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§1. Introduction

In multiserver queueing systems, various service disciplines are used, e.g., “first-come-first-served”
(FCFS), “last-come-first-served” (LCFS), cyclic, time sharing disciplines, etc. Therefore, the natural
problems of comparing service disciplines were studied by many authors.

We restrict our consideration to disciplines which do not allow time sharing and service interruption.
In other words, we assume that, at any time instant, each server may serve at most one customer. Once
started, a service continues until completion; afterwards the customer leaves the system.

Usually, the state of the system is described by the sequence of finite-dimensional random vectors
Wy = Wni,.o o, Whm), n > 0 (with m standing for the number of servers), where W, ; denotes the
total workload at the jth server just after the nth customer arrival, i.e., the amount of time needed by
server j to complete the services of all customers (including the nth) who have arrived up to this time
instant. We are interested in minimizing the distribution of a certain functional ¢(W),,) for every fixed n.
The minimization problem for functionals of joint distributions ¢(Wy,, Wi41, ..., Wy 1) is interesting as
well. The following questions arise: (a) for which disciplines can we solve the optimization problem; (b)
how may we describe a class of valid functionals {¢}?

Alongside W,, we also consider the sequence d,, of the actual waiting times (or the sojourn times) of
customers in the system and analyze the problem of minimizing the distributions of certain functionals
of this sequence.

We further assume that the sequence {s,} of service times consists of independent identically dis-
tributed (i.i.d.) random variables (r.v.’s) and is independent of the other input characteristics.

We use the following conventions. We say that an r.v. £ is stochastically greater than an r.v. £° and
write & >¢ &0 if P(€ > 2) > P(¢° > 2) for all real . A random vector & = (£1,...,&,) is stochastically
greater than a random vector ¢° = ({?, . ,fg),

€248, (1)
if there exists a coupling (1,7°) of both vectors on a common probability space, n =p ¢ and n° =p &9,
such that n > n° a.s. coordinate-wise. Note that (1) implies the following inequality: for every vector
x=(T1,...,Ty),
P(¢ > 1) > P > x). (2)
The converse is false in general: for n > 2, inequality (2) does not imply (1).
Denote by TV the FCFS service discipline (see Example 1) and consider another discipline 7. We
endow all quantities of the system governed by the FCFS discipline with the superscript 0 .
Seemingly, the first substantial and quite general results on optimality of the FCFS discipline were

proved in [1]. Firstly, it was shown therein that, for every n = 1,2,..., every Schur convex function
¢ : R™ — R, and all admissible service disciplines T', the following inequality holds:
S(Wn) Zst ¢(W7)). (3)
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In particular, (3) implies that
max W, ; >4 max WT?J (4)
J J

(see Section 2 for the definitions of Schur convezity and admissibility). Further, denote by v, the time
instant of the nth customer’s service completion. Then the following is true (see [1]): for every natural
number n,

R(vi,...,vp) >st R(v?,...,vg), (5)

where, for every vector x = (z1,...,%,), the vector R(x) is obtained from z by permuting coordinates in
nondecreasing order. In particular, (5) implies the relation

D djza Y dY. (6)
1 1

If the systems with the FCFS and the T disciplines are both stable then
1 ¢ 1
ﬁzljdj — Ed, Ezlzdg?—md“ a.s.,

where d and d° stand for the corresponding stationary waiting times. Then (6) implies the inequality
Ed>Ed. (7)

Validity of (4) was discussed earlier by several authors. In [2, p. 220] it was asserted that this
inequality holds almost surely. But Stoyan [3] gave a counterexample and conjectured that (4) is valid in
the stochastic sense. A proof of (4) was proposed in [4], but it appears to have been based on incorrect
arguments.

Wolff [5] considered stable GI/G1I/m systems with the FCFS discipline 79 and the cyclic discipline
T (the cyclic discipline is defined in Example 2). In this case, he proved the following generalization
of (7): for every increasing convex function f,

Ef(d) > Ef(d"). (8)

Whitt [6] (see also [7]) considered the cyclic T discipline, too. He showed (by example) that, in general,
d and d° are noncomparable; i.e., the inequality d >, d° may fail.

A slightly different class of service disciplines, where the order of service may differ from the order
of arrival, was studied in [8] (in particular, that class contains the LCFS discipline). Results similar to
(3) and (5) were established.

In [9], the following assertion was stated (we formulate it in our notation): for every k =1,2,...,

Olélliélk m?X(WnH,j — Tntir1) et oglzigk me(Wr?+l,j — Totia1) s 9)
but a correct proof was provided only for k = 1.

Another variant of the proof of inequality (3) was proposed in [10]. The paper [11] contains a short
description of results in [1, 8, 9] together with proofs of the main results in particular cases. In the survey
[12], the proof of the main result of [1,11] was reproduced and some other problems were considered.

