute.  

 

Using classification of Ibragimov and Has’minskii (1976), 1 2α< < corresponds to 

singularities of the first and the second type, 1α =  to densities with jumps, and 0 1α< <  to 

singularities of the third type. 
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2. Information Inequalities 
 

We will define quadratic Bayes risk for an independent identically distributed sample 
( )( )

1,...
n

nX X X= of size n  from the model considered above with a prior ( )π θ as 

 ( )( ) ( )( ) ( ) ( )
2

( )

( ) ( ) ( ) ( ); .n

n

n n n dxR X x p x dλθ θ θ θ π θ θ∗ ∗

×Θ

= −∫
X

 

Let us consider an integral version of the classical Cramér-Frechet-Rao inequality, which under 

certain regularity conditions leads to the following asymptotic lower bound for the Bayes risk in 

terms of Fisher information ( ) ( )( )2
log ;I E p xθθ θ∂

∂=  

( ) ( ) ( ) ( )( ) 1 1 2nR X n I d O nθ θ π θ θ∗ − − −

Θ

 
 
 

≥ +∫
 

 
This lower bound, which can be proven to be tight, was obtained by Borovkov and Sakhanenko 

(1980), see also Bobrovsky et al. (1987), Brown and Gajek (1990). 
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This bound can be extended to the nonregular case, when Fisher information may not exist. One 

of such extensions is Hellinger information inequality providing an asymptotic lower bound 

( )
( )( ) ( ) ( ) ( ) ( )

( )

2/( ) 2/1inf ,
n

nR X C n J d o n
X

α αθ α θ π θ θ
θ

− −∗ −≥ +∫
∗ Θ

 
 
obtained in Shemyakin (1992) under the assumptions of Hellinger information ( )J θ being strictly 
positive, almost surely continuous and bounded on any compact subset of Θ , and 
 

( ) ( )1J dθ π θ θ−

Θ

< ∞∫  ,   

where Θ  is an open subset of real numbers and the constant   ( )C α  is related to technical details 

of the proof and is not necessarily tight.  

 

Why was nobody in the Bayesian world interested? One possible reason: double 

integration in the definition of Bayes’ risk is not a popular approach. Classical statistics does not 

integrate over parameter, Bayesian statistics does not integrate over data. 
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3. Objective Priors 
 

Bayesian statistical analysis (both estimation and hypothesis testing) is based on the use of 

continuous version of the Bayes formula 

 

 ( ) ( ) ( )
( ) ( )

( ) ( );
;

;
p x

x p x
p x t t dt

θ π θ
π θ θ π θ

π
= ∝
∫

, 

where  

 ( )
( )
( )

          data (fixed)
          parameter (random)
;  likelihood

    

  posterior

 prior

x

p x

x

θ
θ

π θ

π θ

−
−

−

−

−
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How to choose priors? 

 

A. Subjective Bayes (elicitation of priors using background information) 

 

B. Empirical Bayes (double-dipping: using data to obtain priors) 

 

C. Objective Bayes (in absence of definitive information, determining priors based on 

certain mathematical criteria: opting for universal, non-intrusive, non-informative options) 

 

Motivation for objective Bayes: multiparameter problems with sparse prior information on 

some parameters (components of the vector parameter). Objective priors are not always 

evident: say, for ( ) ( ) ( )
( )
1, , 1/ 2,1/ 2
1

X Bin n Betaθ π θ
θ θ

= ∝
−

  - horseshoe (bathtub) shape, 

not uniform (as could be expected). 
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Figure 1. Beta density: uniform  (1,1)Beta and horseshoe (bathtub) (1/ 2,1/ 2)Beta . 
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Further: let us suggest some information criteria which can help to determine such non-

informative “objective” priors. 

Three most popular approaches: 

 

A. The Jeffreys Rule: Jeffreys (1946). 

 

B. Probability Matching Priors: Ghosal, Ghosh and Samanta (1995), Ghosal (1999). 

 
 

C. Reference Priors: Berger, Bernardo (1992), Ghosal and Samanta (1997). 
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A. The Jeffreys Rule: ( ) ( )Iπ θ θ∝  
B. Probability Matching Priors (PMP) 

Posterior probabilities of certain regions (credible sets) coincide (exactly or approximately) with 

their coverage probabilities by confidence sets: 

( ) ( )( ) ( )P A X P A x xα αθ θ α θ∈ = = ∈ . 

