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§ 1. Introduction
In multiserver queueing systems, various service disciplines are used, e.g., “first-come-first-served”

(FCFS), “last-come-first-served” (LCFS), cyclic, time sharing disciplines, etc. Therefore, the natural
problems of comparing service disciplines were studied by many authors.

We restrict our consideration to disciplines which do not allow time sharing and service interruption.
In other words, we assume that, at any time instant, each server may serve at most one customer. Once
started, a service continues until completion; afterwards the customer leaves the system.

Usually, the state of the system is described by the sequence of finite-dimensional random vectors
Wn = (Wn,1, . . . ,Wn,m), n ≥ 0 (with m standing for the number of servers), where Wn,j denotes the
total workload at the jth server just after the nth customer arrival, i.e., the amount of time needed by
server j to complete the services of all customers (including the nth) who have arrived up to this time
instant. We are interested in minimizing the distribution of a certain functional φ(Wn) for every fixed n.
The minimization problem for functionals of joint distributions φ(Wn,Wn+1, . . . ,Wn+k) is interesting as
well. The following questions arise: (a) for which disciplines can we solve the optimization problem; (b)
how may we describe a class of valid functionals {φ}?

Alongside Wn we also consider the sequence dn of the actual waiting times (or the sojourn times) of
customers in the system and analyze the problem of minimizing the distributions of certain functionals
of this sequence.

We further assume that the sequence {sn} of service times consists of independent identically dis-
tributed (i.i.d.) random variables (r.v.’s) and is independent of the other input characteristics.

We use the following conventions. We say that an r.v. ξ is stochastically greater than an r.v. ξ0 and
write ξ ≥st ξ

0 if P(ξ ≥ x) ≥ P(ξ0 ≥ x) for all real x. A random vector ξ = (ξ1, . . . , ξn) is stochastically
greater than a random vector ξ0 =

(
ξ0
1 , . . . , ξ

0
n

)
,

ξ ≥st ξ0, (1)

if there exists a coupling (η, η0) of both vectors on a common probability space, η =D ξ and η0 =D ξ0,
such that η ≥ η0 a.s. coordinate-wise. Note that (1) implies the following inequality: for every vector
x = (x1, . . . , xn),

P(ξ ≥ x) ≥ P(ξ0 ≥ x). (2)

The converse is false in general: for n ≥ 2, inequality (2) does not imply (1).
Denote by T 0 the FCFS service discipline (see Example 1) and consider another discipline T . We

endow all quantities of the system governed by the FCFS discipline with the superscript 0 .
Seemingly, the first substantial and quite general results on optimality of the FCFS discipline were

proved in [1]. Firstly, it was shown therein that, for every n = 1, 2, . . . , every Schur convex function
φ : R

m → R, and all admissible service disciplines T , the following inequality holds:

φ(Wn) ≥st φ
(
W 0

n

)
. (3)
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In particular, (3) implies that
max

j
Wn,j ≥st max

j
W 0

n,j (4)

(see Section 2 for the definitions of Schur convexity and admissibility). Further, denote by vn the time
instant of the nth customer’s service completion. Then the following is true (see [1]): for every natural
number n,

R(v1, . . . , vn) ≥st R
(
v0
1, . . . , v

0
n

)
, (5)

where, for every vector x = (x1, . . . , xn), the vector R(x) is obtained from x by permuting coordinates in
nondecreasing order. In particular, (5) implies the relation

n∑
1

dj ≥st

n∑
1

d0
j . (6)

If the systems with the FCFS and the T disciplines are both stable then

1
n

n∑
1

dj → Ed,
1
n

n∑
1

d0
j → Ed0 a.s.,

where d and d0 stand for the corresponding stationary waiting times. Then (6) implies the inequality

E d ≥ E d0. (7)

Validity of (4) was discussed earlier by several authors. In [2, p. 220] it was asserted that this
inequality holds almost surely. But Stoyan [3] gave a counterexample and conjectured that (4) is valid in
the stochastic sense. A proof of (4) was proposed in [4], but it appears to have been based on incorrect
arguments.

Wolff [5] considered stable GI/GI/m systems with the FCFS discipline T 0 and the cyclic discipline
T (the cyclic discipline is defined in Example 2). In this case, he proved the following generalization
of (7): for every increasing convex function f ,

Ef(d) ≥ Ef(d0). (8)

Whitt [6] (see also [7]) considered the cyclic T discipline, too. He showed (by example) that, in general,
d and d0 are noncomparable; i.e., the inequality d ≥st d

0 may fail.
A slightly different class of service disciplines, where the order of service may differ from the order

of arrival, was studied in [8] (in particular, that class contains the LCFS discipline). Results similar to
(3) and (5) were established.

In [9], the following assertion was stated (we formulate it in our notation): for every k = 1, 2, . . . ,

min
0≤l≤k

max
j

(Wn+l,j − τn+l+1)+ ≥st min
0≤l≤k

max
j

(
W 0

n+l,j − τn+l+1

)+
, (9)

but a correct proof was provided only for k = 1.
Another variant of the proof of inequality (3) was proposed in [10]. The paper [11] contains a short

description of results in [1, 8, 9] together with proofs of the main results in particular cases. In the survey
[12], the proof of the main result of [1, 11] was reproduced and some other problems were considered.

Recent publications (see, e.g., [13] and others) show that, using comparison theorems, enables us
to obtain new results for systems with the FCFS discipline such as: statements on the existence of
moments for the stationary waiting time, construction of upper bounds for tail distributions of certain
characteristics, etc.

