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1. Introduction

The times of occurrence of earthquakes in a given area of seismic activity
form a simple point process N on the real line, where N((a, b]) is the number of
shocks in the time interval (a, b]. In the present model, the dynamics governing
the process will be expressed by the stochastic intensity λ(t). In intuitive terms
(to be precised in the next subsection)

λ(t) = lim
h↓0

1
h

P (N((t, t + h]) = 1 | Ft)

where Ft is the sigma-field summarizing the available information at time t
(increasing with t). In the stress release model, for t ≥ 0,

λ(t) = exp
{

X0 + ct−
N((0,t])∑

n=1

Zn

}
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where c > 0 and {Zn}n≥1 is an i.i.d. sequence of non-negative random variables
with finite expectation, whereas X0 is some real random variable. The process

X(t) = X0 + ct−
N((0,t])∑

n=1

Zn

is ergodic, and the reader is referred to [9] for a proof and the relevant results
concerning a generalization of this particular model.

Another model of interest in seismology is the Hawkes branching process,
where the stochastic intensity is

λ(t) = ν(t) +
∫

(0,t]

h(t− s)N(ds),

where h is a non-negative function, called the fertility rate and ν is a non-
negative integrable function. Such point process appears in the specialized lit-
erature under the name ETAS (Epidemic Type After-Shock; [12]) and is used
to model the aftershocks (see [7], p. 203). It is well known [6] that the corre-
sponding process “dies out” in finite time under the condition

∞∫

0

h(t) dt < 1.

A model mixing stress release and Hawkes aftershocks is [13]

λ(t) = exp
{

X0 + ct−
N((0,t])∑

n=1

Zn

}
+ Y0e

−αt + k

∫

(0,t]

e−α(t−s) N(ds),

where α > 0. The positive constant c is the rate at which the strain builds up.
If there is a shock at time t, then the strain is relieved by the quantity ZN(t).
Each shock (primary or secondary) at time t generates aftershocks according
to a Poisson process of intensity a(s) = k exp{−α(t − s)}. In this article,
we give necessary and sufficient conditions of ergodicity for this model. More
precisely, we find a necessary condition for the existence and uniqueness of the
corresponding stationary process and, for any initial distribution of X0 and Y0,
of the convergence to that distribution, and we prove formally that it is also
sufficient (under a further smoothness condition on the distribution of Zi).

We shall start with a detailed mathematical description of the model.

2. Description of the model

Let ϕ : (−∞,∞) → [0,∞) be a non-decreasing function such that

lim
x→−∞

ϕ(x) = 0
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and

lim
x→∞

ϕ(x) = ∞.

We operate under either one of the following assumptions: (a): the function ϕ
may be strictly positive everywhere or (b): it is equal to zero for all x below
some level and otherwise strictly increasing.

We are given

(1) a Poisson field Π of intensity 1 in the positive quadrant

(2) and an i.i.d. family of positive random variables {Zn}n≥1 with a finite
mean,

(3) and it is assumed that the Poisson field and the i.i.d. family are indepen-
dent.

The above Poisson field and i.i.d. family constitute the probabilistic basis of our
model.

We consider a simple point process N with the following stochastic intensity:

λ(t) = ϕ
(
X0 + ct−

N(t)∑
n=1

Zn

)
+ Y0e

−αt + k

∫

(0,t]

e−α(t−s) dN(s), (2.1)

where N(t) := N((0, t]), and where X0, Y0, c, k, and α are as in the introduction.
This means that the point process is constructed recursively as

N(t) =
∫

(0,t]

∫

R

I(z ≤ λ(t−))Π(dz × dz).

Defining
Ft := σ{X0;Y0; N(s), ZN(s), s ≤ t},

the process {λ(t)}t≥0 is then the Ft-stochastic intensity of N in the sense of [4]
(see also [7, 10]).

In the seismological interpretation,

λ1(t) = ϕ
(
X0 + ct−

N(t)∑
n=1

Zn

)
(2.2)

is the stochastic intensity of the primary shocks, whereas

λ2(t) = Y0e
−αt + k

∫

(0,t]

e−α(t−s) dN(s) (2.3)

is the stochastic intensity of the aftershocks.
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3. On the ergodicity condition

The existence of ergodicity will be proven in the case

k

α
< 1. (3.1)

This section shows that this is indeed a natural (intuitive) condition and more-
over that it is necessary if we seek only those solutions for which the steady-state
average intensity λ := E[λ(t)] satisfies 0 < λ < ∞.

We therefore henceforth assume ergodicity. From now on we use the notation

X(t) = X0 + ct−
N(t)∑
n=1

Zn

and
Y (t) = Y0e

−αt + k

∫

(0,t]

e−α(t−s) dN(s).

The process (X(t), Y (t)), t ≥ 0, is a time-homogeneous Markov process with
initial value (X0, Y0), and

λ(t) = ϕ(X(t)) + Y (t).

