APPROXIMATION OF MULTICHANNEL QUEUEING SYSTEMS

S. G. Foss UDC 519,17

1. Introduction. We consider a queueing system with m = 1 service channels.

We define two sequences {Ti };ii and {si}{'il of nonnegative random variables, Service requests arrive
at the system one at a time; the first request arrives at time 71, and for i = 2 the i~th reguest arrives a time
interval 7y after arrival of the (i — 1)-th request. The service time for the i-th request in order (i=1,2,...)
is si.

We define a set { wy }Jriﬂ of nonnegative random variables as follows, For j=1,2,..., mwe take wg to
be the time when the j~thchannel can start to service requests. Let wy= (W, . « ., Wom).

By a service strategy R we mean an algorithm which assigns to each request arriving in the system the
number of the channel in which the request must queue up for servicing,

The system operates as follows. In each channel, requests are handled in the order in which they appear.
If a request has queued up in some channel which is free, servicing begins immediately. If servicing of a re~
quest has been completed in some channel and there are other requests waiting, servicing of the next request
starts immediately. After servicing is complete, the requests leave the system,

The "first in—first out” strategy is usually the one considered in queueing theory. We denote this strat-
egy by R°. The following technical approach is used by many workers fo prove various results (e.g., ergodic
theorems) for service systems with strategy R°: the strategy R° is approximated by a strategy R' which is
simpler in some sense, and the corresponding results are proved for R'. In particular, in [1, 2] R? is taken to
be the "cyclic® strategy: if the number of a request is equal to km + {, where 1 = [ < m, then the request ar-
rives at the I-th channel. In [3] R' is taken to be the following strategy: Each request arrives at any of the
channels with probability 1/ m independent of the prior history. Approximation is understood in the following
sense: If wp & (‘U;x,k) are the time intervals from the moment when the n~th request (n = 1) arrives for ser-
vicing until completion of servicing of the first n requests in the k-th channel (1 = k = m)} using strategy R° R},
then

,
mMax Opy < MAX Op,p. (1)
i<hp<m 1<hgm

It is asserted in [1, 2] that (1) holds with probability one. However, Stoyan [4] has shown that this is false.
In this paper we prove that under certain conditions, inequality (1) is valid "in distribution,” and also

a) the class of strategies {R} is described in which R° minimizes, for every n = 1, the distribution of

the random variable max o, g;
1<k<m

b) characteristics of the service system are chosen (such as the virtual waiting time, mean arithmetic
waiting time of the first n requests, etc.) whose distribution minimizes the strategy R° in the class
of strategies {R}

In [5] Gittens states analogous results when {7; }{-1 and {s; }jo4 are two independent sequences of inde-
pendent identically distributed random variables, However, the proof of these results seems to me to be in-
accurate and incomplete.

2, Definitions and Statement of the Main Result. We introduce the following definitions: E = &, + ),
E;=[0, =), EX=E_  XxE, x.., xE, (k-fold direct product), M={1,2,..., m}, N=11,2,...,n,...h
If X = &1, .. .,%Xm) then &= & ... ,x}}l), where xf = max (0, xj); if k=M, then ¢, =(0,...,0,4,0, ..

g (m+2)=1 &

0) = ET. Assume we are given Borel functions g : ~Mforn=1,2,....
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Definition 1, A strategy R is a collection of functions {gn} =1. The number Ry, of the channel responsible
for servicing the n-th request and the vector wn (Wn,is + + »» Wn,m) (Where wp k is the time from arrival for
servicing of the n-th request to completion of servicing of the first n requests in the k-th channel) are defined
inductively:

Rn=gn(mn—11 veey B0y Ty -0y T1, Snely oo o Sl) (2)

and

on = (@n_1— )" + SRy (3)
where 'Tn (Tns Tns » + =5 Tple

Remark 1. The assertions stated in this paper are clearly also true for strategies in which requests may
be serviced in an order which differs from the order of arrival,

Definition 2. Let R®W and R®) be two strategies. We define an order relation between them as follows:
let n= N; then

a) RW < nR(z) if for every 2z E,

P{ max m§}£< x} }P{ max (»53},< x} 4)

1<kh<m 1<kh<€m
b RW = R® ifRO = RO andR® = RO,
) RM <R® if for all neN RV < ,R?, (5)
@ RW =r® it RW <RO andR® =R,

Definition 3. We define a set of strategies { K} as follows. For any number rne N, strategy K = {K}, and
vector (1, .., Ynimin—)=E3 TP, the value of the function gn(yi, « « - » Yn(m+2)~) I8 equalto the index of some
minimal coordinate of the vector y= (yy, ..., ym) = ET.