We prove the following new results. First, we establish a natural generalization of (6):

h(d1, . . . , dn) ≥st h
(
d0

1, . . . , d
0
n

)
(10)
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for every Schur-convex function h. In particular, (10) implies that (8) is valid for every future-independent
service discipline (not only for the cyclic one). A more general assertion for the joint distributions of
several Schur-convex functions is also valid (see Remark 2).

An interesting application of (10) was given in [14] (with a reference to the present paper unpublished
at that time). We discuss it in more detail in § 4.

Second, we give an example, showing that (9) may fail in general for k ≥ 2. For k = 1, we prove
the following generalization of (9): for arbitrary Schur-convex functions φ1, φ2 and for all n = 1, 2, . . . ,
x1, x2 ∈ R

P(φ1(Wn) ≥ x1, φ2(Wn+1) ≥ x2) ≥ P
(
φ1

(
W 0

n

) ≥ x1, φ2

(
W 0

n+1

) ≥ x2

)
. (11)

The paper contains four sections. In § 2, we introduce the main definitions and notations and state the
results and corollaries. The proofs are given in § 3. In § 4, further possible generalizations are considered
together with examples of applications.

§ 2. Main Definitions and Statements

2.1. The model description. Consider a queueing system with m servers, governed by the
independent sequences of r.v.’s {τi}i≥1 and {si}i≥1, by the initial vector W0 = (W0,1,W0,2, . . . ,W0,m),
and by a service discipline of a certain class. Here τ1 is the arrival time of customer 1 and, for i ≥ 2, τi

is the interarrival time between the (i− 1)st and ith customers. The r.v. si is the service time of the ith
customer. For j = 1, . . . ,m, the coordinate W0,j ≥ 0 of W0 is the first time instant when server j can
begin customer service. Define a service discipline as a random sequence T = {Tn}n≥1, where Tn stands
for the number of the station where the nth customer is served.

Let all r.v.’s be defined on a probability space 〈Ω,F ,P〉. Denote by N = {1, 2, . . . , n, . . . } the set of
natural numbers. Let tn =

∑n
i=1 τi be the nth arrival instant.

The sequence of service times {si}i≥1 is assumed to consist of i.i.d. random variables which do not
depend on W0 and {τi}i≥1.

The sequence T = {Tn}n≥1 determines the service procedure as follows.
Set v0,j = W0,j for 1 ≤ j ≤ m. The service of the first customer proceeds at station T1. If T1 = k

then the service starts at the time instant u1 = max{v0,k, t1} and continues for s1 units of time. Before
the time instant u1, server k is out of service. Given the event {T1 = k}, we put v1,j = v0,j for j �= k,
and v1 = v1,k = u1 + s1.

The following r.v.’s are defined inductively for each n ∈ N: un is the time instant when the service of
customer n starts and vn,j is the last departure epoch of customers with numbers 1, . . . , n from station j.

Given the event {Tn+1 = k}, server k cannot serve any of the customers numbered n+1, n+2, . . . ,
until the time instant un+1 = max{vn,k, tn+1}. The service of customer n+1 starts at station Tn+1 = k
at the time instant un+1. Given the event {Tn+1 = k}, we put

vn+1,j = vn,j if j �= k, and vn+1 = vn+1,k = un+1 + sn+1.

Note that, for i < j, the inequality ui + si ≤ uj holds a.s. on the event {Ti = Tj}.
A service discipline T is called admissible if it exhibits the “future independence” property.

Definition 1. A service discipline T = {Tn}n≥1 is admissible in the system Σ(W0, {τi}, {si}) if, for
n ≥ 1, whatever the set of natural numbers {k1, . . . , kn}, the following equality holds:

P
{
T1 = k1, . . . , Tn = kn | W0; {τi}∞i=1; {si}∞i=1

}
= P

{
T1 = k1, . . . , Tn = kn | W0; {τi}∞i=1; {si}n−1

i=1

}
. (12)

The workload at station j is measured as the length of the time interval between tn and the last
departure epoch of customers with numbers 1, . . . , n from server j. Thus, it is equal toWn,j = (vn,j−tn)+.
The vectors Wn obey the evident recurrence relation Wn = (Wn−1 − iτn)+ + sneTn , where ek stands for
the unit vector with all but kth coordinates equal to zero and the kth coordinate equal to one, and
i = (1, . . . , 1) is the vector of ones.

We consider some examples of admissible service disciplines.
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Example 1 (FCFS discipline). For n ∈ N put

Tn = min
1≤j≤m

{j : vn−1,j = min
1≤k≤m

vn−1,k} = argmin
1≤j≤m

{vn−1,j}.

Here the argmin1≤j≤m{vn−1,j} means the smallest j such that vn−1,j ≤ vn−1,k for all 1 ≤ k ≤ m.

Example 2 (cyclic discipline). Put Tnk+j = j for n, k ≥ 0 and j = 1, . . . ,m.

Example 3 (random discipline). Here the r.v.’s {Tn} are mutually independent, do not depend on
{W0, {τi}, {si}}, and are distributed uniformly on the set {1, 2, . . . ,m} of station numbers: P(Tn = j) =
1/m for j = 1, . . . ,m.

Example 4 (the discipline introduced in [14]). Each of the first m−2 customers chooses the station
with the minimal waiting time among the stations that are not chosen by the previous customers. The
customers numbered m − 1, m, . . . may not choose any of the stations already chosen by the previous
m − 2 customers. From the two stations left, each such customer chooses the server with the smallest
waiting time.