Further, ergodicity means, in particular, that there exists a stationary version
of the process (X(t), Y (t)). For such a stationary version, let λ1 = E[ϕ(X(t))]
and λ2 = EY (t). Then λ = λ1 + λ2, so the finiteness of λ implies that of λ1

and of λ2. Observe that

E[Y (t)] = E[Y (0)]e−αt + kE

[ ∫

(0,t]

e−α(t−s)N(ds)
]

= E[Y (0)]e−αt + k

t∫

0

e−α(t−s)λds

= E[Y (0)]e−αt + λ
k

α
(1− e−αt)

where we used Campbell’s formula. Therefore, from the stationarity,

E[Y (0)] = λ
k

α
= E[Y (t)].

Then
λ = λ1 + λ

k

α
≡ λ1 + λ2.
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The supercritical case. Suppose, in view of contradiction, that k/α > 1. The
last equality then implies that λ = ∞, which we excluded, or that λ = 0, and
then λ1 = E[ϕ(X(t))] = 0. Since ϕ(X(t)) ≥ 0, this implies P (ϕ(X(t)) = 0) = 1,
that is P (X(t) = −∞) = 1. Similarly P (Y (t) = 0) = 1.

The critical case. Suppose now, again in view of contradiction, that k/α = 1.
The last displayed equality implies then that λ = ∞ (excluded) or λ1 = 0 and
therefore P (ϕ(X(t)) = 0) = 1. Then

λ(t) = Y (0)e−αt + k

∫

(0,t]

e−α(t−s)N(ds).

We show that any point process N with this stochastic intensity and with finite
average intensity is necessarily null (with intensity equal to 0). Suppose that
λ > 0. Clearly,

P (N(R+) = 0) = E[P (N(R+) = 0 | Y (0))]

= E

[
exp

{
−

∞∫

0

Y (0)e−αtdt

}]

≥ exp
{
−E[Y (0)]

1
α

}
= exp

{
−λ

1
α

}
> 0

and therefore, since we assumed λ < ∞, we have that P (N(R+) = 0) > 0. Now,

{N(R+) = 0} ⊆ θt{N(R+) = 0} = {N([t,∞)) = 0}.
That is, {N(R+) = 0} is expanded by the (ergodic) shift, and therefore it has
probability 0 or 1. By the above, this probability must be 1. We conclude that
λ = 0, a contradiction.

Therefore in the critical case there is no solution except the trivial one (no
earthquakes).

4. Explicit expressions for the average rates

In this section, we exhibit an interesting feature of the model. We assume
here again ergodicity and the condition 0 < λ < ∞. We continue to consider
the model in the stationary regime. Writing

ϕ(X(t)) = ϕ
(
X(0) + t

(
c− N(t)

t

1
N(t)

N(t)∑
n=1

Zn

))

= ϕ(X(0) + t(c− λE[Z1] + ε(t))),
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where limt↑∞ ε(t) = 0 a.s. Let ∆ := c−λE[Z1]. Let τ be the (a.s. finite) random
time such that t ≥ τ implies |ε(t)| ≤ (1/2)|∆|.

Suppose that c− λE[Z1] > 0. We have

E[ϕ(X(t))] ≥ E[ϕ(X(t))1{t≥τ}] ≥ E
[
ϕ(X(0) + t

1
2
∆)1{t≥τ}

]

But
ϕ(X(0) + t

1
2
∆)1{t≥τ} ↑ ∞

as t →∞ and therefore
λ1 = E[ϕ(X(t))] →∞

implying that λ = ∞ which is excluded.
Suppose that c − λE[Z1] < 0. We show that this is impossible. Here

limt↑∞ ϕ(X(t)) = 0 by a similar argument. We prove that limt↑∞E[ϕ(X(t))] =
0, λ1 = 0 and therefore λ = 0 which is impossible.

For the proof that limt↑∞E[ϕ(X(t))] = 0 we can make use of the following
lemma (in fact taking care of both situations when c− λE[Z1] 6= 0).

Lemma 4.1. If the stationary stochastic process {Z(t)}t≥0 is such that it tends
almost surely to a deterministic constant c as t ↑ ∞, then it is almost surely
equal to this constant.

Proof. Fix ε > 0, and consider the set

C = {ω;Z(t, ω) ∈ [c− ε, c + ε] for all t ≥ 0}.

Then for all a > 0,

θaC = {ω; Z(t, ω) ∈ [c− ε, c + ε] for all t ≥ a}.

But θaC ↑ Ω, and therefore P (C) = P (θaC) ↑ 1. So that P (C) = 1. Since this
is true for all ε > 0,

P{Z(t) = c} = 1, for all t ≥ 0.

Therefore, necessarily
λ =

c

E[Z1]
.