C. Reference Priors  
Reference prior is both  

- permissible (does not lead to an improper posterior); 

- maximizes global Kullback-Leibler divergence between the prior and the posterior. 

For many regular parameter families, probability matching and reference priors both satisfy the 

Jeffreys rule. However, it is not necessary in case of multi-parametric families and the loss of 

regularity. Let us focus on the nonregular case, when Fisher information may not be defined. 

Main progress in this direction was achieved in Berger, Bernardo and Sun (2009). 
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4. Hellinger Priors: One Parameter 
 

Define Hellinger prior for the parametric set Θ as (Shemyakin, 2011, 2012, 2014) 
 

 ( ) ( ) ( )1/
H J j απ θ θ θ∝ = . 

Hellinger priors will often coincide with well-known priors obtained by different approaches. 

However, there are some distinctions. A special role might be played by Hellinger priors in case 

when Fisher information is not defined. 

 

Example 1: Uniform ( ) ( )1, , 1,X Unif θ θ θ− ∈ ∞ . 

( ) ( ) ( )
2

2

11,
1H j θα π θ θ

θ θ
+

= ∝ =
−

 

The same prior can be constructed as the probability matching prior (Ghosal, 1999) or the 

reference prior (Berger, Bernardo, and Sun, 2009). 
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Example 2: Uniform ( ) ( )2, , 1,X Unif θ θ θ ∈ ∞

 

( ) ( ) ( )
1
1

1, 2
H jα θ θ

θ
π θ

θ
+

= =
−

∝ . 

This prior is different from the reference prior obtained by Berger et al. (2009): 

 ( ) ( )1 e ,2 1 2xp
1 2 1R

θ θπ ψ
θ θ θ

θ −   
  − 

∝
− 

 

where ( )zψ is the digamma function defined as ( )( ) log , 0dz z z
dz

ψ = Γ > . It is also different 

from the prior obtained by Tri Minh Le (2013) by a similar approach, maximizing Hellinger 

distance between prior and posterior:  

( ) ( ) ( )
( ) ( ) ( )

2

32

5

2 2

2 1 2 1

1 20 2 1 2 2 1
Rπ

θ θ

θ θ π θ
θ

θ

+ −
 −

∝
− − + 

. 

However, all three priors exhibit a very similar behavior (to within a multiplicative constant): 
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Figure 2. Hellinger prior (blue), reference priors (green and yellow). 
 

Problem: Hellinger prior is not obtained as the solution of some optimization problem (like 
reference priors). Also, how does it work in case of vector parameter? 
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5. Optimal Experimental Design 
 
Polynomial model of experimental design (Smith, 1994) may be presented as 
 

 
0

, 1,..., ,
q

k
i k i i

k
y x i nθ ε

=

= + =∑  

where ix are scalars, 1qθ +∈R is the unknown parameter of interest and errors  iε are non-
negative i.i.d variables with density ( ) 1

0 ( ; ) , 0, 1p y c y yαα α α α− → ≥  (e.g., Weibull or Gamma). 
The space of balanced designs is defined as 
 

 ( ) [ ]
1

, : 0, ,
n

i i i i i
i

w x w x x A Aξ
=

 Ξ = = = ∈ − 
 

∑ , 

and there exist several definitions of optimal design. Lin, Martin and Yang (2018, 2019) 
suggest using criterion  
 
 ( ) ( ) ( )arg max , inf ;opt u

J J J uξ ξ ξξ
ξ θ θ θ= = , 
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where ( );J uθ  is Hellinger information in the direction 1qu +∈R , defined as 

 
( ) ( )

0

,
lim ;

h u
J uαε

θ θ ε
θ

ε→

+
=  

(generalizing the definition on page 4). In case of nonregular polynomial design [1, 2)α ∈ , Lin 
et al. prove that if for some 0δ > it holds that 
 