Recent publications (see, e.g., [13] and others) show that, using comparison theorems, enables us
to obtain new results for systems with the FCFS discipline such as: statements on the existence of
moments for the stationary waiting time, construction of upper bounds for tail distributions of certain
characteristics, etc.

We prove the following new results. First, we establish a natural generalization of (6):

h(di,. .. dn) > h(d},...,d0) (10)



for every Schur-convex function h. In particular, (10) implies that (8) is valid for every future-independent
service discipline (not only for the cyclic one). A more general assertion for the joint distributions of
several Schur-convex functions is also valid (see Remark 2).

An interesting application of (10) was given in [14] (with a reference to the present paper unpublished
at that time). We discuss it in more detail in §4.

Second, we give an example, showing that (9) may fail in general for k& > 2. For k = 1, we prove
the following generalization of (9): for arbitrary Schur-convex functions ¢1, ¢ and for all n = 1,2,...,
x1,29 €R

P(p1(Wn) > 21, ¢2(Wnp1) > 22) > P(¢1 (W) > w1, d2(W), 1) > 22). (11)

The paper contains four sections. In §2, we introduce the main definitions and notations and state the
results and corollaries. The proofs are given in § 3. In §4, further possible generalizations are considered
together with examples of applications.

§ 2. Main Definitions and Statements

2.1. The model description. Consider a queueing system with m servers, governed by the
independent sequences of r.v.’s {7;};>1 and {s;};>1, by the initial vector Wy = (Wp 1, Wo2,..., Wom),
and by a service discipline of a certain class. Here 7 is the arrival time of customer 1 and, for ¢ > 2, 7;
is the interarrival time between the (i — 1)st and ith customers. The r.v. s; is the service time of the ith
customer. For j = 1,...,m, the coordinate Wy ; > 0 of Wy is the first time instant when server j can
begin customer service. Define a service discipline as a random sequence T' = {7}, },>1, where T, stands
for the number of the station where the nth customer is served.

Let all r.v.’s be defined on a probability space (2,.%,P). Denote by N ={1,2,...,n,...} the set of
natural numbers. Let ¢, = Z?Zl 7; be the nth arrival instant.

The sequence of service times {s;};>1 is assumed to consist of i.i.d. random variables which do not
depend on Wy and {7;}i>1.

The sequence T' = {T},},>1 determines the service procedure as follows.

Set vg; = Wy, for 1 < j < m. The service of the first customer proceeds at station T7. If T3 = k
then the service starts at the time instant u; = max{vgy,?1} and continues for s; units of time. Before
the time instant u, server k is out of service. Given the event {77 = k}, we put vy ; = vg; for j # k,
and V1 =V1k = Ul + S1.

The following r.v.’s are defined inductively for each n € N: wu,, is the time instant when the service of
customer n starts and vy, j is the last departure epoch of customers with numbers 1,...,n from station j.

Given the event {T,+1 = k}, server k cannot serve any of the customers numbered n+1,n+2,...,
until the time instant u, 1 = max{v, s, tn+1}. The service of customer n+1 starts at station Tp,41 = k
at the time instant u,41. Given the event {T,,11 = k}, we put

Un+1,j = Un,j if j #k, and Unt1 = Untlk = Un+1 + Sp+i-
Note that, for ¢ < j, the inequality u; + s; < u; holds a.s. on the event {T; = T}}.
A service discipline T is called admissible if it exhibits the “future independence” property.

DEFINITION 1. A service discipline T = {T}, },>1 is admissible in the system X (W, {7}, {s:}) if, for

n > 1, whatever the set of natural numbers {k1, ..., k,}, the following equality holds:
P{Ty =ki,....,Tpn =kn | Wo; {mi}321; {si}321 }
= P{T1 = ki, T = kn | Woi {ma} 320 {si i} (12)
The workload at station j is measured as the length of the time interval between t,, and the last
departure epoch of customers with numbers 1, ..., n from server j. Thus, it is equal to Wy, j = (v j—t5) 7.

The vectors W,, obey the evident recurrence relation W,, = (W,,_1 —i7,)" + sner,, where ey stands for
the unit vector with all but kth coordinates equal to zero and the kth coordinate equal to one, and
i=(1,...,1) is the vector of ones.

We consider some examples of admissible service disciplines.



ExampLE 1 (FCFS discipline). For n € N put

T, = min {j :v,—-1; = min v,_1%} = argmin{v,_1.}.
n 1§j§m{J n=Li T Sl k) 1§j§m{n gt

Here the arg min; ;<,,{vn—1,} means the smallest j such that v,_1; < v, 1y for all 1 <k < m.
EXAMPLE 2 (cyclic discipline). Put Typ4; =j forn,k>0and j=1,...,m.