2

Therefore, in this model, the rate of occurrences of earthquakes is given by
the physics of stress build up (the constant c) and stress release (E[Z1]), whereas
the global rate is shared among primary and secondary earthquakes according
to the physics of the aftershocks (α and k).
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5. Two embeddings

We now turn to the technical core of the paper, namely the proof of existence
of a unique ergodic solution of the model, under the condition k/α < 1 and a
further condition on the distribution of Zi (see Condition (CZ) in Section 7).
The technique used is that of Harris chains, and we start as usual by studying
a natural embedded process. More precisely, let {(tn)}n≥0, with t0 = 0, be
the sequence of time events of N , and let for each n ≥ 0, Tn+1 := tn+1 − tn,
Xn := X(tn), Yn := Y (tn). We then have the recurrence equations that exactly
reflect the dynamics described in the previous section:

Xn+1 = Xn + cTn+1 − Zn+1

and
Yn+1 = Yn exp{−αTn+1}+ k

where Sn+1 is a positive random variable whose hazard rate is, conditionally to
X0, . . . , Xn, Y0, . . . , Yn, T1, . . . , Tn and Z1, . . . , Zn

ϕ(Xn + cs) + Yne−αs.

It is clear that {(Xn, Yn)}n≥0 is a homogeneous Markov chain. Its transition
mechanism is fully described by the first transition, which can be implemented
as follows.

Let X0 = x and Y0 = y ≥ 0. On the positive half-plane with the time t
running on the horizontal coordinate axis, draw two curves:

(a) a curve with graph (t, ϕ(x + ct)) (that starts from (0, ϕ(x)));

(b) a curve with graph (t,−ye−αt) (that starts from (0,−y)).

Consider the projection on the time axis of the Poisson field between the above
two curves and let T1 be the point of this projection with the smallest t-
coordinate. It has, as the notation anticipated, the required hazard rate ϕ(x +
cs) + y exp{−αs}. In particular,

Px,y(T > t) ≡ P(T1 > t | X0 = x, Y0 = y)

= exp
{
− y

α

(
1− e−αt

)}
· exp

{
−

t∫

0

ϕ(x + cv)dv

}
.

and

X1 = x + cT1 − Z1,

Y1 = ye−αT1 + k.
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Two lemmas concerning this particular realization of the transition kernel
will be useful.

Let Tx,y be a “generic” random variable with distribution

P(Tx,y ∈ ·) = P(T1 ∈ · | X0 = x, Y0 = y).

Following the comments from above, one can represent Tx,y as

Tx,y = min
(
T (1,x), T (2,y)

)
(5.1)

where T (1,x) and T (2,y) are independent and

P(T (1,x) > t) = exp
{
−

t∫

0

ϕ(x + cv)dv

}
,

P(T (2,y) > t) = exp
{
− y

α

(
1− e−αt

)}
.

Clearly,
P(T (2,y)) = ∞) = e−y/α > 0,

for any y ≥ 0.

Lemma 5.1. (1) For any 0 ≤ y1 ≤ y2,

T (2,y1) ≥st T (2,y2). (5.2)

(2) For any x1 < x2,
T (1,x1) ≥st T (1,x2) (5.3)

while
x1 + cT (1,x1) ≤st x2 + cT (1,x2). (5.4)

Also, for any x, P(T (1,x) < ∞) = 1 and, moreover, for any a > 0,

P(T (1,x) > t)eat → 0, as t →∞.

Proof. Inequality (5.2) is straightforward. Inequality (5.3) follows from the
monotonicity of ϕ while inequality (5.4) follows from the following coupling
construction. Let t0 > 0 be such that x1 + ct0 = x2. If there is a point of the
Poisson field in {(t, u) : 0 ≤ t ≤ t0, 0 ≤ u ≤ ϕ(x1 + ct)}, then T (1,x1) < t0 and
x1 + cT (1,x1) ≤ x2. If however there is no such a point, then

x1 + cT (1,x1) = x2 + cT (1,x2) · θt1

where {θt}t≥0 is a family of measure-preserving shift transformations. So, with
probability 1

x1 + cT (1,x1) ≤ x2 + cT (1,x2) · θt =st x2 + cT (1,x2).

2
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The remaining results follow from inequality (5.4) and from the fact that
ϕ(x) →∞ as x →∞.

Corollary 5.1. For any x0,

sup
x≥x0

ETx,y → 0 as y →∞. (5.5)

Also
sup
y≥0

ETx,y → 0 as x →∞. (5.6)

Proof. By Lemma 5.1, 0 ≤ Tx,y ≤st Tx0,y for any x ≥ x0. Clearly, T (2,y) → 0 in
probability as y → ∞. Since ET (1,x0) is finite, the family of random variables
{Tx0,y}y≥0 is uniformly integrable, and therefore

sup
x≥x0

ETx,y = ETx0,y → 0 as y →∞.