Define

An =
{ {1, . . . ,m} \ {T1, . . . , Tn−1} for 1 ≤ n ≤ m− 2,

{1, . . . ,m} \ {Tn−m+2, . . . , Tn−1} for n > m− 2,

the set of stations “available” for customer n. Then Tn = argminj∈An
{vn−1,j}.

2.2. Schur convexity. For an arbitrary vector x = (x1, . . . , xn), denote by x(1) ≤ x(2) ≤ · · · ≤ x(n)

the vector obtained from x by permuting coordinates in nondecreasing order. We need the following
partial ordering.

Definition 2. Given two vectors x = (x1, . . . , xl) and y = (y1, . . . , yl), we write x � y if

l∑
i=k

x(i) ≤
l∑

i=k

y(i)

for all 1 ≤ k ≤ l.

Definition 3. We say that a function f : R
n → R is Schur-convex , if the inequality f(x) ≤ f(y)

holds for arbitrary vectors x � y.
It is easy to show that the class of Schur-convex functions coincides with the following class Hn.

Definition 4. We say that a function h : R
n
+ → R belongs to the class Hn, if the following inequality

holds for every 1 ≤ j < n and all (aj , aj+1) � (bj , bj+1):

h(a1, . . . , aj , aj+1, . . . , an) ≤ h(a1, . . . , bj , bj+1, . . . , an).

2.3. Main results. Consider two admissible disciplines T (1) and T (2). For n ∈ N and for each
discipline T (i), denote by d

(i)
n = u

(i)
n − tn the waiting time of customer n.

The coordinate W
(i)
n,j = (v(i)

n,j − tn)+ of the vector W (i)
n = (W (i)

n,1, . . . ,W
(i)
n,m) equals the workload at

station j at the time instant tn.
We define two ways of comparison between service disciplines.

Definition 5. We write T (1) �n T (2) if, for every h ∈ Hn,

h
(
d

(1)
1 , . . . , d(1)

n

) ≤st h
(
d

(2)
1 , . . . , d(2)

n

)
. (13)

Definition 6. We write T (1) �n T (2) if the following relation is valid for all φ1, φ2 ∈ Hm and
x1, x2 ∈ R:

P
(
φ1

(
W

(1)
n−1

) ≥ x1, φ2

(
W (1)

n

) ≥ x2

) ≤ P
(
φ1

(
W

(2)
n−1

) ≥ x1, φ2

(
W (2)

n

) ≥ x2

)
. (14)
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Theorem 1. For every n ∈ N, the service discipline FCFS is no worse than any other admissible
discipline T ; i.e.,

T 0 �n T, T 0 �n T.

Remark 1. We exhibit an example below, showing that the inequality T 0 �n T may fail if one
considers the joint distribution of more than two random vectors in (14). In particular, the inequality

P
(
φ1

(
W 0

n−2

) ≥ x1, φ2

(
W 0

n−1

) ≥ x2, φ3

(
W 0

n

) ≥ x3

)
≤ P(φ1(Wn−2) ≥ x1, φ2(Wn−1) ≥ x2, φ3(Wn) ≥ x3),

for the FCFS discipline T 0 and an arbitrary admissible discipline T fails in general.

Example 5. Consider a two-server queueing system with τ1 = τ2 = τ3 = 0, W0,1 = c > 0 = W0,2.
Assume that the r.v.’s s1, s2, s3 are i.i.d. and take only two values α < β with respective proba-
bilities 1 − p and p. We compare the FCFS discipline T 0 with the discipline T given by T1 = 1,
Tn = argminj=1,2{Wn−1,j} for n = 2, 3. Here we put Wn = Wn−1 + sneTn .

We consider the functions φi(x1, x2) = max(x1, x2), i = 1, 2, 3, in the class H2 and show the existence
of values of c, α, β, x1, x2, x3 such that

P ≡ P(max
j

W1,j ≥ x1,max
j

W2,j ≥ x2,max
j

W3,j ≥ x3)

≤ P
(
max

j
W 0

1,j ≥ x1,max
j

W 0
2,j ≥ x2,max

j
W 0

3,j ≥ x3

) ≡ P 0. (15)

Note that

W1 =
(
c+ s1

0

)
, W2 =

(
c+ s1

s2

)
, W 0

1 =
(

c
s1

)
.

Assume that x1, x2 satisfy the inequalities: β ≥ x1 = x2 > c + α, 2β > c + α + β ≥ x3 > α + β,
x3 > c+ β. Then maxj W1,j ≥ x1 if and only if s1 = β. On the event {s1 = β}, we have T2 = 1, T3 = 2.
The inequality maxj W2,j ≥ x2 in (15) is always true, and the inequality maxj W3,j ≥ x3 becomes

{max
j

W3,j = max(c+ β, s2 + s3) ≥ x3} = {s2 = s3 = β}.

Hence, P = p3.
We now calculate P 0. The event

{
maxj W

0
1,j = max(c, s1) ≥ x1

}
in (15) takes place only if s1 = β > c.

The inequality
{
maxj W

0
2,j = max(c+ s2, s1) ≥ x2

}
is valid always.

On the event {s1 = β, s2 = β}, we have{
max

j
W 0

3,j = max(c+ β, β + s3) ≥ x3

}
= {s3 = β}.

On the event {s1 = β, s2 = α}, we have{
max

j
W 0

3,j = max(c+ α+ s3, β) ≥ x3

}
= {s3 = β}.

Therefore,
P 0 = P(s1 = β, s2 = β, s3 = β) +P(s1 = β, s2 = α, s3 = β) = p2 > P.