EXAMPLE 3 (random discipline). Here the r.v.’s {T},} are mutually independent, do not depend on
{Wo, {7}, {si}}, and are distributed uniformly on the set {1,2,...,m} of station numbers: P(T,, = j) =
1/mforj=1,...,m.

EXAMPLE 4 (the discipline introduced in [14]). Each of the first m — 2 customers chooses the station
with the minimal waiting time among the stations that are not chosen by the previous customers. The
customers numbered m — 1, m, ... may not choose any of the stations already chosen by the previous
m — 2 customers. From the two stations left, each such customer chooses the server with the smallest
waiting time.

Define

{{1,...,m}\{T1,...,Tn_1} for1<n<m-2,
A, =
{1,....,mI\{Th—m+2,..., Tn—1} forn>m—2,
the set of stations “available” for customer n. Then T;, = argmin 4, {vn-1}-

2.2. Schur convexity. For an arbitrary vector x = (71,...,7,), denote by x(;) <z < -+ <z,
the vector obtained from z by permuting coordinates in nondecreasing order. We need the following
partial ordering.

DEFINITION 2. Given two vectors x = (z1,...,x;) and y = (y1,...,y), we write x < y if
1 !
> 2w < D
i=k i=k

forall 1 <k <.

DEFINITION 3. We say that a function f : R” — R is Schur-convez, if the inequality f(z) < f(y)
holds for arbitrary vectors x <1 y.
It is easy to show that the class of Schur-convex functions coincides with the following class H,.

DEFINITION 4. We say that a function h : R — R belongs to the class Hy, if the following inequality
holds for every 1 < j < n and all (aj,a;41) < (bj,bj+1):
h(al, sy Ay Agg1y e ,an) < h(al, ce ,bj, bj+1, v ,an).
2.3. Main results. Cpnsider two admissible disciplines 70 and T®. For n € N and for each
discipline T’ (i), denote by d,(f) :.uv(nf) — t,, the waiting time Qf Customer n. '
The coordinate Wég = (Ufi)j — t,)T of the vector Wi = (Wr(ﬁ, e Wéfzn) equals the workload at
station j at the time instant ¢,,.

We define two ways of comparison between service disciplines.

DEFINITION 5. We write TW <, T3 if, for every h € H,,

h(dgl)a,dg)) Sst h(d?)aud@)) (13)

n

DEFINITION 6. We write T <, T if the following relation is valid for all ¢1,¢2 € H,, and
r1,2r9 € R:

P (o1 (W) 2 21, gp(WY) > 22) <P (o1 (W) 2 21, (WD) > ). (14)



Theorem 1. For every n € N, the service discipline FCFS is no worse than any other admissible
discipline T’; i.e.,
° <, T, T°=,T.

REMARK 1. We exhibit an example below, showing that the inequality 7° =<,, T may fail if one
considers the joint distribution of more than two random vectors in (14). In particular, the inequality

P(¢1(W)_y) > 21,02(WS_1) > 22,03 (W) > 3)
<P(p1(Wh_2) > z1,p2o(Whn—1) > 22, p3(Wy,) > x3),

for the FCFS discipline 7° and an arbitrary admissible discipline 7" fails in general.

EXAMPLE 5. Consider a two-server queueing system with 71 = o =73 =0, Wy = ¢ > 0 = Wpo.
Assume that the r.v.’s sq, 89,83 are i.i.d. and take only two values o« < [ with respective proba-
bilities 1 — p and p. We compare the FCFS discipline 79 with the discipline T given by T3 = 1,
T, = arg minjzl’Q{Wn,Lj} for n = 2,3. Here we put W,, = Wy,_1 + sper,.

We consider the functions ¢;(z1,x2) = max(z1,x2), i = 1,2, 3, in the class Hy and show the existence
of values of ¢, o, 8, 1, x2, x3 such that

P = P(max Wl,j Z 1, max WQJ‘ Z T2, MmMax W37j Z $3)
J J J

SP(maleoj le,maszoj ng,maxng > x3) = PO (15)
J ’ J ’ J ’

_[(ct+s [t s o [ c
() we= (L) m= (1),

Assume that 1,9 satisfy the inequalities: 8 > x1 = x9o > c+a, 20 >c+a+ 08> 23 > a+ 3,
x3 > ¢+ (. Then max; Wi ; > x; if and only if s; = 3. On the event {s; = §}, we have Th =1, T3 = 2.
The inequality max; Ws; > 2 in (15) is always true, and the inequality max; W3 ; > 23 becomes

Note that

{m?X W3 = max(c+ 3,52 + s3) > w3} = {52 = 53 = (3}

Hence, P = p3.