Further, from inequality (5.1), Tx,y ≤st T (1,x) where T (1,x) → 0 in probabil-
ity. By (5.3) and since ET (1,0) is finite, the family {T (1,x)}x≥0 is uniformly
integrable, and therefore ET (1,x) → 0 as x →∞, and then (5.6) follows. 2

Lemma 5.2. As y →∞,

yE
(
exp{−αT (2,y)} − 1

) → −α.

Proof. Indeed,

yE
(
1− exp{−αT (2,y)}) = y

1∫

0

P
(
exp{−αT (2,y)} < v

)
dv

= y

1∫

0

P(T (2,y) > ln v/(−α))dv

= y

1∫

0

exp
{
− y

α
(1− v)

}
dv

(change of variables: u = 1− v)

= y

1∫

0

exp
{
−yu

α

}
du (change of variables: r = yu/α)

= α

y/α∫

0

e−rdr → α,

as y →∞. 2
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Remark 5.1. As follows from (5.1) and Lemma 5.1, if x ≥ 0, then

Tx,y ≤st T (1,0)

and, therefore,
sup

x>0,y≥0
ETx,y ≤ ET (1,0) < ∞. (5.7)

One may also deduce from Lemma 5.1 that if x ≤ 0, then

cTx,y ≤st |x|+ cT (1,0) + Z

where the random variables in the right-hand side are integrable. So one can
find a universal constant C > 0 such that

ETx,y ≤ C(|x|+ 1), for all x ≤ 0 and y ≥ 0. (5.8)

Then it follows from (5.7) and (5.8) that, for any negative x1,

sup
x>x1,y≥0

ETx,y < ∞. (5.9)

However the supremum in (5.9) becomes infinite if one replaces x1 by −∞.

To keep the supremum finite, we consider a slightly different embedding.
Again we describe the first transition only. We fix a sufficiently large positive
v0 and a sufficiently large negative x1 (to be chosen in the next section) and
define the new embedding {T̃x,y} as follows:

(a) if x ≤ x1, then T̃x,y = min(Tx,y, v0) while

(b) if x > x1, then T̃x,y = Tx,y.

Then clearly
sup

x∈(−∞,∞),y≥0

ET̃x,y < ∞. (5.10)

Denote by (X̃n, Ỹn) a new time-homogeneous Markov chain obtained by the
new embedding. It satisfies the relations: given X̃0 = x, Ỹ0 = y, if x > x1, then

X̃1 =st x + cTx,y − Z

where Tx,y and Z are mutually independent, and

Ỹ1 =st ye−αTx,y + k,

and if x ≤ x1, then

X̃1 =st x + cT̃x,y − Z I(Tx,y ≤ v0)

where T̃x,y and Z are mutually independent, and

Ỹ1 =st ye−α eTx,y + k I(Tx,y ≤ v0).
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6. Positive recurrence of the embedded process

In this section, we show positive recurrence of the Markov chain obtained by
the second embedding (X̃n, Ỹn), see the end of the previous section. We recall
some known facts.

Definition 6.1. Consider a discrete-time and time-homogeneous Markov chain
Wn, n ≥ 0, on a measurable state space (W,BW). A measurable set V ⊆ Z is
positive recurrent if the following two conditions hold:

(a) A random variable

τw(V ) := min{n ≥ 1 : Wn ∈ V | W0 = w}
is a.s. finite, for all w ∈ W;

(b) Moreover, supw∈V Eτw(V ) < ∞.

For a Markov chain Wn, the following result is known as Foster’s criterion:

Proposition 6.1. Let L : W → [0,∞) be a measurable function, and let L̂ be

a non-negative number. The set V = {w ∈ W : L(w) ≤ L̂} is positive recurrent
if

(i) supw∈V E(L(W1) | W0 = w) is finite;

(ii) there exists ε > 0 such that E(L(W1) | W0 = w) − L(w) ≤ −ε, for any
w ∈ W \ V .

Theorem 6.1. Let k < α. For suitably chosen v0 and x1, there exists a com-
pact set V in (−∞,∞)× [0,∞) which is positive recurrent for the Markov chain

(X̃n, Ỹn).

Remark 6.1. A sequence (Xn, Yn) is a subsequence of (X̃n, Ỹn). With arguments
similar to those of Theorem 6.1, one can also prove that the same set V is positive
recurrent for the Markov chain (Xn, Yn).