Furthermore, we show that (9) may fail either. Put x = x1 = x2 = β, x3 = c+α+β, τ1 = τ2 = τ3 = 0
and τ4 = c+ α. Then

{max
j

(W3,j − τ4)+ ≥ x} = {max
j

W3,j ≥ x3}

and
P( min

1≤i≤3
max

j
(Wi,j − τi+1)+ ≥ x) = p3 < p2 = P

(
min

1≤i≤3
max

j

(
W 0

i,j − τi+1

)+ ≥ x
)
.

5



§ 3. Proof of Theorem 1

First, we prove the following analog of Lemma 3.1 in [11].

Lemma 1. Let W0 = (W0,1, . . . ,W0,m) be a nonrandom vector andW0,r ≥ W0,l for some fixed r �= l.
Let T be an admissible discipline in the system Σ(W0, {τi}, {si}) such that T1 = r and T2 = l. Then

(a) there exist r.v.’s s′1 and s′2 with the following properties: they are i.i.d., coincide in distribution
with s1, and are independent of {τi}, {si}i>2, and s′1 + s′2 = s1 + s2 a.s.;

(b) in the system Σ(W0, {τi}, {s′1, s′2, s3, s4, . . . }), there exists an admissible discipline T ′ such that
T ′

1 = l, T ′
2 = r and, for every i ≥ 3,

W ′
i−1 � Wi−1 a.s., (16)

d′i =
(
W ′

i−1,T ′
i
− τi

)+ ≤ di =
(
Wi−1,Ti − τi

)+
a.s., (17)

d′1 ≤ d1, (d′1, d
′
2) � (d1, d2) a.s., (18)

and
P

(
φ1

(
W ′

i−2

) ≥ x1, φ2

(
W ′

i−1

) ≥ x2

) ≤ P
(
φ1

(
Wi−2

) ≥ x1, φ2

(
Wi−1

) ≥ x2

)
(19)

for all functions φ1, φ2 ∈ Hm and all x1, x2 ∈ R.

Proof. Put A = {W0,r − τ1 − τ2 < 0}. It is easy to show that the r.v.’s

s′1 = s1I(A) + s2I(A); s′2 = s2I(A) + s1I(A)

satisfy item (a) of Lemma 1. For instance, the i.i.d. property for s′j , j = 1, 2, (as well as the independence
of τ1, τ2) follows from the corresponding properties of {si}: by the Total Probability Law,

P(s′1 ∈ B) = P(s1 ∈ B,A) +P(s2 ∈ B,A) = P(s1 ∈ B)P(A) +P(s1 ∈ B)P(A) = P(s1 ∈ B).

As was proved in [1] (see also [11, Lemma 3.1]), (16) is valid for the discipline T ′ in the system with
service times {s′1, s′2, s3, s4, . . . }, where T ′ is defined as follows. Put T ′

1 = l, T ′
2 = r a.s. and, for i > 2,

(a) on the event A, put T ′
i = Ti a.s.;

(b) on the event A, put

T ′
i =




r, if Ti = l,

l, if Ti = r,

Ti otherwise.

For convenience, we reproduce the proof of (16) in [11], proving (17) simultaneously.
Proof of (16) and (17). First, note that, on the event A,

W2,l = (W0,l − τ1 − τ2)+ + s2 ≥ W ′
2,l = ((W0,l − τ1)+ + s2 − τ2)+,

W2,r = W0,r − τ1 − τ2 + s1 = W ′
2,r a.s.

(20)

and W2,j = W ′
2,j a.s., for any other j. On the event A,

W2,l = s2 = W ′
2,r, W2,r = ((W0,r − τ1)+ + s1 − τ2)+ = W ′

2,l a.s. (21)

and W2,j = W ′
2,j a.s., for any other j. It is easy to show that (20) and (21) hold true for the corresponding

coordinates of Wi and W ′
i with any i ≥ 2. Therefore, (16) holds. Moreover, Wi−1,Ti ≥ W ′

i−1,T ′
i
a.s., for

all i > 2; therefore, (17) holds.
Proof of (18). Note that

d1 = max{d1, d2} = (W0,r − τ1)+ ≥ max{d′1, d′2} = max{(W0,l − τ1)+, (W0,r − τ1 − τ2)+} a.s.
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On the event A,

d1 + d2 = W0,r − τ1 + (W0,l − τ1 − τ2)+ ≥ W0,r − τ1 + (W0,l − τ1)+ − τ2 = d′1 + d′2 a.s.

On the event A, we have d2 = 0 = d′2; whence d1 + d2 = d1 ≥ d′1 = d′1 + d′2 a.s. Then (d′1, d′2) � (d1, d2)
a.s. by Definition 2, and (18) follows.

Proof of (19). Note that, for i > 3, (19) follows directly from (16). We prove (19) for i = 3. By
the Total Probability Law, we can prove (19) separately on the events A and A.

On the event A,
(
W1,l

W1,r

)
=

(
(W0,l − τ1)+

(W0,r − τ1)+ + s1

)
�

(
(W0,l − τ1)+ + s1

(W0,r − τ1)+

)
=

(
W ′

1,l

W ′
1,r

)
a.s. (22)

and W ′
2 � W2 a.s. due to (16). The latter proves (19) on the event A.

Once s1, s2, s
′
1, and s′2 are independent of τ1 and τ2, it suffices to prove (19) on A only for fixed τ1

and τ2.
For brevity, put b = W0,r − τ1 ≥ a = (W0,l − τ1)+ ≥ 0, τ = τ2. On A, we have b > τ . Let a < b.