Remark 2. The "first in—first out" principle is used for all the strategies in the set {K/.

The definition of { K} implies the following result. Let KV, K e {K} be two strategies and ne N, and
let w(” (m(z)) be the time from arrival of the n-th service request to completion of servicing of the first n re-
quests by the k-th channel for the strategies K& (K®)), Let uf{) @# €)) pe a permutatlon of the vector o3 (a%?)

so that the components are nondecreasing. Then u(i) u(Z) a.s. and hence KW = K% in the sense of Definition2.

Definition 4. In what follows, R° denotes the following strategy in the class {K}:let neN and1l =k = m,
Let the time at which servicing of the first n— 1 requests in channel k is complete be tn_y k(to,k = @ok), th-1 =
mln{tn_1 15+ + o5 fn—q, m} r=min{lll=l=m, tn-1,0 = th~y }. Then gn(yl, cees¥Yms e - o5 Yn(me)-15 = L, Le,
we choose the channel having smallest index from among those channels which processed the previous requests
faster than the others,

Definition 5. Let R® and R® be two strategies. We say that R®) and R® coincide at step ke N (R® —
R®) if for every vector y < EX™™ we have the equality g(i)(y) g(2 §). We say that R®) and R® coincide
4 (2)

from step k to step [ (k, I N, k<D and write R h= R(k p if for every ieN, k=i = ! we have R
Asgsume we are given three strategies R( ), RC ) R(s) If for some k<i<r (k, I, r= N) we have Rﬁ{) 1 )

Rg{) 1-1) and R?l) )= El) ) then we write

R(h r) = ng?z—n U B%?,’T). (6)
Remark 3. Equality (6) is defined for k < I = r. We will also use Eq. (6) formally when I=korl=r+1,
in the first case assuming that R(k -1y U R(h = R, and in the second taking RZ,U Bégzl-l,r) — Rﬁ?ﬁn-

Remark 4. Let R, R®, R®), R® be arbitrary strategies and k, n= N, 1 <k <n, If the relations R{tn) =
R®, , URD, and R = R(4) hold, then we will write: R, > R®, U R and H(M)/WRU - If the rela-
tions R = RY®, R,y = R(l 1y Bam = R4, hold, then we will use the notation R{}) = Ry U R® |

R(h—l—l 7).
THEOREM 1. Assume the sets of random variables {S,)m=y, {Tn}n=1, {®0;}j=1 satisfy the following condi-
tion, For every n<=N, and any Borel sets B,, B, ..., B.=E,, we have

P{s,=B, ..., se = Bulwg, 71, ..., ) =Plsi€Cy, ..., SuE C.loo, T1, -0 Ta} as., (8]
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where (Cy, ..., Cp) is an arbitrary permutation of (By, . . ., By). Then the strategy R° (¢f. Definition 4) is
minimal among strategies of the form (2) with respect to the order {5).

3. Proof of Theorem 1, Fix n<N.

Remark 4, Let § = (Wggs « » + 5 Wy Tis « « » 5 Tp) be @ random vector with values in E}™, y = (yy,- . .,
Ynim) € EYt™ . Then itfollows from
P{ max On < 7} = f P max o, <z|b=y}dP [p <y
1<k<m g
+
that if Theorem 1 is valid when wy, ..., Wym, Ty ..., 7Tn are arbitrary fixed numbers, then Theorem 1 is
true in the general case,

Remark 5. Let @ =(ay,..., a;) = E% be an arbitrary vector and 11 = {7} the set of permutations 7(a) =
(@r, . o « 5 any) of the set (a1, . . ., ay). Let the random variable s; be such that P {s; & {as}i=1}=1. Then con-
dition (7) implies that
Pl(sy,.... 5 . =1
(o092 o 02 o
P {(317' ey S) = (a’:'[lv' (R3] aﬂn)} = P{(‘glv' fs S”) = (a'h“ ) an)}
for every permutation n=1I.