Proof of Theorem 6.1. We use Foster’s criterion, with the following choice of
the test function:

L(x, y) ≡ L1(x) + L2(y) =

{
r1x + r2y, if x ≥ 0,

r3|x|+ r2y, if x < 0,

where r1, r2, r3 are strictly positive (to be chosen later).
First of all, for any C1, C2 > 0,

sup
|x|≤C1

sup
y≤C2

E(L(X̃1, Ỹ1) | X̃0 = x, Ỹ0 = y) < ∞. (6.1)
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Indeed, let r = max(r1, r2, r3). Then, for any (x, y) from the set above,

T̃x,y ≤st T (1,−C1) := T̂ ,

and T̂ has a finite mean. Therefore, for all (x, y) from this set,

E(L(X̃1, Ỹ1) | X̃0 = x, Ỹ0 = y) ≤ r(C1 + C2 + ET̂ + EZ + k) < ∞,

and (6.1) follows.
Now we impose several constraints on the coefficients r1, r2, r3. First, we

assume that
r3 < r1 (6.2)

and
r1EZ > r2k. (6.3)

Let α− k = 2∆ > 0. We also assume that

r2∆ > r3EZ. (6.4)

In the proof, we use only conditions (6.2)–(6.4) which are, in particular, satisfied
if r1 >> r2 >> r3 > 0.

Now we proceed to show that all the differences

E(L(X̃1, Ỹ1) | (X̃0, Ỹ0) = (x, y))− L(x, y)

are bounded above by some negative constant if (x, y) is outside the set [x1, x0]×
[0, y0] where x1, x0 and y0 will be chosen in the proof. For this, consider sepa-
rately two cases: (a) x > 0 and (b) x ≤ 0.

Case x > 0
In this case, the one-step embedding is the natural one, so we may write

(X1, Y1) instead of (X̃1, Ỹ1).
Let

3γ = min{r2∆− r3EZ, r1EZ − r2k} > 0. (6.5)

Choose x0 > 0 so big that

r1cET (1,x0) ≤ γ, (6.6)

and
(r1 + r3)E(Z − x0)+ ≤ γ. (6.7)

By Lemma 3, we may choose y0 > 0 so large that

yE
(
1− exp{−αT (2,y)})− k ≥ 5

3
∆, for all y ≥ y0 (6.8)
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and that
r1cET0,y0 ≤ γ. (6.9)

Then choose v0 > 0 so large that

yE
(
1− exp{−α min(v0, T

(2,y))})− k ≥ 4
3
∆, for all y ≥ y0 (6.10)

and that the following inequality holds:

r3cv0

2
exp

{
−y0

α

}
> γ + r3EZ + r2k. (6.11)

Write for short

Ex,yL(X1, Y1) = E(L(X1, Y1) | X0 = x, Y0 = y) = Ex,yL1(X1) + Ex,yL2(Y1).

If x > 0, then

Ex,yL1(X1)− L1(x) = r1E ((x + cTx,y − Z) I(x + cTx,y − Z > 0))
+ r3E ((−x− cTx,y + Z) I(x + cTx,y − Z ≤ 0))− r1x

= cE(Tx,y(r1 I(x + cTx,y − Z > 0)
− r3 I(x + cTx,y − Z ≤ 0))) + r1E(x− Z)
+ (r1 + r3)E((−x + Z) I(x + cTx,y − Z ≤ 0))− r1x

≤ r1cETx,y − r1EZ + (r1 + r3)E(Z − x)+

and
EL2(Y1)− L2(y) = r2(yE exp{−αTx,y}+ k)− r2y.

In particular, if x ≥ x0,

Ex,yL1(X1)− L1(x) ≤ r1cET (1,x0) − r1EZ + (r1 + r3)mE(Z − x0)+

(where we used representation (5.1) and Lemma 5.1) and

EL2(Y1)− L2(y) ≤ r2k,

so in view of (6.5), (6.6), and (6.7),

Ex,yL(X1, Y1)− L(x, y) ≤ γ + γ − 3γ = −γ.

Furthermore, if y ≥ y0 and 0 ≤ x ≤ x0, then, by Lemma 5.1,

Ex,yL1(X1)− L1(x) ≤ r1cET0,y0 + r3EZ

and, by inequality (6.8),

EL2(Y1)− L2(y) ≤ −r2∆,
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so

Ex,yL(X1, X2)− L(x, y) ≤ r1cET0,y0 + r3EZ − r2∆ ≤ γ − 3γ ≤ −γ,

by (6.5) and (6.9). So if x > 0 and if either x ≥ x0 or y ≥ y0, then

Ex,yL(X1, Y1)− L(x, y) ≤ −γ.

Case x ≤ 0
For the time being, fix any value of x1 < 0. First, we observe that if

y ≥ y0 where y0 satisfies inequalities (6.8) and (6.9), then again the increments
Ex,yL(X1, Y1) − L(x, y) have a “uniformly” negative drift in all x1 < x ≤ 0.
Indeed, if X̃0 = x ∈ (x1, 0], then, for any y ≥ 0, X̃1 = x + Tx,y − Z1 admits the
following bounds:

|X̃1| I(X̃1 ≤ 0) ≤a.s. (|x|+ Z1) I(X̃1 ≤ 0) (6.12)

and

X̃1I(X̃1 > 0) = max(0, X̃1) = max(0, min(x + cT (1,x), x + T (2,y))). (6.13)

From Lemma 5.1 and from independence of T (1,x) and T (2,y), we obtain

X̃1 I(X̃1 > 0) ≤st min(cT (1,0), cT (2,y)) = cT0,y. (6.14)

Therefore, for any x1 < x ≤ 0

Ex,y|L1(X̃1)| = r1Ex,y(X̃1 I(X̃1 > 0)) + r3Ex,y(|X̃1| I(X̃1 ≤ 0))

≤ r1Ex,y(|X̃1| · I(X̃1 > 0)) + r3Ex,y((|x|+ EZ1)I(X̃1 ≤ 0))
≤ r1cET0,y + r3|x|+ r3EZ.