The vectors Wi and W ′
i , i = 1, 2, differ from one another only in two coordinates (rth and lth); so we

can prove (19) with functions φ1, φ2 ∈ H2.
We have (

W1,r

W1,l

)
=

(
b+ s1

a

)
,

(
W2,r

W2,l

)
=

(
b+ s1 − τ

(a− τ)+ + s2

)
,

(
W ′

1,r

W ′
1,l

)
=

(
b

a+ s2

)
,

(
W ′

2,r

W ′
2,l

)
=

(
b+ s1 − τ

(a+ s2 − τ)+

)
.

For x1, x2 ∈ R, define the events

A0 ≡ A0(x1, x2, φ1, φ2) =
{
φ1

(
b+ s1

a

)
≥ x1, φ2

(
b+ s1 − τ

(a− τ)+ + s2

)
≥ x2

}
,

A1 ≡ A1(x1, x2, φ1, φ2) =
{
φ1

(
b+ s1

a

)
≥ x1, φ2

(
b+ s1 − τ

(a+ s2 − τ)+

)
≥ x2

}
,

A2 ≡ A2(x1, x2, φ1, φ2) =
{
φ1

(
b

a+ s2

)
≥ x1, φ2

(
b+ s1 − τ

(a+ s2 − τ)+

)
≥ x2

}
.

In order to prove (19), it suffices to show that

P(A0) ≥ P(A1) ≥ P(A2). (23)

The first inequality in (23) follows from the monotonicity of φ2 ∈ H2 in the second argument. We prove
the second inequality. Set u1 = min{s1, s2}, u2 = max{s1, s2} and consider the events C1, C2, C3:

C1 =
{
x1 ≤ φ1

(
b+ u1

a

)}
, C2 =

{
x1 > φ1

(
b+ u2

a

)}
,

C3 =
{
φ1

(
b+ u1

a

)
< x1 ≤ φ1

(
b+ u2

a

)}
.

By the Total Probability Law, for j = 1, 2,

P(Aj) = P(AjC1) +P(AjC2) +P(AjC3) ≡ Pj1 + Pj2 + Pj3. (24)

We prove that P1i ≥ P2i for i = 1, 2, 3.
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1. Note that C1 ⊆
{
x1 ≤ φ1

(
b+ s1

a

)}
. Hence,

P11 = P
{
φ1

(
b+ s1

a

)
≥ x1, φ2

(
b+ s1 − τ

(a+ s2 − τ)+

)
≥ x2, C1

}

= P
{
φ2

(
b+ s1 − τ

(a+ s2 − τ)+

)
≥ x2, C1

}

≥ P
{
φ1

(
b

a+ s2

)
≥ x1, φ2

(
b+ s1 − τ

(a+ s2 − τ)+

)
≥ x2, C1

}
= P21. (25)

2. Observe that

C2 ⊆
{
x1 > φ1

(
b+ s1

a

)}
.

Therefore,

C2 ∩
{
φ1

(
b+ s1

a

)
≥ x1

}
= ∅ and P12 = 0.

Moreover,

C2 ⊆
{
x1 > φ1

(
b+ s2

a

)}
⊆

{
x1 > φ1

(
b

a+ s2

)}
,

whence

C2 ∩
{
φ1

(
b

a+ s2

)
≥ x1

}
= ∅,

and, therefore, P22 = 0 = P12.
3. Consider the following events

D0 = {s1 = s2}, D1 = {s1 < s2}, D2 = {s1 > s2}.

Clearly, D0 ∩ C3 = ∅. Thus, for j = 1, 2,

Pj3 = P(AjC3D1) +P(AjC3D2). (26)

Consider the term P13. The equality

C3 ∩D1 =
{
s1 < s2, φ1

(
b+ s1

a

)
< x1 ≤ φ1

(
b+ s2

a

)}

implies P(A1C3D1) = 0. Note that

C3 ∩D2 =
{
s2 < s1, φ1

(
b+ s2

a

)
< x1 ≤ φ1

(
b+ s1

a

)}
⊆

{
φ1

(
b+ s1

a

)
≥ x1

}
,

and, therefore,

P13 = P
{
φ2

(
b+ s1 − τ

(a+ s2 − τ)+

)
≥ x2, C3, D2

}
. (27)

Consider the term P23. The equality

C3 ∩D2 ⊆
{
φ1

(
b

a+ s2

)
< x1

}
,
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implies both P(A2C3D2) = 0 and

P23 = P(A2C3D1) ≤ P
{
φ2

(
b+ s1 − τ

(a+ s2 − τ)+

)
≥ x2, C3, D1

}

= P
{
φ2

(
b+ s2 − τ

(a+ s1 − τ)+

)
≥ x2, C3, D2

}
. (28)

The latter equation follows since s1 and s2 are i.i.d. r.v.’s.
If s2 < s1 then, by Definition 2,

(
b+ s2 − τ

(a+ s1 − τ)+

)
�

(
b+ s1 − τ

(a+ s2 − τ)+

)
.

Therefore, (27) and (28) imply the inequality P13 ≥ P23.
We have thus proved (23) and (19), completing the proof of Lemma 1. �
Now, we fix an arbitrary n ∈ N. For 0 ≤ k ≤ n, we write T

(1)
(1,n) = T(1,k) ∪ T 0

(k+1,n) if T (1)
i = Ti for

1 ≤ i ≤ k and
T

(1)
i = T 0

i = argmin
1≤j≤m

{vi−1,j}

for k + 1 ≤ i ≤ n. This notation means that the first k customers are served according to the discipline
T , while the customers numbered k + 1 ≤ i ≤ n are served according to the FCFS discipline. We write
T 0

n instead of T 0
(n,n). For brevity, we put T(1,0) ∪ T 0

(1,n) = T 0
(1,n).