We now calculate P°. The event {max; Wﬂj = max(c, s1) > z1} in (15) takes place only if s = 3 > c.
The inequality {maxj W207 ; = max(c+ s2,81) > azg} is valid always.

On the event {s1 = (3, s2 = [}, we have

{max W3 = max(c+ 8,5+ 55) > w3} = {s3 = 5}.

On the event {s; = 3, s2 = a}, we have

{maxW:gj =max(c+ a+ s3,3) > x3} = {s3 = }.
j
Therefore,

P’ =P(s1 = f,50=,53 = 0) + P(s1 = f,50 = a,s3 = §) =p> > P,

Furthermore, we show that (9) may fail either. Put z =2y =20 = 3, 23 = c+a+8, =1 =173=0
and 74 = ¢+ a. Then
{max(Ws3; — 74)* > 2} = {max W3 ; > z3}
J J

and

. + _ .3 2 _ . 0 o\t
P(min, max(Wij —7is1)" 2 2) =p* <p* = P(min max(Wy; —7i1)” > 2).



§ 3. Proof of Theorem 1
First, we prove the following analog of Lemma 3.1 in [11].

Lemma 1. Let Wy = (Wy1,...,Wom) be a nonrandom vector and Wy, > Wy for some fixed r # .
Let T be an admissible discipline in the system X(Wy, {7}, {s:}) such that T1 = r and T = l. Then

(a) there exist r.v.’s s} and s}, with the following properties: they are i.i.d., coincide in distribution
with s1, and are independent of {7;}, {s;}i>2, and s} + sh = s1 + s a.s.;

(b) in the system X(Wy, {7}, {s], 5, 83, 84, ... }), there exists an admissible discipline T' such that
T] =1,Ty = r and, for every i > 3,

W/, <aW;_1 as., (16)
dij=(W_ 10 —7)" <di=Wisip, — )" as., (17)
& <di, (ddy) < (ddy) as. (18)
and
P(p1(Wi_g) = x1, d2(W_1) = a2) <P (o1 (Wis2) = 21, ¢2(Wir1) > a2) (19)

for all functions ¢1, ¢s € Hy, and all z1,x5 € R.
ProoF. Put A = {Wy, — 1 — m» < 0}. It is easy to show that the r.v.’s

sh = s11(A) + soI(A); sy = sol(A) + s11(A)

satisfy item (a) of Lemma 1. For instance, the i.i.d. property for s;., j =1,2, (as well as the independence
of 11, 72) follows from the corresponding properties of {s;}: by the Total Probability Law,

P(s) € B)=P(s; € B,A)+P(s2 € B,A) =P(s; € B)P(A) + P(s; € B)P(A) = P(s1 € B).

As was proved in [1] (see also [11, Lemma 3.1]), (16) is valid for the discipline 7" in the system with
service times {s, s}, $3, 84, ...}, where T” is defined as follows. Put 7] =1, Tj = r a.s. and, for i > 2,
(a) on the event A, put 7] = T; a.s.;
(b) on the event A, put
v AT =1,
=41 ifTi=r

T, otherwise.

For convenience, we reproduce the proof of (16) in [11], proving (17) simultaneously.
PROOF OF (16) AND (17). First, note that, on the event A,

Woy=Woy—11—72)" 450> Ws; = ((Wou— 1) + 52— m)7,

/ (20)
Wor=Wo,r —11—T2+s1=W;, as.
and Wy ; = Wé,j a.s., for any other j. On the event A,
WQ’Z = §9 = WQIJ,, Wgﬂn = ((W()Jf — 7'1)+ + 81 — 7'2)+ = Wé,l a.s. (21)

and Wy j = W, ; a.s., for any other j. It is easy to show that (20) and (21) hold true for the corresponding
coordinates of W; and W} with any i > 2. Therefore, (16) holds. Moreover, W;_1 1, > W/ | ., a.s., for

all i > 2; therefore, (17) holds. L
PROOF OF (18). Note that

di = max{d;,dy} = (Wo, — 7'1)+ > max{d},d,} = max{(Wo; — 71)+, (Wo,r —11 — 7'2)+} a.s.



On the event A,
di+do=Wo,—11+Woy—m1—1)T>Wo,—mi+Wo,—m)t —n=d +dy as.

On the event A, we have dy = 0 = dj); whence dj + dy = dy > d} = d} + dj a.s. Then (d},d,) < (di,d2)
a.s. by Definition 2, and (18) follows.