Since y0 satisfies inequalities (6.8) and (6.9), we have, for all x1 < x ≤ 0 and
y ≥ y0,

Ex,yL(X̃1, Ỹ1)− L(x, y) ≤ r1cET0,y0 + r3EZ − r2∆ ≤ −γ.

We now choose x1 << −1 so large that the increment of L(X̃, Ỹ ) has a
uniformly negative drift for all x ≤ x1. We start with the assumption that

x1 ≤ −cv0. (6.15)

Therefore, if X̃0 = x ≤ x1 and Ỹ0 = y, then

L1(X̃1) = r3(−x− cT̃x,y + Z I(Tx,y ≤ v0)) ≤ r3(−x− cT̃x,y + Z)



Ergodicity of a stress release point process seismic model with aftershocks 403

and

L2(Ỹ1) = r2

(
y exp{−αT̃x,y}+ k I(Tx,y ≤ v0)

) ≤ r2

(
y exp{−αT̃x,y}+ k

)
.

We impose two additional constraints on x1 making it even more negatively
large. Since ϕ(x) → 0 as x → −∞, one can choose x1 < −cv0, x1 << −1 such
that

exp
{
−

v0∫

0

ϕ(x1 + cv)dv

}
≥ 1

2
. (6.16)

Secondly, it follows that T (1,x) →∞ in probability as x → −∞, and therefore,
from (6.10), one can choose x1 ≤ −cv0 such that

y E(1− exp{−αT̃x,y})− k ≥ ∆, for all y ≥ y0 and x ≤ x1. (6.17)

Assume that x1 satisfies all of the three conditions (6.15)–(6.17). If y ≥ y0

then, for any x ≤ x1,

Ex,yL(X̃1, Ỹ1)− L(x, y) ≤ r3(−cET̃x,y + EZ) + r2(yE exp{−αT̃x,y}+ k)− r2y

≤ −r2∆ + r3EZ ≤ −γ,

by (6.17).
If instead y ≤ y0 and x ≤ x1, then

P(Tx,y > v0) ≥ P(Tx,y0 > v0) ≥ 1
2

exp{−y0/α},

since the random variables Tx,y are stochastically decreasing in y (again by
Lemma 5.1). Therefore, for T̃x,y = min(v0, Tx,y),

ETx,y ≥ ET̃x,y ≥ v0 ·P(Tx,y ≥ v0) ≥ v0

2
exp{−y0/α}, (6.18)

and

Ex,yL(X̃1, Ỹ1)− L(x, y) ≤ r3(−cET̃x,y + EZ) + r2(yE exp{−αT̃x,y}+ k)− r2y

≤ −r3cv0

2
exp{−y0/α}+ r3EZ + r2k < −γ,

due to (6.11).
As an outcome, we have that if y0 satisfies conditions (6.8)–(6.9), if v0

satisfies (6.10)–(6.11), and if x1 satisfies (6.15)–(6.17), then the increments of
EL(X̃1, Ỹ1) have a drift bounded above by −γ for all initial values such that
either x ≤ x1, or x ≤ 0 and y ≥ y0.

The set
V = [x1, x0]× [0, y0]
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is therefore positive recurrent for the Markov chain (X̃n, Ỹn).
Also, as follows from the classical proof of Foster’s criterion, for any initial

value (X̃0, Ỹ0) = (x, y), a random variable

τx,y(V ) = min{n ≥ 1 : (X̃n, Ỹn) ∈ V | (X0, Y0) = (x, y)}

is almost-surely finite and, moreover, there exists an absolute constant C > 0
such that

Eτx,y(V ) ≤ C(L(x, y) + 1),

for all (x, y) (see, e.g., [11] or [8]). The proof of Theorem 6.1 is complete. 2

7. Harris ergodicity

We recall the following classical result (see for instance [11]).

Proposition 7.1. Assume that a Markov chain Wn, n ≥ 0, taking values in a
measurable space (W,BW) is aperiodic and that there exists a positive recurrent
set V that admits a minorant measure, i.e. there exist a positive integer m, a
positive p ≤ 1 and a probability measure µ such that

P(Wm ∈ · | W0 = w ∈ V ) ≥ pµ(·). (7.1)

Then the Markov chain is Harris ergodic, which means that there exists a unique
stationary distribution (say π) and that, for any initial value W0 = w, there is
a convergence of the distributions of Wn to the stationary one in the total
variation norm,

sup
B∈BW

|P (Wn ∈ B)− π(B)| → 0, n →∞.