The proof of the theorem is based on the “backward induction argument” of [1, Lemma 2]. To
provide the induction step, we need the following

Lemma 2. For arbitrary integers k, n, 1 ≤ k ≤ n, and for an arbitrary discipline T (1) of the form

T
(1)
(1,n) = T(1,k) ∪ T 0

(k+1,n), there exists a service discipline T (2) such that

T
(2)
(1,k) = T(1,k−1) ∪ T 0

k and T (2) �n T (1), T (2) �n T (1).

Proof. The statement is clear for k = n. Indeed, in this case T (1)
(1,n) = T(1,n) and T

(2)
(1,n) = T(1,n−1)∪T 0

n .

By the definition of T 0, we have d(2)
n ≤ dn a.s., and T (2) �n T because of the monotonicity of h ∈ Hn in

its last argument.
The vectorsW (2)

n andWn may only differ in the rth and lth coordinates, and only if Tn = r �= l = T
(0)
n .

The vectors coincide if Tn = T
(0)
n . In all cases

W (2)
n � Wn a.s.;

therefore, φ2

(
W

(2)
n

) ≤ φ2 (Wn) a.s. whatever φ2 ∈ Hm, and T (2) �n T .
For every fixed k, 1 ≤ k ≤ n − 1, if Tk = T 0

k , then the discipline T (2) ≡ T (1) already satisfies the
equality T

(2)
(1,n) = T(1,k−1) ∪ T 0

(k,n).
Assume Tk = r and l = argminj{vk−1,j} = argminj{Wk−1,j}. By the Total Probability Law, we

only have to prove the lemma on the event {r �= l}.
In what follows, we assume Tk = r �= l = T 0

k .
By the induction assumption, T (1) coincides with the FCFS discipline in the (k + 1)st step; i.e.,

T
(1)
k+1 = T 0

k+1 = argminj{Wk,j}. SinceWk−1,l ≤ Wk−1,j for every j andWk,j = (Wk−1,j−τk)++skI(j = r),

the event T (1)
k+1 = j �= l may occur if and only if Wk,l = Wk,j = 0.
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Fix j and assume the event
{
Tk = r �= l = T 0

k

}∩ {
T 0

k+1 = j �= l
}
to occur. Then, instead of T (1), we

can consider a new discipline T (3) such that T (3)
k+i = l if T (1)

k+i = j and T
(3)
k+i = j if T (1)

k+i = l for every i ≥ 1.

Clearly, d(1)
k+i = d

(3)
k+i, W

(1)
k+i = R(W (3)

k+i) a.s.

In other words, we may assume throughout the proof that the equality T
(1)
k+1 = l holds a.s. on the

event
{
Tk = r �= l = T 0

k

}
.

Now, fix 1 ≤ k ≤ n − 1 and apply Lemma 1 to the “initial” vector Wk−1 instead of W0 and to the
driving sequences {τi}i≥k, {si}i≥k instead of {τi}i≥1 and {si}i≥1. More precisely, use Lemma 1 for a given
{Wk−1 = const}.

So we construct the discipline T ′ that coincides with T for first k − 1 customers and coincides with
T 0 for customer k. By (17) and (18), the following holds: for every function h ∈ Hn

h
(
d

(1)
1 , . . . , d

(1)
k−1, d

′
k, d

′
k+1, . . . , d

′
n

) ≤ h
(
d

(1)
1 , . . . , d

(1)
k−1, d

(1)
k , d

(1)
k+1, . . . , d

(1)
n

)
a.s. (29)

Inequality (19) implies that, for 1 ≤ k ≤ n− 1,

P
(
φ1

(
W ′

n−1

) ≥ x1, φ2

(
W ′

n

) ≥ x2

) ≤ P
(
φ1

(
W

(1)
n−1

) ≥ x1, φ2

(
W (1)

n

) ≥ x2

)
. (30)

In the system with the discipline T ′, replace the sequence of service times s1, . . . , sk−1, s
′
k, s

′
k+1, sk+2,

. . . by {si}. Denote the resultant discipline by T (2). Inequality (29) remains valid, but now in the
stochastic sense, and inequality (30) remains valid.

We have thus constructed the discipline T (2) such that T (2) �n T (1), T (2) �n T (1). Moreover,
T

(2)
(1,k) = T ′

(1,k) = T
(1)
(1,k−1) ∪ T 0

k by construction. �
We take n ∈ N and prove, by use of backward induction, the following statement.
(I) For every 0 ≤ k ≤ n− 1 and every discipline T , the service discipline T

(1)
(1,n) = T(1,k) ∪ T 0

(k+1,n) is
no worse than T , i.e., the following inequalities hold:

T (1) �n T, T (1) �n T. (31)

Indeed, for k = n − 1, (I) follows directly from Lemma 2. Assume that (I) holds for all k ≥ k0 + 1
less than n. Prove it for k = k0.