 
2

0 0log ( ; ) ( ; ) ,d p y p y
dyδ

α α
∞  

< ∞ 
 
∫  

 
Hellinger information for design ξ can be represented as 

( ) ( ) ( ) 1
1 0

; 1 ,
qn

k
i i k

i k
J u c r w x u

α

ξ θ α α α +
= =

  = +    
  

∑ ∑  

where 

( ) ( )( ) ( )( )
2

1 /2 1 /2

0

1 .r w w dwα αα
∞

− − = + − ∫   
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6. Hellinger Information Matrix 
 

 
Extending definitions of section 1 to the multi-parameter case , 1,2,...m mΘ⊂ =R  we will 

introduce Hellinger distance matrix with elements 

 

( ) ( )( ), ( ; ) ( ; ( ; ) ( ;ij i j
X

H p x p x p x p x dθ θ θ θ θ λ= − + − +∫U u u  

where U  is an m m×  matrix with columns iu  . Define also vectors ( )1,...
T

mα α α=   

(index of regularity with components 0 2iα< < ) and ( )1,...
T

mδ δ δ= with components 2/ i
i

αδ ε=  , 

( )Diag δ=Δ  such that for all 1,...,i m=  there exist finite non-degenerate limits 

 ( )2 2/

0
0 lim , ,i

iiH α

ε
ε θ−

→
< < ∞Δ   
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Then Hellinger information matrix ( )J θ  will be defined by its components 

( ) ( ) ( )2 1/ 1/

0
lim , ,i j

ij ijJ H α α

ε
θ ε θ− +

→
= Δ  

If 0,J >  vector Hellinger prior can be defined as 

( ) ( )det .H Jπ θ θ∝  

In case of all components 2iα ≡  , Hellinger information reduces to Fisher information matrix 

and “vector Hellinger” approach leads to the Jeffreys prior (Shemyakin, 2014). 

Lin et al. notice that in their experimental design context index of regularity is the same 

for all components of vector parameter. For more complex nonregularities one should define 

Hellinger information matrix. It was done in 2014 paper without a rigorous study of its properties: 

is it true that ( )J θ is positive definite? 
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Theorem 1:  

Let ( )2,..., 2, , [1, 2)m mα α= ∈α , ( ) ( ) , , 1,..., 1; 0; 0.ij ij im mmJ I i j m J Jθ θ= = − = ≠    

( ) ( )

( )

0
...
0

0 ... 0 mm

I
J

J

θ
θ

θ

• • 
 
 =
 • •
 
 

 

 

Then, if ( ) ( )1 1, ,mmI Jθ θ− −< ∞ < ∞E E   

 
( )

( ) ( ) ( ) ( )2/ 1
1

(1) 0

(2) inf

J

R C Diag n J
θ

θ

θ θ
∗

∗ − −

>
αα E

 

 
where matrix ordering ( ) ( )A n B n is understood as “asymptotic nonnegative definite property” 

 ( ) 1

1 , 1
inf ( ) ( ) , lim ( ) ( ) 0, 0.

m

i j n n nijv ni j
A n B n v v A n B nδ δ δ−

= →∞=

− ≥ − − = >∑  
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Theorem 2:  

Let 1 ... 1mα α= = = , ( ) 0, ; 0.ij iiJ i j Jθ = ≠ ≠      

( )

( )
( )

( )

11

22

0 ... 0
0 0 ...
... 0 ... 0
0 ... 0 mm

J
J

J

J

θ
θ

θ

θ

 
 
 =
 
 
  

 

 

Then, if ( )1 ,iiJ θ− < ∞E  

 
( )

( ) ( )2 1
2

(1) 0

(2) inf

J

R C n J
θ

θ

θ θ
∗

∗ − −

>

E

 

In both theorem statements, the matrix of Bayes risk is defined as 

( ) ( )( ) ( )( ) ( ) ( )
( )

( ) ( ) ( ) ( ); .
T

n

n

n n n dxR x x p x dλθ θ θ θ θ θ π θ θ∗ ∗ ∗

×Θ

= − −∫
X
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7. Examples 
 
Example 4: Truncated Weibull distribution (see Theorem 1): 

( ) ( ){ }1; , , exp , [ , ), 2,p x x x xβ β β β ββ ϕ τ βϕ ϕ τ τ β−= − − ∈ ∞ >  

with two parameters of interest: threshold 0τ >  and pseudo-scale 0ϕ >  . 