In practice, the most technical part in applying this criterion is to verify
the aperiodicity. There are a number of sufficient conditions available for the
Markov chain to be aperiodic and Harris ergodic.

We mention two of them. The most common is the following condition.
Sufficient condition 1 (SC1). A Markov chain Wn is Harris ergodic if there
exists a positive recurrent set V such that condition (7.1) holds with m = 1 and
with µ such that µ(V ) > 0.

However, in our proof, it seems to be easier to verify another — slightly
more general — sufficient condition.
Sufficient condition 2 (SC2). A Markov chain Wn is Harris ergodic if there
exists a positive recurrent set V such that condition (7.1) holds with a finite
number of different values of m, say mi, i = 1, 2, . . . , k which are such that

g.c.d.{mi, 1 ≤ i ≤ k} = 1.
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We will apply condition (SC2) with k = 2 and with m1 = 2 and m2 = 3. For
that, we introduce a condition on the distribution of Z which leads to (SC2).
Condition (CZ). There exist 0 ≤ z1 < z2 < ∞ such that, for some h > 0 and
for any [u1, u2] ⊆ [z1, z2],

P(Z ∈ [u1, u2]) ≥ h(u2 − u1).

In other words, the distribution of Z has an absolutely continuous (with re-
spect to Lebesgue measure) component whose density function is above level h
everywhere in the interval [z1, z2].

Theorem 7.1. Assume condition (CZ) holds. Then the Markov chain (Xn, Yn)
is Harris ergodic.

Proof. We may assume without loss of generality that z2 − z1 ≤ x0 − x1.
Let ỹ1 = y1 + k and

x̃0 = inf{x ≥ x0 : ϕ(x) > 0}+ z2 + 2,

and let
V1 = [x1, x̃0]× [0, ỹ0],

so V ⊂ V1. Then, for any (x, y) ∈ V , Px,y(Y1 ≤ ỹ0) = 1, so, by Lemmas 5.1–5.2,

Px,y((X1, Y1) ∈ V1) = Px,y(X1 ∈ [x1, x̃0])
≥ P(x + Tx,y ∈ [x̃0 + z1 − 1, x̃0 + z1], Z1 ∈ [z1, z2])

≥ P(x1 + cT (1,x1) ∈ [x̃0 + z1 − 1, x̃0 + z1])

×P(cT (2,ey0) > x̃0 + z1 − x1)P(Z1 ∈ [z1.z2]).

Denote by R0 the value of the rightmost side of the above inequality (note that
it is positive). Then, for any (x, y) ∈ V1,

Px,y((X1, Y1) ∈ V1) ≥ R0 > 0.

Take some small positive ε < (z2 − z1)/4 (to be specified later). Choose
t2 > 0 so large that x2 := x1 + ct2 > x̃0 + z2 and y0 exp{−α(x2 − x̃0)} ≤ ε. Let
b = ϕ(x2 − z2) and note that b > 0. Then, for any (x, y) ∈ V1,

P(x + cTx,y ∈ [x2, x2 + ε], y exp{−αTx,y} ≤ ε)

≥ bεP(T (1,x1) > (x2 − x1)/c)P(T (2,y0) > (x2 − x1)/c).

Denote by R1 the right-hand side of the inequality above (which is a posi-
tive number). Then, for any (x, y) ∈ V1 and for (X1, Y1) = (x + Tx,y −
Z1, y exp{−αTx,y}+ k),

Px,y((X1, Y1) ∈ [x2 − z1 − ε, x2 − z1]× [k, k + ε]) ≥ R1
bε

z2 − z1
=: R2 > 0.
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Let
V̂ = [x2 − z1 − ε, x2 − z1]× [k, k + ε].

From the construction above, one may conclude that, for any (x, y) ∈ V ,

inf
(x,y)∈V

Px,y((X1, Y1) ∈ V̂ ) ≥ R2 > 0 (7.2)

(since V ⊂ V1) and then that, by the Markov property,

Px,y((X2, Y2) ∈ V̂ ) ≥ R0 · inf
(x,y)∈V1

Px,y((X1, Y1)V̂ ) = R0R2 > 0. (7.3)

Now take ε > 0 so small that one can choose positive numbers t3 and t4 such
that t4 > t3 > z2, that

k2 := k exp{−αt3} > (k + ε) exp{−αt4} =: k1,

and that
δ := ε + c(t4 − t3) <

z2 − z1

2
.

Then, for any y ∈ [k, k + ε], we have the inclusion

[k1, k2] ⊆ [y exp{−αt4}, y exp{−αt3}].

For any (x, y) ∈ V̂ denote by gx,y(u) a density function of random variable
y exp{−αTx,y} (which clearly has an absolutely continuous distribution).