PROOF OF (19). Note that, for i > 3, (19) follows directly from (16). We prove (19) for i = 3. By
the Total Probability Law, we can prove (19) separately on the events A and A.
On the event A,

Wi\ (Woy—m1)" 4 Wog—m)t+s1) _ (Wi, (22)
Wi, ) \(Wor — 1) + 51 (Wo,r — 1) " N4 s
and W} < Wy a.s. due to (16). The latter proves (19) on the event A.
Once s1, 2,8}, and s) are independent of 71 and 79, it suffices to prove (19) on A only for fixed 7
and 7y.
For brevity, put b = Wy, — 7 > a= (Wo; —71)" >0, 7 =7. On A, we have b > 7. Let a < b.
The vectors W; and W/, i = 1,2, differ from one another only in two coordinates (rth and Ith); so we
can prove (19) with functions ¢1, ¢2 € Hs.

We have
Wl,r B b+ s1 W277~ o b+s1—7
Wl,l B a ’ W27l o (a - T)Jr + S92 ’
Wll’r B b Wém . b+s1—7
Wi, ) \a+s2)’ Wy, ) \(a+sa—17)" )"
For 1,9 € R, define the events

Ag = Ag(x1, 22, 1, P2) = {¢1 <b—281> > 1, P2 <( bt =7 > sz},

a—T1)T + s9

Al = A1($17$2)¢1)¢2) = {¢1 <b251> Z T, ¢2 <(ab<:>88217_7—)+> 2 -TZ}v

A25A2($171‘2>¢1>¢2):{¢)1< b )Zm, ¢2((b+81_7+>2m2}.

a + s a+sy—T)

In order to prove (19), it suffices to show that
P(4o) > P(A1) > P(As). (23)

The first inequality in (23) follows from the monotonicity of ¢o € Hy in the second argument. We prove
the second inequality. Set u; = min{sy, sa}, ue = max{si, so} and consider the events C;, Ca, Cs:

Ci = {xl < ¢1 <b2u1>}7 Cy = {561 > ¢ <b—zu2>}’
C3 = {¢1 (b—i;ul) <z1 < ¢ (b—i;lm)}.

By the Total Probability Law, for j = 1,2,
P(4;) = P(A4;C1) + P(A;C2) + P(A;C3) = Pj1 + Pja + Pj3. (24)

We prove that Pj; > Py; fori=1,2,3.



a

b b —
P =P {¢1 < —281> > T1, ¢2 <(a _:_3321_ 7_7;+) > T9, Cl}

b _
el (024 o)

1. Note that C; C {xl < <b+ 51 ) } Hence,

b b _
ZP{<Z>1 <a—|—32> > xq, ¢2<(a_:_8321_:)+> > xa, 01} = P.

2. Observe that

Cy C {931 > @1 <b251>}‘

Therefore,
CynN {gbl (b_zsl) > :L'l} = @ and Pj5 = 0.
Moreover,
b+ b
Cy C {Il >¢1< a82)} C {561>¢1 <a+32>}’
whence

b
C’zﬂ{¢1 <a+32> me}—@,
and, therefore, Pyo = 0 = Ps.

3. Consider the following events
Do = {s1 =s2}, Di={s1<s2}, Dy={s1>s2}.
Clearly, Do N C3 = @. Thus, for j =1, 2,
Pj3 = P(A;C3D1) + P(A;C3D;3).

Consider the term P;3. The equality

C3NDy = {81 < 82, P1 <b—281> <z < ¢ (btl@)}

implies P(A;C3D;) = 0. Note that

b b b
C3ﬁD2={82<81, ¢1< —282><$1§¢1< 281>}§{¢1< —;Sl

and, therefore,

b _
P13=P{¢2<( o T+> > x9, Cs, D2}~

a+sy—T)

Consider the term Pa3. The equality

b
C3ﬂD2Q{¢1<CH_82) <3?1},

(25)



implies both P(A2C3D3) = 0 and

b _
Py3 = P(A2C3D1) <P {(bz ((a _:_;21_ TT)+) > 13, Cs, Dl}

:P{¢2<(b+82_T >2x2, Cs, Dg}. (28)

a+s—71)"

The latter equation follows since s1 and so are i.i.d. r.v.’s.
If so < s1 then, by Definition 2,

b+sy—T 4 b+s—7
(a+s—7)F (a+s2—7)" )"
Therefore, (27) and (28) imply the inequality Pz > Pas.
We have thus proved (23) and (19), completing the proof of Lemma 1. O
Now, we fix an arbitrary n € N. For 0 < k < n, we write T((ll,)n) =TuwV T(Ok+1,n) if Ti(l) =T, for
1 <<k and

T = 10 = argmin{v,_1,;}
1<j<m
for kK + 1 < i < n. This notation means that the first £ customers are served according to the discipline
T, while the customers numbered k + 1 < i < n are served according to the FCFS discipline. We write
T? instead of T(On’n). For brevity, we put 1{; o) U T&n) = T(Ol’n).
The proof of the theorem is based on the “backward induction argument” of [1, Lemma 2]. To
provide the induction step, we need the following

Lemma 2. For arbitrary integers k,n, 1 < k < n, and for an arbitrary discipline T of the form
7

1
= Taw VT

(kt1,n)7 there exists a service discipline T'® such that

T8 = Tas-y VT and T® <, 7O 1) 2, 70,

PRrROOF. The statement is clear for K = n. Indeed, in this case T((ll,)n) = T(1,n) and T((i)n) = T(lvn_l)UTg.