By the induction assumption, for an arbitrary discipline T , the discipline T (1)
(1,n) = T(1,k0+1)∪T 0

(k0+2,n)

is no worse than T in the sense of (31). By Lemma 2, there exists T (2) which is no worse than T (1) and
such that T (2)

(1,k0+1) = T(1,k0) ∪ T 0
k0+1. By the induction assumption,

T
(3)
(1,n) = T

(2)
(1,k0+1) ∪ T 0

(k0+2,n) = T(1,k0) ∪ T 0
k0+1 ∪ T 0

(k0+2,n) ≡ T(1,k0) ∪ T 0
(k0+1,n)

is no worse than T (2). Therefore, (I) holds for k = k0.
In particular, Theorem 1 follows from (I) on taking k = 0. �
Remark 2. Using (17) and (18), we can easily prove the following generalization of the inequality

T 0 �n T : for every k = 1, 2, . . . , arbitrary natural n1, . . . , nk, and arbitrary functions hi ∈ Hni , i =
1, . . . , k, the following inequality holds

(h1(d1, . . . , dn1), . . . , hk(d1, . . . , dnk
)) ≥st

(
h1

(
d0

1, . . . , d
0
n1

)
, . . . , hk

(
d0

1, . . . , d
0
nk

))
. (32)

§ 4. Generalizations and Applications of the Results

4.1. Possible generalizations. The statements of Theorem 1 may be generalized to networks of
multiserver queues with state-independent routings (say, to Jackson-type networks). It suffices to give
a proof for networks with deterministic routings and thereafter to make use of the Total Probability Law.
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One of the possible generalizations is formulated below as Statement 1 for which we only give here
some heuristic arguments. As a preliminary, we introduce a more general class of service disciplines which
allows possible “delays” in commencement of service.

In what follows, we assume that a service discipline T is defined as a two-dimensional sequence

T = {Tn,∆n}. (33)

Here ∆n ≥ 0 are random delays with the following meaning: if T1 = k then the service of the first
customer starts not at the time instant max{v0,k, t1}, but later at u1 = max{v0,k, t1} + ∆1, i.e., with
delay ∆1. We put v1,j = v0,j for j �= k, and v1 = v1,k = u1 + s1. For n ≥ 2, vn,j and un are defined
inductively. Assume vn,j and un to be defined. For a fixed k, if the event Tn+1 = k takes place, then
the service of the n+1st customer starts at the time instant un+1 = max{vn,k, tn+1}+∆n+1 (with delay
∆n+1). Then we put vn+1,j = vn,j for j �= k, and vn+1 = vn+1,k = un+1 + sn+1.

We say that a service discipline in the class (33) is admissible, if, for arbitrary n, k1, . . . , kn and
arbitrary measurable sets B1, . . . , Bn, the following holds

P
{
T1 = k1,∆1 ∈ B1, . . . , Tn = kn,∆n ∈ Bn | W0; {τi}∞i=1; {si}∞i=1

}
= P

{
T1 = k1,∆1 ∈ B1, . . . , Tn = kn,∆n ∈ Bn | W0; {τi}∞i=1; {si}n−1

i=1

}
. (34)

By coordinate-wise monotonicity of Schur-convex functions, a service discipline with delays is “worse”
than the corresponding discipline without delays which is admissible in the sense of Definition 1. Applying
Theorem 1 to the latter discipline, we can show that the statement of Theorem 1 holds true for the
disciplines in the class (33) which are admissible in the sense of (34).

Remark 3. It is possible to consider further generalizations of the class of service disciplines (for
example, we can assume that the order of service may differ from the order of arrival (see [8])) and prove
optimality of the FCFS discipline in this case.

Now, consider a queueing network with K stations numbered 1, . . . ,K, where each station is a mul-
tiserver queue. Exogenous customers arrive at station 1. At each station, upon service completion
a customer either goes to some other station or leaves the system according to the following rule. As-
sume that a sequence of integers lk,1, lk,2, . . . is given for every k = 1, . . . ,K. Here the lk,j ’s take values
in 1, 2, . . . ,K+1, and have the following meaning: upon the jth service completion at station k, the cus-
tomer is directed to station lk,j if lk,j ≤ K or leaves the system if lk,j = K+1. At an arbitrary station k,
the service times {s(k)

j } form an i.i.d. sequence which is independent of everything else. Assume that the
lk,j are selected in such a way that any customer may have only a finite number of services before leaving
the network. For each station k, the service discipline T (k) =

{
T

(k)
j ,∆(k)

j

}
is used which is assumed to

be admissible in the following sense: for all k, j, the random variables T (k)
j+1,∆

(k)
j+1 may depend only on

the local station history, i.e., on previous interarrival and service times at station k.
Also, assume that only a finite number of exogenous customers (say, n) can enter the system. Denote

by zj , j = 1, . . . , n, the sojourn time of customer j. We give the following result without proof.

Statement 1. For every Schur-convex function h,

h
(
z0
1 , . . . , z

0
n

) ≤st h(z1, . . . , zn). (35)

Here (z0
1 , . . . , z

0
n) stands for the vector of sojourn times in the network with FCFS discipline at all

stations.
The proof of (35) is based on the same ideas as that of Theorem 1, but it is much more complicated.

A statement analogous to (3) is also valid. We sketch a possible proof in the particular case of a tandem
of two multiserver queues.

More precisely, consider a network of two stations (queues). Upon service completion at the first
station, each customer goes to the second station and after service there it leaves the network.
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In this particular case, the reader can prove (35) using the following idea. At the first station, replace
the discipline T (1) by FCFS. Then all customers leave this station earlier (see (5)). Simultaneously, put
delays at the entrance to the second station in such a way that all service commencements/completions
at the second station remain the same as under T (1). Now, replace T (2) by the FCFS and, finally, remove
the delays.

Remark 4. We should explain why (35) may be valid only for the joint distribution of the sojourn
times of all n customers. The reason is that, in the scheme of proof, the following argument is crucial:
at each station, the total number of services of the first n customers has to be the same for all service
disciplines. If this is not the case, then (35) may fail.