Remark 6, Let ﬁn = {Mn,1s + » +» Mn,n) be a random vector with values in Erj which is a nondecreasing per-
mutation of the vector (sy, ..., Spy) (the inequalities Mn,t =Tng =...=Mpqare satisfied with probability one).
Let Dn={2=(z,,..., 2,) & EY, 2,<<2,<{. . .<{2,}. Then we have the equality

p{max mn,k<x}= Y S‘P{max mn,k<x]§p:j,,ﬁn:—z}dp{ﬁ”<iwz@}dP{E<Z/}.

1Shsm ntm D 1<k<sm
B n

Consequently, if Theorem 1 isvalid under the conditions: 1) wWggy o o oy @omy Tis e o v s Tp are arbitrarily fixed
numbers and 2) we are given an arbitrary vector a= (a,,..., a,) = E; and random variables 815 » » 5 Sp Such
that Eq. (8) holds, then Theorem 1 is true in general.

We will prove Theorem 1 in this special case, assuming condition {8) to be satisfied. The proof of (8)
follows from Lemma 2 with k = 0.

LEMMA 1, Consider an arbitrary strategy R @ and numbers k,n=N, 1 <k<n. There exists a strategy
R® such that for all strategies R®) and R®) which satisty

Rty = By U Rlugany and RPny = R(Pueyy U BY U RE,amy, 9)

we have the relation
R® < R, {10)

Proof of Lemma 1. Assume thats; = ¢y, sy =¢y, ..., Sg—y = Ck-1, Where (ci, . .., cp) iS some permuta-
tion of the set (ay, . . ., ap); we prove the lemma for fixed values of ¢y, . . ., ck_;. We denote by o}, 0!’} the
waliting times under the strategies R(i), R(3), respectively.

W We construct R®, Let RP =RP =re M and g} (0421, -+ 07, Taye e vy Ty Shetre- s 1) = L= M, We set
Ry = land remark that if v = / then the statement in Lemma 1 is obvious, Letr = I By (9)

(1) 0 1 (1 g, ) =
Bh+1 = gh+1 ((Dk ),. .y (ﬂo )1 Th_’f'l" oy Tl, Spye oy 31) = [.

We consider the two cases

@) 0 — Ty + Tpy1 =20
B) 0y — Th + Tays <O.
We putRl({‘*l1 =randincase @) fori=k+2, k+3,...,nwe put
R = RY = g2 (0l gy o0, @, Tsyn oy Tuy Sictse e ny S1), (11)

while in case §8) we set:
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r, f RP =1,
RP=il, 1 RP=r, 12)
Rs'.l) otherwise ,

We define R® arbitrarily from step 1 to step (k— 1) and from step (0 + 1} on in accordance with @}, It is clear
that R® has the form ().

We verify that (10) holds for R®). m accordance with Remark 5, for any two permutations (cf{, 01'<+1» ceey
t [ i 4 t 1 ) 1
¢pn) and (ck, Cleyqs = = = cp) of the set (ck, Ck+is - - +» Cn), the events {sk = Ckyes sy 8p = cn} and {sk = Clye s oy
Sp = cﬁ} have the same probability. It therefore suffices to prove relation (10) by checking the following asser-
tion,

Let 7w = {(ci{, e c;l)} be the set of permutations of the set (ck, . . ., cp). In both cases a) and f) there

exists a one-to-one correspondence ¢:m—a (@ (ch,. .., cn) = (94 (chy---, )+ -, @n (Chs- - -, €n)) such that the value
max of) for R®) on the set {s = ck, . . ., 8p = ch} is not less than the value of max «f} for R®) on the set
i<i<m 1<jém