By the definition of T°, we have dq(f) <d, as., and T? <, T because of the monotonicity of h € H,, in

its last argument.
The vectors W,gQ) and W,, may only differ in the rth and /th coordinates, and only if T,, = r # [ = T,EO).
The vectors coincide if T, = T7(LO). In all cases

W2 awW, as.;

therefore, ¢o (Wéz)) < ¢o (Wy,) a.s. whatever ¢o € Hy,, and 7@ = T.

For every fixed k, 1 < k <n-—1,if T = T,S, then the discipline 73 = T already satisfies the
equality T((i)n) =Tagp-1U T(Ok’n).

Assume T}, = r and | = argmin;{vy_1;} = argmin;{Wy_1;}. By the Total Probability Law, we
only have to prove the lemma on the event {r # [}.

In what follows, we assume T, =r # [ = T,? .

By the induction assumption, T coincides with the FCFS discipline in the (k + 1)st step; i.e.,
T,E_li_)l = Tl?+1 = argmin;{Wj, ;}. Since Wjy_1; < Wy ; for every j and Wy ; = (Wh—1,j—mi) T +sil(j = 1),
the event T,g_lgl = j # | may occur if and only if W, ; = W}, ; = 0.



Fix j and assume the event {Tk =r#l= T,?} N {T,S+1 =j# l} to occur. Then, instead of T, we

can consider a new discipline 7®) such that Tﬁ)@ = if T,Sr)l =7 and T,Ei)l =jif T,Sr)l = for every ¢ > 1.
Clearly, d), = d),, Wi, = RWY) as.

1)

41 = ! holds a.s. on the

In other words, we may assume throughout the proof that the equality T,g
event {Tk =r#£l= TIS}.

Now, fix 1 < k <n —1 and apply Lemma 1 to the “initial” vector Wj_1 instead of Wy and to the
driving sequences {7; }i>k, {i }i>r instead of {7;};>1 and {s;}i>1. More precisely, use Lemma 1 for a given
{Wg—_1 = const}.

So we construct the discipline 7" that coincides with T' for first & — 1 customers and coincides with
T? for customer k. By (17) and (18), the following holds: for every function h € H,

1 1 1 1 1 01
h(d, . d L ddy . d) < h(dD, L dl Ld dl) D) as. (29)
Inequality (19) implies that, for 1 <k <n —1,

P (¢ (Wi 1) > a1, do(W)) > a2) < P(¢n (W) > a1, do(WV) > as). (30)

In the system with the discipline 7", replace the sequence of service times s1, ..., sg_1, s}, 5}, 410 Sk425

. by {si}. Denote the resultant discipline by 72,
stochastic sense, and inequality (30) remains valid.

We have thus constructed the discipline T®@ such that 73 <n T(l), 72) 20 T, Moreover,

@) _ e Q)
Ty = T(/l,k) =T 1)

We take n € N and prove, by use of backward induction, the following statement.

Inequality (29) remains valid, but now in the

U T,? by construction. [

(I) For every 0 < k < n — 1 and every discipline T, the service discipline T((11,)n) =TaxUT (Ok 1) is

no worse than T, i.e., the following inequalities hold:
T™W <, 7, T =Z, T (31)

Indeed, for & = n — 1, (I) follows directly from Lemma 2. Assume that (I) holds for all k& > ko + 1
less than n. Prove it for k = k.

By the induction assumption, for an arbitrary discipline 7', the discipline 7T, ((117)71) =T(1,ko+1) YT, (Oko +2.)
is no worse than 7' in the sense of (31). By Lemma 2, there exists 7®) which is no worse than T(!) and

such that T(Q)

(Lko+1) = T1,k0) Y T,?O+1. By the induction assumption,

3) _ (2 0 _ 0 0 _ 0
Tin) = Tkgr1) Y Tikor2m) = T(1ko) Y Thgt1 YU T(kg12.0) = T(,ko) Y Tk 41,0)

is no worse than T(?). Therefore, (I) holds for k = ky.
In particular, Theorem 1 follows from (I) on taking £k =0. O

REMARK 2. Using (17) and (18), we can easily prove the following generalization of the inequality

T° %, T: for every k = 1,2,..., arbitrary natural nq,...,n, and arbitrary functions h; € Hy,, i =
1,...,k, the following inequality holds
(haldy, . odny),s o hi(dy, oo dny)) =a (ha(dd, . dh)), . he(d, .. dD)). (32)

§ 4. Generalizations and Applications of the Results

4.1. Possible generalizations. The statements of Theorem 1 may be generalized to networks of
multiserver queues with state-independent routings (say, to Jackson-type networks). It suffices to give
a proof for networks with deterministic routings and thereafter to make use of the Total Probability Law.
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One of the possible generalizations is formulated below as Statement 1 for which we only give here
some heuristic arguments. As a preliminary, we introduce a more general class of service disciplines which
allows possible “delays” in commencement of service.