Consider, for example, the tandem of two stations, where the first station is a two-server queue and
the second is a single-server queue. Assume that only two customers arrive at the first station. The
customer whose service is completed first is directed to the second station, and the other customer leaves
the network immediately after service completion at the first station.

Define the initial state W0 = (W0,1,W0,2) at the first station (assume 0 ≤ W0,1 < W0,2). Put t1 ≤ t2
for the arrival instants; put s1, s2 for the service times at the first station and s for the service time at
the second station. Assume t1 = t2 = W0,1, s1 ≤ W0,2 −W0,1 and s > W0,2 −W0,1 a.s. Under the FCFS
discipline, z0

1 = s1+s a.s. However, if we direct the first customer to the second server at the first station,
then z1 = s1 +W0,2 −W0,1. Therefore, for n = 1 (here n is less than the number of arrivals), inequality
(35) fails.

Now, consider a network with infinitely many arrivals. Let τ1 + · · ·+ τj be the time when customer j
arrives. Assume that the network is stable under the FCFS discipline at all stations as well as under
the disciplines T (k), k = 1 . . . ,K. Assume, moreover, that Ef(z0) and Ef(z) exist for some convex and
increasing function f , where z0 and z stand for the stationary total sojourn times in the corresponding
network. Then

1
n

n∑
j=1

f(z0
j ) → Ef(z0) and

1
n

n∑
j=1

f(zj) → Ef(z) a.s.

For every fixed n, denote by z0
n,j (or zn,j), j = 1, . . . , n, the total sojourn time of customer j in the

modified network in which only the first n arrivals are allowed. It is easy to show that the normalized
sum

1
n

n∑
j=1

f(z0
n,j)

converges a.s. to Ef(z0). Similarly, 1
n

∑n
j=1 f(zn,j) converges a.s. to Ef(z). Therefore, we can use (35)

with the functions

h(z1, . . . , zn) =
1
n

n∑
1

f(zj)

and obtain the following result.

Corollary 1. Let z be a stationary sojourn time and assume the function f convex and increasing.
Then

Ef(z0) ≤ Ef(z).

4.2. Applications. We suggest some applications of the results of § 2. Consider a multiserver
queue GI/GI/m with m servers and i.i.d. interarrival times τn which are independent of {sn}. Put
a = Eτ1 > 0, b = Es1 and assume the traffic intensity condition ρ ≡ b

ma < 1 holds.
1. In [14] the following statement was proved for the above queue with the FCFS discipline.

Theorem 2. Assume that (m − 1)a > b. If Esc
1 < ∞ for 3/2 ≤ c ≤ 2, then E(d0)2c−2 < ∞. If

Esc
1 < ∞ for c > 2, then E(d0)c < ∞.
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The scheme of the proof in [14] was as follows: first, the existence of expectations was proved for the
discipline of Example 4. Then the inequality Edc ≥ E(d0)c was used. The latter inequality follows from
(10) on taking the function h = 1

n

∑n
i=1(di)c, c ≥ 1 and letting n tend to infinity.

2. We also give two examples of obtaining upper bounds for tail asymptotics P(d0 > x) in the
GI/GI/m queue defined above.

2.1. We make a comparison with the random discipline (see Example 3).
Put x = y + z, where 0 ≤ y = y(x) → ∞ and 0 ≤ z = z(x) → ∞ as x → ∞. For all α > 1,

P(d0 ≥ x) = P((d0 − z)+ ≥ y) ≤ E((d0 − z)+)α

yα
≤ E((d− z)+)α

yα
.

Here d stands for the stationary waiting time in the multiserver queue with the random service discipline.
The stationary workloads at all stations have the same distribution. Choosing a server at random and
independently of the system state, we obtain a distribution of stationary waiting time which is the
same as in the single-server queue GI/GI/1 with interarrival times τn and service times distributed as
σn = snI(Tn = 1); i.e., P(σn > x) = 1

mP(s1 > x) for x ≥ 0. For example, assume that the distribution
of sn is subexponential. Then the following property is well-known:

P(d > x) ∼ ρ

1− ρ

1
m

∞∫
x

P(s1 > t) dt

as x → ∞. We thus obtain

P(d0 ≥ x) ≤ (1 + o(1))
ρ

1− ρ

1
myα

∞∫
z

(t− z)αP(s1 > t) dt. (36)

For specific distributions of the r.v. s1, we can find the minimum over y of the RHS of (36).
2.2. We make a comparison with the cyclic discipline (see Example 2). The following inequalities

hold:
P(d0 ≥ x) ≤ P

(
W 0

1 + · · ·+W 0
m ≥ mx

) ≤ P(W1 + · · ·+Wm ≥ mx),

where (W1, . . . ,Wm) is the stationary vector of virtual waiting times. Assume the distribution of service
times to be subexponential. We can show that

P(W1 + · · ·+Wm ≥ mx) ∼ mP(W > mx),

where W coincides in distribution with the stationary waiting time in the GI/GI/1 queue with the
service times {sn} and interarrival times distributed as τ1 + · · ·+ τm. Hence,

P(d0 ≥ x) ≤ (1 + o(1))
ρm

1− ρ

∞∫
mx

P(s1 > t) dt. (37)

Examples show that, according to the distribution of s1, either (36) or (37) may give a sharper estimate
of P(d0 ≥ x).

The authors would like to thank the referee for fruitful remarks and Stan Zachary for the significant
improvement of the style of the English translation of the paper.
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