{8 = 0n (Chye v vy Cn)yee vy S0 = On (Chy- - -, )} fOr every set (cj,...,cn) &

Case a), We take ¢ to be the map

PulChy Crrly + vy €a) = Chyty Qus1{Chy Canlyy + v Cnd = Chy

and for i N, k+2<i<n, gdey, Cryty -0y L) =6

We prove that for every i, k+1<i=n

1 _ (D ~(3) (3) .
a) @i = 05,2 (Ciser vy Chmly Chy Chilye v v C) ZZ Wiy = 057 (C1yv oy Chmdy Chily Chy Ch2y »+ =5 Ci)s

b off =oil:

¢) for all j=M suchthatj = r, j = , we have the equality 01(111) = 6‘3;

Assertion ¢) is obvious since the values of Ri(i) on the set{s; =¢q, ..., Skt = Cke1s Sk = Cky s » v» S =
cn} and Ri(3) on{s; =Cise..s Ske1 = Ck-1s Sk = Ck+is Sk+1 =Cks ¢ » »s8n = cpt coincide if they are not equal to r
or I, We prove 2a) and b),

: P ~(3)
First of all, oy, =0, and o, = 0f ;.

Further,

1 1 . 1 (1 .
0)%,2 = 0);{—)13 - Ty + g} 03;(;-21,7» = mk—)l.r — Tp — Tp1 -+ €3

~ ~ ~(8 ~(3) dopoe
(05:?; = 0351321; — T3 0)};421', = Opw1,r — T — Tpp1 F Cai

0)(&11% = (mi‘_’l,, - Tk)+? 03%1421,1 = ((‘Dg—)l,z - Tk)+— "7k+1)+ + Crir;

5(;;3; = (6%321,1 — )t b epg 0k = (024 — )T+ Cpr — Th+1)+-
Thus, inequalities a) and b) are satisfied for i =k + 1, By (11), these inequalities remain valid for i >k + 1,
since the values of Ri(i) on the set {S; = Cqy+ + o5 Skt = Cgats Sk = Cks » » +» Sp = on} and R® on the set {8y =
Cls s s o9 Bkt = Ckts Sk = Cktls Ski1 =Cks + » «s 5n = cn} coineide for i = k + 2. In particular, a), b), and c)
(1 (3}

imply that max o))} >> max ol
1<j<m 1<j<m

Case B). We take ¢ to be the identity map: ¢(Ck, . . . s €n) = (Cks « » + » Cp) and prove that for every i, k +
1<i<n, the following inequalities hold: off) = o{}(cy,.. ., )= 0] = of?) (¢,..., ¢, ol >0, and for all je ¥
such that j = r, j # I we have ofY = of}). Using arguments similar to the ones in case @), we get that it suf-
fices to show the following:

a) mgglﬂ‘} (0531,1, b) (9%1-;21,120)&1,%

In addition, oY, = o}_1, and of;; = o{>;,. Moreover,

‘Dgl = (ﬁ)}tl-)l,r - Tk)+ + €3 wgm = (((Dgcl—)l,r - Th)+ + e — Th+1)+;
(05433 = ((02?21# — Tk)+§ m;«ﬁi}l,r = ((‘ﬂz(ea—)m — 'Uh)+ - Th+1)++ Cht1 == Cpyas
(0;1,; = (‘Dg—)l,z - Tk)+3 (ﬂgu = ((mgzl,l - Tk)+— Tk+1)+ “+ Cray = Cryas

‘Dﬂ = (“’@1,1 - Tk)+ + s (05521,1 = ((fﬂﬂm — Tn)+ T ey — Th+1)+-
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We obtain the required result using the inequality 0)%1_)1,T>(1)$21,l. In particular, the previous arguments imply
that

3)
max 4> max of).
1<i<m 1<j<m

Lemma 1 is proved.
LEMMA 2. Let n=N. Then for every strategy R® and integer k (0 = k = n) we have the relation
R0 >0 Ry U Rlusm

Proof of Lemma 2, For k=n and k=n— 1 the assertion is obvious., Assume Lemma 2 has been proved
for all k greater than or equal to k; (1 = k; = n—1), We prove it for k = k;~ 1,