In what follows, we assume that a service discipline T is defined as a two-dimensional sequence

T = {T,, A} (33)

Here A, > 0 are random delays with the following meaning: if 77 = k then the service of the first
customer starts not at the time instant max{vg,t1}, but later at u; = max{voy,t:1} + A, i.e., with
delay Ay. We put vy ; = vgj for j # k, and vi = v = w1 + s1. For n > 2, v, ; and u, are defined
inductively. Assume v, ; and u, to be defined. For a fixed k, if the event 7,11 = k takes place, then
the service of the n 4 1st customer starts at the time instant u,11 = max{vy k, tn+1} + Apt1 (with delay
Ay+1). Then we put vp41,; = vy j for j # k, and vp41 = Upt1 b = Ung1 + Snt1-

We say that a service discipline in the class (33) is admissible, if, for arbitrary n, ki, ..., k, and
arbitrary measurable sets By, ..., B, the following holds

P{Tl = klaAl € Bh v 7Tn = knyAn € Bn ’ WO; {Ti}?il; {Sl}?il}
= P{Tl = klaAl S Bh cee 7Tn - knyAn S Bn ’ WO; {Ti}'?il; {Sl}?:_ll} (34)

By coordinate-wise monotonicity of Schur-convex functions, a service discipline with delays is “worse”
than the corresponding discipline without delays which is admissible in the sense of Definition 1. Applying
Theorem 1 to the latter discipline, we can show that the statement of Theorem 1 holds true for the
disciplines in the class (33) which are admissible in the sense of (34).

REMARK 3. It is possible to consider further generalizations of the class of service disciplines (for
example, we can assume that the order of service may differ from the order of arrival (see [8])) and prove
optimality of the FCFS discipline in this case.

Now, consider a queueing network with K stations numbered 1,... , K, where each station is a mul-
tiserver queue. Exogenous customers arrive at station 1. At each station, upon service completion
a customer either goes to some other station or leaves the system according to the following rule. As-
sume that a sequence of integers I 1,[x2,... is given for every k = 1,..., K. Here the [} ;’s take values
in1,2,...,K+1, and have the following meaning: upon the jth service completion at station k, the cus-
tomer is directed to station Iy, ; if I ; < K or leaves the system if [}, ; = K + 1. At an arbitrary station k,

the service times {sg-k)} form an i.i.d. sequence which is independent of everything else. Assume that the
Iy, ; are selected in such a way that any customer may have only a finite number of services before leaving

the network. For each station k, the service discipline T") = {Tj(k), A;k)} is used which is assumed to

be admissible in the following sense: for all &, j, the random variables Tj(i)l, Agi)l may depend only on
the local station history, i.e., on previous interarrival and service times at station k.
Also, assume that only a finite number of exogenous customers (say, n) can enter the system. Denote

by z;, j =1,...,n, the sojourn time of customer j. We give the following result without proof.

Statement 1. For every Schur-convex function h,

h(z?,...,zg) <st h(z1,...,2n). (35)

Here (2Y,...,29) stands for the vector of sojourn times in the network with FCFS discipline at all

rTn
stations.
The proof of (35) is based on the same ideas as that of Theorem 1, but it is much more complicated.
A statement analogous to (3) is also valid. We sketch a possible proof in the particular case of a tandem
of two multiserver queues.
More precisely, consider a network of two stations (queues). Upon service completion at the first
station, each customer goes to the second station and after service there it leaves the network.

11



In this particular case, the reader can prove (35) using the following idea. At the first station, replace
the discipline 7™ by FCFS. Then all customers leave this station earlier (see (5)). Simultaneously, put
delays at the entrance to the second station in such a way that all service commencements/completions
at the second station remain the same as under T(!). Now, replace T by the FCFS and, finally, remove
the delays.

REMARK 4. We should explain why (35) may be valid only for the joint distribution of the sojourn
times of all n customers. The reason is that, in the scheme of proof, the following argument is crucial:
at each station, the total number of services of the first n customers has to be the same for all service
disciplines. If this is not the case, then (35) may fail.

Consider, for example, the tandem of two stations, where the first station is a two-server queue and
the second is a single-server queue. Assume that only two customers arrive at the first station. The
customer whose service is completed first is directed to the second station, and the other customer leaves
the network immediately after service completion at the first station.