Then direct computations show that

c0 := inf
(x,y)∈bV

inf
u∈[k1,k2]

gx,y(u). (7.4)

Indeed, let

c1 = inf
0≤t≤k2/k1

ln(1 + t)
t

and

c2 = inf
(x,y)∈bV

inf
ln(k/k2)≤a<b≤ln((k+ε)/k1)

P(a ≤ Tx,y ≤ b)
b− a

.

Then both c1 and c2 are positive and, for [a, b] ⊆ [k1, k2],

P
(
y exp{−αTx,y} ∈ [a, b]

)
= P

( ln(y/b)
α

≤ Tx,y ≤ ln(y/a)
α

)
≥ c1c2

α
(b− a),

so (7.4) holds with c0 = c1c2/α.
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Furthermore, let x3 = x2 − z1 − ε + t3. Note that if (x, y) ∈ V̂ and Tx,y ∈
[t3, t4], then x + cTx,y ∈ [x3, x3 + δ]. Then, by condition (CZ), given x +
cTx,y = v ∈ [x3, x3+δ], the random variable v−Z1 has an absolutely continuous
component with a uniform distribution on the interval [x3−(z1 +z2)/2, x3−z1].

We may therefore conclude that, for any (x, y) ∈ V̂ ,

Px,y

(
(X1, Y1) ∈ ·

) ≥ 2(z2 − z1)−1hc−1
0 µ(·) (7.5)

where µ is a two-dimensional uniform distribution on the rectangle

V2 := [x3 − (z1 + z2)/2, x3 − z1]× [k1, k2],

coefficient h is from condition (CZ), and c0 is from (7.4).
It follows from inequalities (7.2), (7.3), and (7.5), that condition (SC2) is

satisfied with k = 2 and with m1 = 2 and m2 = 3, and this completes the proof.
2

Corollary 7.1. Assume again that k < α and that condition (SZ) holds. Con-

sider the Markov chain (X̃n, Ỹn) and let 0 ≤ S1 < S2 < . . . Sk < . . . be
consecutive times of the ends of discrete-time “cycles” where random vectors
(X̃Sk

, Ỹk) have uniform distribution in the rectangle V2. Then random variables
lk = Sk − Sk−1, k ≥ 2, are i.i.d. with a finite mean.

A proof of this result can be found, for instance, in [1].

8. Stability in continuous time

Theorem 8.1. Under condition (CZ),

(1) there exists a unique stationary version of the continuous-time Markov
process (X(t), Y (t)) (which is also ergodic);

(2) for any initial value X(0) = X0 = x, Y (0) = Y0 = y, the process
(X(t), Y (t)) converges to the stationary one in the total variation norm.

Proof. Consider again the embedded Markov chain (X̃n, Ỹn) and its cycles of
length lk. Then the corresponding cycles in continuous time are defined as

Lk =
Sk∑

i=Sk−1+1

T̂ bXi,bYi
, k = 1, 2, . . .

which are again i.i.d. for k ≥ 2.
Then a proof of the theorem follows from the two results below, State-

ment 8.1 and Statement 8.2 (see, for instance, [1], Proposition 3.8, p.203 or [2],
Section 7, or [3], Chapter 3). 2
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Statement 8.1. The distribution of random variables Lk, k ≥ 2 has an abso-
lutely continuous component with a density function which is separated from 0
on a finite time interval of positive length.

Statement 8.2. EL2 is finite.

Statement 8.1 may be verified directly using arguments similar to those in
the previous section. Furthermore, since C := supx,y ET̃x,y < ∞,

EL2 ≤ CEl2 < ∞,

and the result follows.
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[6] P. Brémaud, G. Nappo and G. Torrisi (2002) Rates of convergence to equi-
librium of marked Hawkes processes. J. Appl. Probab. 39, 123–136.

[7] D. Daley and D. Vere-Jones (2003) An Introduction to the Theory of Point
Processes, 2nd ed., Vol. I, Springer, New York.

[8] S. Foss and T. Konstantopoulos (2004) An overview of some stochastic
stability methods. Journal of Operations Research Society Japan 47, 275–303.

[9] G. Last (2004) Ergodicity properties of stress release, repairable system and
workload models. Adv. Appl. Probab. 36, 471–498.

[10] G. Last and A. Brandt (1995) Marked Point Processes on the Real Line; The
Dynamical Approach. Springer, New York.

[11] S.P. Meyn and R.I Tweedie (1993) Markov Chains and Stochastic Stability.
Springer, New York.

[12] Y. Ogata (1988) Statistical models for earthquake occurrences and residual
analysis for point processes. J. Amer. Statist. Assoc. 83, 9–27.

[13] F. Schoenberg and B. Bolt (2000) Short-term exciting, long-term correcting
models for earthquake catalogs. Bulletin of the Seismological Society of America
90 (4), 849–858.