By the induction assumption, R{im = nR{T) U Riss1n). We define a strategy R® so that the equality

Rl = R((i,)ko) U Rirgrrm) 13
holds. Consequently, R{®,, >, R, By Lemma 1 there exist strategies R® and R®) such that
Ry = Rihg-1y U B2, U R 11my {14)
and
Réi)"ﬂ) >n Hﬁ?n)- (15)

It follows from (14) that R%ifko) = Rgfko_l) U Bgo. By induction hypothesis, strategy R(?’) also satisfies the relation

R{Pny =, R((?,ko) U Ringr1,ny- (16)
By definition, we have R?ham): Ry, U R?ho—}-l,n)- Hence,

RE?,’%) U Blxgriny = R((Z1),k0—1) U Bz, U R(((I)t}0+i,n) = RE??ko—l) U Riugmy- 17

It follows from (16) and (17) that

R =, R((?’xo«l) U Ripg.my- {18)
Using (13), (15), (18), and the transitivity of the relation (=), we obtain

Ry 2 Ry U Ry my-
Since neN is finite, the assertion in Lemma 2 is proved.

4. Generalizations of Theorem 1, Theorem 1 asserts that the strategy R° minimizes the distribution of

the random variable max ,;. We now describe fairly completely a set of characteristics of a service system
igj<m

whose distribution minimizes R°.

Let n=N. We define the following classes of functions: F{V= {f|f: E}— E; f Borel};F{"= {f|f: Ef— E; f

Borel, andfor any permutation (cy, . . ., cp) of (a;,..., ax) & E} we have flay, ..., a.) =flcy, ..., e)}; F§" = {f|f =
F(zn); if bféﬂﬁ by < @y;. . -3 bn<{ @y, then oy, oy b <jlay, ..., a,)}; F™ — {f’f 2E?i_n-—>E; there exist IR= F(lu), e
F§V, jye F” such that for every veetor (2y,..., Zn, Uu,- - -, Yu, %0+ - -, Z) & E¥* the equality IRy e e e s Zns Vi e oo

Yns Zis « v Zn) =f1(X1, e e .sXp) t fz(y1, PP ,Yn) + fg(Zi, N Zn)} holds.

Now assume that a set G of measurable functions is such that G = {g|g: Q< ET X EX X ES — E; there exists
a decomposition of the space of elementary outcomes Q into disjoint sets A, belonging fo the o-algebra gener-
ated by the random variables 7y, Ty, . . ., Tp, Tn+, and for all e N there exists an ™ = F* guch that for
almost all © <4, the equality g(w; X1y« o oy Xy v e o5 Fis oo esTrs e v o3 Zsv o esZpse o) =y, ...y Xn,
Fis oo vsYns Zis s o oo zn)} holds.
) @)

Let ji 4 j be the time intervals from time zero to completion of servicing the k~th request for strate-
gies RM, R®), respectively.

Definition 6. Assume weare given two strategies R® and R®, Then
R = R, (19)
if for every function g<= G and every number z<Z we have the equality
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P05 Tse e, Tarer 580y e s Smyee o3 J00 ey Tt} <l <P lg{os v, .

. . (2 :(2)
e Taye e 3 Spyeees Smyee s JO L 1R <)

THEOREM 2. Assume the hypotheses of Theorem 1 hold. Then the strategy R° is minimal among strate-
gies of the form (2) with respect to the order (19).

Remark 7. The proof of Theorem 2 is a repetition of the proof of Theorem 1. The only change is that
Eq. (7) is replaced by an equivalent equality P{s; =By, ..., s,€Buoe, 1, .0 T} =PlsisCi, ..., si=Ciloog, 11,000
Tk+1} 2. 8., which is obtained from (7) for k=n—1 and By = Cp = E,.