Define the initial state Wy = (Wy 1, Wo2) at the first station (assume 0 < Wy < Wy2). Put £ <t
for the arrival instants; put s1, se for the service times at the first station and s for the service time at
the second station. Assume t1 =ty = Wy 1, s1 < Woo — Wo1 and s > Wpo — Wy 1 a.s. Under the FCFS
discipline, z{ = s; + s a.s. However, if we direct the first customer to the second server at the first station,
then z; = s1 + Wo 2 — Wy 1. Therefore, for n = 1 (here n is less than the number of arrivals), inequality
(35) fails.

Now, consider a network with infinitely many arrivals. Let 71 4 - - -+ 7; be the time when customer j
arrives. Assume that the network is stable under the FCFS discipline at all stations as well as under
the disciplines T, k = 1..., K. Assume, moreover, that Ef(2°) and Ef(z) exist for some convex and
increasing function f, where z° and z stand for the stationary total sojourn times in the corresponding
network. Then

1<~ ., o 0 4 1 = E

S LA = BAC DY f() = Bf(E) na
For every fixed n, denote by ZQJ (or zn4), 7 = 1,...,n, the total sojourn time of customer j in the
modified network in which only the first n arrivals are allowed. It is easy to show that the normalized

sum
1 n
- > )
=1

converges a.s. to Ef(z"). Similarly, %Z?Zl f(zn,j) converges a.s. to Ef(z). Therefore, we can use (35)
with the functions

M) = - 3 1)
1

and obtain the following result.

Corollary 1. Let z be a stationary sojourn time and assume the function f convex and increasing.
Then

Ef(2") < Ef(2).
4.2. Applications. We suggest some applications of the results of §2. Consider a multiserver
queue GI/GI/m with m servers and i.i.d. interarrival times 7, which are independent of {s,}. Put

a =Er >0, b= Es; and assume the traffic intensity condition p = % < 1 holds.
1. In [14] the following statement was proved for the above queue with the FCFS discipline.

Theorem 2. Assume that (m — 1)a > b. If Es§ < oo for 3/2 < ¢ < 2, then E(d°)*72 < co. If
Es§ < oo for ¢ > 2, then E(d")¢ < co.
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The scheme of the proof in [14] was as follows: first, the existence of expectations was proved for the
discipline of Example 4. Then the inequality Ed® > E(alo)C was used. The latter inequality follows from
(10) on taking the function h = L 3" | (d;)¢, ¢ > 1 and letting n tend to infinity.

2. We also give two examples of obtaining upper bounds for tail asymptotics P(d® > x) in the
GI/GI/m queue defined above.

2.1. We make a comparison with the random discipline (see Example 3).

Put x =y + 2z, where 0 <y =y(z) - 00 and 0 < z = z(x) — 00 as z — oco. For all a > 1,

B((d—2)")* _ E(d-2)")"

0> ) — 0 _ \+
P(d > 2) = P((d - =) 2y) < == 5 < S

Here d stands for the stationary waiting time in the multiserver queue with the random service discipline.
The stationary workloads at all stations have the same distribution. Choosing a server at random and
independently of the system state, we obtain a distribution of stationary waiting time which is the
same as in the single-server queue GI/GI/1 with interarrival times 7,, and service times distributed as
on = spI(T,, = 1); i.e., P(o, > ) = LP(s1 > z) for > 0. For example, assume that the distribution
of s, is subexponential. Then the following property is well-known:

oo

p 1
P ~F ~[p
(d> ) —pm (s1 >1t)dt
as x — 00. We thus obtain
1 o0
P(d > 2) < (1+ 0(1))%%& /(t )P (s > 1) dt. (36)

z

For specific distributions of the r.v. s, we can find the minimum over y of the RHS of (36).
2.2. We make a comparison with the cyclic discipline (see Example 2). The following inequalities
hold:
P(d*>z) <P(W{ + -+ W0 >mz) <P(Wi+ -+ Wy > ma),

where (W7, ..., W,,) is the stationary vector of virtual waiting times. Assume the distribution of service
times to be subexponential. We can show that

PWi+-- -+ Wy >mz) ~mP(W > maz),

where W coincides in distribution with the stationary waiting time in the GI/GI/1 queue with the
service times {s,} and interarrival times distributed as 7 + - - - + 73,,. Hence,

o0

P> o) < (14 0(1)) 7 /P(31 > 1) dt. (37)

mx

Examples show that, according to the distribution of s, either (36) or (37) may give a sharper estimate
of P(d° > z).

The authors would like to thank the referee for fruitful remarks and Stan Zachary for the significant
improvement of the style of the English translation of the paper.
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