A. Using notation ( ),θ ϕ τ=  , obtain 
2

1 2 1 22, 1, ,α α δ ε δ ε= = = =  , and 

 ( ) ( )
( )

2 2
1 1 2

1 2 2 2
1 2 2

0
, , ( )

0H

o
H I

o β β β β

δ ϕ δ δ ϕ
θ θ

δ δ δ ϕ τ ϕ τ

− −

− −

   
= =   

  
Δ   

 

Therefore, ( ) 1 1,H
β βπ τ ϕ τ ϕ− −∝  , which is also the reference prior for the vector parameter 

( ),θ τ ϕ= , see Ghosal (1997). 
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Figure 3. Graphs of ( ) ( ) ( );5,0.1,0 , ;5,0.1 ,0 , ;5, 50.10.01 ,0p x p x p x+ +  
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Example 5: Truncated Beta in polar coordinates on a disc (see Theorem 1): 

( )
1 21 1

1 2 2, ; , , 1 , 0 2 , ,
2 2

rp r r
β βϕ ϕϕ β β ρ ϕ π ρ

πρ π π

− −
   ∝ − ≤ ≤ ≤   
   

 

with three parameters of interest: Parameters of Beta 1 2, 1β β > and radius of the disc 0ρ >  . 

A. Using notation ( )1 2, ,θ β β ρ=  , obtain 
2

1 2 3 1 2 32, 1, ,α α α δ δ ε δ ε= = = = = =  , and 

 

( ) ( ) ( )
( ) ( ) ( )

1 1 2 1 2

1 2 2 1 2
2

0
( ) 0

0 0 4
HI

ψ β ψ β β ψ β β
θ ψ β β ψ β ψ β β

ρ−

− + − + 
 = − + − + 
  

  

 

Therefore, ( ) ( ) ( ) ( ) ( ) ( )1
1 2 1 2 1 2 1 2, ,Hπ β β ρ ρ ψ β ψ β ψ β ψ β ψ β β−∝ − + +    . 
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Figure 4. Plots of ( ) ( ), ;12,12,1 , , ;12,12, 11 0.p r p rϕ ϕ + . 
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Example 6: Rectangular uniform distribution (see Theorem 2) –  
 

( ) ( ) ( ) ( )1 2 1 20, 0, ; 0, , 0,Unif θ θ θ θ× ∈ ∞ ∈ ∞ . 

A. Using notation ( )1 2,θ θ θ=  , obtain 
2

1 2 1 21,α α δ δ ε= = = =  , and 

 
( ) 2

2

2
1 1 2 1

2
21 2 2

1 0
, , ( ) 0

10
H J

δ δ
θ θ θ θ

θ θ
δ δ

θθ θ θ

   
   
   = = >   
   

   

Δ
  

 

Therefore, ( )
1 2

1,Hπ µ τ
θ θ

∝  (also, the reference prior). 
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Example 7: Shifted uniform distribution - 
 

 ( ) ( ) ( )1 1 2 1 2, , , , 0,Unif θ θ θ θ θ+ ∈ −∞ ∞ ∈ ∞ . 

A. Using notation ( )1 2,θ θ θ=  , obtain 
2

1 2 1 21,α α δ δ δ ε= = = = =  , and 

 
( )

2 2
2 2 2 2

2 2
2 2 2 2

2 4 1

, , ( ) 0
1 1

H J

δ δ
θ θ θ θ

θ θ
δ δ
θ θ θ θ

   
   
   ∆ = = >
   
   
   

  

 

Therefore, ( ) 2
2

1,Hπ µ τ
θ

∝  (also, the reference prior). 
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