COROLLARY 1, Let éi{, 6& be the waiting times for the k-th request from the time of arrival to the
start of servicing for strategies R', R°, respectively, and let aii, oﬂ: be the waiting times for the k-th request
from the moment of arrival to completion of servicing., Let w'(t), w°(t) (¢t > 0) be the times from time t to com-
pletion of servicing of requests which arrived prior to time t for strategies R', R°, respectively. Then the
following three inequalities hold:

1) for every n=N and z<E
1N %
P{T}Z 5h<x]<P{%2 6}1<x};
=1 k=0

2) for every neN and ==&
e Fieferf gaed
= h=1

3) for every t >0 and z€E

Plw' () <z} < P{w (1) < x}.

n n n T
. . . 1 r 1 . 1 1 . . .
Proof, We prove the first assertion. Since TI;I s =;§ o=~ grk —— ;sk, it suffices to define
o = = =

n n n

. 1 1 =

the functions f; (z4,..., Tn) = — % E Ty Ty Wase o os Yo) = — 57 th; f3(215e 00y 20) = = Ezk, g=f=f +f +1.
h=} k=1 k==1

We prove 2), Since the equality

holds, it suffices to define the functions f;, f5, f35, g by

n n
1
f@ne o o) = — = Do falree 9 =0 falon, s 2) = o Do
B=j =1
g=fH+hh+/s
We prove 3). Let the event Ap consist in the truth of the inequalities
i1

n
S r<{tand X T >t
k=1 k=]

Then the equality W’(t}:( max }';-t)+ holds on the set A,, We take the function j*=F™ to be the sum £ -
1<jgn
£ + £, + £y, where fi&y, . . ., X0) =0, HF1, .. .5 ¥n) =0, HE1, .. .20 = (lrgjjcljcmzi—t)’f. We now define the
function g on Ap by g = £,
Corollary 1 is proved,
We state another generalization of Theorem 1,

THEOREM 3, Let the functions gj appearing in definition (2) be random. Then if for every n=N the sets
{81y ... gn} and {sp, Sn+ts - « .} of random variables are mutually independent, Theorems 1 and 2 are true
under the same assumptions.
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The proof of Theorem 3 reduces in a natural way to the proof of Theorem 1.

In conclusion the author thanks B. A. Rogozin for his great interest in this work,
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FINITE GROUPS WITH A NORMALIZER CONDITION

L., I. Shidov UDC 519.44

Let G be a finite group. A subgroup H of G will be called normally independent in G if for any nonunit
normal subgroup F of H we have the inclusion Ng(F) = Ng(H). If the validity of this inclusion does not require
the normality of F in H, the subgroup H is called simply independent in G. The structure of a finite group de-
pends essentially on the degree of its saturation with normally independent subgroups,

It can be required that normalizer conditions should be satisfied by one or another system of subgroups
with given properties.

If all the subgroups of the group G that have some property ¢ are normally independent in G, we shall
call G a o-normalizable group. A group which is normalizable by all its subgroups will be called a universally
normalizable group.

The aim of the present note is the study of the structure of finite s~normalizable groups. Here, by the
property o we shall understand, apart from universality, nilpotence and, in particular, the primary nature
of subgroups.

We shall state some properties which follow easily from the definitions.

Property 1. Any o-subgroup of a o-normalizable group G containing a nonunit subgroup that is normal in
G is itself normal in G.

Property 2. A finite universally normalizable group G is nilpotent if its Frattini group ¢(G) does not re-
duce to a unit group.

Property 3. Any o-subgroup of a o-normalizable group is itself o-normalizable.

Proof. Let G be a group satisfying this condition, and K a certain g-subgroup of G. Furthermore, let H
be a subgroup of K, and F a normal nonunit subgroup of H. According to our assumption, NG(F) = Ng(H). Since
NK(F) = Ng(F), we have N.(F) < K0 No(F) < K N No(H) =N (H), from which it follows that K is universally nor-
malizable.

It follows from Property 3 that in particular the intersection of two o-subgroups of a g-normalizable
group is itself a o-normalizable group.

Property 4. The factorgroup of auniversally normalizable group by any normal subgroup is universallynor-
malizable.

Proof. Let G be a universally normalizable group, and A a normal subgroup of G. Congider the factor
group G = G/A. Let H be a subgroup of G, and F a normal subgroup of H. If H and F are the complete inverse
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